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ABSTRACT

Evolutionary multi-objective optimization deals with the
task of computing a minimal set of search points according
to a given set of objective functions. The task has been made
explicit in a recent paper by Zitzler et al. [13]. We take an
order-theoretic view on this task and examine how the use
of indicator functions can help to direct the search towards
Pareto optimal sets. Thereby, we point out that evolution-
ary algorithms for multi-objective optimization working on
the dominance relation of search points have to deal with a
cyclic behavior that may lead to worsenings with respect to
the Pareto-dominance relation defined on sets. Later on, we
point out in which situations well-known binary and unary
indicators can help to avoid this cyclic behavior.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms

Theory, Algorithms, Measurement, Performance

Keywords

Multiobjective Optimization, Performance Measures, Hy-
pervolume Indicator, Cycles

1. INTRODUCTION
Evolutionary computation methods have been widely used

for multi-objective optimization problems [3]. Often such
problems are hard to tackle as there is no total ordering of
the underlying search space. Instead of this, a preorder on
the search space is induced by the different objective func-
tions that should be optimized. The minimal elements of
such a preorder are called Pareto optimal solutions and the
set of minimal elements with respect to the partial order on
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the objective space is called the Pareto front. The goal of an
algorithm for a given multi-objective optimization problem
is to compute for each objective vector of the Pareto front
a corresponding Pareto optimal search point. Often the size
of the Pareto front grows exponentially with respect to the
size of the input. Then one is interested in a smaller set of
minimal elements that fulfills given user preferences.

Recently, it has been proposed by Zitzler, Thiele, and
Bader [12] to extend the preorder on the search space to a
preorder on sets of search points. This leads to the term set-
based multi-objective optimization which stresses the point
that not single solutions should be compared with respect
to a preorder but sets of search points have to be compared.
Zitzler et al. [12, 13] introduced a preorder on the set of sets
of search points which is based on the preorder on the un-
derlying search space. They also use this preorder as a basic
relation that may be later refined by special user preferences.

The goal of this paper is to consider the approach of work-
ing with a preorder on sets in greater detail. In particu-
lar, we discuss the preorder on sets from a theoretical point
of view. Evolutionary algorithms work with (multi)-sets of
search points. Throughout this paper, we assume that in
each iteration a parent population consisting of µ individ-
uals produces an offspring population consisting of λ indi-
viduals. Having produced an offspring population, the task
of the selection operator is to select a new parent popula-
tion. We examine how to design a selection operator such
that the newly chosen parent population consists of a set
of µ individuals that is minimal among all sets that can be
obtained by selecting µ individuals from the set of parents
and children. Later on, we relate it to well known selection
methods such as non dominated sorting used in NSGA-II [4]
and ranking ideas used in SPEA2 [9].

Having examined how to compute a minimal set of search
points in each iteration, we investigate the run of such algo-
rithms from a theoretical point of view with respect to the
Pareto-dominance order defined on sets. We show that just
working with the dominance relation on sets may lead to a
cyclic behavior that can lead to worsenings with respect to
the dominance relation. This behavior has already been ob-
served in experimental studies of NSGA-II and SPEA2 (see
[7]) and may prevent those algorithms from convergence. We
point out conditions that can help to avoid such an undesired
behavior. Based on these conditions, we examine how refine-
ments using indicator functions for incomparable sets may
help to solve this problem. We show that well-known binary
indicators such as the additive and multiplicative ε-indicator
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can resolve this problem for the case that the parent pop-
ulation is of size 1. On the negative side, we show that
even a parent population of size 2 can again run into the
non-described cyclic behavior.

On the other hand, we examine the use of unary indica-
tors. Based on our conditions for avoiding cyclic behavior
we show that the well-known hypervolume indicator is able
to deal with this problem in a successful manner. Our in-
vestigations increase the foundation of this indicator and
give a further explanation for its usefulness in evolutionary
multi-objective optimization.

The outline of the paper is as follows. In Section 2 we
recall some basic properties of set-based multi-objective op-
timization. Section 3 deals with the task of computing a
minimal set from the parents and children. The problem of
deteriorative cycles and conditions on how to avoid them are
pointed out in Section 4. In Section 5 we examine whether
it is possible to avoid this cyclic behavior by using binary
and unary indicators. The cyclic behavior of the popular
ε-indicator is examined in detail in Section 6. Finally, we
finish with some conclusions.

2. SET-BASED MULTI-OBJECTIVE OPTI-

MIZATION
A multi-objective optimization problem is given by a

vector-valued objective function f = (f1, . . . , fd) : X → R
d

on a search space X. W. l. o. g. we assume that each func-
tion fi, 1 ≤ i ≤ d, should be minimized. We first define
a partial order on the objective space. An objective vector
x = (x1, . . . , xd) ∈ R

d weakly dominates an objective vector
y = (y1, . . . , yd) ∈ R

d (x �Par y) if it is not worse in any
objective, i. e.,

x �Par y :⇔ xi ≤ yi for 1 ≤ i ≤ d.

