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ABSTRACT
The smallest grammar problem is the problem of finding
the smallest context-free grammar that generates exactly
one given sequence. Approximating the problem with a ra-
tio of less than 8569/8568 is known to be NP-hard. Most
work on this problem has focused on finding decent solutions
fast (mostly in linear time), rather than on good heuristic
algorithms.

Inspired by a new perspective on the problem presented
by Carrascosa et al. (2010), we investigate the performance
of different heuristics on the problem. The aim is to find a
good solution on large instances by allowing more than lin-
ear time. We propose a hybrid of a max-min ant system and
a genetic algorithm that in combination with a novel local
search outperforms the state of the art on all files of the Can-
terbury corpus, a standard benchmark suite. Furthermore,
this hybrid performs well on a standard DNA corpus.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Heuristic Methods

General Terms
Algorithms, Experimentation, Performance

Keywords
Smallest grammar problem, ant colony optimization, evolu-
tionary computation

1. INTRODUCTION
The smallest grammar problem is the problem of find-

ing the smallest context-free grammar that generates ex-
actly one given sequence. From Charikar et al. [6] we know
that approximating the problem with a ratio of less than
8569/8568 is not possible in polynomial time unless P =
NP.

While many fast heuristics are known (see Section 1.1),
most trade in good solutions for a very low running time. In
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this paper, we give heuristics based on ant colony optimiza-
tion and evolutionary computation which are able to beat
the state of the art in terms of the quality of the solutions, in
return for a longer running time. This will benefit applica-
tions which are not time sensitive, but require high quality
solutions (see Section 1.1 for applications of the smallest
grammar problem).

Our work is based on a new perspective offered by Carras-
cosa et al. [3]. This perspective focuses on sequences result-
ing from the nonterminals of the grammar, the constituents
of the grammar. The task of finding a smallest grammar
for a given sequence was split into the two following compo-
nents:

1. Choosing the constituents of the grammar; and

2. Searching for the smallest grammar given this set
of constituents; this is called the Minimal Grammar
Parsing problem.

In [3] the authors show that the minimal grammar parsing
can be done in polynomial time; the difficulty remains in
choosing the right constituents.

By splitting the problem into a tractable and an in-
tractable part, we can now focus with a heuristic exclusively
on this intractable part. We developed a max-min ant sys-
tem (MMAS) and a genetic algorithm (GA) to solve the
smallest grammar problem. In combination with our novel
local search, an MMAS-GA hybrid outperforms the state
of the art on most instances of two standard corpora: the
Canterbury corpus [1] and a corpus of DNA sequences [8].

The remainder of this paper is structured as follows. We
discuss previous work as well as applications of the prob-
lem in Section 1.1. In Section 2 we introduce straight-line
grammars and other notation. In Sectiom 3 we discuss the
approach by Carrascosa et al. [3]. Section 4 gives our local
search, and in Section 5 we present our MMAS and GA.
Finally, Section 6 gives our experimental evaluation.

1.1 Previous Work and Applications
Even though there was earlier work in the area of

grammar-based compression, the smallest grammar prob-
lem was first stated by Nevill-Manning and Witten [13].
They focused on extracting patterns from DNA sequences
and musical scores. At the same time Kieffer and Yang [9]
approached the smallest grammar problem from a data com-
pression perspective.

Quick algorithms computing such a small grammar for any
given input sequence can be used for lossless data compres-
sion, and in fact famous compression algorithms like LZ78
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(proposed by Ziv and Lempel [18] as a successor of LZ77)
quickly compute small context free grammars. Other famous
algorithms include the bisection algorithm outlined by Kief-
fer and Yang [9] and the sequential algorithm by Yang and
Kieffer [17], which processes a sequence in a single left-to-
right pass.

