
Computational Geometry 43 (2010) 601–610
Contents lists available at ScienceDirect

Computational Geometry: Theory and
Applications

www.elsevier.com/locate/comgeo

Approximating the volume of unions and intersections
of high-dimensional geometric objects ✩

Karl Bringmann a, Tobias Friedrich b,∗
a Saarland University, Saarbrücken, Germany
b Max-Planck-Institut für Informatik, Saarbrücken, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 October 2008
Received in revised form 15 December 2009
Accepted 25 March 2010
Available online 27 March 2010
Communicated by K. Fukuda

Keywords:
Union of geometric objects
Intersection of geometric objects
Boxes
Klee’s measure problem
Volume
Measure
Approximation

We consider the computation of the volume of the union of high-dimensional geometric
objects. While showing that this problem is #P-hard already for very simple bodies, we
give a fast FPRAS for all objects where one can (1) test whether a given point lies inside
the object, (2) sample a point uniformly, and (3) calculate the volume of the object in
polynomial time. It suffices to be able to answer all three questions approximately. We
show that this holds for a large class of objects. It implies that Klee’s measure problem
can be approximated efficiently even though it is #P-hard and hence cannot be solved
exactly in polynomial time in the number of dimensions unless P = NP. Our algorithm also
allows to efficiently approximate the volume of the union of convex bodies given by weak
membership oracles.
For the analogous problem of the intersection of high-dimensional geometric objects
we prove #P-hardness for boxes and show that there is no multiplicative polynomial-
time 2d1−ε

-approximation for certain boxes unless NP = BPP, but give a simple additive
polynomial-time ε-approximation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Given n bodies in the d-dimensional space, how efficiently can we compute the volume of the union and the intersec-
tion? We consider this basic geometric problem for different kinds of bodies. The tractability of this problem highly depends
on the representation and the complexity of the given objects. For many classes of objects already computing the volume
of one body can be hard. For example, calculating the volume of a polytope given either as a list of vertices or as a list of
facets is #P-hard [11,19]. For convex bodies given by a membership oracle one can also show that even though there can
be no deterministic (O(1)d/ log d)d-approximation for d � 2 [4], one can still approximate the volume by an FPRAS (fully
polynomial-time randomized approximation scheme). In a seminal paper Dyer, Frieze, and Kannan [12] gave an O∗(d23)

algorithm, which was subsequently improved in a series of papers [2,16,21,22] to O∗(d4) [23] (where the asterisk hides
powers of the approximation ratio and log d).

Volume computation of unions can be hard not only for bodies whose volume is hard to calculate. One famous ex-
ample for this is Klee’s Measure Problem (KMP). Given n axis-parallel boxes in the d-dimensional space (d constant), the
problem asks for the measure of their union. In 1977, Victor Klee showed that it can be solved in time O(n log n)

for d = 1 [20]. This was generalized to d > 1 dimensions by Bentley [6] in the same year. He presented an algorithm

✩ A preliminary conference version of this paper appeared in Bringmann and Friedrich (2008) [7].

* Corresponding author.
E-mail address: tobias.friedrich@mpi-inf.mpg.de (T. Friedrich).
0925-7721/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2010.03.004

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:tobias.friedrich@mpi-inf.mpg.de
http://dx.doi.org/10.1016/j.comgeo.2010.03.004

602 K. Bringmann, T. Friedrich / Computational Geometry 43 (2010) 601–610
which runs in O(nd−1 log n), which was later improved by van Leeuwen and Wood [28] to O(nd−1). In 1988, Over-
mars and Yap [25] obtained an O(nd/2 logn) algorithm. This was the fastest algorithm for d � 3 until very recently
Chan [9] presented a slightly improved version of Overmars and Yap’s algorithm that runs in time nd/22O(log∗ n) , where
log∗ denotes the iterated logarithm. So far, the only known lower bound is Ω(n log n) for any d [13]. Chan [9] also
proves that no algorithm of runtime no(d) is possible assuming W[1] �= FPT, which is a weaker result than P �= NP
and a commonly accepted conjecture on fixed-parameter tractability. Note that the worst-case combinatorial complex-
ity (i.e., the number of faces of all dimensions on the boundary of the union) of Θ(nd) does not imply any bounds
on the computational complexity. There are various algorithms for special cases, e.g., for hypercubes [1,17] and unit
hypercubes [8]. In this paper we explore the opposite direction and examine the union of more general geometric ob-
jects.

1.1. Our results

It is not hard to see that KMP is #P-hard (see Theorem 1). Hence it cannot be solved in time polynomial in the number
of dimensions unless P = NP. This shows that exact volume computation of unions is intractable for all classes of bodies
that contain axis-parallel boxes. This motivates the development of approximation algorithms for the volume computation
of unions. Based on an FPRAS for #DNF by Karp, Luby, and Madras [18], we give an FPRAS for a large class of bodies
including boxes, spheres, polytopes, convex bodies determined by an oracle, and schlicht domains. Additionally, also fixed
affine transformations of the fore-mentioned objects can be allowed. The underlying bodies B just have to support the
following oracle queries in polynomial time:

• PointQuery(x, B): Is point x ∈ R
d an element of body B?

• VolumeQuery(B): What is the volume of body B?
• SampleQuery(B): Return a random uniformly distributed point x ∈ B .

PointQuery is a very natural condition which is fulfilled in almost all practical cases. The VolumeQuery condition is im-
portant as it could be the case that no efficient approximation of the volume of one of the bodies itself is possible. This,
of course, prevents an efficient approximation of the union of such bodies. The SampleQuery is crucial for our FPRAS. In
Section 2.3 we will show that it is efficiently computable for a wide range of bodies.