The objective function f also induces a preorder �Par on
the search space X. More precisely, we say a search point
a ∈ X weakly dominates a search point b ∈ X (a �Par b) if
it is not worse in any of its objective, i. e.,

a �Par b :⇔ f(a) �Par f(b).

Note that we use �Par as a relation on search points as well
as a relation on the corresponding objective vectors. �Par

is a preorder on the set of search points and a partial order
on the set of objective vectors.

Investigating sets of search points in this paper, we assume
that these sets are finite. Given a set of search points A, we
denote by Min(A,�Par) the set of minimal elements of A
with respect to the preorder �Par. Let f(A) be the set of
objective vectors of the search points in A, i. e.,

f(A) =
⋃

a∈A

f(A).

Then, we denote by Min(f(A),�Par) the set of minimal ob-
jective vectors in f(A) with respect to the partial order �Par

on f(A).
The goal in multi-objective optimization is to compute

a set X∗ with f(X∗) = Min(f(X),�Par), where X is the
considered search space. Often the size of Min(f(X),�Par)
is large, i. e., exponential with respect to the given input.
In this case, it is not possible to compute the whole set of
minimal elements of f(X) efficiently and f(X∗) should be a
smaller subset of them.

In this paper, we consider evolutionary algorithms for
multi-objective optimization. They try to construct a set
X∗ with f(X∗) ⊆ Min(f(X),�Par) in an iterative way by
starting with an initial set of search points and producing
a new set of search points in each iteration. As evolution-
ary algorithms work with sets of search points, we want to
compare sets of search points against each other. Let 2X be
the power-set of X, i. e., 2X := {R | R ⊆ X}. Based on
a preorder �Par (reflexive and transitive) on single search
points, Zitzler et al. [12] have defined the following preorder
on sets of search points which conforms to the preorder �Par

on the underlying set of search points X.

Definition 2.1. Let A,B ∈ 2X then

A �dom B :⇔ (∀b ∈ B ∃a ∈ A : a �Par b).

We consider an arbitrary relation � on sets and introduce
the following definitions.

Definition 2.2. Let A,B ∈ 2X and � be an arbitrary
relation on 2X . Then we use

A ≺ B :⇔ (A � B) ∧ (B 6� A)

to denote that A is strictly better than B. We further write

A ≡ B :⇔ (A � B) ∧ (B � A)

to denote that A and B are equivalent, and

A ‖ B :⇔ (A 6� B) ∧ (B 6� A)

to denote that A and B are incomparable. Further, let

A � B :⇔ B � A,

A ≻ B :⇔ B ≺ A.

Evolutionary algorithms often work at each time step with
a fixed population size µ. Therefore, we consider subsets of
X containing exactly µ elements. The goal is to obtain a set
that is a minimal set with respect to the order �dom among
all subsets of X having exactly µ elements.

We denote the set of minimal elements containing exactly
µ elements of X by Minµ(2

X ,�), i. e.

Minµ(2
X ,�) := Min{R | R ∈ 2X ∧ |R| = µ}.

Note that such a set is also a minimal set among all subsets
having less than µ elements according to Definition 2.1.

The relation between two sets A and B is determined by
the set of their minimal elements. The following lemma
relates equivalent sets and the set of their minimal objective
vectors.

Lemma 2.3. If A and B are sets of search points, then

A ≡dom B ⇔ Min(f(A),�Par) = Min(f(B),�Par).

Proof. “⇒”: Let A,B ∈ 2X with A ≡dom B. We assume
that Min(f(A),�Par) 6= Min(f(B),�Par) and show a con-
tradiction. Let c ∈ A be such that f(c) ∈ Min(f(A),�Par)
but f(c) /∈ Min(f(B),�Par). Since B �dom A and f(c) ∈
f(A) but f(c) /∈ Min(f(B),�Par) there exists a b ∈ B such
that f(b) ∈ Min(f(B),�Par) and b ≺Par c. From A �dom B
we get a �Par b for some a ∈ A. Hence, we have a �Par c and
f(c) ∈ Min(f(A),�Par) implies f(a) = f(c). Altogether, we
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arrive at f(b) ≺Par f(a) and f(a) �Par f(b), i. e., the desired
contradiction.
“⇐”: Let f(a) ∈ f(A). Then there exists f(b) ∈

Min(f(A),�Par) such that f(b) �Par f(a). Now
Min(f(A),�Par) = Min(f(B),�Par) implies f(b) ∈ f(B).
Hence, we get B �dom A. Since in the same way A �dom B
can be shown, we have A ≡dom B.

