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ABSTRACT
The core of hypervolume-based multi-objective evolutionary algo-
rithms is an archiving algorithm which performs the environmental
selection. A (µ + λ)-archiving algorithm defines how to choose
µ children from µ parents and λ offspring together. We study the-
oretically (µ + λ)-archiving algorithms which never decrease the
hypervolume from one generation to the next.

Zitzler, Thiele, and Bader (IEEE Trans. Evolutionary Computa-
tion, 14:58–79, 2010) proved that all (µ+ 1)-archiving algorithms
are ineffective, which means there is an initial population such that
independent of the used reproduction rule, a set with maximum hy-
pervolume cannot be reached. We extend this and prove that for
λ < µ all archiving algorithms are ineffective. On the other hand,
locally optimal algorithms, which maximize the hypervolume in
each step, are effective for λ = µ and can always find a population
with hypervolume at least half the optimum for λ < µ.

We also prove that there is no hypervolume-based archiving al-
gorithm which can always find a population with hypervolume
greater than 1/(1 + 0.1338 (1/λ− 1/µ)) times the optimum.

Categories and Subject Descriptors
F.2 [Theory of Computation]:
Analysis of Algorithms and Problem Complexity

General Terms
Measurement, Archiving Algorithms,
Performance, Hypervolume Indicator

Keywords
Multiobjective Optimization, Theory,
Performance Measures, Selection

1. INTRODUCTION
A typical evolutionary algorithm requires (i) a reproduction rule

to generate new individuals and (ii) a selection rule to choose a
subset of individuals from a larger population. In contrast to the
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single-objective case, the greater challenge of evolutionary multi-
objective optimization (EMO) is the selection rule. In the single-
objective case, alternatives are usually judged by a single real-
valued objective function which defines a linear order and there-
fore a complete ranking of all alternatives. On the other hand, the
Pareto order of multi-objective optimization only defines a partial
order. For ranking incomparable candidate solutions, we have to
use a so-called second level sorting criterion. Unfortunately, every
known criterion has their own advantages and drawbacks.

Many state-of-the-art EMO algorithms use the hypervol-
ume [17] as a second level sorting criterion. Examples for
hypervolume-based algorithms are the multi-objective covariance
matrix adaptation evolution strategy (MO-CMA-ES, [7, 15]), the
SMS-EMOA [1], and the indicator-based evolutionary algorithm
(IBEA, [16]).

Most multi-objective evolutionary algorithms (MOEAs) are eli-
tist, that is, they keep an external archive in order to capture the out-
put of the search process. As the set of visited solutions can become
very large, most algorithms assume that the size of the archive is
upper bounded by some fixed value µ. The two typical elitist selec-
tion strategies are (i) choosing the µ best of the λ offspring (comma
strategy) or (ii) choosing the µ best of the λ offspring and µ parents
together (plus strategy). We consider the latter and describe the se-
lection step by a (µ+λ)-archiving algorithm which defines how to
choose a new population of µ children from the union of µ parents
and λ offspring (cf. Algorithm 2).

1.1 Convergence
We want to study the convergence behavior of multi-objective

evolutionary algorithms (MOEAs). The first rigorous study of the
convergence properties of general MOEAs appeared around the
turn of the millennium. The papers by Hanne [6] and Rudolph
and Agapie [13] show that certain types of elitism lead to conver-
gence to a subset of the Pareto front. If the archive is unbounded,
asymptotic convergence to the whole Pareto front is also relatively
simple to show if the mutation operator connects all solutions with
nonzero probability and no nondominated solution is discarded.

In contrast to these results, we are interested in convergence re-
sults for bounded archives. Several authors [2, 5, 8–12, 18] have
considered (µ + 1)-MOEAs, that is, generation processes which
produce a sequence of solutions for which an archive of fixed max-
imum size µ is maintained. Most of this work is empirical. We refer
the reader to the recent paper by López-Ibáñez, Knowles, and Lau-
manns [12] which reviews the properties of six different (µ + 1)-
archiving algorithms in greater detail. They have also implemented
several archiving algorithms within a common framework. Their
experiments show that hypervolume-based archiving is to be pre-
ferred over other methods for example for clustered points.

On the theoretical side, Laumanns, Thiele, Deb, and Zitzler [11],
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Knowles and Corne [8], and Schütze, Laumanns, Coello, Dellnitz,
and Talbi [14] studied ε-based archiving algorithms. Moreover,
hypervolume-based archiving algorithms were studied in Zitzler
et al. [18] in general and in Beume et al. [2] for concrete fronts.
We extend the results of the last two works in two directions: We
consider offspring sizes λ > 1 and consider not only the question
of converging to a maximum, but whether we converge at least to a
good approximation of the maximal hypervolume.

