
Partitioning Subclasses of Chordal Graphs with1

Few Deletions2

Satyabrata Jana1[0000−0002−7046−0091], Souvik Saha1[0000−0001−8322−0639],3

Abhishek Sahu3, Saket Saurabh1,2, and Shaily Verma14

1 The Institute of Mathematical Sciences, HBNI, Chennai, India5

2 University of Bergen, Norway6

3 National Institute of Science Education and Research, HBNI7

{souviks, saket, shailyverma}@imsc.res.in8

{satyamtma, asahuiitkgp}@gmail.com9

Abstract. In the (Vertex) k-Way Cut problem, input is an undi-10

rected graph G, an integer s, and the goal is to find a subset S of edges11

(vertices) of size at most s, such that G − S has at least k connected12

components. Downey et al. [Electr. Notes Theor. Comput. Sci. 2003]13

showed that k-Way Cut is W[1]-hard parameterized by k. However,14

Kawarabayashi and Thorup [FOCS 2011] showed that the problem is15

fixed-parameter tractable (FPT) in general graphs with respect to the16

parameter s and provided a O(ss
O(s)

n2) time algorithm, where n denotes17

the number of vertices in G. The best-known algorithm for this problem18

runs in time sO(s)nO(1) given by Lokshtanov et al. [ACM Tran. of Algo.19

2021]. On the other hand, Vertex k-Way Cut is W[1]-hard with respect20

to either of the parameters, k or s or k + s. These algorithmic results21

motivate us to look at the problems on special classes of graphs.22

In this paper, we consider the (Vertex) k-Way Cut problem on23

subclasses of chordal graphs and obtain the following results.24

– We first give a sub-exponential FPT algorithm for k-Way Cut run-25

ning in time 2O(
√
s log s)nO(1) on chordal graphs.26

– It is “known” that Vertex k-Way Cut is W[1]-hard on chordal27

graphs, in fact on split graphs, parameterized by k + s. We comple-28

ment this hardness result by designing polynomial-time algorithms29

for Vertex k-Way Cut on interval graphs, circular-arc graphs and30

permutation graphs.31

Keywords: chordal graphs · FPT · interval graphs · circular-arc graphs·32

permutation graphs.33

1 Introduction34

Graph partitioning problems have been extensively studied because of their ap-35

plications in VLSI design, parallel supercomputing, image processing, and clus-36

tering [1]. In this paper, we consider one of the classical graph partitioning37

problems, namely, the (Vertex) k-Way Cut problem. In this problem the ob-38

jective is to partition the graph into k components by deleting as few (vertices)39

edges as possible. Formally, the problems we study are defined as follows.40

2 S. Jana, S. Saha, A. Sahu, S. Saurabh, and S. Verma

k-Way Cut

Input: A graph G = (V,E) and two integers s and k.
Parameter: s
Question: Does there exist a set S ⊆ E of size at most s, such that

G− S has at least k connected components?
41

Vertex k-Way Cut

Input: A graph G = (V,E) and two integers s and k.
Parameter: s
Question: Does there exist a set S ⊆ V of size at most s, such that

G− S has at least k connected components?
42

These problems are decision versions of natural generalization of the Global43

Min Cut problem, which seeks to delete a set of edges of minimum cardinality44

such that the graph gets partitioned into two parts (k = 2). In other words,45

the graph becomes disconnected. We first give a brief account of the history of46

known results on the problem to set the context of our study.47

Algorithmic History of the Problem. There is a rich algorithmic study48

of (Vertex) k-Way Cut problem. In 1996, Goldschmidt and Hochbaum [6]49

showed that the k-Way Cut problem is NP-hard for arbitrary k, but polynomial-50

time solvable when k is fixed and gave a O(n(1/2−o(1))k
2

) time algorithm, where n51

is the number of vertices in the graph. Later, Karger and Stein [10] gave an edge52

contraction based randomized algorithm with running time Õ(n(2k−1)). The no-53

tation Õ hides the poly-logarithimic factor in the running time. Recently, Li [13]54

obtained an improved randomized algorithm with running time Õ(n(1.981+o(1))k).55

To date, the best known deterministic exact algorithm is given by Chekuri et56

al. [2] which runs in O(mn(2k−3)) time.57

In terms of approximation algorithms, several approximation algorithms are58

known for the k-Way Cut problem with approximation factor (2− o(1)), that59

run in time polynomial in n and k [17] Recently, Manurangsi [15] proved that60

the approximation factor cannot be improved to (2 − ϵ) for every ϵ > 0, as-61

suming small set expansion hypothesis. Lately, this problem has received sig-62

nificant attention from the perspective of parameterized approximation as well.63

Gupta et al. [8] gave the first FPT approximation algorithm for the problem64

with approximation factor 1.9997 which runs in time 2O(k6)nO(1). The same65

set of authors [9] also gave an (1 + ϵ)-approximation algorithm with running66

time (k/ϵ)O(k)nk+O(1), and an approximation algorithm with a factor 1.81 run-67

ning in time 2O(k2)nO(1). Later, Kawarabayashi and Lin [11] gave a (5/3 + ϵ)-68

approximation algorithm for the problem with running time 2O(k2 log k)nO(1).69

Recently, Lokshtanov et al. [14] designed (1 + ϵ)-approximation algorithm for70

every ϵ > 0, running in time (k/ϵ)O(k)nO(1) improving upon the previous result.71

72

Partitioning Subclasses of Chordal Graphs with Few Deletions 3

Problems Parameter(s)

k s k + s

Vertex k-Way Cut W[1]-hard [5] W[1]-hard [16] W[1]-hard [16]

k-Way Cut W[1]-hard [5] FPT [12] FPT [4]