An important feature of our algorithm is that it suffices that all three oracles are weak. More precisely, we allow the
following relaxation for every body B (vol(B) denotes the volume of a body B in the standard Lebesgue measure on R

d ,
more details are given in Section 2):

• PointQuery(x, B) answers true if and only if x ∈ B ′ for a fixed B ′ ⊂ R
d with vol((B ′ \ B) ∪ (B \ B ′)) � εP vol(B).

• VolumeQuery(B) returns a value V ′ with (1 − εV)vol(B) � V ′ � (1 + εV)vol(B).
• SampleQuery(B) returns only an almost uniformly distributed random point [16], that is, it suffices to get a random

point x ∈ B ′ (with B ′ as above) such that for the probability density f we have for every point x:

∣∣ f (x) − 1/vol

(
B ′)∣∣ < εS .

Let P (d) be the worst PointQuery runtime1 of any of our bodies, analogously V (d) for VolumeQuery, and S(d) for Sample-

Query. Then our FPRAS has a runtime of O(nV (d) + n
ε2 (S(d) + P (d))) for producing an ε-approximation2 with probability

� 3
4 if the errors of the underlying oracles are small, i.e., εS , εV � ε2

47n and εP � ε2

47n2 . For example for boxes (e.g., for KMP),

this reduces to O(dn
ε2) and is the first FPRAS for this problems. In Section 2.3 we also show that our algorithm is an FPRAS

for the computation of the volume of the union of convex bodies.
The canonical next question is the computation of the volume of the intersection of bodies in R

d . It is clear that most of
the problems from above apply to this question, too. #P-hardness for general, i.e., not necessarily axis-parallel, boxes follows
directly from the hardness of computing the volume of a polytope [11,19]. This leaves open whether there are efficient
approximation algorithms for the volume of intersection. In Section 3 we show that there cannot be a (deterministic or
randomized) multiplicative 2d1−ε

-approximation in general, unless NP = BPP by identifying a hard subproblem. Instead we
give an additive ε-approximation, which is therefore the best we can hope for. It has a runtime of O(nV (d) + ε−2 S(d) +
nε−2 P (d)), which gives O(dn

ε2) for boxes.

1 The runtime of the oracles can also depend on the required approximation guarantees. In order to simplify the notation, this dependency is not made
explicit.

2 We will always assume that ε is small, that is, 0 < ε < 1.

K. Bringmann, T. Friedrich / Computational Geometry 43 (2010) 601–610 603
2. Volume computation of unions

In this section we show that the volume computation of unions is #P-hard already for very simple axis-parallel boxes.
After that we give an FPRAS for approximating the volume of the union of bodies which satisfy the three aforementioned
oracles and describe several classes of objects for which the oracles can be answered efficiently.

2.1. Computational complexity of union calculations

Consider the following problem: Let S be a set of n axis-parallel boxes in R
d of the form B = [a1,b1] × · · · × [ad,bd]

with ai,bi ∈ R,ai < bi . The volume of one such box is vol(B) = ∏d
i=1(bi − ai). To compute the volume of the union of these

boxes is known as Klee’s Measure Problem (KMP).
It is know that the associated decision problem of deciding whether there is a point that is not in the union is NP-

hard [9]. We consider the actual counting problem and prove in the following Theorem 1 that KMP is #P-hard. To the best
of our knowledge there is no published result that explicitly states that KMP is #P-hard. However, without mentioning this
implication, Suzuki and Ibaraki [27] sketch a reduction from #SAT to KMP. We present a reduction from #MON-CNF to KMP
which we can reuse in Theorem 6 for the hardness proof for intersections. #MON-CNF counts the number of satisfying
assignments of a Boolean formula in conjunctive normal form in which all variables are unnegated. While the problem of
deciding satisfiability of such formula is trivial, counting the number of satisfying assignments is #P-hard [26].

Theorem 1. KMP is #P-hard.

Proof. To reduce #MON-CNF to KMP, let f = ∧n
k=1

∨
i∈Ck

xi be a monotone Boolean formula given in CNF with Ck ⊂ [d] :=
{1, . . . ,d}, for k ∈ [n], d the number of variables, n the number of clauses. Since the number of satisfying assignments of f
is equal to 2d minus the number of satisfying assignments of its negation, we instead count the latter: Consider the negated
formula f̄ = ∨n

k=1
∧

i∈Ck
¬xi . First, we construct a box Ak = [0,q(k)

1]× · · ·× [0,q(k)

d] in R
d for each clause Ck with one vertex

at the origin and the opposite vertex at (q(k)
1 , . . . ,q(k)

d), where we set

q(k)
i =

{
1, if i ∈ Ck,

2, if i /∈ Ck,
i ∈ [d].

Observe that the union of the boxes Ak can be written as a union of boxes of the form Ux = [x1, x1 + 1] × · · · × [xd, xd + 1]
with x = (x1, . . . , xd) ∈ {0,1}d . Let x ∈ {0,1}d and Ux ⊆ ⋃n

k=1 Ak . Then there is a k such that q(k)
i = 2 for all i with xi = 1. By

definition of q(k)
i , this implies that

∧
i∈Ck

¬xi and also f̄ are satisfied.

The same holds in the opposite direction, that is, if x satisfies f̄ then Ux ⊆ ⋃n
k=1 Ak . Hence, since vol(Ux) = 1, we have

vol(
⋃n

k=1 Ak) = |{x ∈ {0,1}d | x satisfies f̄ }|. Thus a polynomial time algorithm for KMP would result in a polynomial time
algorithm for #MON-CNF, which proves the claim. �

Note that we actually proved a little bit more than stated in the theorem. That is, we proved that even calculating the
volume of the union of boxes which all have the point 0d in common is #P-hard. This specific problem is known as hyper-
volume indicator [30] and is a very popular and widely used measure of fitness of Pareto sets in evolutionary multi-objective
optimization.

