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ABSTRACT
In order to allow a comparison of (otherwise incomparable)
sets, many evolutionary multiobjective optimizers use in-
dicator functions to guide the search and to evaluate the
performance of search algorithms. The most widely used
indicator is the hypervolume indicator. It measures the vol-
ume of the dominated portion of the objective space.

Though the hypervolume indicator is very popular, it has
not been shown that maximizing the hypervolume indicator
is indeed equivalent to the overall objective of finding a good
approximation of the Pareto front. To address this ques-
tion, we compare the optimal approximation factor with the
approximation factor achieved by sets maximizing the hy-
pervolume indicator. We bound the optimal approximation
factor of n points by 1 + Θ(1/n) for arbitrary Pareto fronts.
Furthermore, we prove that the same asymptotic approxi-
mation ratio is achieved by sets of n points that maximize
the hypervolume indicator. This shows that the speed of
convergence of the approximation ratio achieved by maxi-
mizing the hypervolume indicator is asymptotically optimal.

This implies that for large values of n, sets maximizing
the hypervolume indicator quickly approach the optimal ap-
proximation ratio. Moreover, our bounds show that also for
relatively small values of n, sets maximizing the hypervol-
ume indicator achieve a near-optimal approximation ratio.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Algorithms, Measurement, Performance

Keywords
Multiobjective Optimization, Performance Measures, Hy-
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1. INTRODUCTION
How to compare Pareto sets lies at the heart of research

in multiobjective optimization. Most popular are methods
that assign to each Pareto set a real number that somehow
reflects its quality. Such functions are called unary indicator
functions. A very desirable property of such indicator func-
tions is that they should be strictly Pareto compliant [31].
That is, the indicator should value a Pareto set A higher
than a Pareto set B if A dominates B. The only known
unary indicator that has this feature is the hypervolume in-
dicator (HYP). It measures the volume of the dominated
portion of the objective space (for a formal definition see
equation (2.1)). The hypervolume indicator was first in-
troduced for performance assessment in multiobjective opti-
mization by Zitzler and Thiele [30]. Later on it was used to
guide the search in various hypervolume-based evolutionary
optimizers (e.g. [6, 13, 15, 17, 29, 32]). Hypervolume-based
optimizers have become very popular in recent years. They
all aim (in different ways) to find a solution or Pareto set
that maximizes HYP. However, it is not obvious that this
aim is the same as the original objective of finding a good
approximation set of the Pareto front.

The distribution of the points of sets maximizing the hy-
pervolume has been examined in several previous papers.
Some empirical studies observed that a solution set that
maximizes HYP is somehow “well distributed” [13, 16, 17].
Others observed that “convex regions may be preferred to
concave regions” [20, 30] while further authors argued that
HYP is “biased towards the boundary solutions” [11]. For
the number of points n→∞, Auger et al. [2] proved that the
density of points only depends on the gradient, but not on
their position on the front. On last years GECCO, Friedrich
et al. [14] examined the approximation ratio of fronts maxi-
mizing the hypervolume. For linear and reciprocal functions
they could prove that maximizing HYP achieves an optimal
approximation while on other functions they showed empir-
ically that both might differ. In contrast, in this paper we
provide a rigorous analysis of the approximation quality of
hypervolume maximizing sets. This issue was wide open so
far though it is crucial for understanding the implicit op-
timization goal when using the hypervolume indicator as a
quality measure for populations.

The quality of single-objective optimization problems is
typically measured by its multiplicative approximation fac-
tor. For maximization problems this is the ratio between the
optimal value and the best found value. This notion gener-
alizes gently to our multiobjective setting. We say a Pareto
set is an α-approximation if it approximately dominates the
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Pareto curve, that is, if for every point on the Pareto curve,
the Pareto set contains a point that is at least as good ap-
proximately (within a factor α) in all objectives. For a selec-
tion of papers using this approach, see e.g. [9, 12, 22, 23, 25]
or most recently [10] and references therein.