Evolutionary algorithms work in each iteration with a par-
ent population that creates an offspring population by some
variation operators such as crossover and mutation. Note,
that both the parent and offspring population are multi-
sets, i. e., they may contain a search point more than once.
Comparing multi-sets with respect to the dominance rela-
tion, we ignore duplicates, i. e. we treat a multi-sets as their
corresponding sets in 2X .

After the set of offspring has been obtained, the goal is to
choose a new parent population such that the process can
be iterated.

We assume that the parent population has a fixed number
of individuals µ which is very common in evolutionary com-
putation. The size of the offspring population is denoted
by λ and the goal is to select out of the µ + λ individu-
als from the parent and offspring a new parent population
that is a minimal set among all possible subsets consisting
of µ individuals

To make the setting more precise, we examine Algo-
rithm 1. Our algorithm starts with a population consisting
of µ individuals. In each iteration λ offspring are produced.
The new parent population is afterwards chosen as a mini-
mal element with respect to the set preference relation �dom

among all possible subsets of the parents and offspring that
consist of exactly µ individuals.

Algorithm 1 (Evolutionary Algorithm).

1. Create an initial population P consisting of µ individ-
uals.

2. Produce from P an offspring population C consisting
of λ individuals.

3. Select a set P ′ with P ′ ∈ Minµ(2
(P∪C),�dom).

4. Set P = P ′

5. If no termination condition is fullfilled go to step 2

Consider a set P ′ ∈ Minµ(2
(P∪C),�) and compare it to P .

P ′ is minimal and P ∈ {R ∈ 2(P∪C)∧|R| = µ} which implies
that either

P ′ �dom P

or

P ′ ‖dom P

holds. P ≺dom P ′ would contradict the assumption that
P ′ is minimal. If P ′ ≺dom P we have obtained a strict
improvement with respect to the dominance relation on sets.
P ′ ≡dom P gives us an equivalent set and P ′ ‖dom P a set
that is incomparable.

Evolutionary algorithms in our setting work implicitly on
a total relation defined on sets as an algorithm has to make
the decision which set to take for the next iteration. Let
�Alg be the total relation on 2X that an algorithm Alg uses
implicitly. In the case that P ′ ‖dom P it is not clear which
set to favor over the other. In the following we treat in-
comparable sets in the same way as indifferent sets. This is

very common in evolutionary multi-objective optimization
if no additional information is available. Later on, we will
examine how additional information based on an indicator
function can influence the search.

Algorithm 1 is based on the dominance relation �dom on
sets. However, it may also move from a set P to P ′ iff P ‖dom
P ′ which is often the case for evolutionary algorithms. The
algorithm works implicitly on the total relation �Alg1 on 2X

defined as

A �Alg1 B ⇔ (A �dom B) ∨ (A ‖dom B)

and may move from P to P ′ iff P ′ �Alg1 P holds. Note that
�Alg1 is not necessarily a transitive relation.

3. COMPUTING MINIMAL SETS
In this section, we examine how to compute a set con-

tained in Minµ(2
(P∪C),�dom). We will see that this can

be done by using an iterative algorithm that chooses in each
iteration a minimal element with respect to the Pareto dom-
inance relation on single points. This is similar to how well
known evolutionary algorithms for multi-objective optimiza-
tion choose their offspring population. In the following, we
present the ideas and basic properties that are necessary to
compute such a set in a precise way.

We consider the preorder �dom on the subsets of S :=
P ∪C with exactly µ elements. To obtain a set T for which
T ∈ Minµ(2

S ,�dom) holds we consider Algorithm 2.

Algorithm 2 (Minµ(2
S ,�dom)).

Input: S with |S| ≥ µ.

1. T = ∅.

2. while |T | < µ

• Choose an element x ∈ Min(S,�Par)

• T = T ∪ {x}, S = S \ {x}.

Algorithm 2 chooses in each iteration one individual x
that is minimal with respect to S and �Par. This individual
is introduced into T (T = T ∪ {x}) and deleted from S
(S \ {x}) until µ individuals have been chosen in this way.
The following theorem shows that Algorithm 2 computes
a minimal set among all subsets of S that have exactly µ
elements.

Theorem 3.1. For the set T produced by Algorithm 2,
T ∈ Minµ(2

S ,�dom) holds.

Proof. Algorithm 2 selects an element x if x ∈
Min(S,�Par). Hence, x can only be dominated by another
y ∈ S that has been included into T before the selection
of x has taken place. This implies that there is no ele-
ment z in S \ P for which z �Par x holds. Therefore,
T ∈ Minµ(2

S ,�dom) holds.