2.2. Approximation algorithm for the volume of unions

In this section we present an FPRAS for computing the volume of the union of objects for which we can answer
PointQuery, VolumeQuery, and SampleQuery in polynomial time. The input of our algorithm ApproxUnion are the ap-
proximation ratio ε and the bodies B1, . . . , Bn in R

d defined by the three oracles. It computes an approximation Ũ ∈ R of
U := vol(

⋃n
i=1 Bi) such that

Pr
[
(1 − ε)U � Ũ � (1 + ε)U

]
� 3/4 (1)

in time polynomial in n, 1/ε and the query runtimes. Note that the constant 3/4 can be increased to any number by using
a probability amplification technique.

We are following the algorithm of Karp et al. [18] which the authors used for approximating #DNF and other counting
problems on discrete sets. The two main differences are that here we are handling continuous bodies in R

d and that we
allow erroneous oracles. The latter relaxation is crucial to incorporate, amongst other things, the class of convex bodies. Our
algorithm ApproxUnion is shown on page 604. The total number of steps of the algorithm is T . This number is chosen in
advance such that one can prove that Eq. (1) holds. The algorithm itself is very simple. First, it queries the volumes3 V ′

i of

3 Note that here and in the remainder an unprimed variable denotes an exact value and a primed variable denotes a value subject to some error
introduced by the erroneous oracles.

604 K. Bringmann, T. Friedrich / Computational Geometry 43 (2010) 601–610
Algorithm 1. ApproxUnion(S, ε, εP , εV , εS) calculates an ε-approximation of U = vol(
⋃n

i=1 Bi) for a set of bodies S = {B1, . . . , Bn} in R
d determined by

the oracles PointQuery, VolumeQuery and SampleQuery with error ratios εP , εV , εS .

ε̃ := ε−εV
1+εV

C̃ := (1+εS) (1+εV) (1+nεP)
(1−εV) (1−εP)

T := 24 ln(2) (1+ε̃)n
ε̃2−8 (C̃−1)n

for all i ∈ [n] do
compute V ′

i := VolumeQuery(Bi)

od
V ′ := ∑n

i=1 V ′
i

for M := 0 to ∞ do
choose i ∈ [n] with probability V ′

i /V ′
x := SampleQuery(Bi)

tM := 0
repeat

if t0 + · · · + tM � T then return T V ′
n M

choose j ∈ [n] uniformly at random
tM := tM + 1

until PointQuery(x, B j)

od

the bodies Bi and computes V ′ = ∑n
i=1 V ′

i . Then it repeats the following: It chooses a body Bi with probability (roughly4)
proportional to its volume and chooses a point x ∈ Bi (roughly4) uniformly at random. Afterwards, the algorithm chooses
bodies B j with probability 1/n and (roughly4) checks whether x ∈ B j . The number tM of chosen bodies until we find a B j

with x ∈ B j can then be used to estimate how many bodies B j cover x.
For this, observe that the point x is chosen with probability density k(x)/V ′ with k(x) = |i ∈ [n] | x ∈ Bi |. Each number tM

has expected value (roughly4) n/k(x) for a fixed x ∈ ⋃
i Bi . Hence when PointQuery(x, B j) answers yes, tM should be of the

order of (roughly4)
∫

x n/k(x) · k(x)/V ′ dx = ∫
x(n/V ′)dx = nU/V ′ . This implies that when Ũ is returned and T = t0 + · · · + tM ,

the value nU M/V ′ is near T , i.e., T V ′/nM is near U . This gives the intuition why the algorithm returns the approximation
Ũ = T V ′

nM .
In Section 2.4 we show correctness of ApproxUnion. More precisely, we show that it returns an ε-approximation with

probability � 3
4 and T = O(n

ε2) if εS , εV � ε2

47n and εP � ε2

47n2 . The last inequality reflects the fact that we cannot be
arbitrarily accurate if the given oracles are inaccurate. If all oracles can be calculated accurately, i.e., if εP = εS = εV = 0, the
algorithm runs for just T = 8 ln(8)(1+ε)n

ε2 many steps.
Overall, the runtime of ApproxUnion is clearly O(n · V (d) + M · S(d) + T · P (d)) = O(n · V (d) + T · (S(d) + P (d))), where

V (d) is the worst VolumeQuery time for any of the bodies, analogously S(d) for SampleQuery and P (d) for PointQuery. If
εS , εV � ε2

47n and εP � ε2

47n2 , the runtime is O(nV (d) + n
ε2 (S(d) + P (d))).

For boxes all three oracles can be computed exactly in O(d). This implies that our algorithm ApproxUnion gives an
ε-approximation of KMP with probability � 3

4 in runtime O(nd
ε2). For more complex objects like convex bodies determined

by a membership oracle, there are no exact oracles. The following section discusses different classes of objects for which
our algorithm can be applied.

2.3. Classes of objects supported by our FPRAS

Finding an FPRAS for the union of a certain class of geometric objects now reduces to calculating the respective
PointQuery, VolumeQuery and SampleQuery in polynomial time. We assume that we can get a random real number in
constant time. Then all three oracles can be calculated in time O(d) for d-dimensional boxes. This already yields an FPRAS
for the volume of the union of arbitrary boxes, e.g., for KMP. Note that if we have a body for which we can answer all those
queries, all affine transformations of this body fulfill these three oracles, too. We will now present three further classes of
geometric objects.