To define this properly, let us look at a maximization
problem with a front that can be described by a monotoni-
cally decreasing function f : [a,A]→ [b,B] with 0 < a < A,
0 < b < B as shown in Figure 1. Then the approximation
ratio (cf. Definition 2.1) of a tupel X := (x1, . . . , xn) (called
solution set) is the least α such that for each x ∈ [a,A] there
is an xi ∈ X with

x 6 αxi and f(x) 6 αf(xi).

The approximation ratio does not depend on the scaling of
[a,A] and [b,B]. This can be seen by observing that for fixed
constants µ, ν > 0, the function f ′ : [µa, µA] → [ν b, ν B]
with f ′(x) = ν f(x/µ) achieves the same approximation ra-
tio α with the solution set X ′ := (µx1, . . . , µxn). However,
the approximation ratio significantly depends on the pro-
portions A/a and B/b. To see this, let us look at a function
fε : [1, A]→ [A−1, 1] with

fε(x) :=

{
1 for x 6 1 + ε,

1/x otherwise.
(1.1)

It is easy to see that for 0 < ε < A there is exactly one point
on the front, namely (1 + ε, 1) ∈ [a,A]× [b,B], which max-
imizes the dominated space1. The approximation achieved
by this point is A/(1+ε) while (

√
A , 1/

√
A ) ∈ [a,A]× [b,B]

achieves the optimal approximation ratio
√
A . Hence for

ε → 0, the approximation ratio of the solution set maxi-
mizing the hypervolume is off by a factor of

√
A from the

optimal ratio. This shows that the approximation ratio of
sets maximizing the hypervolume can be very large for small
numbers of points. However, this paper proves that this is
not the case for sufficiently large solution sets.

We are not interested in bounds for the approximation
ratio of specific functions. Instead, we take a worst-case
perspective and look at all2 functions f : [a,A]→ [b,B] with
0 < a < A, 0 < b < B and f(a) = B, f(A) = b. We
prove in Corollary 3.2 that for this class of functions there
are solution sets of size n with an (optimal) approximation
ratio of

1 +
log(min{A/a,B/b})

n
= 1 + Θ

(
1

n

)
. (1.2)

The asymptotic here is in the size of the solution set n as the
class of functions is fixed and so is [a,A] and [b,B]. Above
bound gives a lower bound for the approximation ratio which
can be achieved by any solution set. For sets which maximize
the hypervolume we are able to prove an upper bound of

1 +

√
A/a +

√
B/b

n− 4
= 1 + Θ

(
1

n

)
(1.3)

for the approximation ratio (see Corollary 4.7 for details).

1We are assuming here that the size of the dominated space
is measured relative to a common reference point R = (0, 0).
For the formal definition of HYP, see equation (2.1) in Sec-
tion 2.1.
2We restrict our attention to functions where there exists
a set maximizing the hypervolume indicator. For technical
details, see the definition of F at the beginning of Section 2.

The asymptotic in n shows that the speed of convergence
to an approximation ratio of 1 for sets maximizing the hyper-
volume is of the same order as for sets with optimal approxi-
mation ratio. Note that this is surprising in several respects.
First, it is good news (compare with the negative example
of equation (1.1)!) that the set maximizing the hypervol-
ume gives a multiplicative approximation at all. Especially
as the set of fronts we look at is rather large, it was unex-
pected that we find an approximation guarantee for HYP
that holds for all fronts uniformly. Second, it is even bet-
ter news that with growing n the convergence to a perfect
approximation ratio of 1 is of best order possible.

Of course, the dependence on [a,A] and [b,B] in the
approximation ratio of the optimal solution set in equa-
tion (1.2) is less than in our upper bound given in equa-
tion (1.3) for the approximation factor for sets maximizing
the hypervolume. However, our bound for the approxima-
tion ratio of sets maximizing the hypervolume is only an
upper bound. Therefore we can only conclude that their ap-
proximation ratio is close to the optimal one, but not how
far it is off. To give an intuition how tight both bounds still
are, Figure 4 at the end of the paper gives an example for a
certain class of functions.