The best known approximation algorithms by Rytter [15]
and Charikar et al. [6] have an approximation ratio of
O (log (n/g∗)), where n is the length of the sequence and
g∗ is the size of the smallest grammar. However, there is
no data available for the performance of these theoretical
algorithms in practice: instances are typically large, and al-
ready a run time bounded by a low-degree polynomial might
be too long.

The problem has gotten attention from different com-
munities resulting in several different applications. One
of the first applications was data compression, and in fact
grammar-based compression algorithms play an important
role in this community. Lohrey [11] lists applications where
grammar-compressed sequences are advantageous, for exam-
ple for compressed pattern matching, compressed member-
ship problems, and querying of compressed strings. He also
shows that efficient algorithms for grammar-compressed se-
quences are used to solve various problems in computational
topology efficiently and to get more efficient algorithms for
problems in combinatorial group theory.

Thanks to the hierarchical structure of the resulting gram-
mar, the smallest grammar problem has also applications
in pattern recognition. For example, this kind of structure
discovery has been used to identify regularities in DNA se-
quences and to highlight patterns in musical scores (see also
discussions in Gallé [7] and Charikar et al. [6]).

Furthermore, the size of the smallest context-free gram-
mar is a natural variant of Kolmogorov complexity. The ad-
vantage of the smallest grammar problem is that it is more
tractable than Kolmogorov complexity itself.

2. STRAIGHT-LINE GRAMMARS
A context-free grammar G is a 4-tuple 〈N ,Σ,P, S〉. The

finite alphabet Σ and the set of symbols N are disjoint, non-
empty sets called respectively terminals and nonterminals.
S is a special nonterminal called the start symbol and P is a
finite binary relation from N to (N ∪ Σ)∗. A member of P is
a rule or production and denoted by N → γ, where N ∈ N
is the left-hand side and γ ∈ (N ∪Σ)∗ is the right-hand side.

A sequence s is a concatenation of zero or more characters
from an alphabet Σ: s ∈ Σ∗. To compress a sequence, one
needs parts of the sequence that can be replaced by nonter-
minals: repeated subsequences or, shorter, repeats. Formally,
a repeat of a sequence s is a subsequence of s that occurs
more than once (non-overlappingly) and consists of at least
two characters. We let R(s) denote the set of all repeats of
s. In this paper, we require a repeat to have at least two
characters, as we will use repeats for compression by replac-
ing them with a single nonterminal symbol, and replacing
a single character with a nonterminal does not change the
length of a sequence. Repeats used as rules in the grammar
are called constituents of the grammar.

A grammar naturally defines an expansion relation
∗⇒ on

(N ∪ Σ)∗ × Σ∗. The expansion of a rule is obtained by it-
eratively replacing each nonterminal by its right-hand side
until only terminals remain. The language generated by a

grammar is the set of sequences that are expansions of the

start symbol: {ω | S ∗⇒ω}.
A straight-line grammar is a grammar that generates ex-

actly one sequence. Therefore, straight-line grammars do
neither branch nor loop. In the remainder of this paper we
consider only context-free straight-line grammars.

Following Nevill-Manning and Witten [14], the size of a
straight-line grammar G is the number of rules plus the
lengths of the right-hand sides of the rules:

|G| =
∑

(N→γ)∈P

(|γ|+ 1).

For example, one of the three smallest grammars for the
40 character sequence

ttatatttctttctttcttttttttcctcagcctcagagt

is

S → N3ataN3N2N2N2N3N3N3N1N1agt
N1 → cctcag
N2 → tcN3

N3 → tt

and has a size of 30.
The smallest grammar problem is the problem of finding

the smallest straight-line grammar for a sequence. Through-
out this paper we use n to denote the length of a sequence s
and m = |R(s)| for the number of repeats in this sequence.

With the definition of size we know that each constituent
reduces the size of the grammar by

|γ| o− |γ| − o− 1,

where |γ| is the length of the constituent (right-hand side)
and o is the number of times its symbol occurs in other
rules. We call this size reduction the benefit of a constituent.
At each occurrence, |γ| characters are removed but also a
symbol for the new nonterminal added, in total (|γ| − 1)o.
In addition, each added rule increases the size by |γ|+ 1.