Generalized spheres and boxes. Let Bk be the class of boxes of dimension k, i.e., Bk = {[a1,b1]×· · ·×[ak,bk] | ai,bi ∈ R,ai < bi}
and S� the class of spheres of dimension �. We can combine any box B ∈ Bk and sphere S ∈ Sd−k to get a d-dimensional
object B × S . Furthermore, we can permute the dimensions afterwards to get a generalized “box-sphere.” in R

3 this corre-
sponds to boxes, spheres and cylinders. VolumeQuery can be computed easily as we can compute the volume of a sphere
by a well-known formula and thus the volume of the product B × S . As one can check whether a given point x = (x1, . . . , xd)

lies in B × S by checking whether (x1, . . . , xk) lies in B and (xk+1, . . . , xd) lies in S , also PointQuery is a standard task of
geometry. To answer SampleQuery, it suffices to choose a random point (x1, . . . , xk) in B and to choose a random point
inside the sphere S , which can be done in polynomial time as described, e.g., by Muller [24].

4 “Roughly” only for erroneous oracles.

K. Bringmann, T. Friedrich / Computational Geometry 43 (2010) 601–610 605
Convex bodies. As mentioned in the introduction, exact calculation of VolumeQuery for a polytope given as a list of vertices
or facets is #P-hard [11,19]. Since there are randomized approximation algorithms (see Dyer et al. [12] for the first one) for
the volume of a convex body determined by a membership oracle, we can answer VolumeQuery approximately. The same
holds for SampleQuery as these algorithms make use of an almost uniform sampling method on convex bodies. See Lovász
and Vempala [23] for a result showing that VolumeQuery can be answered with O∗(d4

ε2
V
) questions to the membership

oracle and SampleQuery with O∗(d3

ε2
S
) queries, for arbitrary errors εV , εS > 0 (where the asterisk hides factors of log(d)

and log(1/εV) or log(1/εS)). PointQuery can naturally be answered with a single question to the membership oracle. By

choosing εV = εS = ε2

47n , Theorem 2 together with Lemma 3 shows that ApproxUnion is an FPRAS for the volume of the

union of convex bodies which uses O∗(n3d3

ε4 (d + 1
ε2)) membership queries.

Star-shaped bodies. Star-shaped bodies are a generalization of convex bodies which have at least one point such that every
line through the point has a convex intersection with the body. They can also be viewed as the union of convex sets,
with all the convex sets having a nonempty intersection. The subset of points that can “see” the full set is called the
kernel of the star-shaped set. Assuming that we are given membership oracles for the body as well as for the kernel,
Chandrasekaran, Dadush, and Vempala [10] recently showed that for star-shaped bodies SampleQuery can be answered
with O∗(d3

η3ε2
S
) questions to the membership oracle, where η is the fraction of the volume taken up by the kernel. We can

also approximate the volume of the (convex) kernel with O∗(d4

ε2
V
) questions to the membership oracle as discussed above

and estimate η by O(1
η2 ε2

V
) samples. Then the runtime of VolumeQuery is O∗(d4

ε2
V

+ d3

η5ε2
V ε2

S
). PointQuery can again naturally

be answered with a single question to the membership oracle.

Schlicht domains. Let ai,bi: R
i−1 → R be continuous functions with ai � bi , where a1, b1 are constants. Let K ⊂ R

d be
defined as the set of all points (x1, . . . , xd) ∈ R

d such that a1 � x1 � b1,a2(x1) � x2 � b2(x1), . . . ,ad(x1, . . . , xd−1) � xd �
bd(x1, . . . , xd−1). K is called a schlicht domain in functional analysis. Fubini’s theorem for schlicht domains states that
we can integrate a function f : K → R by iteratively integrating first over xd , then over xd−1, . . . , until we reach x1. This
way, by integrating f (·) = 1, we can compute the volume of a schlicht domain as long as the integrals are computable in
polynomial time, and thus answer VolumeQuery. Similarly, we can choose a random uniformly distributed point inside K :
Let K (y) = {(x1, . . . , xd) ∈ K | x1 = y}. Then K (y) is another schlicht domain for every a1 � y � b1. Assume that we can
determine the volume of every such K (y) and the integral I(y) = ∫ y

a1
K (x)dx. Then the inverse function I−1 : [0, V] → R,

where V = ∫ b1
a1

K (x)dx is the volume of K , allows us to choose a y in [a1,b1] with probability proportional to vol(K (y)).
By this we can iteratively choose a value y for x1 and recurse to find a uniformly random point (y2, . . . , yd) in K (y),
plugging both together to get a uniformly distributed point (y1, . . . , yd) in K . Hence, as long as we can compute the
involved integrals and inverse functions (or at least approximate them good enough), we can answer SampleQuery. Since
PointQuery is trivially computable – as long as we can evaluate ai and bi efficiently – this gives an example showing that
the classes of objects that fulfill our three conditions include not only convex bodies, but also certain schlicht domains.

Note that all above mentioned classes of geometric objects contain boxes and hence our hardness results still hold and
an ε-approximation algorithm is the best one can hope for (unless P = NP).

2.4. Analysis of our algorithm

We now show correctness of our algorithm ApproxUnion described in Section 2.2 and prove bounds for its approxima-
tion ratio. The following theorem is our main result for ApproxUnion. It holds for exact and weak oracles.

Theorem 2. Given errors 0 � εP , εS , εV < 1 of the queries, the algorithm ApproxUnion({B1, . . . , Bn}, ε, εP , εV , εS) returns a value
Ũ with

Pr
[
(1 − ε)U � Ũ � (1 + ε)U

]
� 3

4

choosing

T = 24 ln(2)(1 + ε̃)n

ε̃2 − 8(C̃ − 1)n
,

under the condition

ε > εV + 2(1 + εV)

√
2(C̃ − 1)n (2)

where U := vol(
⋃n

i=1 Bi), ε̃ := ε−εV , and C̃ := (1+εS) (1+εV) (1+nεP) .
1+εV (1−εV)(1−εP)

606 K. Bringmann, T. Friedrich / Computational Geometry 43 (2010) 601–610
First note that with accurate oracles, i.e., if εP = εS = εV = 0, we get ε̃ = ε, C̃ = 1 and, thus, T = 24 ln(2)(1+ε)n
ε2 . As the

condition (2) becomes trivial, above theorem implies that our algorithm is indeed an FPRAS.
Given non-zero query errors, one clearly cannot be arbitrary accurate, which is reflected by the lower bound (2) for ε.