The outline of the paper is as follows. In Section 2, we
give precise definitions of the concepts introduced informally
above. Section 3 then gives a tight bound for the optimal
approximation factor. The approximation factor of the hy-
pervolume indicator is analyzed in Section 4. We finish with
a discussion of the implications and some open problems.

2. PRELIMINARIES
Throughout this study we consider bi-criterion maximiza-

tion problems mapping from an arbitrary search space S
to R2. The restriction to maximization problems is techni-
cally inconsequential, but burdens the exposition and nota-
tion. Similar results can be achieved for minimization prob-
lems.

2.1 Modeling a Front
We restrict ourselves to Pareto fronts that can be written

as {(x, f(x)) | x ∈ [a,A]} where f : [a,A] → [b,B] is a (not
necessarily strictly) monotonically decreasing, upper semi-
continuous3 function with f(a) = B, f(A) = b for some
0 < a < A, 0 < b < B. We write F = F[a,A]→[b,B] for the
set of all such functions f , and fix [a,A], [b,B] for the rest of
the paper. We use the term front for both, the set of points
{(x, f(x)) | x ∈ [a,A]}, and the function f .

The condition of f being upper semi-continuous cannot
be relaxed further as without it there does not have to exist
a set of points maximizing the hypervolume indicator (see
equation (4.1) for a non-semi-continuous function which has
no solution set maximizing HYP). Moreover, it allows us to
define a meaningful inverse function f−1 : [b,B]→ [a,A] by
setting f−1(y) := max{x ∈ [a,A] | f(x) > y}. If f is not
upper semi-continuous, this maximum does not necessarily
exist.

3Semi-continuity is a weaker property than normal continu-
ity. A function f is said to be upper semi-continuous if for
all points x of its domain, lim supy→x f(y) 6 f(x). Intu-
itively speaking this means that for all points x the function
values for arguments near x are either close to f(x) or less
than f(x). For more details see e.g. Rudin [24].
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feasible region

a A

b

B

Figure 1: Illustration how an arbitrary feasible re-
gion of a maximization problem implies a monotoni-
cally decreasing, upper semi-continuous front as de-
fined in Section 2.1.

See Figure 1 for an example of a function that is a front
which satisfies above definition. Note that there are some
points (x, f(x)) on the front (the black curve), that are ob-
viously not part of the feasible region (the gray area). How-
ever, all such points are dominated by a point (x′, f(x′))
that is contained in the feasible region. Hence, these added
points change neither the set optimally approximating the
front nor the set maximizing HYP. Thus, our modeling of
the feasible region does not change the values we are in-
terested in. Also note that at the x-coordinate where f(x)
makes a discrete “jump”, we have defined f(x) to be the
greater of the two values. Defining f(x) as the lesser value
(the limit from right) would destroy upper semi-continuity.

A further example of disconnected Pareto fronts that fit
in our framework can be found in Figure 2, which can be
seen as the modeling of a discrete feasible region.

Note that the set F of fronts we consider is a very gen-
eral one. Most papers that theoretically examine the hyper-
volume indicator assume that the front is continuous and
differentiable (e.g. [1, 2, 14]), and are thus not able to give
results about discrete fronts, which we can.

2.2 Approximation of a Front
Fix an n ∈ N. For fixed [a,A] we call a tupel X =

(x1, . . . , xn), a 6 x1 6 . . . 6 xn 6 A a solution set and write
X for the set of all such solution sets. We intend to find
a solution set X ∈ X that constitutes a good approxima-
tion of a front f . According to the custom of approximation
algorithms, we measure the quality of a front f by its multi-
plicative approximation factor. For this we use the following
definition of Papadimitriou and Yannakakis [22].

Definition 2.1. Let f ∈ F and X = (x1, x2, . . . , xn) ∈
X . The solution set X is an α-approximation of f if for
each x ∈ [a,A] there is an xi ∈ X with

x 6 αxi and f(x) 6 αf(xi)

where α ∈ R, α > 1. The approximation ratio of X with
respect to f is defined as

α(f,X) := inf{α ∈ R | X is an α-approximation of f}.