In the following, we want to modify Algorithm 2 such that
user preferences can be incorporated. Often one is not only
interested in an arbitrary set T ∈ Minµ(2

S ,�dom), but a set
from Minµ(2

S ,�dom) having additional properties. In the
process of construction the set T we use a heuristic function

h : 2X ×X → R

which determines the choice of the next minimal element
that should be included into T depending on the already
chosen elements and the available minimal elements.
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Figure 1: Objective space for deteriorative cycle

based on Pareto-dominance relation.

Algorithm 3 (Minµ(2
S,�dom) with preferences).

Input: S with |S| ≥ µ.

1. T = ∅.

2. while |P | < µ

• Choose an element x ∈ Min(S,�Par) for which
h(P, x) is maximal.

• T = T ∪ {x}, S = S \ {x}.

Algorithm 3 computes a minimal set of elements taking
into account a heuristic function h. This function can be
used to incorporate information on how the chosen points
should relate to each other. As Algorithm 3 selects in each
iteration a minimal element from the remaining set, we can
state the following corollary.

Corollary 3.2. For the set T produced by Algorithm 3,
T ∈ Minµ(2

S ,�dom) holds.

We have shown two simple algorithms for computing a
minimal set. Note that many well-known evolutionary algo-
rithms for multi-objective optimization such as NSGA-II [4]
and SPEA2 [9] use a similar approach to compute the next
parent population. In fact, it can be shown by similar argu-
ments that they also compute a set in Minµ(2

S ,�dom).

4. DETERIORATIVE CYCLES
In this section, we examine algorithms computing always

a minimal set among all possible sets consisting of µ indi-
viduals. We point out that using just the preference order
on the different subsets of P ∪ C may lead to cycles in the
optimization process, i. e., the algorithm may return to a
set of search points that has obtained already before. Even
worse, we show that the algorithm may return to a set of
search points that is strictly dominated by another set of
search points that has been obtained at an earlier stage of
the optimization process.

4.1 The Problem of Deteriorative Cycles
We want to point out that using an approach which

chooses an arbitrary set of Minµ(2
(P∪C),�dom) may create

cycles. In particular, we show by example that we might
get worse during the optimization process according to the
preorder order �dom. We call such cycles deteriorative and
make it precise in using the following definition.

Definition 4.1. A relation � on 2X contains a deterio-
rative cycle iff there is a sequence of sets A1, A2, . . . Ar ∈ 2X

with

A1 � A2 � . . . � Ar−1 � Ar � A1

and Ar ≺dom A1.

To illustrate the problem that deteriorative cycles may
produce in the optimization process, we consider a simple
example given in Figure 1 together with Algorithm 1. For
simplicity, we assume |P | = |C| = 1 and consider the three
sets consisting of exactly one element. We have

{a} ‖dom {b} ⇒ {a} �Alg1 {b} ∧ {b} �Alg1 {a}

{b} ≻dom {c} ⇒ {b} ≻Alg1 {c}

{a} ‖dom {c} ⇒ {a} �Alg1 {c} ∧ {a} �Alg1 {c}

The relation �Alg1 contains a deteriorative cycle as

{b} �Alg1 {c} �Alg1 {a} �Alg1 {b}.

and

{b} ≻dom {c}.

In the following, we point out how Algorithm 1 may pro-
duce this cycle during the optimization process. Assume
that the algorithm starts with the population P1 = {b}
and produces the first offspring c. Due to Pareto-dominance
{c} ≺Alg1 P1 holds, and P2 = {c} becomes the new parent
population. The offspring of P2 is a and {a} is incompa-
rable to P2 and therefore {a} �Alg1 P2. Hence, P3 = {a}
may be the new parent population. Similar, b may be the
next offspring and the set {b} = P1 is incomparable to
P3 ({b} �Alg1 P3) such that the algorithm may proceed to
P4 = {b} = P1 creating a deteriorative cycle.

4.2 Coping with deteriorative cycles
We have seen in the previous section that using just the

preference relation on sets and allowing moves between in-
comparable sets may lead to a deteriorative cyclic behavior.
This is due to the fact that evolutionary multi-objective opti-
mization has to deal with incomparable sets. An algorithm
just relying on the generalized dominance relation on sets
and selecting arbitrarily between incomparable sets may ac-
cept a set of search points A that is strongly dominated by
another set B that has been obtained before A.

In the following, we want to examine how to deal with
the cyclic behavior. We want to discuss the properties for �
such that it does not contain a deteriorative cycle. The first
property is that it is compliant with the Pareto dominance
relation.

Definition 4.2. A relation � on 2X is Pareto-compliant
if

A ≺dom B ⇒ A ≺ B.

A relation � is strictly Pareto-compliant if additionally

A ≡dom B ⇒ A ≡ B.
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This definition slightly deviates from the use of the terms
Pareto-compliant and strictly Pareto-compliant in [6, 10].
Note that if � is strictly Pareto-compliant, then

A �dom B ⇒ A � B.