Table 1. Complexity of the problems for different parameterizations

From the parameterized perspective, Downey et al. [5] proved that the k-Way73

Cut and Vertex k-Way Cut problems are W[1]-hard when parameterized74

by k. On the other hand, when parameterized by the cut size s, it is known75

that finding a Vertex k-Way Cut of size s is also W[1]-hard [16]; however76

finding a k-Way Cut of size s is FPT [12]. Kawarabayashi and Thorup [12]77

gave a O(ss
O(s) ·n2) time FPT algorithm for the k-Way Cut problem. Recently,78

Lokshtanov et al. [4] designed a faster algorithm with running time sO(s)nO(1).79

These tractable and intractable results (see Table 1) are a starting point of80

our work. That is, we address the following question: What is the complexity of81

(Vertex) k-Way Cut problem on well-known graph classes?82

Our Results. In this paper we obtain a a sub-exponential-FPT algorithm for83

k-Way Cut running in time 2O(
√
s log s)nO(1) on chordal graphs (Section 3)84

and polynomial-time algorithms for Vertex k-Way Cut on interval graphs,85

circular-arc graphs, and permutation graphs (Section 4).86

2 Preliminaries87

All graphs considered in this paper are finite, simple, and undirected. We use88

the standard notation and terminology that can be found in the book of graph89

theory [18]. We use [n] to denote the set of first n positive integers {1, 2, 3, . . . , n}.90

For a graph G, we denote the set of vertices of the graph by V (G) and the set91

of edges of the graph by E(G). We denote |V (G)| and |E(G)| by n and m92

respectively, where the graph is clear from context. We abbreviate an edge (u, v)93

as uv sometimes. For a set S ⊆ V (G), the subgraph of G induced by S is denoted94

by G[S] and it is defined as the subgraph of G with vertex set S and edge set95

{(u, v) ∈ E(G) : u, v ∈ S} and the subgraph obtained after deleting S (and96

the edges incident to the vertices in S) is denoted by G− S. For v ∈ V (G), we97

will use G− v to denote G− {v} for ease of notation. All vertices adjacent to a98

vertex v are called neighbours of v and the set of all such vertices is called the99

open neighbourhood of v, denoted by NG(v). For a set of vertices S ⊆ V (G),100

we define NG(S) = (∪v∈SN(v) \ S). We define the closed neighbourhood of a101

vertex v in the graph G to be NG[v] := NG(v) ∪ {v} and closed neighbourhood102

of a set of vertices S ⊆ V (G) to be NG[S] := NG(S)∪ S. We drop the subscript103

G when the graph is clear from the context. For C ⊆ V (G), if G[C] is connected104

and N(C) = ∅, then we say that G[C] is a connected component of G. For both105

the problems k-Way Cut and Vertex k-Way Cut, in the given instance, we106

4 S. Jana, S. Saha, A. Sahu, S. Saurabh, and S. Verma

assume that k > 1, otherwise the input itself is an optimal solution with zero107

cut size. A partition of G in to k components is a partition of V (G) into k sets108

V1, . . . , Vk such that each G[Vi] is a connected. We say a partition is non-trivial109

when k > 1.110

Definition 1. A tree-decomposition of a connected graph G is a pair (T, β),111

where T is a tree and and β : V (T) → V (G) such that112

–
⋃
x∈V (T) β(x) = V (G), we call β(x) as the bag of x,113

– for every edge (u, v) ∈ E(G), there exists x ∈ V (T) such that {u, v} ⊆ β(x),114

and115

– for every vertex v ∈ V (G), the subgraph of T induced by the set β−1(v) :=116

{x : v ∈ β(x)} is connected.117

Chordal Graphs: A graph G is a chordal graph if every cycle in G of length at118

least 4 has a chord i.e., an edge joining two non-consecutive vertices of the cycle.119

A clique-tree of G is a tree-decomposition of G where every bag is a maximal120

clique. We further insist that every bag of the clique-tree is distinct. There are121

several ways to obtain a clique-tree decomposition of G; one way is by using122

perfect elimination ordering (PEO) of G [3]. The following lemma shows that123

the class of chordal graphs is exactly the class of graphs that have a clique-tree.124

Lemma 1 ([7]). A connected graph G is a chordal graph if and only if G has125

a clique-tree.126

Let F be a non-empty family of sets. A graph G is called an intersection127

graph for F if there is a one-to-one correspondence between F and G where two128

sets in F have nonempty intersection if and only if their corresponding vertices129

in G are adjacent. We call F an intersection model of G and we use G(F)130

to denote the intersection graph for F . If F is a family of intervals on a real131

line, then G(F) is called an interval graph for F . A proper interval graph is132

an interval graph that has an intersection model in which no interval properly133

contains another. If F is a family of arcs on a circle in the plane, then G(F)134

is called an circular-arc graph for F . If F is a family of line segments in the135

plane whose endpoints lie on two parallel lines, then the intersection graph of F136

is called the permutation graph for F .137

3 Sub-exponential FPT Algorithm on Chordal Graphs138

Chordal graphs belong to the class of perfect graphs that contains several other139

graph classes such as split graphs, interval graphs, threshold graphs, and block140

graphs. A graph G is a chordal graph if every cycle in G of length at least141

4 has a chord i.e., an edge joining two non-consecutive vertices of the cycle.142

Chordal graphs are also characterized as the intersection graph of sub-trees of a143

tree. Every chordal graph has a tree-decomposition where every bag induces a144

clique. In this section, we obtain a sub-exponential FPT algorithm for the k-Way145