Carrascosa et al. [3] show that every smallest grammar
consists of at most n/2 constituents. A grammar with more
than n/2 constituents is larger than the original sequence,
because each constituent has a length of at least two. This
bound is useful, for example, when designing optimal solvers
for the smallest grammar problem. The following lemma
proves the stronger bound of n/3.

Lemma 1. Every smallest grammar consists of at most⌊
n
3

⌋
constituents, if each constituent reduces the grammar

size.

Proof. Let a smallest grammar G with set of production
rules P be given. Let N → γ ∈ P. Clearly, if γ is the
empty word, deleting this rule and each occurrence of N
would lead to a smaller grammar, contradicting minimality
of G. Similarly, if |γ| = 1, we can shorten the grammar by
removing the rule and replacing each occurrence of N by
γ. Thus, each right-hand side of a rule in P has length at
least 2. Therefore,

|G| =
∑

(N→γ)∈P

(|γ|+ 1) ≥ 3|P|.

However, as there is always a grammar of size n + 1
(not replacing anything), we get the desired upper bound
on |P|.
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There is still room to improve the maximal number of
constituents present in a grammar; however, we get the fol-
lowing lower bound (we omit the proof for reasons of space
limitations).

Lemma 2. There exists a sequence s such that each small-
est grammar for s consists of at least n/8 constituents, if the
alphabet size is not fixed.

In this section we discuss known algorithms for the small-
est grammar problem. In particular, we illustrate the recent
results from Carrascosa et al. which are crucial to our algo-
rithms.

3. CHOOSING CONSTITUENTS
Carrascosa et al. [3] noticed that several of the existing of-

fline algorithms follow the same general scheme. Therefore,
they provide a framework called iterative repeat replacement
(IRR), where the only parameter is a score function. This
score function takes as parameters a repeat γ and the num-
ber of times o it occurs in a given sequence and returns a
score for this repeat.

For a sequence s, IRR starts with the grammar S → s
and then adds a nonterminal in each step. A step starts by
recomputing the repeats and their scores, because each step
changes the grammar and thus the repeats. Afterwards, one
of the repeats with the highest score becomes a constituent
and all its occurrences are replaced by the corresponding
nonterminal. IRR terminates if no repeat yields a positive
score or the resulting grammar would be larger than the
current one.

Score functions for existing algorithms include choosing a
repeat with most occurrences (IRR-MO [10]):

f (γ, o) = o,

choosing a repeat of maximal length (IRR-ML [2]):

f (γ, o) = |γ| ,

and choosing a repeat that compresses most (IRR-MC [14]):

f (γ, o) = |γ| o− |γ| − o− 1.

Carrascosa et al. [3] show that IRR-MC outperforms Se-
quitur, LZ78, IRR-MO and IRR-ML on all but one file of the
Canterbury corpus. IRR-MO provides the smaller grammar
for the exception. For the three score functions above, the
complexity of IRR is O(n3).

Minimal Grammar Parsing.
Carrascosa et al. [3, 4, 5] state the problem of finding a

minimal grammar for a fixed set of constituents and call it
the minimal grammar parsing (MGP) problem. An instance
of this problem for a sequence s is a set of sequences C =
{s} ∪ C′, where C′ ⊆ R(s). A minimal grammar parsing of
C is a context-free straight-line grammar G such that:

1. For each sequence s′ ∈ C there is a nonterminal N
that derives only s′.

2. Conversely, for each nonterminal N there is a sequence
s′ ∈ C such that N derives s′.

3. |G| is minimal for all possible grammars that satisfy
the conditions 1 and 2.

One way to solve MGP is to represent each constituent as
a directed acyclic graph (DAG) and search for the shortest
path in it.