1.2 Archiving Algorithms
We want to study the convergence behavior of hypervolume-

based (µ+ λ)-MOEAs. Their shared feature is that their selection
rule uses the hypervolume. We want to abstract from the repro-
duction step and study convergence only depending on the used
hypervolume-based archiving algorithm.

Our results hold for different classes of archiving algorithms. We
start with defining the two most important ones. Precise definitions
and results are stated in the main part of the paper.

• An archiving algorithm is non-decreasing if it chooses the
population of children such that the dominated hypervolume
does not decrease compared to the parent generation (cf. Def-
inition 2.4). This is certainly a desirable property for any
hypervolume-based archiving algorithm. It is also a neces-
sary assumption in order to prove our lower bounds (cf. The-
orem 5.1).

• An archiving algorithm is locally optimal if it chooses the
population of children such that the dominated hypervolume
is maximized (cf. Definition 2.5). For example the archiving
algorithm of SMS-EMOA [1] falls in this class. However,
locally optimal archiving algorithms are not efficiently com-
putable in general [4].

1.3 Choice of the Offspring
In order to rigorously study the impact of archiving algorithms

on the convergence, we have to decide how an offspring is gener-
ated. As the offspring generation is done on some arbitrary search
space, it seems impossible to come up with realistic probabilis-
tic assumptions. We assume a best-case offspring generation and
say an archiving algorithm is effective if there exists a sequence of
offsprings such that the algorithm reaches an optimum (cf. Defi-
nition 3.1). This corresponds to the notion of λ-greedy used by
Zitzler et al. [18].

Another approach is a worst-case perspective on the offspring
generation. The problem is that an adversary who selects the off-
spring is very strong and can limit the search to a very small part of
the search space. Therefore it is impossible to reach the optimum
in this case. We do not consider worst-case offspring selection in
this paper, but discuss it briefly in Section 8.

1.4 Results
Zitzler et al. [18] proved that all non-decreasing (µ + 1)-

archiving strategies are ineffective (cf. Theorem 3.2). On the other
hand, it is easy to see that a (µ+µ)-archiving strategy can directly
jump to the optimal set (cf. Theorem 3.4). We extend this and prove
that indeed all locally optimal (µ + µ)-archiving strategies are ef-
fective. The status for example of (µ+ 2)-archiving strategies was
open so far. In fact, Zitzler et al. [18, p. 71] state it as an open
research issue “whether other values for λ with 1 < λ < µ are
sufficient to guarantee convergence”. We answer this question in
the negative and prove that for λ < µ all non-decreasing (µ + λ)-
archiving strategies are ineffective (cf. Theorem 3.5). This shows

that only for λ = µ non-decreasing hypervolume-based archiv-
ing strategies can be effective. Note that the restriction to non-
decreasing strategies is necessary (cf. Theorem 5.1).

These results on the effectiveness raise the following question:
How close to an optimal set are the best reachable sets for λ < µ?
To measure this, we call an archiving strategy α-approximate if it
can always reach a set with a hypervolume at least 1/α times the
largest possible hypervolume (cf. Definition 4.1). We prove that
no non-decreasing (µ + λ)-archiving algorithm can be better than(
1+0.1338

(
1
λ
− 1
µ

))
-approximate (cf. Theorem 4.2). On the other

hand, every (µ+ λ)-archiving algorithm which chooses a children
population with larger hypervolume than the parent population (if
there is one), reaches a 2-approximation (cf. Theorem 4.3). Note
that in these results we omitted all summands and factors of arbi-
trarily small ε > 0. For details see the respective theorems.

The outline is as follows. In Section 2 we introduce the basic
concepts and notations. Sections 3 and 4 shows our results on ex-
act and approximate effectiveness. In Section 5 we discuss why
we only study non-decreasing algorithms. The proofs of the two
main results are given in Sections 6 and 7. We finish with some
concluding remarks and plans for future work in Section 8.

2. PRELIMINARIES
We consider the maximization of vector-valued objective func-

tions f : X → Rd. Here, X denotes an arbitrary search space
consisting of all alternatives of the decision problem. The feasible
points Y := f(X ) are called the objective space. We consider the
following abstract framework of a MOEA.

Algorithm 1: General (µ+ λ)-MOEA

1 P 0← initialize with µ individuals
2 for i← 1 to N do
3 Qi← generate λ offspring
4 P i← select µ individuals from P i−1 ∪Qi

In this paper we make no assumptions on the specific search
space X , nor an assumption on how the points are initialized
(cf. line 1 of Algorithm 1), nor an assumption how offspring is
generated (cf. line 3 of Algorithm 1). Therefore, we assume that
the initial population is chosen worst-case and the offspring gener-
ation is best-case. Our main concern is the way how the population
of children is chosen (cf. line 4 of Algorithm 1). We will formally
define and discuss different archiving algorithms in Sections 2.2
and 2.3.