Cut problem in chordal graphs parameterized by s, the number of cut edges.146

We first give a characterization of the k-Way Cut on a clique in Lemma 3.147

Later, we use this characterization to design our algorithm.148

Partitioning Subclasses of Chordal Graphs with Few Deletions 5

Lemma 2. Let K be a clique and s be an integer. Then we can not partition the149

clique into more than one component by deleting s edges if one of the following150

conditions holds.151

(i) |K| > (s+ 1),152

(ii) |K| > (2
√
s+1), and size of every component in the partition is at most

√
s.153

Proof. (i) If |K| > (s+1), the size of min-cut of K is at least s+1 and hence we
cannot partition K by deleting s edges. (ii) In the second condition, the size of
every component in the partition is at most

√
s and hence every vertex v in any

component must be disconnected from at least 2
√
s+ 2−

√
s =

√
s+ 2 vertices

that are in other components. Thus the total number of edges that needs to
be deleted is at least (2

√
s + 2)(

√
s + 2)/2 > s. Hence the clique can not be

partitioned by deleting s edges. ⊓⊔

Lemma 3. Let K be a clique and s be an integer such that (2
√
s + 1) < |K| <154

(s+2), then any non-trivial partition of K obtained by deleting at most s edges,155

has a component of size at least (|K| −
√
s).156

Proof. Let K be a clique such that (2
√
s + 1) < |K| < (s + 2) and we have to157

partition the clique into k components by deleting at most s edges. Let γ be the158

size of the largest component in the partition.159

|E(K)| = |E(Largest component)|+ |E(other components)|+ |cut edges|

=⇒
(
|K|
2

)
≤

(
γ

2

)
+

(
|K| − γ

2

)
+ |cut edges|

=⇒
(
|K|
2

)
≤

(
γ

2

)
+

(
|K| − γ

2

)
+ s

=⇒ |K|(|K| − 1) ≤ γ(γ − 1) + (|K| − γ)(|K| − γ − 1) + 2s

=⇒ 0 ≤ γ2 − γ|K|+ s

Therefore, either γ ≤ |K|−
√

|K|2−4s

2 , or γ ≥ |K|+
√

|K|2−4s

2 holds. If the

first inequality holds, then it implies γ ≤ |K|−
√

|K|2+
√
4s

2 (by using the in-

equality
√
a−

√
b ≤

√
a− b for 0 < b ≤ a). It follows that γ ≤

√
s. However,

Lemma 2 implies that if γ ≤
√
s and |K| > 2

√
s+1, then there is no non-trivial

partition of K. Thus in this case, K has no non-trivial partition. If the second

inequality holds, then γ ≥ |K|+
√

|K|2−4s

2 , which implies that γ ≥ (|K| −
√
s).

Hence any non-trivial partition of K, obtained by deleting at most s edges, has
a component of size at least (|K| −

√
s). ⊓⊔

Lemma 4. There are 2O(
√
s log s) many possible choices for any non-trivial par-160

tition of a clique K obtained by deleting at most s edges.161

Proof. We have the following three cases depending on the size of K.162

Case 1. |K| ≥ (s+ 2).163

6 S. Jana, S. Saha, A. Sahu, S. Saurabh, and S. Verma

In this case, no non-trivial partition exists by Lemma 2.164

Case 2. |K| ≤ (2
√
s+ 1).165

In this case, there are k2
√
s+1 ways of partitioning the clique into k compo-166

nents. Since k ≤ (s+ 1), k2
√
s+1 ≤ 2O(

√
s log s).167

Case 3. (2
√
s+ 1) < |K| < (s+ 2).168

From Lemma 3, in a partition of K into k components, there exists a component
with at least (|K| −

√
s) many vertices. So, we guess (|K| −

√
s) many vertices in

a component. Now, the rest
√
s vertices are partitioned into k components. The

total number of choices for such a partition of K is bounded by
(|K|
|K|−

√
s

)
·k

√
s ·k.

Since both k and |K| are bounded by (s+1), we have |K|
√
s ·k

√
s ·k ≤ 2O(

√
s log s).

⊓⊔

Now we prove the following theorem.169

Theorem 1. k-Way Cut problem on a chordal graph with n vertices can be170

solved in time 2O(
√
s log s)nO(1).171

To prove Theorem 1, we design a dynamic-programming algorithm for the172

k-Way Cut problem on chordal graphs, which exploits its clique-tree decom-173

position. Let G be a chordal graph and τ = (T, {Kt}t∈V (t)) be its clique-tree174

decomposition.175

Let T be a clique-tree of G rooted at some node r. For a node t of T , Kt176

is the set of vertices contained in t and let Vt be the set of all vertices of the177

sub-tree of T rooted at t. The parent node of t is denoted by parent(t). We follow178

a bottom-up dynamic-programming approach on T to design our algorithm.179

For a set of vertices U , we use P(U) to denote a partition {A1, A2, . . . , Ak}180

of U where each Ai is a set in the partition. Given the partitions of two sets181