Definition 4.2 states that the relation � is Pareto-
compliant if the indicator can also distinguish between sets
that strictly dominate each other. Note that � is Pareto
compliant iff it is a refinement of the Pareto dominance rela-
tion �dom on sets in terms of Zitzler et al. [13]. We have seen
that just the property to have a Pareto-compliant indicator
does not avoid cyclic behavior as the Pareto-dominance re-
lation is itself Pareto-compliant. To avoid cyclic behavior
we need an additional property.

Definition 4.3. A relation � on 2X is called transitive
if

(
(A � B) ∧ (B � C)

)
⇒ A � C.

In the following we show that a relation � that is Pareto
compliant and transitive does not contain a deteriorative
cycle. We will use this property later on to show which
algorithms do not encounter a deteriorative cycle.

Theorem 4.4. If � is Pareto-compliant and transitive
then � does not contain a deteriorative cycle.

Proof. We prove the theorem by contradiction. As-
sume that � contains a deteriorative cycle consisting of sets
A1, A2, . . . , Ar ∈ 2X with

A1 � A2 � . . . � Ar−1 � Ar � A1

and Ar ≺dom A1.
By transitivity of �, we get A1 � Ar. As � is also Pareto-

compliant, we know from Ar ≺dom A1 that Ar ≺ A1 and
hence by definition of ≺, A1 6� Ar which contradicts A1 �
Ar. Hence � cannot contain a deteriorative cycle.

We want to modify Algorithm 1 such that the underlying
relation does not contain a deteriorative cycle. Algorithm 4
differs from Algorithm 1 by using an additional relation �I

in the case that P ′ ‖dom P holds.

Algorithm 4 (Cycle-free Optimizer).

1. Choose an initial population P consisting of µ individ-
uals.

2. Produce an offspring population C.

3. Compute a minimal set P ′ ∈ Minµ(2
(P∪C),�dom) us-

ing Algorithm 2 or 3.

4. If (P ′ ≺dom P ) ∨ (P ′ ≡dom P ) ∨ (P ′ �I P ) then
P := P ′.

5. If no stopping criteria is fulfilled, go to step 2

Step 4 should be read like a short-circuit evaluation of
Boolean operators in most modern programming languages.
That is, if P ′ ≺dom P or P ′ ≡dom P , the algorithm can
decide to choose P ′ without calculating the (usually much
more expensive) relation �I . This way the algorithm works
on the underlying relation �Alg4 given by

A �Alg4 B :⇔ (A �dom B) ∨ ((A ‖dom B) ∧ (A �I B)).

If �I is strictly Pareto compliant then �Alg4=�I . If �I

is in addition transitive, then �Alg4=�I does not contain a
deteriorative cycle. We state this property in the following
corollary.

Corollary 4.5. If �I is strictly Pareto compliant and
transitive then �Alg4 does not contain a deteriorative cycle.

5. UNARY INDICATORS
We now want to examine the common approach to define

refinements via indicator functions (see e. g. [13]). In this
section we focus on unary indicator functions while the next
section examines binary indicator functions. Unary indica-
tor functions assign each set a real number that somehow
reflects their quality, i.e.,

I1 : 2
X → R.

To define a relation based on an indicator function, we use
the following definition.

Definition 5.1. For an unary indicators I1 we set

A �I1 B :⇔ I1(A) ≤ I1(B),

A ≺I1 B :⇔ I1(A) < I1(B).

Note that the relation �I1 is total and also transitive as
the order on real values forms a transitive relation.

Also observe the following simple property which follows
directly from Theorem 4.4 and Corollary 4.5.

Lemma 5.2. Let I be an unary indicator.

• If the corresponding relation �I is Pareto-compliant,
then �I contains no deteriorative cycles.

• If the corresponding relation �I is strictly Pareto-
compliant, then �Alg4=�I contains no deteriorative
cycles.

This shows that unary indicators can help to avoid in
a natural way the problem of cyclic behavior and why
the property of Pareto-compliance is especially important
for unary indicators. Unfortunately, there is currently
only one unary indicator known which is Pareto-compliant.
This is the hypervolume indicator. For minimization prob-
lems it it measures the volume of the dominated portion
of the objective space relative to a fixed reference point
(R1, R2, . . . , Rd) ∈ R

d which lies above the Pareto front.
In our setting where an indicator should be minimized, the
hypervolume indicator of a set of solutions A ∈ 2X can be
defined as

IHYP(A) := −vol

(
⋃

x∈A

[f1(x), R1]× . . .× [fd(x),Rd]

)

with vol(·) being the usual Lebesgue measure. The hy-
pervolume indicator was first introduced for performance
assessment in multiobjective optimization by Zitzler and
Thiele [8] and hypervolume-based optimizers have become
very popular in recent years (see e.g. [1, 5, 11]).