However, the following lemma shows that condition (2) is fulfilled for small enough εP , εS and εV .

Lemma 3. For εS , εV � ε2/(47n) and εP � ε2/(47n2) the condition (2) of Theorem 2 is fulfilled and we have T = O(n
ε2).

Proof. As the right-hand side of (2) is increasing in εP , εV and εS , we can assume w.l.o.g. that εV = εS = ε2

47n and εP = ε2

47n2 .

This gives C̃ � (1 + ε2

47n)3(1 − ε2

47n)2. Observe that ε2

47n � 1
47 . Since (1 + x)3(1 − x)−2 � 1 + αx holds for α := 8081

1521 and also

0 � x � 1
40 , we have C̃ � 1 + α ε2

47n . Hence, we can upper bound the right-hand side of (2) by

εV + 2(1 + εV)

√
2(C̃ − 1)n � ε2

47n
+ 2

(
1 + ε2

47n

)√
2α

ε2

47
� ε

(
1

47
+ 2

(
1 + 1

47

)√
2α

47

)

as 1/n � 1 and ε � 1. Since 1
47 + 2(1 + 1

47)

√
2α
47 < 1, condition (2) is fulfilled.

We now bound the terms ε̃ and C̃ . Since εV � 0, we clearly have ε̃ � ε implying 1 + ε̃ � 2. Furthermore, since εV � ε2

47n
it also holds that

ε̃ = ε − εV

1 + εV
�

ε − ε2

47n

1 + ε2

47n

= ε(47n − ε)

ε2 + 47n
� ε46n

48n
= 23

24
ε

where we used ε < 1 and n � 1. Using this and the upper bound for C̃ we get for the denominator of T :

ε̃2 − 8(C̃ − 1)n �
(

23

24
ε

)2

− 8

47
αε2 = 64 375

4 575 168
ε2.

Therefore, we get

T = 24 ln(2)(1 + ε̃)n

ε̃2 − 8(C̃ − 1)n
� 48 ln(2)n

64 375
4 575 168ε2

< 2365
n

ε2
= O

(
n

ε2

)
. �

In order to prove Theorem 2, we will generalize the corresponding proof of Karp et al. [18] to cover weak oracles. For
most lemmas it suffices to insert the error constants εP , εS , εV , but for the main proof of Theorem 2 one has to be little bit
more careful.

First, recall that we are given bodies B1, . . . , Bn by oracles, where PointQuery(x, Bi) returns true for every x ∈ B ′
i , such

that the result is wrong for the set W i = (Bi\B ′
i) ∪ (B ′

i\Bi) with vol(W i) < εP vol(Bi), which implies

(1 − εP)vol(Bi) � vol

(
B ′

i

)
� (1 + εP)vol(Bi). (3)

Furthermore, the volume V ′
i of body Bi is computed by VolumeQuery. V ′

i is an εV -approximation of the corresponding
exact volume V i , i.e.,

(1 − εV)V i � V ′
i � (1 + εV)V i . (4)

We set V ′ := ∑n
i=1 V ′

i and V := ∑n
i=1 V i . Then it clearly holds that

(1 − εV)V � V ′ � (1 + εV)V . (5)

Furthermore, let U be the exact volume of the union of the Bi ’s and μ = U/V .
As in Karp et al. [18], we define for a point x ∈ R

d the number of covering bodies cov(x) = |{i ∈ [n] | PointQuery(x, Bi) =
true}|. Additionally, we set

Rk := {
x ∈ R

d
∣∣ cov(x) = k

}
and rk := vol(Rk). Then we have

∑n
k=1 krk = ∑n

i=1 vol(B ′
i), so that

(1 − εP)V �
n∑

k=1

krk � (1 + εP)V . (6)

Furthermore,
∑n

k=1 rk = vol(
⋃n

i=1 B ′), so that
i

K. Bringmann, T. Friedrich / Computational Geometry 43 (2010) 601–610 607
(1 − nεP)U �
n∑

k=1

rk � (1 + nεP)U . (7)

To get a sample point in our algorithm, we first choose an i ∈ [n] with probability V ′
i /V ′ and then choose a random point

x in B ′
i via SampleQuery(Bi). We consider the probability of this random point x to lie in the region Rk . With error-free

oracles this probability would be Pr[x ∈ Rk] = krk
V as exactly k bodies cover each point of Rk and we have

∑n
k=1 krk = V in

the error-free setting. With errors, simple calculations using inequalities (3), (4) and (5) yield

(1 − εS)(1 − εV)

(1 + εV)(1 + εP)

krk

V
� Pr[x ∈ Rk] � (1 + εS)(1 + εV)

(1 − εV)(1 − εP)

krk

V
. (8)

In the algorithm, tm denotes the number of iterations in the inner loop during the m-th iteration of the main loop, i.e.,
the number of trials to find a box containing the m-th point x. These tm are independent identically distributed random
variables. Let t be a variable distributed as each tm . Then the following lemma holds.

Lemma 4. Let 0 � λ � 1
2 , and C̃ = (1+εS)(1+εV)(1+nεP)

(1−εV)(1−εP)
. Then

Ex
[
eλt/n]

� C̃e(λ+2λ2)μ and

Ex
[
e−λt/n]

� C̃e−(λ−λ2)μ.