We use the terms archive and population synonymously for the
set of current solutions P i of Algorithm 1. In concrete MOEAs,
populations are subsets of the search space. As we do not want to
assume any structural properties of the search space, we abstract
from the search space and will only work on the objective space
Y ⊆ Rd in the remainder. We therefore also identify individuals
with points in the d-dimensional Euclidean space. Only consid-
ering the objective space also means that the archiving algorithm
called in line 4 of Algorithm 1 only has access to the points in the
objective space and does not know the respective preimages in the
search space. As several points in the search space can map to the
same point in the objective space, we can not assume that our pop-
ulation is free of duplicate or multiple points. Hence a population
is a multiset of points from the objective space Y . As multiplici-
ties are insignificant for all of our results, we avoid the notion of
multisets and instead use the following definition.
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DEFINITION 2.1. A population P is a finite subset of Rd. If an
objective space Y ⊆ Rd is fixed, we require P ⊆ Y . We call P a
µ-population if |P | 6 µ.

In the remainder of this Section 2 we first define the hypervolume
quality indicator in Section 2.1 and general archiving algorithms
in Section 2.2, and then use both to classify hypervolume-based
archiving algorithms in Section 2.3.

2.1 Hypervolume Indicator
The hypervolume indicator HYP(P ) [17] of a population P is

the volume of the union of regions of the objective space which
are dominated by P and bounded by a reference point R. Here
domination refers to the following dominance relation for points in
the objective space Y ⊆ Rd:

(x1, x2, . . . , xd) � (y1, y2, . . . , yd)

iff x1 6 y1, x2 6 y2, . . . , and xd 6 yd.

Formally, the hypervolume HYP(P ) of a population P is defined
as

HYP(P ) :=

∫
Rd

AP (x) dx

where the attainment function AP : Rd → {0, 1} is an indicator
function on the objective space which describes the space above the
reference point R which is dominated by P , that is, AP (x) = 1 if
R � x and there is a p ∈ P such that x � p, and AP (x) = 0
otherwise.

In this work we will fix the reference point w.l.o.g. to R = 0d,
since translations do not change any of our results. This means that
the reference point is globally fixed and known to the archiving
algorithm.

The aim of a hypervolume-based MOEA is finding a set P ∗ of
size µ which maximizes the hypervolume, that is,

HYP(P ∗) = maxHYPµ(Y)

where we define for all Y ⊂ Rd,

maxHYPµ(Y ) := sup
P⊆Y
|P |6µ

HYP(P ).

In the remainder of the paper, the set Y will often be finite. In these
cases, the supremum in the definition of maxHYPµ(Y ) becomes a
maximum. However, for infinite sets the supremum is necessary in
general.

Most hypervolume-based algorithms like the steady-state MO-
CMA-ES [7, 15] and the SMS-EMOA [1], remove the individual
contributing the least hypervolume to the population. The contri-
bution of a point p to a population P is

CONP (p) := HYP(P )− HYP(P − p),

where we use the notation P − p for P \ {p}. We also use P + p
to shurtcut P ∪ {p} throughout the paper.

Note that according to the definition of CONP (p), the contribut-
ing hypervolume of a dominated individual is zero. Unfortunately,
CONP (p) is NP-hard to approximate [4], as opposed to HYP(P )
which can be approximated efficiently [3]. This implies that all
contribution-based archiving algorithms are computationally very
expensive.

2.2 Archiving Algorithms
We now specify more formally how to choose the µ offsprings in

line 4 of Algorithm 1. For this, we consider the following general
framework of an archiving algorithm.

Algorithm 2: General (µ+ λ)-archiving algorithm
input : µ-population P , λ-population Q
output: µ-population P ′ with P ′ ⊆ P ∪Q

Note that any (µ + λ)-archiving algorithm is also a (µ + λ′)-
archiving algorithm for any λ′ < λ, as we then allow only a
subset of the inputs, namely with smaller offspring population Q.
We do not make any assumptions on the runtime of an archiving
algorithm. In fact, as hypervolume computation is #P-hard [3],
most hypervolume-based archiving algorithms are not computable
in polynomial time in the number of objectives d. We will use the
following notation to describe an archiving algorithm.

DEFINITION 2.2. A (µ+λ)-archiving algorithmA is a partial
mapping A : 2Rd

× 2Rd

7→ 2Rd

such that for a µ-population P
and a λ-population Q,A(P,Q) is a µ-population andA(P,Q) ⊆
P ∪Q.

For convenience, we sometimes drop the prefix (µ+ λ) and just
refer to an archiving algorithm without specifying µ and λ. Note
that (in contrast to e.g. Knowles and Corne [8, Def. 4]), we require
A(P,Q) ⊆ P ∪Q in Definition 2.2. This assumption is crucial for
most of our results. With this, we can now formally describe the
generation process of Algorithm 1 as follows.

DEFINITION 2.3. Let P 0 be a µ-population and Q1, . . . , QN

a sequence of λ-populations. Then

P i := A(P i−1, Qi) for all i = 1, . . . , N .