The problem with the hypervolume indicator is that it is
computationally expensive, i. e., the runtime for the com-
putation of the hypervolume for a given set of search points
grows exponentially with the number of objectives [2]. Com-
pared to this the test whether A �dom B holds can always be
done in time polynomial in the size of the given two sets and
the number of objectives. The following theorem describes
another nice property of the hypervolume indicator.

Theorem 5.3. Let A,B ∈ 2X . If A ≡dom B then
HYP(A) = HYP(B) holds.
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Proof. Let A ≡dom B. Then Lemma 2.3 implies
Min(f(A),�Par) = Min(f(B),�Par). As the hypervol-
ume of a given set of points is only determined by its set
of minimal elements in the objective space, this implies
HYP(A) = HYP(B).

Note that the above theorem actually not only holds for
HYP, but for all unary indicators whose value only depends
on the minimal elements in the objective space.

6. BINARY INDICATORS
Though the hypervolume indicator is the only Pareto-

compliant unary indicator, there are several Pareto-
compliant binary indicators. This could give the hope to
find a Pareto-compliant indicator which also contains no de-
teriorative cycles, but is computationally not as expensive
as the hypervolume indicator.

Binary indicator functions assign pairs of sets a real num-
ber that somehow reflects their relative performance, i.e.,

I2 : 2
X × 2X → R.

To define a relation based on an binary indicator function,
we use the following definition.

Definition 6.1. For a binary indicators I2 we set

A �I2 B :⇔ I2(A,B) ≤ I2(B,A),

A ≺I2 B :⇔ I2(A,B) < I2(B,A).

Zitzler et al. [10] mentiones four Pareto-compliant bi-
nary indicators: the multiplicative ε-indicator, the additive
ε-indicator, the coverage indicator [8], and the binary hy-
pervolume indicator. However, binary indicators are not
transitive in general. Therefore there is no equivalent of
Lemma 5.2 for binary indicators.

6.1 ε-Indicator
In the following, we focus on the ε-indicators which are

very popular in evolutionary multi-objective optimization.
We follow the definitions of Zitzler et al. [10] for the multi-
plicative and additive ε-dominance relation.

Definition 6.2. A search point a ∈ X is said to multi-
plicatively ε-dominate another search point b ∈ X written as
a �ε∗ b, if and only if

fi(a) ≤ ε fi(b) for all 1 ≤ i ≤ n.

The binary multiplicative ε-indicator Iε∗ on 2X × 2X is

Iε∗(A,B) := max
b∈B

min
a∈A

max
1≤i≤n

fi(a)/fi(b).

Definition 6.3. A search point a ∈ X is said to addi-
tively ε-dominate another search point b ∈ X written as
a �ε∗ b, if and only if

fi(a) ≤ ε+ fi(b) for all 1 ≤ i ≤ n.

The binary additive ε-indicator Iε+ on ‘2X × 2X is

Iε+(A,B) := max
b∈B

min
a∈A

max
1≤i≤n

fi(a)− fi(b).

We will analyze the corresponding relations �Iε∗ and �Iε∗

as defined in Definition 6.1. To simplify the notation we set

�ε∗:=�Iε∗ and �ε+:=�I
ε+

.

Let further ≺ε∗ and ≺ε+ have their obvious meaning. We
can show that �ε∗ and �ε+ are strictly Pareto-compliant.

Lemma 6.4. �ε∗ and �ε+ are strictly Pareto-compliant.

Proof. Let A ≺dom B. Then by Definition 6.2,
Iε∗(A,B) = 1 and Iε∗(B,A) > 1 and therefore A ≺ε∗

B. Analogously by Definition 6.2, Iε+(A,B) = 0 and
Iε+(B,A) > 0 and therefore A ≺ε+ B. This shows that
�ε∗ and �ε+ are Pareto-compliant.

In order to prove that they are also strictly Pareto-
compliant, let A ≡dom B. Then by Lemma 2.3,
Min(f(A),�Par) = Min(f(B),�Par) and therefore
Iε∗(A,B) = Iε∗(B,A) = 1 and Iε+(A,B) = Iε+(B,A) = 0,
which is equivalent to A ≡ε∗ B and A ≡ε+ B.

This shows that �ε∗ and �ε+ are strictly Pareto-
compliant. Therefore by Corollary 4.5 it suffices to show
that they are also transitive in order to prove that they con-
tain no deteriorative cycle. Unfortunately, in most cases this
does not hold.

In the remainder of this Section 6 we examine for what
sets the relations �ε∗ and �ε+ contain deteriorative cycles.
More precisely, we will prove the following dichotomy.

Theorem 6.5. Let s ≥ 1 and d ≥ 2. Then the relations
�ε∗ and �ε+ restricted to sets of size ≤ s in d dimensions
do not contain deteriorative cycles if and only if s = 1 and
d = 2.