This definition of approximation has also been used to
examine the approximation of the hypervolume indica-

tor empirically in [14] and is similar to the definition of
ε-dominance given in [18, 19].

The quality of an algorithm which calculates a solution
set of size n for the Pareto curves in F has to be compared
with the respective optimal approximation factor defined as
follows.

Definition 2.2. For fixed [a,A], [b,B], and n, let

αOPT := sup
f∈F

inf
X∈X

α(f,X).

The value αOPT is chosen such that every front in F can
be approximated by n points to a factor of αOPT, and there
is a front which cannot be approximated better. In Section 3
we compute this value exactly.

2.3 Hypervolume indicator
In geometric terms, the hypervolume indicator of a solu-

tion set X ∈ X measures the volume of the space domi-
nated by the points (xi, f(xi)) for xi ∈ X. This space is
truncated at a fixed foot point called the reference point
R = (Rx, Ry). The hypervolume HYP(X) of a solution set
X = (x1, . . . , xn) is then defined as

HYP(X) := vol

(
n⋃

i=1

[Rx, xi]× [Ry, f(xi)]

)
(2.1)

with vol( · ) being the usual Lebesgue measure.
There are many algorithms for exact calculation of the

hypervolume (e.g. [4, 5, 13, 21, 26–28]). It is known that
the hypervolume cannot be calculated exactly in time poly-
nomial in the number of dimensions unless P=NP [7]. How-
ever, there are several polynomial-time approximation algo-
rithms [3, 7, 8] based on Monte Carlo sampling.

2.4 Approximation Factor of HYP
Recall that n ∈ N is fixed for the rest of the paper. We

want to know how good the solution set of size n maximiz-
ing the hypervolume indicator approximates a Pareto front.
Two problems arise with this formulation: First, there might
be no solution set which maximizes the hypervolume indi-
cator. More precisely, there might be a sequence of solution
sets of size n with greater and greater hypervolume indica-
tor value, but the limit of the values is not taken by any
solution set of size n. We show in Lemma 4.1 that this
cannot happen as we require the fronts to be upper semi-
continuous. Second, there might be several solution sets
maximizing HYP. We show that this can indeed occur and
that the approximation factors of these solution sets can be
very different. We focus on the worst case and hence give
upper bounds for the approximation factor of all sets maxi-
mizing the hypervolume. This approach is elaborated in the
following definition.

Definition 2.3. For fixed [a,A], [b,B], n, and f ∈ F let

X f
HYP :=

{
X ∈ X

∣∣ HYP(X) = max
Y ∈X

HYP(Y )
}

and

αHYP := sup
f∈F

sup
X∈Xf

HYP

α(f,X).

The set X f
HYP is the set of all solution sets that maximize

HYP. The value αHYP is chosen such that for every front f
in F every solution set maximizing HYP approximates f by
a factor of at most αHYP.
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B

B(B/b)−1/n

B(B/b)−2/n

...

B(B/b)−n/n = b

a a
(A
/
a
)
1
/
n

a
(A
/
a
)
2
/
n

... a
(A
/
a
)
n
/
n

=
A

Figure 2: Front f used for the lower bound con-
struction in the proof of Theorem 3.1.

3. BOUNDING THE BEST APPROXIMA-
TION FACTOR αOPT

In this section we examine the optimal approximation fac-
tor αOPT. Recall that no set of n points can achieve a bet-
ter approximation factor than αOPT. This is the reason why
bounds for αOPT are important for comparison before exam-
ining αHYP in Section 4. We can prove the following tight
bound for αOPT.

Theorem 3.1. αOPT = min{A/a,B/b}1/n.

Proof. We first show αOPT 6 (A/a)1/n. For this, let α :=

(A/a)1/n and xi := aαi−1 for i ∈ {1, . . . , n}. The xi are an
α-approximation of f as the point (xi, f(xi)) α-dominates
all points (x, f(x)) for xi 6 x 6 xi+1. Hence, αOPT 6 α =

(A/a)1/n.