We also set

A(P 0, Q1, . . . , Qi) := A(A(P 0, Q1, . . . , Qi−1), Qi)

= A(. . .A(A(P 0, Q1), Q2), . . . , Qi)

= P i for all i = 1, . . . , N .

2.3 Hypervolume-based Archiving Algorithms
We now specify two types of hypervolume-based archiving al-

gorithms. The first one only requires the archiving algorithms to
never return a solution with a smaller hypervolume:

DEFINITION 2.4. An archiving algorithmA is non-decreasing,
if for all inputs P and Q we have

HYP(A(P,Q)) > HYP(P ).

All reasonable hypervolume-based archiving algorithms are non-
decreasing. However, the class also contains ineffective algorithms
like the algorithm which always returns P . In fact, in the following
Sections 3 and 4 we do not consider algorithms which are not non-
decreasing. We will justify this imposed minimum requirement in
Theorem 5.1 in Section 5.

While our negative results hold for all non-decreasing archiv-
ing algorithms (cf. Theorems 3.2 and 3.5), we apparently need a
stronger requirement to show positive results. The second type of
archiving algorithms we are looking at is the one usually considered
to be the best. It always returns a population which maximizes the
hypervolume among all given points. As there may be more than
one population maximizing the hypervolume, there is more than
one archiving algorithm covered by this definition.
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DEFINITION 2.5. An archiving algorithm A is locally optimal,
if for all inputs P and Q we have

HYP(A(P,Q)) = maxHYPµ(P ∪Q).

These are the two most important classes of hypervolume-based
archiving algorithms. Most of our positive results below (cf. Theo-
rems 3.4 and 4.3) hold for slightly larger classes of archiving algo-
rithms. In these cases, we define the specific class in the respective
theorem.

We are now prepared to study effectiveness, an approach to an-
alyzing the quality of archiving algorithms with respect to the goal
of maximizing the hypervolume, in the following Section 3.

3. EFFECTIVENESS
Without any additional assumptions on the specific MOEA and

problem at hand, we can only assume the initial population to be
worst-case. A best-case view makes no sense, as then the initial
population already maximizes the hypervolume. On the other hand,
there are two possible ways to choose offspring: worst-case and
best-case. We consider the case of a best-case choice of the off-
spring and analyzes which archiving algorithms are effective, that
is, are able to reach the optimum. We plan to complement this with
a worst-case perspective on the choice of the offspring in future
work. See Section 8 for details.

More formally, this section elaborates whether for a given
archiving algorithm A and all finite objective spaces Y and initial
populations P 0 ⊆ Y , there is a sequence of offsprings such that
the archiving algorithm run on P 0 and the sequence of offsprings
generates a population maximizing the hypervolume on Y . As dis-
cussed above, this corresponds to a worst-case view on the problem
(i.e., objective space Y and initial population P 0), but a best-case
view on the drawn offspring. This is summarized in the following
discussion.

DEFINITION 3.1. A (µ+λ)-archiving algorithmA is effective,
if for all finite sets Y ⊂ Rd and µ-populations P 0 ⊆ Y there exists
an N ∈ N and a sequence of λ-populations Q1, . . . , QN ⊆ Y
such that

HYP(A(P 0, Q1, . . . , QN )) = maxHYPµ(Y).

Here, we require the objective spaces Y to be finite, as infinite
objective spaces do not necessarily have a hypervolume maximiz-
ing µ-population. This is no real restriction as for infinite objective
spaces the following negative results remain valid. We first state a
result of Zitzler et al. [18].

THEOREM 3.2. There is no effective non-decreasing (µ + 1)-
archiving algorithm.

Note that we have reformulated the statement of [18, Cor. 4.6] in
our notation defined above. The notation used in [18] is very dif-
ferent as they examine general set-based MOEAs and not specif-
ically archiving algorithms. We do not give a separate proof for
Theorem 3.2 as it directly follows from Theorem 3.5 below. The-
orem 3.2 assumes λ = 1. The corresponding result for λ = µ
follows from [18, Thm. 4.4]:

THEOREM 3.3. There is an effective non-decreasing (µ + µ)-
archiving algorithm.

We also do not give a proof for Theorem 3.3 as it follows from
Theorem 3.4 below. Since Theorem 3.3 is only an existential state-
ment, it is natural to ask how effective non-decreasing (µ + µ)-
archiving algorithms look like. The following theorem shows that
all locally optimal (µ+ µ)-archiving algorithms are effective.

THEOREM 3.4. Let A be a (µ + µ)-archiving algorithm such
that for all µ-populations P and Q,

HYP(A(P,Q)) > HYP(Q).

Then A is effective.
In particular: All locally optimal (µ + µ)-archiving algorithms

are effective.