These bounds closely match Lemmas 7 and 9 of Karp et al. [18]. Adapting the proof is straightforward. The factor C̃
arises by the usage of inequalities (7) and (8).

In the remainder, let S� := ∑�
i=0 ti be the step at which the �-th trial is completed and let Ni be the number of trials

completed after step i, so that in the end M = NT . Then Ni < � if and only if S� > i.

Corollary 5. Let ε � 2. Then

Pr
[

S� > (1 + ε)nμ�
]
� C̃�e−με2�/8 and

Pr
[

S� < (1 − ε)nμ�
]
� C̃�e−με2�/8.

This corresponds to Corollaries 8 and 10 in Karp et al. [18]. We can reuse their proof word for word; the only change is
our Lemma 4 which brings in the factor C̃ .

It remains to prove Theorem 2. The corresponding theorem of Karp et al. [18] is called Self-Adjusting Coverage Algorithm
Theorem II. However, adapting their proof is not as straightforward as for the previous lemmas. It is presented in more detail
in the remainder of this section.

Proof of Theorem 2. Let ε̃ = ε−εV
1+εV

and C̃ = (1+εS)(1+εV)(1+nεP)
(1−εV)(1−εP)

and assume

ε > εV + 2(1 + εV)

√
2(C̃ − 1)n. (9)

This implies ε̃ > 0 and ε̃2 − 8(C̃ − 1)n > 0. Let

k1 := 24 ln(2)(1 + ε̃)

μ(ε̃2 − 8(C̃ − 1)n)(1 + ε̃)

and

k2 := 24 ln(2)(1 + ε̃)

μ(ε̃2 − 8(C̃ − 1)n)(1 − ε̃)
.

Then T = k1nμ(1 + ε̃) = k2nμ(1 − ε̃). Now, if we have k1 � M � k2, then

T

k2
� T

M
� T

k1

and thus

T V ′

nk2
� T V ′

nM
= Ũ � T V ′

nk1
.

By plugging in T , k1 and k2 we get

608 K. Bringmann, T. Friedrich / Computational Geometry 43 (2010) 601–610
(1 − ε̃)μV ′ � Ũ � (1 + ε̃)μV ′.
A little calculus shows that (1 − ε̃)(1 − εV) � 1 − ε, only based on the definition of ε̃, the non-negativity of εV and ε, and
εV � ε. By using this, Eq. (5), the fact (1 + ε̃)(1 + εV) = 1 + ε, and μ = U/V we get

(1 − ε)U � Ũ � (1 + ε)U ,

and thus the estimation is an ε-approximation, if k1 � M � k2. Hence, it suffices to show

Pr[M > k2] + Pr[M < k1] � 1

4
. (10)

We have

Pr[M < k1] = Pr[Sk1 > T] = Pr
[

Sk1 > k1nμ(1 + ε̃)
]
.

By ε̃ > 0 we have, using Corollary 5,

Pr[M < k1] � C̃k1 e−με̃2k1/8 � e(C̃−1)k1 e−με̃2k1/8 = e(C̃−1−με̃2/8)k1 = e
−3 ln(2)

με̃2−8(C̃−1)

με̃2−8(C̃−1)nμ .

By inequality (9) we get με̃2 − 8(C̃ − 1)nμ > 0 and since μ � 1/n we have με̃2 − 8(C̃ − 1) � με̃2 − 8(C̃ − 1)nμ. Hence,

Pr[M < k1] � e−3 ln(2) = 1

8
.

We analogously get Pr[M > k2] � 1
8 . Plugging both results in Eq. (10) finishes the proof. �

3. Volume computation of intersections

In this section we are considering the complement to the union problem. We show that surprisingly the volume of a
intersection of a set of bodies is often much harder to calculate than its union. For many classes of geometric objects there
is even no randomized approximation possible.

As the problem of computing the volume of a polytope is #P-hard [11,19], so is the computation of the volume of
the intersection of general (i.e., not necessarily axis-parallel) boxes in R

d . This can be seen by describing a polytope as an
intersection of half-planes and representing these as general boxes.

Let us now consider the convex bodies again. Trivially, the intersection of convex bodies is convex itself. From the oracles
defining the given bodies B1, . . . , Bn one can simply construct an oracle which answers PointQuery for the intersection of
those objects: Given a point x ∈ R

d it asks all n oracles and returns true if and only if x lies in all the bodies. One could now
believe that we can apply the result of Dyer et al. [12] and the subsequent improvements mentioned in the introduction
to approximate the volume of the intersection and get an FPRAS for the problem at hand. The problem with this approach
is that the intersection is not “well-guaranteed.” That is, there is no point known that lies in the intersection, not to speak
of a sphere inside it. However, the algorithm of Dyer et al. [12] relies vitally on the assumption that the given body is
well-guaranteed and hence cannot be applied for approximating the volume of the intersection of convex bodies.

We will now present a hard subproblem which shows that the volume of the intersection cannot be approximated
(deterministic or randomized) in general.

Definition 1. For p ∈ [0,1]d , let B p := {x | 0 � xi � pi ∀1 � i � d}. We call B p := [0,1]d \ B p a co-box.

A co-box is a box where we cut out another box at one corner. The resulting object can itself be a box, too, but in general
it is not even convex. It can be seen as the complement of a box B p relative to a larger background box [0,1]d . Note that it
is easy to calculate the union of a set of co-boxes {B p1 , B p2 , . . . , B pn } with p1, p2, . . . , pn ∈ [0,1]d as

⋃
B pi = [0,1]d \⋂

B pi .
On the other hand, the calculation of the intersection of a set of co-boxes is #P-hard by Theorem 1 as

⋃
B pi = [0,1]d \⋂

B pi .
The following theorem shows that it is not even approximable.