The DAG for a constituent is constructed by taking its
expansion, i.e. the sequence not containing any nonterminals
produced by the constituent. Initially, for an expansion of
length k, a linear DAG with k+1 nodes and k directed edges
is constructed such that there is only one path through the
DAG that exactly represents the expansion, i.e. each edge
corresponds to a character from the expansion and the edges
appear in the order the characters appear in the expansion.
For example, the DAG for the sequence abcdxabcd looks as
follows:

a b c d x a b c d

The start node is the only node with no incoming edges
and the end node is the only node with no outgoing edges.
All nodes are reachable from the start node. So there always
exists a path from the start to the end node.

To complete the DAG, for every occurrence of another
constituent in the expansion, a shortcut edge is added.
By taking a shortcut edge when going through the DAG,
one avoids exactly the edges corresponding to the char-
acters of the constituent belonging to the shortcut edge.
For the example sequence above and the set of constituents
{abcd, ab, cd}, the resulting DAG looks as follows (shortcut
edges are dashed):

a b c d x a b c d

ab abcd cd

abcd abcd

With the property of all edges having unit weight, finding
the shortest paths in the graphs of all expansions directly
corresponds to MGP. We call the disjoint union of the DAGs
of all constituents C the mgp graph of C. Our example
results in the following mgp graph, where solid lines indicate
the shortest paths:

S
a b c d a b c d

N2 N2N3 N3

N1 N1

x

N1
a b c d

N2 N3

N2
a b

N3
c d

Carrascosa et al. [3] present a O
(
n×m2

)
time algorithm

that solves MGP by searching for the shortest paths in the
mgp graph. We denote this algorithm by mgp and, for a
given set of repeats C, we let mgp(C) denote a minimal
grammar parse for C. We use this insight in the local search
and MMAS. The example results in the following grammar:

S → N1xN1 N1 → N2N3
N2 → ab N3 → cd

Search Space.
The mgp algorithm gives rise to a new search space

for the smallest grammar problem: 2R(s). For each sub-
set C ∈ 2R(s), the grammar size is used as its fitness:
f(C) = |mgp({s} ∪ C)|. We search for a globally optimal
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solution, i.e. a set C∗ ∈ 2R(s) with f(C∗) ≤ f(C) for all

C ∈ 2R(s).
Carrascosa et al. [3] define the following neighborhood on

the search space:

N (C) = {C ∪ {r} |r ∈ R (s) \C } ∪ {C\ {r} |r ∈ C } ,

where each neighboring set either contains one additional
repeat or one less. They use this neighborhood to search
the powerset lattice of the repeats for the optimal solution.

The search space is correct if each globally optimal subset
C ∈ 2R(s) can be mapped to a smallest grammar of s. Con-
versely, the search space is complete if any smallest grammar
of s can be mapped to a globally optimal subset C ∈ 2R(s).
Gallé [7] proved that the powerset lattice is a correct and
complete search space for the smallest grammar problem.

Carrascosa et al. [3] use the powerset lattice for their ZZ
algorithm (see below), and we will use it for our local search
(see Section 4). Furthermore, our heuristics given in Sec-
tion 5 use the powerset without the notion of a neighbor-
hood.

The ZZ Algorithm.
Carrascosa et al. [3] present a deterministic algorithm

called ZZ that uses the powerset lattice of the set of re-
peats as its search space. The neighborhood of a set in the
lattice contains all the sets that differ by exactly one repeat.

Essentially, the ZZ algorithm makes a local search in this
lattice; Carrascosa et al. [5] state a run-time complexity of
O(n7) until convergence to a local optimum.

4. LOCAL SEARCH
Our local search is inspired by the ZZ algorithm. It is sim-

ilar in that it uses the same lattice and follows one direction
as long as there is an improvement. But in contrast to the
ZZ algorithm, we do not compute the exact grammar sizes
of all neighbors. Instead we use heuristics to find promising
neighbors. However, we still enforce that the algorithm only
proceeds on a neighbor that strictly reduces the size of the
grammar.