To show that analogously αOPT 6 (B/b)1/n, let α :=

(B/b)1/n and xi := f−1(Bα−i) for i ∈ {1, . . . , n}. Then
f(xi) > Bα−i and no point (x, f(x)) has f(xi) > f(x) >
Bα−i. Hence, the point (xi, f(xi)) α-dominates all points
(x, f(x)) with Bα−i 6 f(x) 6 Bα−i+1 and we get αOPT 6
α = (B/b)1/n.

It remains to prove the lower bound αOPT >
min{A/a,B/b}1/n. For this, we set f(x) := B(B/b)−i/n for

a(A/a)(i−1)/n < x 6 a(A/a)i/n and i ∈ {0, . . . , n}. Then f
is a front which consists of (n + 1) levels. It is illustrated
in Figure 2. Let us now consider a solution set (x1, . . . , xn)
consisting of n points. As f has n + 1 levels, the pigeon-
hole principle gives that there is at least one level where
there is none of the n points. This implies that the right-
most point in this level is only approximated by a factor of
min{(A/a)1/n, (B/b)1/n}.

Corollary 3.2. For all n > log(min{A/a,B/b})/ε and
ε ∈ (0, 1),

αOPT > 1 +
log(min{A/a,B/b})

n
,

αOPT 6 1 + (1 + ε)
log(min{A/a,B/b})

n
.

Proof. Both inequalities follow directly from Theorem 3.1.
For the first inequality note that ex > 1 + x for all x ∈ R.
For the second we upper bound ex with 0 6 x 6 ε by

ex =

∞∑
k=0

xk

k!
6 1 +

∞∑
k=1

xk

2k−1
6 1 + x

∞∑
k=0

εk

2k

= 1 + x
1

1− ε/2 6 1 + (1 + ε)x,

as (1 + ε) (1− ε/2) > 1.

Observe that for a fixed function class F (and hence fixed
[a,A], [b,B]) Corollary 3.2 implies

αOPT = 1 + Θ(1/n)

as claimed in equation (1.2).

4. BOUNDING THE APPROXIMATION
RATIO αHYP OF THE MAXIMUM
HYPERVOLUME SOLUTION SET

In this section we examine αHYP, the approximation ratio
of a set maximizing the hypervolume indicator. We start
by showing that without upper semi-continuity there does
not necessarily exist a solution set maximizing HYP. To see
this, consider the front f : [1, 2]→ [1, 2] with

f(x) :=

{
1 for x = 2,

2 for 1 6 x < 2.
(4.1)

and reference point R = (0, 0). The one element solution
set X = (2− ε) achieves HYP(X) = 4− 2 ε for each ε > 0.
However, no solution set X can have HYP(X) = 4, as
f(2) = 1 < 2. Thus, there exists no solution set maximizing
HYP as there is an infinite series of solution sets with greater
and greater hypervolume indicator, but the limit (which is 4)
is not taken by any solution set.

Next we prove that conditioning on our fronts being up-
per semi-continuous implies that there are sets maximizing
HYP. In more detail, there is a solution set X of size n
which maximizes HYP among all solution sets of size n.

Lemma 4.1. Let f ∈ F , n ∈ N. Then there exists a (not
necessarily unique) solution set X ∈ X maximizing the hy-
pervolume indicator HYP = HYPf on X .

Proof. If we compute HYP in each of the intervals [xi, xi+1]
and sum up, we can easily see that we have for a solution
set X = (x1, . . . , xn)

HYP(X) =

n∑
i=1

(xi − xi−1) (f(xi)−Ry),

where x0 := Rx and R = (Rx, Ry) is the reference point.

Now, for a series of solution sets (X(j))j∈N with X(j) → X
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for j →∞ in [a,A]n we have

lim
j→∞

HYP(X(j)) = lim
j→∞

n∑
i=1

(x
(j)
i − x

(j)
i−1) (f(x

(j)
i )−Ry)

=

n∑
i=1

(xi − xi−1)
(

lim
j→∞

f(x
(j)
i )−Ry

)
6

n∑
i=1

(xi − xi−1) (f(xi)−Ry)

= HYP(X),

where we used xi − xi−1 > 0 and the upper semi-continuity
of f . Thus, we showed that HYP is upper semi-continuous,
too.