Theorem 6. Let p1, p2, . . . , pn ∈ R
d
�0 . Then the volume of

⋂n
i=1 B pi cannot be approximated in (deterministic or randomized) poly-

nomial time by a factor of 2d1−ε
for any ε > 0 unless NP = BPP.

Proof. Consider again the problem #MON-CNF already defined in Section 2. Let f = ∧n
k=1

∨
i∈Ck

xi be a monotone Boolean

formula given in CNF as defined in the proof of Theorem 1. We now construct for every clause Ck a co-box B pk with

pk = (p(k)
1 , . . . , p(k)

d) and p(k)
i = 1/2 if i ∈ Ck , and p(k)

i = 1 otherwise. The boxes B pk here correspond to the Ak in the proof
of Theorem 1. For x = (x1, . . . , xd) ∈ {0,1}d let Ux = [1

2 x1,
1
2 (x1 + 1)] × · · · × [1

2 xd,
1
2 (xd + 1)]. As in the proof of Theorem 1

one shows that Ux ⊆ ⋃n
k=1 B p if and only if x satisfies f̄ and hence also Ux ⊆ ⋂n

k=1 B p if and only if x satisfies f . This
k k

K. Bringmann, T. Friedrich / Computational Geometry 43 (2010) 601–610 609
Table 1
Results for the computational complexity of the calculation of the volume of union and intersection (asymptotic
in the dimension d).

Geometric objects Volume of the union Volume of the intersection

Axis-parallel boxes #P-hard + FPRAS easy
General boxes #P-hard + FPRAS #P-hard
Co-boxes easy #P-hard + APX-hardb

Schlicht domains #P-hard + FPRASa #P-hard + APX-hardb

Convex bodies #P-hard + FPRAS #P-hard

a If the integrals are computable in polynomial time (cf. Section 2.3).
b Theorem 6 even proves that for every fixed ε > 0 approximating the volume within 2d1−ε

is NP-hard.

implies that the volume of
⋂n

i=1 B pi times 2d equals the number of satisfying assignments of f . Roth [26] showed that

#MON-CNF cannot be approximated by a factor of 2d1−ε
unless NP = BPP. By above reduction, the same inapproximability

must hold for the volume of
⋂n

i=1 B pi . �
This shows that in general there does not exist a polynomial time multiplicative ε-approximation of the volume of the

intersection of bodies in R
d . This holds for all classes of objects which include co-boxes, e.g. schlicht domains (cf. Sec-

tion 2.3). Though there is no multiplicative approximation, we can still give an additive approximation algorithm, that is,
we can efficiently find a number Ṽ such that

Pr[V − εV min � Ṽ � V + εV min] � 3

4

where V is the exact volume of the intersection and V min is the minimal volume of any of the given bodies B1, . . . , Bn . If
we could replace V min by V in the equation above, we would have an FPRAS. This is not possible in general as the ratio of
V and V min can be arbitrarily small. Hence, such an ε-approximation is not relative to the exact result, but to the volume
of some greater body. This is an additive approximation since after rescaling, so that V min � 1 we get an additive error of ε.
Clearly, we get the result from above by uniform sampling in the body Bmin corresponding to the volume V min. Consider
Ṽ = V min(Z1 + · · · + ZN)/N , where Zi is a random variable valued 1, if the i-th sample point xi = SampleQuery(Bmin) lies
in the intersection of B1, . . . , Bn , and 0 otherwise. Using Chebyshev’s inequality one can show quite easily that Ṽ gives an
approximation as desired, if we choose N proportional to 1/ε2 with the right factor. This gives an approximation algorithm
with runtime O(nV (d) + 1

ε2 S(d) + n
ε2 P (d)), yielding O(dn

ε2) for (not necessarily axis-parallel) boxes.

4. Discussion and open problems

We have proven #P-hardness for the exact computation of the volume of the union of bodies in R
d as long as the class

of bodies includes axis-parallel boxes. The same holds for the intersection if the class of bodies contains general boxes. We
have also presented an FPRAS for approximating the volume of the union of bodies that allow three very natural oracles.
Very recently, there appeared a few deterministic polynomial-time approximations (FPTAS) for hard counting problems (e.g.
[3,5,14,15,29]). It seems to be a very interesting open question whether there exists a deterministic approximation for the
union of some non-trivial class of bodies. Since the volume of convex bodies determined by oracles cannot be approximated
to within a factor that is exponential in d [4], the existence of such a deterministic approximation for the union seems
implausible. It is also open whether there is a constant C so that KMP can be efficiently deterministically approximated
within a factor of C , i.e., if they are in APX?

For the intersection we proved that no multiplicative approximation (deterministic or randomized) is possible for co-
boxes (cf. Definition 1), but we also presented a very simple additive approximation algorithm for the intersection problem.
It would be interesting to know if there is a hard class for multiplicative approximation which contains only convex bodies.

Our results are summarized in Table 1. Note the correspondence between axis-parallel boxes and co-boxes. The discrete
counterpart to their approximability and inapproximability is the approximability of #DNF and the inapproximability of
#SAT.

Acknowledgements

We thank Joshua Cooper for suggesting the proof of Theorem 1, Ernst Albrecht for discussions on schlicht domains,
and Eckart Zitzler for comments on an earlier version of this paper. This work was partially supported by a postdoctoral
fellowship from the German Academic Exchange Service (DAAD).

References

[1] P.K. Agarwal, H. Kaplan, M. Sharir, Computing the volume of the union of cubes, in: Proc. 23rd Annual Symposium on Computational Geometry
(SoCG ’07), 2007, pp. 294–301.

610 K. Bringmann, T. Friedrich / Computational Geometry 43 (2010) 601–610
[2] D. Applegate, R. Kannan, Sampling and integration of near log-concave functions, in: Proc. 23rd Annual ACM Symposium on Theory of Computing
(STOC ’91), 1991, pp. 156–163.