In most cases there are significantly more neighbors in the
bottom-up phase than in the top-down phase. The reason is
that in the bottom-up phase every constituent which is not
included yet can be added, which gives up to m neighbors.
Assuming that the local search starts at a node with a size
smaller or equal to n+1, we know that each further grammar
in the search is smaller than n. With Lemma 1 we thus have
at most n/3 constituents in each grammar. Consequently,
there are at most n/3 neighbors in the top-down phase (each
neighbor is missing exactly one of the constituents).

Bottom-Up Phase.
In the bottom-up phase our local search looks at all sets

containing one more constituent, i.e. all the neighbors di-
rectly above the current set. To get input for our heuristic,
mgp is called once to compute a heuristic benefit for all the
constituents that can be added.

By heuristic benefit we mean an estimate on the change
in grammar size that arises from adding a particular con-
stituent. Only occurrences of constituents are taken into
account where both the start and the end node are part of
the shortest path through the mgp graph. Such occurrences
are likely to provide short cuts to the current shortest path.

The following example demonstrates the computation of the
heuristic benefit. We only look at the two repeats N1 = cd
and N2 = ab and assume that N2 is not in the current set
of constituents, but N1 is.

c d c da b x a b

N1 N1

N2 N2

The repeat N2 occurs twice at positions where both the
start and the end node are part of the shortest path through
the mgp graph. Because N2 does not overlap with other con-
stituents, the path can be shortened by |N2|− 1 = 1 at each
occurrence. In general, there can be overlaps, but our heuris-
tic optimistically assumes that there are none. In addition,
it has to be taken into account that the constituent is added
to the grammar. Therefore, the length of the shortest path
in the mgp graph of the constituent is also needed. For N2

the length is two. Hence, we can approximate the reduction
of the grammar size with 2 ∗ 1− 2− 1 = −1, where 2 ∗ 1 is
for the occurrences, −2 for the length, and −1 for the added
rule. Our heuristic benefit is the size reduction.

The heuristic benefit enables us to approximate the size
of all neighbors above with a single mgp pass. We use the
approximate size to filter out all neighbors with an approx-
imate size that is smaller than the current size minus a
threshold. The threshold accounts for the approximation.
In our experiments, a threshold of two turned out to be a
good trade-off.

All remaining neighbors are sorted by the approximate
size in increasing order. So the most promising neighbors
are listed first. Now mgp is used to compute the actual
grammar size. The evaluation follows the given order and
stops at the first neighbor that leads to a smaller grammar.
Thus, mgp is only used on a fraction of the neighbors.

Top-Down Phase.
In the top-down phase the computation of the exact gram-

mar sizes for all neighbors is also avoided. Instead, there are
two passes that determine constituents where removing re-
duces the size of the grammar.

In the first pass, all non-compressing constituents are re-
moved. However, we avoid computing the actual length of
the constituents and instead use their maximal length. With
this simplification a single mgp call suffices and makes the
pass extremely fast.

The second pass is more expensive as it computes the
actual length and thus the correct influence on the gram-
mar size. We optimize this pass by first recording which
mgp graphs are affected and then only recomputing the
shortest paths on the affected graphs. The recording is done
in a single mgp call and the following computations only
need partial mgp evaluations.

5. HEURISTICS
We base our heuristics on the search space introduced in

Section 3. The heuristics can be initialized with any given
grammar. We use this to initialize the heuristics either with
a grammar generated by a greedy algorithm (e.g. IRR-MC)
or with a grammar generated by another heuristic. Both
heuristics use the local search that we describe in Section 4;
parameters where chosen manually.
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Paramter Value
Individuals 30
Crossover probability 0.7
Mutation after crossover probability 0.8
Bit flip probability (mutation) 2/n

Table 1: Genetic algorithm parameters.