U1, U2 ⊆ V (G), say P(U1) = {A1, A2, . . . , Ak} and P(U2) = {B1, B2, . . . , Bk}, we182

call these partitions mutually compatible, if for each vertex u in U1∩U2, u ∈ Ai if183

and only if u ∈ Bi for some i ∈ [k]. We denote the mutually compatible operation184

by ⊥. For any node t, a partition P(Kt) and an integer w where 0 ≤ w ≤ (k−1),185

a feasible solution for (t, P(Kt), w) is a k-way cut in G[Vt] with the following186

properties: (P(Vt) is the partition induced on Vt by the above k-way cut).187

• P(Kt) ⊥ P(Vt),188

• Exactly w components in P(Vt) contain no vertex from Kt, that is, these w189

components are completely contained inside G[Vt \Kt].190

Next, we define the dynamic-programming table whose entry is denoted by191

M [t; P(Kt), w] for a node t and integer w, 0 ≤ w ≤ k. The entry M [t; P(Kt), w]192

stores the size of the smallest such feasible solution. From Lemma 4, the number193

of sub-problems (or number of entries that we have to compute) for each node194

in the tree is bounded by 2O(
√
s log s) as each node is a clique. Below we give a195

recurrence relation to compute M [t; P(Kt), w] for each tuple (t, P(Kt), w). The196

case where t is a leaf, corresponds to the base case of the recurrence, whereas197

Partitioning Subclasses of Chordal Graphs with Few Deletions 7

the values of M [t; ., .] for a non-leaf node t depends on the value of M [t′, .] for198

each child t′ of node t (which have already been computed). By applying the199

formula in a bottom-up manner on T , we compute M(r; P(Kr), k − 1) for the200

root node r. Note that the value of M(r; P(Kr), k − 1) is exactly the size of201

an optimal solution for our problem, because in any optimal solution there are202

exactly k−1 components that are completely contained in G−Kr. Here without203

loss of generality, we can assume that Kr contains exactly one vertex of G. For204

a partition P(U) of U , we define CUT(P(U)) as the set of edges whose endpoints205

belong to different sets in the partition. Now, we describe the recursive formulas206

to compute the value of M [t; ., .], for each node t.207

Leaf node. Let t be a leaf node. Then for each partition P(Kt), we define208

M [t; P(Kt), w] =

{
|CUT(P(Kt))| if w = 0,

+∞ otherwise.

Non-leaf node. Let t be a non-leaf node. Assume that the node t has ℓ children209

t1, . . . , tℓ. For a pair of distinct vertices u, v in Kt, let Child Pair(t;u, v) denote210

the number of children of t containing both the vertices u and v. For a partition211

P(Kt), let Child(P(Kt)) denote the sum of the number of occurrences (with212

repetitions) of the edges from CUT(P(Kt)) in all the children nodes of t, that is,213

Child(P(Kt)) =
∑

(u,v)∈CUT(P(Kt))
Child Pair(t;u, v). Let ψ(P(Kt)) denote the214

number of sets in P(Kt) that have no common vertex with the parent node of t.215

Therefore, the recurrence relation for computing M(t; ., .) for t is as follows:216

M [t; P(Kt), w] = |CUT(P(Kt))| − Child(P(Kt))+

min
∀(P(Kti

),wi):

P(Kti
)⊥P(Kt)

w=
∑
i
(wi+ψ(P(Kti

)))

ℓ∑
i=1

M [ti; P(Kti), wi].

Next, we prove the correctness of the above recurrence relation.217

Correctness. Let R denote the value of the right side expression above.218

To prove the recurrence relation, first we show M [t; P(Kt), w] ≤ R and then219

M [t; P(Kt), w] ≥ R. Let t be a node in T having ℓ children t1, t2, . . . , tℓ. Any220

set of ℓ compatible partitions, one for each child of t together with P(Kt)221

leads to a feasible solution for (t, P(Kt), w) if w =
∑
i(wi + ψ(P(Kti))). Now222

for each child node ti of t and for any pair of vertices u, v in Kt, if the ver-223

tices u and v are in different sets in each of the partitions P(Kt) and P(Kti),224

then the (to be deleted) edge (u, v) is counted twice, once in CUT(P(Kt)) and225

once in M [ti; P(Kti), wi]. Now if the edge (u, v) is present in c many children226

of t, then in the entry
ℓ∑
i=1

M [ti; P(Kti), wi] this edge gets counted c times.227

To avoid over-counting of the edge (u, v) in M [ti; ., .], we must consider the228

edge (u, v) exactly once and for this purpose we use Child(P(Kt)) in the229

8 S. Jana, S. Saha, A. Sahu, S. Saurabh, and S. Verma

recurrence relation. Considering this over counting, the set of edges corre-230

sponding to M [t1; P(Kt1), w1],M [t2; P(Kt2), w2], . . . ,M [tℓ; P(Ktℓ), wℓ] with size231

ℓ∑
i=1

M [ti; P(Kti), wi] − Child(P(Kt)), together with the edges corresponding to232

CUT(P(Kt)) gives us a feasible solution for (t, P(Kt), w). Hence, M [t; P(Kt), w] ≤233

|CUT(P(Kt))| − Child(P(Kt)) +
ℓ∑
i=1

M [ti; P(Kti), wi], where P(Kt) ⊥ P(Kti) for234

each i ∈ [ℓ] and w =
∑
i(wi + ψ(P(Kti)).235

Next, we show that M [t; P(Kt), w] ≥ R. Let Y be a set of cut edges corre-236

sponding to the entryM [t; P(Kt), w]. Let Y
′ ⊆ Y be the set of edges that are not237

present in Kt. So Y \ Y ′ determines the partition in Kt. Let Y
′ = Y1 ∪ . . . ∪ Yℓ,238

where each Yi is the set of edges for G[V (ti)]. Let X1 ∪ . . . ∪ Xℓ ⊆ (Y \ Y ′),239