As an upper semi-continuous function, HYP has a maxi-
mum on the compact set X of all solution sets.

To confirm that this set is indeed not unique in general, let
us look again at the introductory negative example function
fε from equation (1.1).By choosing ε = 0 and A = 4 we
get a function f0 : [1, 4] → [1/4, 1] with f0(x) = 1/x. With
reference point R = (0, 0) we get HYP((x)) = x (1/x) = 1
for all x ∈ [1, 4]. Therefore the set of solution sets of size

n = 1 which maximize HYP is far from unique as X f
HYP =

{(x) | x ∈ [1, 4]}. Moreover, this example shows that the
approximation factors of two solution sets maximizing HYP
can differ significantly as the solution set (1) achieves an
approximation factor of 4, while the solution set (2) achieves
an approximation factor of 2.

We now want to give bounds on the approximation factor
achieved by the sets maximizing the hypervolume indicator.
For this recall that the contribution of a point x ∈ X to
the hypervolume of a solution set X ∈ X is the volume
dominated by x and no other element of X. More formally,
the contribution of a point x is HYP(X)−HYP(X \ x). In
the following we mainly deal with the minimal contribution
defined as follows.

Definition 4.2. Let f ∈ F , n > 3 and X =
(x1, . . . , xn) ∈ X . Then the minimal contribution of this
solution set X is

MinCon(X) := min
26i6n−1

(
xi − xi−1

) (
f(xi)− f(xi+1)

)
.

Figure 3 gives an illustration of Definition 4.2. Note that
above definition of MinCon(X) is independent of the refer-
ence point R, as it only considers the minimal contribution
of any of the points x2, . . . , xn−1. Restricted to these (n−2)
inner points, it corresponds to the definition of MinCon(X)
in [8].

We first show the following upper bound for MinCon(X).

Lemma 4.3. Let f ∈ F , n > 3, and X = (x1 . . . , xn) ∈
X . Then,

MinCon(X) 6
(xn − x1) (f(x1)− f(xn))

(n− 2)2
.

Proof. Let ai := xi − xi−1 for 2 6 i 6 n and bi :=
f(xi) − f(xi+1) for 1 6 i 6 n − 1. Plugging this nota-
tion in Definition 4.2 gives MinCon(X) = min26i6n−1 aibi
and

ai > MinCon(X)/bi for all 2 6 i 6 n− 1.

x1

f(x6)

x2 x3 x4 x5 x6

f(x5)

f(x4)

f(x3)

f(x2)

f(x1)

MinCon(X)

Figure 3: The minimal contribution MINCON(X) of a
solution set X = (x1, x2, . . . , x6) is in Definition 4.2
defined to be the least hypervolume contribution
HYP(X)−HYP(X \ x) for x ∈ {x2, x3, x4, x5}.

This implies

n−1∑
i=2

MinCon(X)/bi 6
n−1∑
i=2

ai 6
n∑

i=2

ai

=

n∑
i=2

xi −
n−1∑
i=1

xi = xn − x1,

and therefore

MinCon(X) 6
xn − x1∑n−1
i=2 1/bi

.

We can now use that the harmonic mean is less than the
arithmetic mean, that is,

n− 2∑n−1
i=2 1/bi

6

∑n−1
i=2 bi

n− 2

to obtain

MinCon(X) 6
(xn − x1)

∑n−1
i=2 bi

(n− 2)2

6
(xn − x1) (f(x1)− f(xn))

(n− 2)2
.

First, we calculate the approximation ratio of the “inner
points”, i.e., points x ∈ [x1, xn]. In a second step we deter-
mine how well the “outer points” x with x < x1 or x > xn
are approximated.