5.1 Genetic Algorithm
Our first heuristic is a genetic algorithm (GA) where

the crossover operator is adjusted for the smallest gram-
mar problem. This crossover operator fits the problem as it
is likely that the operator adds or removes constituents in
such a way that the grammar gets smaller. The details of
the algorithm are described below and the parameters are
summarized in Table 1.

Representation A bit vector is used to represent a solu-
tion. Each bit is associated with a constituent of the
grammar, i.e. each bit vector represents a set of con-
stituents.

Fitness Function We use the mgp algorithm to calculate
the grammar size of a solution and use this size as the
fitness.

Initialization The initial solution is generated by taking
the result of a IRR-MC run and then improving this
result further with our local search. Alternatively, an
arbitrary solution can be provided. The first genera-
tion consists of mutations of the initial solution and
the initial solution itself.

Selection Roulette-wheel-based proportional selection
(Mitchell [12]) is used to select 24 parents. Every
new generation is composed of 24 children and the six
fittest solutions from the previous generation.

Crossover and Mutation For each pair of parents, a
crossover is performed with a probability of 0.7. If
no crossover is performed, the offspring are just muta-
tions of the parents. We use the union and intersection
of constituent sets as our crossover operator. So each
crossover results in two offspring where one is based on
the union and the other on the intersection. After a
crossover, a mutation is done with a probability of 0.8.
During mutation each bit is flipped with a probability
of 2/n, i.e. two bits are flipped in expectation.

Local Optimization We use our local search from Sec-
tion 4 to improve a single randomly selected individual
per generation. The local search is only applied to one
individual, as it is very costly.

5.2 Max-Min Ant System
We use a max-min ant system (MMAS) as introduced by

Stützle and Hoos [16]. With the inspiration of the minimal
grammar parsing, the smallest grammar problem can also
be modeled as a shortest path problem; note that max-min
ant systems have been successfully applied to shortest path
problems, for example TSP [16].

The mgp algorithm returns the shortest path through the
mgp graph only consisting of the edges contributed by a

given set of constituents. With our ant system we search
the shortest path through the mgp graph including the edges
for all constituents. The full mgp graph is rather large with
n+ 1 nodes and n+

∑
γ∈R(s) oγ edges; oγ is the number of

occurrences the repeat γ has in the sequence s.
The set of constituents is then determined by the edges

taken on such a path. Note that it is possible to take the
direct edge between two characters. A direct edge does not
add a constituent to the grammar. If only the direct edges
are taken, the set of constituents is empty.

The probability to take an edge is determined by its
pheromone value and its heuristic value which is the maxi-
mal benefit of a repeat (|γ| oγ − |γ| − oγ − 1), weighted with
α and β respectively. If one edge is taken, the next edge has
to start at the end node of the previous one.

After each iteration the pheromone values are updated.
The new pheromone value for each edge is determined by a
multiplication with the evaporation factor ρ. Afterwards the
pheromone values of the edges included in the global best
path are increased by 1/`, where ` is the size of the global
best grammar.

The original max-min ant system uses a strategy where
the use of the iteration-best solution or the global-best solu-
tion for pheromone updates varies with a flexible frequency.
We always use the global-best solution for pheromone up-
dates, because the convergence to better solutions is signifi-
cantly improved and we did not encounter any problems due
to premature convergence. Our strategy has the disadvan-
tage that the search might get trapped at a local minimum.
However, this is later compensated by the combination of
our ant system with our genetic algorithm (see Section 5.3).

The main part of the max-min ant system is shown in
Algorithm 1. Our parameters are listed in Table 2 and follow
the notation by Stützle and Hoos [16].