This implies that the relations �ε∗ and �ε+ contain no
deteriorative cycles only in the simplest case of singleton sets
in two dimensions. We prove Theorem 6.5 in the following
Lemmas 6.6, 6.7, and 6.8.

6.2 Nonexistence of deteriorative cycles for
sets of size one in two dimensions

We first give a positive result and show that the relations
�ε∗ and�ε+ do not contain deteriorative cycles if we restrict
it to singleton sets in two dimensions.

Lemma 6.6. For sets of size one in two dimensions, the
relations �ε∗ and �ε+ do not contain deteriorative cycles.

Proof. According to Theorem 4.4 and Lemma 6.4, it suf-
fices to show that �ε∗ and �ε+ are transitive. Let us con-
sider three arbitrary points a, b, c ∈ X with f(a) = (ax, ay),
f(b) = (bx, by) and f(c) = (cy , cy). We want to show that

(
({a} �ε∗ {b}) ∧ ({b} �ε∗ {c})

)
⇒ {a} �ε∗ {c}.

By definition,

{a} �ε∗ {b}

⇔ Iε∗({a}, {b}) ≤ Iε∗({b}, {a})

⇔

(

max

{
ax

bx
,
ay

by

}

≤ max

{
bx
ax

,
by
ay

})

⇔

(
ax

bx
≤

bx
ax

∧
ay

by
≤

bx
ax

)

︸ ︷︷ ︸

(1)

∨

(
ax

bx
≤

by
ay

∧
ay

by
≤

by
ay

)

︸ ︷︷ ︸

(2)

.
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Analogously,

{b} �ε∗ {c}

⇔ Iε∗({b}, {c}) ≤ Iε∗({c}, {b})

⇔

(

max

{
bx
cx

,
by
cy

}

≤ max

{
cx
bx

,
cy
by

})

⇔

(
bx
cx

≤
cx
bx

∧
by
cy

≤
cx
bx

)

︸ ︷︷ ︸

(3)

∨

(
bx
cx

≤
cy
by

∧
by
cy

≤
cy
by

)

︸ ︷︷ ︸

(4)

.

Plugging both together yields,

({a} �ε∗ {b}) ∧ ({b} �ε∗ {c})

⇔
(
(1) ∧ (3)

)
∨
(
(1) ∧ (4)

)
∨
(
(2) ∧ (3)

)
∨
(
(2) ∧ (4)

)

⇒
(
(1) ∧ (3)

)
∨
(
(2) ∧ (4)

)

⇔

(
ax

bx
≤

bx
ax

∧
ay

by
≤

bx
ax

∧
bx
cx

≤
cx
bx

∧
by
cy

≤
cx
bx

)

∨

(
ax

bx
≤

by
ay

∧
ay

by
≤

by
ay

∧
bx
cx

≤
cy
by

∧
by
cy

≤
cy
by

)

⇒

(
ax

cx
≤

cx
ax

∧
ay

cy
≤

cx
ax

)

∨

(
ax

cx
≤

cy
ay

∧
ay

cy
≤

cy
ay

)

⇔

(

max

{
ax

cx
,
ay

cy

}

≤ max

{
cx
ax

,
cy
ay

})

⇔ Iε∗({a}, {c}) ≤ Iε∗({c}, {a})

⇔{a} �ε∗ {c}.

The proof for the additive ε-relation is equivalent and can
be obtained by replacing all fractions α

β
in the proof above

with subtractions α− β.

6.3 Existence of deteriorative cycles for sets of
size one in three dimensions

In Lemma 6.6 we showed that for sets of size one in two
dimensions the relations �ε∗ and �ε+ do not contain deteri-
orative cycles. We now prove that already for three dimen-
sions this does not hold anymore.

Lemma 6.7. For sets of size one in more than two di-
mensions the relations �ε∗ and x �ε+ contain deteriorative
cycles.

Proof. We choose four points a, b, c, d ∈ X with f(a) :=
(1, 2, 4), f(b) := (1, 1, 4), f(c) := (3, 3, 1), f(d) := (4, 1, 2)
and show that these four points build a deteriorative cy-
cle for both ε-dominance relation. Let us first look at
the multiplicative ε-dominance relation. As we are look-
ing at minimization problems, b clearly dominates a, that
is, {b} ≺dom {c}. On the other hand, {c} ≺ε∗ {b} as

Iε∗({c}, {b}) = 3 < 4 = Iε∗({b}, {c}).

Also {d} ≺ε∗ {c} as

Iε∗({d}, {c}) = 2 < 3 = Iε∗({c}, {d}).

The deteriorative cycle is then closed by {a} ≺ε∗ {d} as

Iε∗({a}, {d}) = 2 < 4 = Iε∗({d}, {a}).