Theorem 4.4. Let f ∈ F and n > 4. Every solution set
(x1, . . . , xn) ∈ X f

HYP achieves a

1 +

√
A/a +

√
B/b

n− 4

multiplicative approximation of all points (x, f(x)) with x ∈
[x1, xn].

Proof. Assume there is a point x, which is not approximated
by a factor of

α := 1 +

√
A/a +

√
B/b

n− 4
. (4.2)
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Let i be such that xi < x < xi+1 and therefore

x > αxi,

f(x) > αf(xi+1).
(4.3)

We know

MinCon(X) > (x− xi) (f(x)− f(xi+1)), (4.4)

as otherwise one could replace the point contributing
MinCon(X) by x and increase the hypervolume, which is a
contradiction.

Plugging equations (4.3) in equation (4.4), we get

MinCon(X) > (α− 1)2 xi f(xi+1). (4.5)

Observe that there are i points in {x1, . . . , xn} ∩ [a, xi].
Hence for 3 6 i 6 n − 1 we can upper bound the minimal
contribution using Lemma 4.3 on the points x1, . . . , xi by

MinCon(X) 6 (xi − x1) (f(x1)− f(xi))/(i− 2)2

6 xiB/(i− 2)2. (4.6)

Analogously, for 1 6 i 6 n − 3 we can upper bound
the minimal contribution using Lemma 4.3 on the points
xi+1, . . . , xn by

MinCon(X) 6 (xn − xi+1) (f(xi+1)− f(xn))/(n− i− 2)2

6 Af(xi+1)/(n− i− 2)2. (4.7)

Combining equation (4.5) with equations (4.6) and (4.7),
we get for 3 6 i 6 n− 3 that

(α− 1)2 xi f(xi+1) < min

{
xiB

(i− 2)2
,
A f(xi+1)

(n− i− 2)2

}
or, equivalently,

α < 1 + min

{√
B/f(xi+1)

i− 2
,

√
A/xi

n− i− 2

}
which yields with xi > a and f(xi+1) > b that

α < 1 + min

{√
B/b

i− 2
,

√
A/a

n− i− 2

}
(4.8)

for 3 6 i 6 n− 3.
Now, the right hand side of equation (4.8) gets maximal if

the two terms are equal since one of them is monotonically
increasing in i and the other one is monotonically decreasing

in i. As this happens exactly for i = 2 +
(n−4)

√
B/b√

A/a +
√

B/b
, we

get the upper bound

α < 1 +

√
A/a +

√
B/b

n− 4

for 3 6 i 6 n − 3. This contradicts with equation (4.2)
and proves that every point (x, f(x)) with x ∈ [x3, xn−2] is
multiplicatively approximated by a factor of α.

It remains to show a contradiction to equation (4.3) for
i = 1, 2 and i = n − 2, n − 1. For i = 1, 2 we get from
equations (4.5) and (4.7) that

α < 1 +

√
A/a

n− i− 2
6 1 +

√
A/a

n− 4
.

which contradicts with equation (4.2).

Finally, for i = n − 2, n − 1 we get from equations (4.5)
and (4.6) that

α < 1 +

√
B/b

i− 2
6 1 +

√
B/b

n− 4
.

which also contradicts with equation (4.2) and finishes the
proof.

It remains to examine the approximation factor of the
“outer points” x with x < x1 or x > xn.

Theorem 4.5. Let f ∈ F , n > 3, and R = (Rx, Ry)
6 (0, 0) be the reference point. Every solution set

(x1, . . . , xn) ∈ X f
HYP achieves a

1 +
A

(a−Rx) (n− 2)2

multiplicative approximation of all points (x, f(x)) with x <
x1, and a

1 +
B

(b−Ry) (n− 2)2

multiplicative approximation of all points (x, f(x)) with x >
xn.

Proof. We show the theorem only for x 6 x1. The case
x > xn follows by symmetry in the two objectives.

The approximation factor of any x 6 x1 is exactly
f(x)/f(x1). This is maximized for x = a, so that the ap-
proximation factor of any x 6 x1 is at most B/f(x1). We
show that B/f(x1) is less than 1 + A

(a−Rx) (n−2)2
.