Algorithm 1: Max-Min Ant System

1 Input: mgp graph;
2 initialize pheromones τ and best-so-far path p∗;
3 while termination criterion not met do
4 forall the ants do
5 p← ∅;
6 i← 1;
7 while i < n do
8 choose edge e starting at i w.r.t. τ ;
9 p← p ∪ e;

10 i← i+ |e|;
11 p← localSearch (p);
12 if f (p) ≤ f (p∗) then p∗ ← p;

13 update pheromones τ with p∗;

14 return p∗;

5.3 MMAS-GA Hybrid
The experiments in Section 6.2 show that GA and MMAS

converge at different rates depending on the distance to the
smallest grammar. In all our experiments, MMAS is faster
than the genetic algorithm if the current grammar size is far
away from the smallest known one. Near the smallest known
grammar, the two heuristics switch roles and GA converges
faster.

This motivates a hybrid of both heuristics. The hybrid
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Parameter Value
Ants 20
α 1.0
β 2.0
pbest 0.5
ρ 0.9
τmax 1− 1/n

Table 2: Max-Min Ant System parameters.

starts with MMAS and switches to GA if there are three
iterations without an improvement.

6. EXPERIMENTS
Recording the number of executions of the mgp algorithm

is a machine-independent way of measuring the time it takes
to reach a certain grammar size: We profiled our implemen-
tations to ensure that other aspects are negligible and indeed
the mgp algorithm accounts for more than 90% of the CPU
time in each of our applications. To give an impression of
the run time, a single run until the best known grammar
size is reached on the file “grammar.lsp” (see Section 6.2)
takes about four hours on a single-core machine of current
technology.

First, we compare our heuristics with a näıve algorithm
that computes the optimum. Then we evaluate our MMAS-
GA hybrid on the Canterbury and a DNA corpus. On files of
the Canterbury corpus we show why a hybrid outperforms
each of the two heuristics if run alone. Last we show the
importance of the local search. All files are read byte by
byte, and each byte represents a symbol of the input.

6.1 Comparison with OPT
We compare the performance of GA, MMAS and a näıve

algorithm that computes the optimum (OPT) on small ran-
domly chosen samples from the “human beta globin region
(chr 11)” DNA sequence “humhbb” that is part of the DNA
corpus in Section 6.3. The size of the examples is so small
that we can compute the optimum in a reasonable time.

Because of Lemma 1 not necessarily all 2m subsets have to
be evaluated to get the optimum, but only those containing
at most bn/3c elements. This leaves

#MGP =

min(bn/3c,m)∑
k=0

(
m

k

)

subsets.
The results for four samples are shown in Figure 1, where

sample names have the form ‘length-#repeats’. Only sam-
ples were chosen where the initial solution is not the opti-
mum (i.e., where IRR-MC followed by local search was not
successful). For each heuristic, the number of mgp evalu-
ations until optimum was reached is shown (averaged over
1000 runs); note that we did not run the hybrid, as the in-
stances are too small to see a difference between MMAS-GA
and MMAS.

It is clear that for OPT the number of repeats has the
main influence on the number of mgp evaluations. The re-
sults show that this is also true for GA and MMAS. But
more important is that both heuristics reach the optimum

40-08 40-43 50-28 60-20

100

103

106

109

1012

sample

#
M

G
P

(l
o
g

sc
a
le

)

OPT

GA

MMAS

Figure 1: Number of mgp calls needed to reach the
optimum.

File Length IRR ZZ MMAS-GA
alice29.txt 152,089 41,000 37,701 37,688
asyoulik.txt 125,179 37,474 35,000 34,967
cp.html 24,603 8,048 7,767 7,746
fields.c 11,150 3,416 3,311 3,301
grammar.lsp 3,721 1,473 1,465 1,452
kennedy.xls 1,029,744 166,924 166,704 166,534
lcet10.txt 426,754 90,099 - 87,086
plrabn12.txt 481,861 124,198 - 114,960
ptt5 513,216 45,135 - 42,661
sum 38,240 12,207 12,027 12,009
xargs.1 4,227 2,006 1,972 1,955

Table 3: Performance on the Canterbury corpus.

with far less mgp evaluations if the number of repeats is not
too small.