Proof. Let Y be any finite objective space and P 0 ⊂ Y of
size µ. Moreover, let P ∗ maximize the hypervolume on Y , i.e.,
HYP(P ∗) = maxHYPµ(Y). Then setting Q1 := P ∗ we have
HYP(A(P 0, Q1)) > HYP(Q1) = maxHYPµ(Y), so P 1 maxi-
mizes the hypervolume.

Note that Theorem 3.4 for finite objective spaces also holds for
infinite objective spaces that have a hypervolume maximizing µ-
population. In general, however, there is no µ-population maxi-
mizing the hypervolume on an infinite objective space, so that no
statement as above holds.

Zitzler et al. [18, p. 71] pointed out that it is open, whether there
are effective non-decreasing (µ+ λ)-archiving algorithms for 1 <
λ < µ. We answer this question in the negative and prove the
following theorem.

THEOREM 3.5. There is no effective non-decreasing (µ + λ)-
archiving algorithm for λ < µ.

Again, we do not give a separate proof for Theorem 3.5 as it
follows from its stronger counterpart Theorem 4.2 below. In or-
der to prove Theorem 3.5 directly, one would show that there is an
objective space and a suboptimal initial population P 0 such that
any change of less than µ points of P 0 decreases the hypervolume
indicator. However, the populations constructed that way have a
hypervolume which is very close to the optimal one. Hence, the
question arises of whether we at least arrive at a good approxima-
tion of the maximum hypervolume. We study this question in the
following Section 4.

4. APPROXIMATE EFFECTIVENESS
Above negative results on the effectiveness raise the question of

approximate effectiveness. To study this, we apply the following
definition.

DEFINITION 4.1. Let α > 1. A (µ+λ)-archiving algorithmA
is α-approximate if for all sets Y ⊂ Rd with finite maxHYPµ(Y)
and µ-populations P 0 ⊆ Y there is an N ∈ N and a sequence of
λ-populations Q1, . . . , QN ⊆ Y such that

HYP(A(P 0, Q1, . . . , QN )) >
1

α
maxHYPµ(Y).

We first examine what is the best approximation ratio we can
hope for and prove a lower bound for the approximation ratio of
all non-decreasing algorithms. To do so, we explicitly construct an
objective space with two unconnected local maxima and show the
following theorem. The full proof is given in Section 6.

THEOREM 4.2. There is no
(
1 + 0.1338

(
1
λ
− 1

µ

)
− ε
)
-

approximate non-decreasing (µ + λ)-archiving algorithm for any
ε > 0.

A bound of the form 1 + c(1/λ − 1/µ) is very natural, as for
λ = µwe get 1, and there is indeed an effective archiving algorithm
in this case by Theorem 3.4. The proven constant, however, may
be far from being tight. Maybe surprisingly, Theorem 4.2 indeed
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does not hold without the restriction to non-decreasing archiving
algorithms. Theorem 5.1 in Section 5 shows that for all µ and λ
there are archiving algorithms which are not non-decreasing, but
effective.

Complementing the lower bound of Theorem 4.2, we can also
prove the following upper bound on α. The proof of the following
Theorem 4.3 can be found in Section 7.

THEOREM 4.3. Let A be a non-decreasing (µ + λ)-archiving
algorithm. Assume that A is “improving if possible”, i.e., for pop-
ulations P and Q with

maxHYPµ(P ∪Q) > HYP(P )

we have

HYP(A(P,Q)) > HYP(P ).

Then A is (2 + ε)-approximate for any ε > 0.
In particular: All locally optimal (µ + λ)-archiving algorithms

are (2 + ε)-approximate for any ε > 0.

The proof of Theorem 4.3 only considers offspring sets of size 1.
Because of the respective lower bound of (1.1338−0.1338/µ) for
λ = 1 from Theorem 4.2, this proof method can not show a better
approximation ratio than a constant. We conjecture that a proof
which handles offspring sets of size λ > 1 can show the following
result.

CONJECTURE 4.4. All locally optimal (µ+λ)-archiving algo-
rithms are 1 +O(1/λ)-approximate.

5. WHY ONLY NON-DECREASING?
We finally want to discuss why we require all archiving algo-

rithms to be non-decreasing. The reason is that otherwise none of
the negative results and lower bounds from above hold as there is
an effective (µ + λ)-archiving algorithm for all µ, λ ∈ N. Such
an algorithm is very simple: Given an ancestral population P and
an offspring population Q, it returns the symmetric difference of
both sets if this is not larger than µ and otherwise returns P di-
rectly. The algorithm is described in more detail in Algorithm 3.
This algorithm is not non-decreasing, very unnatural, and does not
guide in a sensible direction. However, for technical reasons one
can prove the following statement.

THEOREM 5.1. For any µ, λ ∈ N there is an effective (not nec-
essarily non-decreasing) (µ+ λ)-archiving algorithm.

Proof. We study the following (µ + λ)-archiving algorithm and
prove that it is indeed effective.