Overall, {a} ≺ε∗ {d} ≺ε∗ {c} ≺ε∗ {b} ≺dom {a}.
It remains to show that the same points form a deterio-

rative cycle for the additive ε-dominance relation. It is easy

P1

P2

P3

P4

a

b

c

d

x

y

Figure 2: Illustration of the sets used in the proof

of Lemma 6.8.

to that

Iε+({c}, {b}) = 2 < 3 = Iε+({b}, {c}),

Iε+({d}, {c}) = 1 < 2 = Iε+({c}, {d}),

Iε+({a}, {d}) = 2 < 3 = Iε+({d}, {a}),

and therefore {a} ≺ε+ {d} ≺ε+ {c} ≺ε+ {b} ≺dom {a},
which finishes to proof.

6.4 Existence of deteriorative cycles for sets of
size two in two dimensions

To complete the dichotomy of the relations �ε∗ and �ε+,
it remains to prove that also in two dimensions sets of size
more than one give deteriorative cycles.

Lemma 6.8. For sets of size more than one in two di-
mensions, the relations �ε∗ and x �ε+ contain deteriorative
cycles.

Proof. We choose a, b, c, d ∈ X such that

P1 := {a, b}, with

P2 := {c, b},

P3 := {a, d},

P4 := {d, c},

f(a) := (10, 16),

f(b) := (5, 12),

f(c) := (13, 11),

f(d) := (17, 5).

We want to show that these four sets P1, P2, P3, P4 form a
deteriorative cycle. It is easy to see that P1 ≺dom P2. We
first examine the multiplicative ε-dominance relation and
prove that P1 ≺dom P2 ≺ε∗ P3 ≺ε∗ P4 ≺ε∗ P1.

Observe that P2 ≺ε∗ P3 holds as

Iε∗(P3, P2) = max {17/13, 2} = 2

< 2.2 = max {3/4, 11/5} = Iε∗(P2, P3),

and P3 ≺ε∗ P4 holds as

Iε∗(P4, P3) = max {13/10, 1} = 1.3

< 1.308... = max {1, 17/13} = Iε∗(P3, P4).
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It remains to show P4 ≺ε∗ P1, which holds since

Iε∗(P1, P4) = max {12/5, 12/11} = 2.4

< 2.6 = max {13/10, 13/5} = Iε∗(P4, P1).

This shows the claim for the multiplicative ε-dominance
relation. We now prove that the same sets also contains a
deteriorative cycle in the case of the additive ε-dominance
relation. We have P2 ≺ε∗ P3 as

Iε+(P3, P2) = max {4, 5} = 5

< 6 = max {−4, 6} = Iε+(P2, P3),

and P3 ≺ε∗ P4 as

Iε+(P4, P3) = max {3, 0} = 3

< 4 = max {0, 4} = Iε+(P3, P4),

and P4 ≺ε∗ P1 as

Iε+(P1, P4) = max {7, 1} = 7

< 8 = max {3, 8} = Iε+(P4, P1).

This shows P1 ≺dom P2 ≺ε+ P3 ≺ε+ P4 ≺ε+ P1 and finishes
the proof.

7. CONCLUSIONS
Evolutionary algorithms for multi-objective optimization

search for a set of search points that is minimal with respect
to the Pareto dominance relation on sets. This optimization
goal has been made explicit recently in Zitzler et al. [13].
With this paper, we have contributed to the theoretical un-
derstanding of this optimization process by investigating the
underlying relation that an evolutionary algorithm uses for
optimization. First, we have shown how to choose a minimal
set among the parents and children to build the next parent
population. Our algorithms are similar to the method used
in NSGA-II and SPEA2 and allow to incorporate preferences
into the computation of a minimal set.

Later on, we have pointed out that algorithms which
are solely based on the Pareto dominance relation may en-
counter deteriorative cycles if they can move between incom-
parable sets. This is due to the fact that the Pareto dom-
inance relation is not a total relation. We have examined
how such cycles can be avoided by using indicator functions
on incomparable sets. Our studies show that if the total re-
lation on which an algorithm works is Pareto compliant and
transitive then the relation does not contain a deteriorative
cycle. Investigating the binary ε-indicator which is Pareto
compliant, we have shown that it is transitive only for very
restricted cases and may lead to deteriorative cycles in gen-
eral. Unary indicators are in a natural way transitive and
therefore each unary indicator that is Pareto compliant ful-
fills our conditions. An indicator matching the desired prop-
erties is the hypervolume indicator. Therefore, our studies
give a further justification for using this indicator that has
become very popular in evolutionary multi-objective opti-
mization. In remains an open problem to construct further
unary indicators that are Pareto compliant and transitive as
such indicator help to guide the search with respect to the
Pareto dominance relation on sets.
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