where Xi = (Y \ Y ′) ∩ E(K(ti)). Now it is easy to see that Yi ∪ Xi is a240

feasible solution for (ti, P(Kti), wi), where P(Kt) ⊥ P(Kti) for each i ∈ [ℓ]241

and w =
∑
i(wi + ψ(P(Kti)). Since Y \ Y ′ determines the partition only in242

Kt, |Y \ Y ′| = |CUT(P(Kt))|. Thus, we get M [t; P(Kt), w] − |CUT(P(Kt))| +243

Child(P(Kt)) ≥
ℓ∑
i=1

M [ti; P(Kti), wi]. Hence the correctness of the recurrence244

relation follows.245

Time complexity. There are O(n) many nodes in the clique tree of the given246

graph G. The number of entries M [.; ., .] for any node can be upper bounded by247

k2O(
√
s log s) (from Lemma 4). To compute one such entry, we look at the entries248

with the compatible partitions in the children nodes. Now, we describe how we249

compute M [t; P(Kt), w] in a node for a fixed partition P(Kt) and a fixed integer250

w ≤ k. We apply an incremental procedure to find this. Consider an ordering251

t1 ≺ t2 ≺ . . . ≺ tℓ of child nodes of t. In the dynamic-programming, we store252

the entries M [ti; P(Kti), wi] for each P(Kti) ⊥ P(Kt) and wi ≤ k. For each ti, we253

compute the entries Di(z) for 0 ≤ z ≤ k, where Di(z) = min
z

{M [ti; P(Kti), w
∗] :254

P(Kti) ⊥ P(Kt), z = w∗ +ψ(P(Kti), w
∗ ≤ k}. Next we create a set of entries for255

D, defined by256

D(1, 2, . . . , i; z) = min
z=z1+z2

{D(1, 2, . . . , i − 1; z1) +Di(z2)}, for i ∈ [ℓ]. D(1; z) =257

D1(z),∀z (the base case). It takes O(ℓk3) time to compute all the entries of the258

table D. Now using the entries of the table D, we compute M [t; P(Kt), w], i.e.259

M [t; P(Kt), z] = |CUT(P(Kt))| − Child(P(Kt)) +D(1, 2, . . . , ℓ; z).260

Since there are 2O(
√
s log s) many partitions of each node t, computing all DP261

table entries at each node takes 2O(
√
s log s)O(ℓk3) time. Because ℓ, k ≤ n, and262

there are O(n) many nodes in the clique tree, the total running time is upper-263

bounded by 2O(
√
s log s)nO(1).264

4 Polynomial Time Algorithmic Results265

In this section, we obtain polynomial-time algorithms for the optimization ver-266

sion of the Vertex k-Way Cut on interval graphs, circular-arc graphs, and267

permutation graphs.268

Partitioning Subclasses of Chordal Graphs with Few Deletions 9

4.1 Interval Graphs269

Here, we design a dynamic-programming algorithm for the optimization version270

of the Vertex k-Way Cut on interval graphs. Let G be an interval graph271

with vertex set V (G) = {v1, v2, . . . , vn}. Since G is an interval graph, there272

exists a corresponding geometric intersection representation of G, where each273

vertex vi ∈ V (G) is associated with an interval Ii = (ℓ(Ii), r(Ii)) in the real line,274

where ℓ(Ii) and r(Ii) denote left and right endpoints, respectively in Ii. Two275

vertices vi and vj are adjacent in G if and only if their corresponding intervals Ii276

and Ij intersect with each other. Without loss of generality we can assume that277

along with the graph, we are also given the corresponding underlying intervals278

on the real line. We use I to denote the set {Ii : vi ∈ V } of intervals and P279

to denote the set of all endpoints of these intervals, i.e., P = ∪I∈I{ℓ(I), r(I)}.280

In the remaining section, we use vi and Ii interchangeably. For a pair of points281

a and b on the real line with a ≤ b (we say a ≤ b when x-coordinate of a is282

not greater than x-coordinate of b), we define Ia,b to denote the intervals which283

are properly contained in [a, b], formally Ia,b = {I ∈ I : a ≤ ℓ(I) ≤ r(I) ≤ b}.284

Let I⩾b be the set of intervals whose left endpoints are greater than b and285

I<b be the set of intervals whose left endpoint is strictly less than b, formally286

I⩾b = {I ∈ I : ℓ(I) ≥ b} and I<b = {I ∈ I : ℓ(I) < b}.287

We now define a table for dynamic-programming algorithm. For every tuple288

(i, x, y), where 1 ≤ i ≤ k and x, y ∈ P with x < y, any cut where G[Ix,y] is the289

i-th component with respect to the cut in G[I<y] is a feasible cut for the tuple290

(i, x, y) and T [i;x, y] stores the minimum size among all such feasible cuts for291

the tuple (i, x, y). Notice that any two connected components do not intersect.292

Hence we can order the components from left to right. In particular, for a pair293

of components Cj and Cj′ , we say Cj ≺ Cj′ if for any pair of intervals I ∈ Cj294

and I ′ ∈ Cj′ the condition r(I) < ℓ(I ′) holds. In the base case, we compute the295

values for T [1;x, y] for each possible pair x, y in P where x < y. T [1;x, y] stores296

the number of intervals in G[I<y] that have either left endpoint strictly less than297

x or right endpoint strictly greater than y, formally T [1;x, y] = |I<y| − |Ix,y|.298