Algorithm 3: An effective (µ+ λ)-archiving algorithm

1 P ′ := (P \Q) ∪ (Q \ P )
2 if |P ′| 6 µ then
3 return P ′

4 else
5 return P

To show that Algorithm 3 is effective, let Y ⊂ Rd be finite
and P 0 ⊆ Y a µ-population. Moreover, let P ∗ ⊆ Y be a µ-
population with HYP(P ∗) = maxHYPµ(Y). Write P 0 \ P ∗ =
{p01, . . . , p0µ} (with possibly some of the p0i being equal) and
P ∗ \ P 0 = {p∗1, . . . , p∗µ}. Let Q2i−1 = {p0i } and Q2i = {p∗i }

for i = 1, . . . , µ. On this offspring Algorithm 3 works as desired:
After every second offspring generation one point of P 0 is replaced
by a point from P ∗ so that after 2µ generations we arrive at P ∗.

On the way there we even always have populations of size µ or
µ − 1 (as long as |P | = |P ∗| = µ). If we have λ > 2, we can
even stick to populations of size µ by inserting every two offspring
generations at once, i.e., Q1 ∪Q2, then Q3 ∪Q4, and so on. This
shows that the possibility of the proven theorem does not stem from
a faulty definition of µ-populations, as one might guess.

This justifies why we always assume the archiving algorithms to
be at least non-decreasing. Theorem 5.1 shows that Theorems 3.2,
3.5 and 4.2 do not hold for general archiving algorithms, which are
not required to be non-decreasing.

6. PROOF OF THE LOWER BOUND
In this section we prove the lower bound of

(
1 + 0.1338

(
1
λ
−

1
µ

)
−ε
)

on the approximation factor of all non-decreasing (µ+λ)-
archiving algorithm as stated in Theorem 4.2. Note that this also
implies that there is no effective non-decreasing (µ+ λ)-archiving
algorithm for λ < µ as stated in Theorem 3.5.

Proof of Theorem 4.2. Let µ, λ ∈ N, λ < µ. We construct an
objective space Y and initial population P 0 as follows. Set Y =
{p1, . . . , p2µ+1} with pi = (xi, yi) and

xi = αi − 1, for i even,

yi = α2µ+2−i − 1, for i even,

xi = γαi − 1, for i odd,

yi = γα2µ+2−i − 1, for i odd,

where 1 < γ < α. Figure 1 on the next page shows an il-
lustration of the points for µ = 3. Additionally, set P 0 =
{p2, p4, . . . , p2µ}. It is easy to see (but not needed for the proof)
that P ∗ = {p1, p3, . . . , p2µ−1} maximizes the hypervolume on Y .
Alternatively, one could look at P ∗ − p1 + p2µ+1.

We want to choose γ and α in such a way that P 0 is a local
maximum from which one cannot escape exchanging only λ points.
Thus, no non-decreasing selection policy with offspring size λ finds
a better population than P 0. We then continue with proving that
HYP(P ∗) is sufficiently larger than the hypervolume of P 0.

For showing this, define A := CONY(p2i) and B :=
CONY(p2i+1). It can be easily seen that this is independent of the
choice of i and that A < B. Moreover, we consider the area domi-
nated by both, p2i and p2i+1, namely C := HYP(Y)−HYP(Y −
p2i − p2i+1)− A− B. Those areas are depicted in Figure 1. Ob-
serve that this is again independent of i and one gets the same area
considering p2i and p2i−1.

Now, let Q1 ⊆ Y be a λ-population and consider any µ-
population P 1 ⊆ P 0 ∪ Q1 with P 0 6= P 1. We want to choose α
and γ in such a way that ∆HYP := HYP(P 1)− HYP(P 0) < 0,
so that we have to stick to P 0. For this, let H := HYP(Y), so that
we have HYP(P 0) = H − (µ + 1)B. For P 1, observe that there
is an index i with pi, pi+1 6∈ P 1 (as otherwise P 1 = P 0). These
two points dominate together an area of C that is not dominated by
P 1. Moreover, every point pi ∈ Y , pi 6∈ P 1 adds another A or B
to H − HYP(P 1), depending on i being even or odd. Letting k be
the number of points of odd index in P 1 we thus have

HYP(P 1) 6 H − C − (µ+ 1− k)B − k A.

Thus, we have ∆HYP 6 k(B − A) − C. As the offspring size
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Figure 1: A schematic log-log plot of the example used in the
proof of Theorem 4.2. The considered areas A,B,C are indi-
cated.

|Q1| 6 λ we have k 6 λ and thus

∆HYP 6 λ(B −A)− C.

We want to choose α and γ such that the right hand side from
above is less than 0. We compute

A = (x2i − x2i−1)(y2i − y2i+1)

= (α2i − γα2i−1)(α2µ+2−2i − γα2µ+2−2i−1)

= α2µ+2(1− γ/α)2.