6.2 Canterbury Corpus
The Canterbury Corpus [1] is a standard corpus for com-

paring lossless data compression algorithms. We compare
the results of our MMAS-GA hybrid with the best IRR and
ZZ results given in Carrascosa et al. [3] on this corpus. The
mentioned IRR value is the best out of the results from IRR-
ML, IRR-MO and IRR-MC. None of the IRR results were
further optimized by the use of mgp.

A comparison of the smallest obtained grammars is shown
in Table 3. Previously the ZZ algorithm gave the state-of-
the-art results. The best results of our MMAS-GA hybrid
beat ZZ on all files of the Canterbury corpus. The relative
improvements are between −0.09% and −0.89%; this sug-
gests that the grammars generated by ZZ are already near
the optimum.

We performed an analysis of the difference convergence
rates of our GA and MMAS (using local search) on six out
of the elven files. The results in Figure 2 show that the
convergence differs with the distance to the smallest known
grammar. For each heuristic and file, five runs up to a fixed
limit of mgp evaluations were performed.

From these figures we can see that MMAS converges sig-
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Figure 2: Comparison of GA and MMAS on six files from the Canterbury corpus.

nificantly faster than GA if the grammar size is relatively
farther away from from the best known grammar size. This
becomes clear by comparing the results with the relative
difference of the initial grammar size for the heuristics and
the best known size shown in the titles of Figure 2. These
results motivate the MMAS-GA hybrid.

6.3 DNA Corpus
Better compression of DNA sequences was one of the rea-

sons for the first approximation algorithms for the smallest
grammar problem. Recently, Carrascosa et al. [5] showed
that the compression of DNA sequences with grammars is
still of interest.

Therefore, we evaluated our heuristics on the standard
DNA corpus by Grumbach and Tahi [8]. The best IRR and
ZZ values are from Carrascosa et al. [5]. Again the men-
tioned IRR value is the best out of the results from IRR-ML,
IRR-MO and IRR-MC.

Table 4 shows that our MMAS-GA hybrid delivers smaller
grammars on eight out of the eleven files.

File Length IRR ZZ MMAS-GA
chmpxx 121,024 28,706 26,022 25,882
chntxx 155,844 37,885 33,941 33,924
hehcmv 229,354 53,696 48,289 48,443
humdyst 38,770 11,066 10,078 9,966
humghcs 66,495 12,933 12,031 12,013
humhbb 73,308 18,705 17,023 17,007
humhdab 58,864 15,237 13,993 13,864
humprtb 56,737 14,890 13,658 13,528
mpomtcg 186,609 44,178 39,910 39,988
mtpacga 100,314 24,555 22,188 22,072
vaccg 191,737 43,679 39,296 39,369

Table 4: Performance on a DNA corpus.

6.4 Importance of the Local Search
We performed a comparison of our heuristics with and

without our local search (LS) on the “grammar.lsp” file from
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Figure 3: Comparison with and without local search

the Canterbury corpus. For each of the four settings we
performed ten runs with the results summarized in Figure 3.

The experiment shows that the local search has a signif-
icant impact on the convergence rate of both algorithms.
This can also be observed on other files. The difference in
the initial grammar size is also due to local search. Even
if the heuristics not using local search are initialized with a
smaller grammar obtained with local search, both heuristics
still converge significantly faster when using local search.

We have not encountered any particular problems due to
premature convergence. In nearly all of our experiments
the genetic algorithm was able to reduce the grammar size
regardless of the initial grammar.

7. CONCLUSION
As we have seen, different heuristics based on ant colony

optimization and genetic algorithms can successfully tackle
the hard problem of finding a small grammar for a sequence.
At the cost of a high run time, state-of-the-art results can
be obtained for a variety of different kinds of sequences, as
represented by different corpora.
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