In the next lemma, we give a recursive formula for computing the values299

T [i;x, y] for i > 1.300

Lemma 5. For every integer i and every pair of points x, y in P where 2 ≤ i ≤ k301

and x < y, the following holds:302

T [i;x, y] = min
x′,y′∈P
x′<y′<x

{T [i− 1;x′, y′] + |I<y ∩ I⩾y′ | − |Ix,y|}.303

Proof. We prove the recurrence relation by showing inequalities in both direc-304

tions. In one direction, let (C1, C2, . . . , Ci) be a feasible cut corresponding to the305

entry T [i;x, y]. Here Ci = G[Ix,y]. Let x
′ and y′ be the left endpoint and right306

endpoint of the component Ci−1, so Ci−1 ⊆ G[Ix′,y′]. Clearly, x
′ < y′ < x < y.307

Now the intervals of the set (I<y ∩ I⩾y′) \ Ix,y are part of cut vertices corre-308

sponding to the entry T [i;x, y]. Here we can get a set of (i − 1) components309

C1, C2, . . . , Ci−1 in the graph G[I<y′] with Ci−1 = G[Ix′,y′] and cut of size at310

10 S. Jana, S. Saha, A. Sahu, S. Saurabh, and S. Verma

most T [i;x, y] − (|I<y ∩ I>y′ | − |Ix,y|). Therefore, by the definition of T [i;x, y],311

T [i− 1;x′, y′] ≤ T [i;x, y]− (|I<y ∩ I>y′ | − |Ix,y|).312

In the other direction, let (C ′
1, C

′
2, . . . , C

′
i−1) be a feasible cut corresponding

to the entry T [i− 1;x′, y′], where x′ < y′ < x < y and Ci−1 = G[Ix′,y′]. Now the
component induced by Ix,y together with C ′

1, C
′
2, . . . , C

′
i−1 produces a feasible

cut for T [i;x, y]. Therefore, the cut corresponding to T [i−1;x′, y′] together with
(I<y ∩ I⩾y′) \ Ix,y gives a cut with the components C ′

1, . . . , C
′
i−1, C

′
i = G[Ix,y].

Hence, T [i− 1;x′, y′] + |I<y ∩ I⩾y′ | − |Ix,y| ≥ T [i;x, y]. This completes the proof
of the lemma. ⊓⊔

With the insight of Lemma 5, we can now state the following theorem.313

Theorem 2. Vertex k-Way Cut in interval graphs with n vertices can be314

solved in O(kn4) time.315

Proof. Let G be a given graph with I as an interval representation where P
denotes the set of endpoints of all the intervals. In the pre-processing step, we
do the following: (i) for every point p ∈ P , we construct I<p and I⩾p, (ii) for
every pair of points p, q in P , we compute |Ip,q| and |I<p ∩ I⩾q|. It will take
O(n2) time to perform both these pre-processing steps. Now in the recurrence
formula, to obtain T [i;x, y], we use the already computed values T [i;x′, y′] for
each possible pair x′, y′ ∈ P with x′ < y′ < x < y. Computing any entry takes
O(n2) time. Since i ranges from 1 to k, we can compute all the values T [i;x, y]
in O(kn4) time. Notice that the entry T [k; ., .] with minimum value gives us the
size of a minimum vertex k-way cut in G. Hence, the theorem holds. ⊓⊔

4.2 Proper Interval Graphs316

In this subsection, we design a dynamic-programming algorithm for the optimiza-317

tion version of the Vertex k-Way Cut on proper interval graphs. In proper318

interval graphs, each vertex is associated with an interval in the real line such319

that no interval is completely contained in another interval. We use the nota-320

tions I, Ii, ℓ(Ii), r(Ii) and P with the same definitions as used in the previous321

subsection. Let I be the set of all intervals with ordering I1 < I2 < . . . < In322

according to their left endpoints. Observe that for proper interval graphs, the323

ordering of intervals with respect to their left endpoints is same as with respect324

to their right endpoints. More explicitly, for any two intervals Ii and Ij where325

ℓ(Ii) < ℓ(Ij), r(Ii) must be less than r(Ij). Let Ii = {I1, I2, . . . , Ii} and G[Ii]326

denotes the subgraph of G induced by Ii. Also for an interval Ii, I
ℓ
i denotes the327

interval in I which has leftmost left endpoint among all the intervals containing328

ℓ(Ii), formally, Iℓi = Ic, where c = min{j; Ij ∈ I, ℓ(Ij) < ℓ(i) < r(Ij)}.329

We now define a table for dynamic-programming algorithm. For every pair330

(i, t), where 1 ≤ i ≤ n and 1 ≤ t ≤ k, we define two entries. T [∈; i, t] and331

T [/∈; i, t]. For every tuple (∈, i, t), any cut where the interval Ii lies in one of332

the t components with respect to the cut in G[Ii] is a feasible cut for the tuple333

(∈, i, t) and T [∈; i, t] stores the minimum size among all such feasible cuts for334

Partitioning Subclasses of Chordal Graphs with Few Deletions 11

the tuple (∈, i, t). For every tuple (/∈, i, t), any cut where the interval Ii does335

not lie in any of the t components with respect to the cut in G[Ii] is a feasible336

cut for the tuple (/∈, i, t) and T [/∈; i, t] stores the minimum size among all such337

feasible cuts for the tuple (/∈, i, t). Similar to interval graphs, here also we order338

the components from left to right. In particular, for a pair of components Cj339

and Cj′ , we say Cj ≺ Cj′ if for any pair of intervals I ∈ Cj and I ′ ∈ Cj′ the340

condition r(I) < ℓ(I ′) holds.341

In the base case, the values T [∈; i, 1] = 0 and T [/∈; i, 1] = 1, for i ∈ [n].342