Similarly, we see that

B = α2µ+2(γ − 1/α)2,

B −A = α2µ+2(γ2 − 1)(1− 1/α2),

C = α2µ+1(1− γ/α)(γ − 1/α).

Now, λ(B−A)−C < 0 turns into a quadratic inequality in γ. We
solve it and get

γ <
α2 + 1 + (α2 − 1)

√
4α2λ2 + 1

2α(λ(α2 − 1) + 1)
. (1)

Simple calculations show that this bound is always greater than 1
and less equal α (at least for α > 2, λ > 1 this is easy to show).
Hence, there is no contradiction to γ > 1 and we can choose γ
arbitrarily close to the right hand side from above. Thus, for α > 2
and γ > 1 satisfying equation (1) no (µ + λ)-archiving algorithm
can escape from P 0.

All that is left to show is that HYP(P ∗) is sufficiently greater
than HYP(P 0). Above we saw that HYP(P 0) = H − (µ+ 1)B,
where H = HYP(Y). Now, observe that HYP(P ∗) = H −µA−
B − C, where the B stems from p2µ+1 not being in P ∗ and the C
from p2µ+1 and p2µ not being in P ∗. We, thus, have

∆HYP := HYP(P ∗)− HYP(P 0) = µ(B −A)− C.

Let ε > 0. By choosing γ (dependent on α) sufficiently near to the
right hand side of equation (1) we have 0 > λ(B −A)−C > −ε
and, hence,

∆HYP > (µ− λ)(B −A)− ε
= (µ− λ)α2µ+2(γ2 − 1)(1− 1/α2)− ε.

We compute HYP(P 0) as follows, where we set x0 := 0:

HYP(P 0) =

µ∑
i=1

(x2i − x2(i−1)) y2i

=

µ∑
i=1

(α2i − α2(i−1))α2µ+2−2i

= µα2µ+2(1− 1/α2).

Now, the approximation ratio of any (µ+λ)-archiving algorithm
on Y with initial population P 0 is, as it cannot escape P 0,

maxHYPµ(Y)

HYP(P 0)
>

HYP(P ∗)

HYP(P 0)

= 1 +
∆HYP

HYP(P 0)

> 1 + (1− λ

µ
)(γ2 − 1)− ε,

for α >
√

2 and, thus, HYP(P 0) > 1, so that we can bound
ε/HYP(P 0) 6 ε. For maximizing the right hand side we will plug
in α = 1 +

√
6 , so that γ is bounded from above and below by

constants. This way, choosing γ sufficiently near to the right hand
side of equation (1), we get

maxHYPµ(Y)

HYP(P 0)
> 1− 2ε

+

(
1− λ

µ

)((
α2 + 1 + (α2 − 1)

√
4α2λ2 + 1

2α(λ(α2 − 1) + 1)

)2

− 1

)
We consider the bracket on the right hand side separately. This is(
α2 + 1 + (α2 − 1)

√
4α2λ2 + 1

2α(λ(α2 − 1) + 1)

)2

− 1

=
(α2 + 1 + (α2 − 1)

√
4α2λ2 + 1 )2 − 4α2(λ(α2 − 1) + 1)2

4α2(λ(α2 − 1) + 1)2

>
(α2 + 1 + (α2 − 1)

√
4α2λ2 )2 − 4α2(λ(α2 − 1) + 1)2

4α2(λ(α2 − 1) + λ)2

=
(α2 − 1)2 + 4(α− 1)3α(α+ 1)λ

4α6λ2
.

Plugging this in and simplifying, we get

maxHYPµ(Y)

HYP(P 0)

> 1− 2ε+
(µ− λ)(α− 1)2(α+ 1)(α+ 1 + 4(α− 1)αλ)

4α6λ2µ

> 1− 2ε+
(µ− λ)(α− 1)2(α+ 1)(4(α− 1)αλ)

4α6λ2µ
.

Now, the right hand side gets maximal for α = 1 +
√

6 . Plugging
this in we get

maxHYPµ(Y)

HYP(P 0)
> 1 +

12(3 +
√

6 )

(1 +
√

6 )5

(
1

λ
− 1

µ

)
− 2ε

> 1 + 0.1338 ·
(

1

λ
− 1

µ

)
− 2ε.

This finishes the proof.

7. PROOF OF THE UPPER BOUND
In this section we prove the upper bound of 2 + ε on the ap-

proximation factor of all (µ+ λ)-archiving algorithms that choose
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a population of children with greater hypervolume than the parent
population (if there is one), as stated in Theorem 4.3. We conjec-
ture that the upper bound of 2 + ε on the approximation factor is
not tight and it might be possible to improve it asymptotically to 1.