[3] A. Bandyopadhyay, D. Gamarnik, Counting without sampling: new algorithms for enumeration problems using statistical physics, in: Proc. 17th Annual
ACM–SIAM Symposium on Discrete Algorithms (SODA ’06), 2006, pp. 890–899.

[4] I. Bárány, Z. Füredi, Computing the volume is difficult, Discrete Comput. Geom. 2 (1987) 319–326.
[5] M. Bayati, D. Gamarnik, D.A. Katz, C. Nair, P. Tetali, Simple deterministic approximation algorithms for counting matchings, in: Proc. 39th Annual ACM

Symposium on Theory of Computing (STOC ’07), 2007, pp. 122–127.
[6] J.L. Bentley, Algorithms for Klee’s rectangle problems, Department of Computer Science, Carnegie Mellon University, 1977, unpublished notes.
[7] K. Bringmann, T. Friedrich, Approximating the volume of unions and intersections of high-dimensional geometric objects, in: Proc. 19th International

Symposium on Algorithms and Computation (ISAAC ’08), in: LNCS, vol. 5369, 2008, pp. 436–447.
[8] T.M. Chan, Semi-online maintenance of geometric optima and measures, SIAM J. Comput. 32 (2003) 700–716.
[9] T.M. Chan, A (slightly) faster algorithm for Klee’s measure problem, Comput. Geom. 43 (2010) 243–250.

[10] K. Chandrasekaran, D. Dadush, S. Vempala, Thin partitions: Isoperimetric inequalities and a sampling algorithm for star shaped bodies, in: Proc. 21st
Annual ACM–SIAM Symposium on Discrete Algorithms (SODA ’10), 2010, pp. 1630–1645.

[11] M.E. Dyer, A.M. Frieze, On the complexity of computing the volume of a polyhedron, SIAM J. Comput. 17 (1988) 967–974.
[12] M.E. Dyer, A.M. Frieze, R. Kannan, A random polynomial time algorithm for approximating the volume of convex bodies, J. ACM 38 (1991) 1–17.
[13] M.L. Fredman, B.W. Weide, On the complexity of computing the measure of

⋃[ai ,bi], Commun. ACM 21 (1978) 540–544.
[14] D. Gamarnik, D. Katz, Correlation decay and deterministic FPTAS for counting list-colorings of a graph, in: Proc. 18th Annual ACM–SIAM Symposium

on Discrete Algorithms (SODA ’07), 2007, pp. 1245–1254.
[15] N. Halman, D. Klabjan, C.-L. Li, J.B. Orlin, D. Simchi-Levi, Fully polynomial time approximation schemes for stochastic dynamic programs, in: Proc. 19th

Annual ACM–SIAM Symposium on Discrete Algorithms (SODA ’08), 2008, pp. 700–709.
[16] R. Kannan, L. Lovász, M. Simonovits, Random walks and an O ∗(n5) volume algorithm for convex bodies, Random Struct. Algorithms 11 (1997) 1–50.
[17] H. Kaplan, N. Rubin, M. Sharir, E. Verbin, Counting colors in boxes, in: Proc. 18th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA ’07),

2007, pp. 785–794.
[18] R.M. Karp, M. Luby, N. Madras, Monte-Carlo approximation algorithms for enumeration problems, J. Algorithms 10 (1989) 429–448.
[19] L.G. Khachiyan, The problem of calculating the volume of a polyhedron is enumerably hard, Russian Math. Surv. 44 (1989) 199–200.
[20] V. Klee, Can the measure of

⋃[aibi] be computed in less than O (n logn) steps? Amer. Math. Monthly 84 (1977) 284–285.
[21] L. Lovász, M. Simonovits, The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume, in: Proc. 31st Annual Symposium

on Foundations of Computer Science (FOCS ’90), 1990, pp. 346–354.
[22] L. Lovász, M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Struct. Algorithms 4 (1993) 359–412.
[23] L. Lovász, S. Vempala, Simulated annealing in convex bodies and an O ∗(n4) volume algorithm, J. Comput. Syst. Sci. 72 (2006) 392–417.
[24] M.E. Muller, A note on a method for generating points uniformly on n-dimensional spheres, Commun. ACM 2 (1959) 19–20.
[25] M.H. Overmars, C.-K. Yap, New upper bounds in Klee’s measure problem, SIAM J. Comput. 20 (1991) 1034–1045.
[26] D. Roth, On the hardness of approximate reasoning, Artif. Intell. 82 (1996) 273–302.
[27] S. Suzuki, T. Ibaraki, An average running time analysis of a backtracking algorithm to calculate the measure of the union of hyperrectangles in d

dimensions, in: Proc. 16th Canadian Conference on Computational Geometry (CCCG ’04), 2004, pp. 196–199.
[28] J. van Leeuwen, D. Wood, The measure problem for rectangular ranges in d-space, J. Algorithms 2 (1981) 282–300.
[29] D. Weitz, Counting independent sets up to the tree threshold, in: Proc. 38th Annual ACM Symposium on Theory of Computing (STOC ’06), 2006,

pp. 140–149.
[30] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evolut. Comput. 3

(1999) 257–271.

	Approximating the volume of unions and intersections of high-dimensional geometric objects
	Introduction
	Our results

	Volume computation of unions
	Computational complexity of union calculations
	Approximation algorithm for the volume of unions
	Classes of objects supported by our FPRAS
	Generalized spheres and boxes.
	Convex bodies.
	Star-shaped bodies.
	Schlicht domains.

	Analysis of our algorithm

	Volume computation of intersections
	Discussion and open problems
	Acknowledgements
	References