In the next two lemmas, we give recursive formulas for computing the values343

T [∈; i, t] and T [/∈; i, t], for i ∈ [n], 1 < t ≤ k.344

Lemma 6. For every t and i where 2 ≤ t ≤ k and 1 ≤ i < n, the following345

holds:346

T [/∈; i+ 1, t] = 1 + min{T [∈; i, t], T [/∈; i, t]}.347

Proof. We prove the given recurrence by showing inequalities in both directions.348

In one direction, let (C1, C2, . . . , Ct) be a feasible cut corresponding to the entry349

T [/∈; i + 1, t]. We distinguish the following two cases. Case 1: If Ii ∈ Ct, then350

(C1, C2, . . . , Ct) is a feasible cut corresponding to the entry T [∈; i, t]. Case351

2: If Ii /∈ Ct then (C1, C2, . . . , Ct) is a feasible cut corresponding to the entry352

T [/∈; i, t]. In both these cases, the cut size is one less than a cut corresponding353

to T [/∈; i+ 1, t]. Therefore, T [/∈; i+ 1, t]− 1 ≥ min{T [∈; i, t], T [/∈; i, t]}.354

In the other direction, let (C ′
1, C

′
2, . . . , C

′
t) be a feasible cut respecting the tu-

ple (∈, i, t), whereX1 is the corresponding set of cut vertices. Now (C ′
1, C

′
2, . . . , C

′
t)

is also a feasible cut for T [/∈; i + 1, t] with X1 ∪ {Ii+1} considered as the set
of cut vertices. Similarly, let (C ′′

1 , C
′′
2 , . . . , C

′′
t) be a feasible cut corresponding to

the entry T [/∈; i, t], where X2 is a set of cut vertices. Now (C ′′
1 , C

′′
2 , . . . , C

′′
t) is

also a feasible cut corresponding to the entry T [/∈; i + 1, t] where X2 ∪ {Ii+1}
is a set of cut vertices. Thus, T [/∈; i + 1, t] ≤ 1 + min{T [∈; i, t], T [/∈; i, t]}.
Hence the lemma holds. ⊓⊔

Lemma 7. Let di be the number of intervals passing through ℓ(Ii) and i
′ be the355

index corresponding to the interval Iℓi . Then for every 2 ≤ t ≤ k the following356

holds:357

T [∈; i+ 1, t] = min{T [∈; i, t], T [/∈; i′, t− 1] + di+1 − 1}.358

Proof. We prove the recurrence relation by showing inequalities in both direc-
tions. In one direction, let (C1, C2, . . . , Ct) be a feasible cut corresponding to
the entry T [∈; i+ 1, t]. We distinguish the following two cases. If Ii ∈ Ct then
(C1, C2, . . . , (Ct \ {Ii+1})) is a feasible cut corresponding to the entry T [∈; i, t].
If Ii /∈ Ct, then (C1, C2, . . . , Ct−1) is a feasible cut corresponding to the en-
try T [/∈; i′, t − 1], but in this case the cut size decreases by di+1 − 1. So
T [∈; i+1, t] ≥ min{T [∈; i, t], T [/∈; i′, t−1]+di+1−1}. In the other direction,
let (C ′

1, C
′
2, . . . , C

′
t) be a feasible cut corresponding to the entry T [∈; i, t], where

X1 is the set of cut vertices. Now (C ′
1, C

′
2, . . . , C

′
t ∪ {Ii+1}) is also a feasible cut

corresponding to the entry T [∈; i + 1, t] with the same cut X1. Similarly, let

12 S. Jana, S. Saha, A. Sahu, S. Saurabh, and S. Verma

(C ′′
1 , C

′′
2 , . . . , C

′′
t−1) be a feasible cut corresponding to the entry T [/∈; i′, t − 1],

where X2 is the set of cut vertices. Let Z denote the set of intervals containing
ℓ(Ii+1) except Ii+1. Now (C ′′

1 , C
′′
2 , . . . , C

′′
t−1, Ii+1) is also a feasible cut corre-

sponding to the entry T [∈; i+ 1, t] with X2 ∪ Z as a set of cut vertices. Since
|Z| = di+1, then T [∈; i+1, t] ≤ min{T [∈; i, t], T [/∈; i′, t− 1] + di+1 − 1}. ⊓⊔

With the insight of Lemma 6 and Lemma 7, we can now state the following359

theorem.360

Theorem 3. Vertex k-Way Cut in proper interval graph with n vertices can361

be solved in O(kn) time assuming that the interval model is given..362

Proof. Let G be a given proper interval graph with corresponding set I of n
intervals. Let P denote the set of all endpoints of these intervals. Here we assume
that we are given the set of intervals with the ordering based on left endpoints
as an input. In the pre-processing step, we do the following: compute Iℓi and di,
for each interval Ii ∈ I. It will take O(n) time to perform all the pre-processing
steps. Now in the recurrence formula, to obtain T [/∈; i+1, t] and T [∈; i+1, t],
we use O(1) many computations. So computing any entry takes O(1) time. Since
i ranges from 1 to up to n, and t ≤ k, we can compute all the entries of the table
in O(kn) time. Notice that the entry T [.;n, k] with minimum value gives us the
size of a minimum vertex k-way cut in G. Hence, the theorem holds. ⊓⊔