Proof of Theorem 4.3. Let ε > 0, Y ⊂ Rd with maxHYPµ(Y) <
∞ and P 0 ⊆ Y be a µ-population. By definition of maxHYP
there exists a µ-population P ∗ ⊆ Y with HYP(P ∗) > (1 +
ε/2)−1 maxHYPµ(Y).

We try to add the points of P ∗ one-by-one to the current popu-
lation, starting with P 0. This means we set Q1 ∪ . . . ∪ Qµ = P ∗

with |Qi| 6 1. After one run through all these Qi the population
Pµ might have changed from P 0. If this is the case we run again
through these Qi, until no change happens. This requires at most µ
runs through the Qi, if the archiving algorithm fulfills the premise,
so by setting N = µ2 and Qi+kµ = Qi for i, k ∈ N we get to
a population PN which is stable under insertions of single points
from P ∗. We show that in this case HYP(PN ) > 1

2
HYP(P ∗).

We have |PN | 6 µ, but consider any point p ∈ P ∗ not dom-
inated by any point in PN . If |PN | < µ then PN + p has
greater hypervolume, which contradicts PN being stable under in-
sertions of single points from P ∗. Thus, either |PN | = µ or there
is no such point p, in which case HYP(PN ) > HYP(P ∗) >
(1 + ε/2)−1 maxHYPµ(Y), which proves the claim in this case.
Hence, we can assume |PN | = µ.

Consider a point p̃ ∈ PN with minimal contribution
CONPN (p). The contribution of a point p measures the volume
of the space that is dominated by p alone, so that we have∑

p∈PN

CONPN (p) 6 HYP(PN ).

Now, as p̃ has minimal contribution and |PN | = µ, we get

CONPN (p̃) 6
1

µ

∑
p∈PN

CONPN (p).

Let q ∈ P ∗ and consider P ′ := PN − p̃ + q. This population
has HYP(P ′) 6 HYP(PN ), as PN is stable under insertions of
single points from P ∗. Thus, we have

HYP(P ′) = CONP ′(q)− CONPN (p̃) + HYP(PN )

6 HYP(PN ),

which gives

CONP ′(q) 6 CONPN (p̃).

Additionally, as P ′ ⊂ PN + q we have

CONPN+q(q) 6 CONP ′(q).

Together, these inequalities imply

CONPN+q(q) 6
1

µ
HYP(PN ).

Now, consider the population PN ∪ P ∗ (of size in [µ, 2µ]). We
have HYP(PN ∪ P ∗) > HYP(P ∗). Moreover, we can write the

former as

HYP(PN ∪ P ∗) = HYP(PN ) +

µ∑
i=1

CONPN+q1+...+qi
(qi)

6 HYP(PN ) +

µ∑
i=1

CONPN+qi
(qi)

6 HYP(PN ) +

µ∑
i=1

1

µ
HYP(PN )

6 2HYP(PN ).

This yields the desired inequality

HYP(PN ) >
1

2
HYP(P ∗) > (2 + ε)−1 maxHYPµ(Y).

and finishes the proof.

8. DISCUSSION AND FUTURE WORK
We have studied theoretically the convergence of archiving al-

gorithms used in hypervolume-based multi-objective evolutionary
algorithms. We proved that non-decreasing (µ + λ)-archiving al-
gorithms can only be effective for λ > µ and that they cannot
achieve an approximation of the maximum hypervolume by a fac-
tor of more than 1/(1 + 0.1338 (1/λ − 1/µ)). On the positive
side, we proved that the popular (but computationally very expen-
sive) locally optimal algorithms are effective for λ = µ and can
always find a population with hypervolume at least half the opti-
mum for λ < µ. We conjecture that the lower bound of one half
can be improved to a value which is asymptotically 1, which is a
natural follow-up question.

Let us further remark that it makes no sense to take a best-case
view on the initial population (then the initial population already
maximizes the hypervolume) nor does it make sense to take a best-
case view on the objective space (then it contains only the popu-
lation maximizing the hypervolume). The only two deterministic
approaches for the offspring generation are best-case and worst-
case. Following the work of Zitzler et al. [18], we have studied
the best-case scenario in detail. However, we believe it is equally
interesting to study the worst-case. Thus, in the future we plan
to examine archiving algorithms in a setting where an adversary
chooses the offspring.

It might also be interesting to study average-case models. The
disadvantage of this is that it introduces the necessity of modelling
other parts of the (until now) abstract EMO algorithm, namely the
generation of the initial population and offspring as well as the
structure of the search space.

Note that our approach for analyzing (µ + λ)-archiving algo-
rithms does not apply to comma strategies, i.e., (µ, λ)-MOEAs,
where the archiving algorithm can only choose from the off-
spring points. The reason is that in this case (in best- as well
as worst-case offspring generation) the final population PN =
A(P 0, Q1, . . . , QN ) only depends on the last offspring QN and
hence every locally optimal archiving algorithm is trivially as ef-
fective as it can be, which is not an interesting result.
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