Using Lemma 4.3 on the points x1, . . . , xn we get that

MinCon(X) 6 (xn − x1) (f(x1)− f(xn))/(n− 2)2

6 Af(x1)/(n− 2)2. (4.9)

Let xi be a point with contribution MinCon(X). We define
another solution set X ′ := X \{xi}∪{a} which contains the
point a instead of the point xi. By definition,

HYP(X ′) = HYP(X)−MinCon(X)+(a−Rx) (B−f(x1)).

Together with HYP(X) > HYP(X ′) this yields

MinCon(X) > (a−Rx) (B − f(x1)). (4.10)

Combining equations (4.9) and (4.10), we finally get the
desired

B

f(x1)
6 1 +

A

(a−Rx) (n− 2)2
.

Together Theorems 4.4 and 4.5 imply the following corol-
lary.

Corollary 4.6. Let f ∈ F , n > 4, and let R = (Rx, Ry)
6 (0, 0) be the reference point. Then

αHYP 6 1 + max

{√
A/a +

√
B/b

n− 4
,

A

(a−Rx) (n− 2)2
,

B

(b−Ry) (n− 2)2

}
.

For sufficiently large n or sufficiently small coordinates of
the reference point, the two last terms in Corollary 4.6 are
less than the first one. More precisely, it is easy to see the
following slightly simplified result.
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Figure 4: Comparison of the proven bounds for
the approximation factors for all functions f ∈
F [1,100]→[1,100]. αOPT ( ) gives the tight bound
of Theorem 3.1 for the best possible approximation
factor for sets of size n. This is compared with our
upper bound for αHYP ( ) of Corollary 4.7 which
measures the approximation factor achieved by sets
of size n maximizing the hypervolume assuming a
reference point R 666 (−10,−10).

Corollary 4.7. Let f ∈ F , n > 4, and let R =
(Rx, Ry) 6 (0, 0) be the reference point. If either

• n > 2 + max
{√

A/a ,
√
B/b

}
or

• Rx 6 −
√
Aa /n, Ry 6 −

√
B b /n,

we have

αHYP 6 1 +

√
A/a +

√
B/b

n− 4
.

Hence, for a fixed function class F (and, thus, fixed [a,A],
[b,B]), we get the same asymptotic bound for αHYP as we
got for αOPT, that is,

αHYP = 1 + Θ(1/n).

as claimed in equation (1.3).

5. DISCUSSION
The hypervolume indicator is used more and more to mea-

sure the quality of a population in evolutionary multiob-
jective algorithms. This indirectly changes the optimization
goal and it was so far not known whether this new goal also
gives a good approximation of the Parto front. We have
examined the approximation factor αHYP of the sets maxi-
mizing the hypervolume indicator and the optimal approx-
imation factor αOPT. We could prove that for all mono-
tonically decreasing, upper semi-continuous Pareto fronts,
the asymptotic behavior of αHYP and αOPT in the number
of points n is the same, namely 1 + Θ(1/n). However, the
constant factor hidden by the Θ might be larger for αHYP.

To give a simple illustration of this, let us look at the
function class F = F[1,100]→[1,100]. As in [2], we choose

the reference point R such that it does not disturb the ap-
proximation. According to Corollary 4.7, we can choose
R = (−10,−10). Theorem 3.1 and Corollary 3.2 give that
over all such functions f ∈ F the best approximation fac-
tor for n points is αOPT = 1001/n ≈ 1 + 4.6/n. On the
other hand, Corollary 4.7 shows that the set maximizing
the hypervolume indicator gives an approximation ratio of
αHYP 6 1 + 20/(n − 4). These two bounds are shown in
Figure 4. It can be seen that for small numbers of points
(n 6 10), also the optimal approximation factor can be large
while for large solution sets (say, n > 100), the multiplicative
approximation achieved by the set maximizing the hyper-
volume is small, namely αHYP 6 1.21. This is only slightly
greater than αOPT ≈ 1.05 for n = 100.
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