4.3 Circular-arc Graphs363

A graph G is said to be a circular-arc graph if there exists a corresponding364

geometric intersection representation A(G) of G, where each vertex v ∈ G is365

associated with an arc on a fixed circle. Two vertices u and v are adjacent in G366

if and only if the corresponding arcs intersect each other. It is easy to observe367

that this graph class contains interval graphs.368

Here we design a polynomial-time algorithm for the optimization version369

of Vertex k-Way Cut problem on circular-arc graphs. Let S be an optimal370

solution of Vertex k-Way Cut problem on G and C be a component in G \S.371

Assume I is the circular-arc representation of C in A(G) and I1 ∈ I be the372

arc that has the last endpoint, say u, in the clockwise direction in the circular-373

arc representation of G \ S. Let I ′ be the set of arcs in A(G) that intersect u,374

excluding I1. Since S is a k-way cut it must contain all the vertices corresponding375

to the arcs in I ′. Now assume we cut the circle corresponding to the circular-arc376

representation of G \ S at u and convert the circular-arc to a real line to get377

an instance of Vertex k-Way Cut problem on interval graphs. We claim that378

S \I ′ is an optimal solution to the Vertex k-Way Cut problem on the interval379

graph instance that we construct.380

Claim. S \ I ′ is a solution to the Vertex k-Way Cut problem on the interval381

graph instance G \ I ′.382

Proof. Let S′ be an optimal solution on theVertex k-Way Cut problem on the
interval graph induced by G\I ′. If |S′| = |S \I ′|, we are done. Else, |S′| < |S \I ′|

Partitioning Subclasses of Chordal Graphs with Few Deletions 13

then S \ I ′ is not an optimal solution to the Vertex k-Way Cut problem on
the interval graph instance G \ I ′. Observe that G \ (S′ ∪ I ′) has at least k
components, and |S′ ∪ I ′| = |S′| + |I ′| < |S| + |I ′| = |S ∪ I ′|. Thus S′ ∪ I ′ is
an optimal solution to Vertex k-Way Cut problem on G with size strictly
smaller than S which is a contradiction to our assumption that S is an optimal
solution. ⊓⊔

Now given an instance G for Vertex k-Way Cut problem on circular-arc383

graphs we convert it to an instance of interval graph for all the 2n endpoints and384

run the algorithm for Vertex k-Way Cut problem, designed in Section 4.1, on385

each of those interval graphs and store the corresponding S′, I ′. As a solution,386

we return the set S′ ∪ I ′ that has minimum size. Since algorithm for interval387

graph runs in O(kn4) time (Theorem 2); so we have the following theorem.388

Theorem 4. Vertex k-Way Cut in circular-arc graphs with n vertices can389

be solved in O(kn5) time.390

4.4 Permutation Graphs391

This subsection presents a dynamic-programming algorithm for the optimization392

version of the Vertex k-Way Cut problem on permutation graphs. Let G be393

a permutation graph with vertex set V (G) and edge set E(G). There exists a394

corresponding geometric intersection representation for a permutation graph G395

similar to interval graphs, where each vertex v in G is associated with a line396

segment S(v) with endpoints x(v) and y(v) being on two parallel lines X and397

Y , respectively. Without loss of generality, we can assume that both the lines X398

and Y are horizontal. Two vertices u and v are adjacent in G if and only if the399

segments S(u) and S(v) intersect with each other. Assume that along with the400

graph, we have the set of corresponding line segments as an input. Here, we use401

S to denote the segments {S(v) : v ∈ V }. Let PX and PY denote the set of all402

endpoints of S on the lines X and Y , respectively. Let P = PX ∪ PY .403

For a pair of vertices u and v, we write x(u) < x(v) (similarly, y(u) < y(v))404

to indicate that x(v) is to the right of x(u) (similarly, y(v) is to the right of405

y(u)). If both x(u) < x(v) and y(u) < y(v) hold, then we say S(u) ≺ S(v).406

In the rest of this subsection, we interchangeably use v and S(v). For a pair of407

points α and β where α ∈ X,β ∈ Y , we denote the set of segments in S whose408

one endpoint lies either to the left of α or to the left of β by Sαβ . We use G[α, β]409

to denote the subgraph induced by Sαβ in G. Additionally, for any set of four410

points, α1, α2 ∈ X and β1, β2 ∈ Y such that α1 < α2 and β1 < β2, we define411

Sα1,α2

β1,β2
= {S(v) : α1 ≤ x(v) ≤ α2, β1 ≤ y(v) ≤ β2}. We use G[(α1, α2), (β1, β2)]412

to denote the subgraph of G induced by the segments Sα1,α2

β1,β2
.413

We now define a table for our dynamic-programming algorithm. For every414

tuple (i, p, q, r, s), where p, q ∈ PX with p < q and r, s ∈ PY with r < s, any415

cut where G[(p, q), (r, s)] is the i-th component with respect to the cut in G[q, s]416

is a feasible cut for the tuple (i, p, q, r, s) and T [i; p, q, r, s] stores the minimum417

size among all such feasible cut for the tuple (i, p, q, r, s). Notice that any two418

14 S. Jana, S. Saha, A. Sahu, S. Saurabh, and S. Verma

connected components do not intersect. Hence we can order the components419

from left to right. In particular, for a pair of components Cj and Cj′ , we say420

Cj ≺ Cj′ if for any pair of line segments u ∈ Cj and v ∈ Cj′ , S(u) ≺ S(v).421

For the base case, the value T [1; p, q, r, s] is the number of segments in G[q, s]422

whose one endpoint lies either strictly to the left of p or r, or strictly to the right423

of q or s, formally T [1; p, q, r, s] = |Sqs | − |Sp,qr,s |. In the next lemma, we give a424

recursive formula for computing the values T [i; p, q, r, s], for i > 1.425

Lemma 8. For every i, 2 < i < k and any set of four points p, q, r, s, where426

p, q ∈ PX with p < q and r, s ∈ PY with r < s, the following holds:427

T [i; p, q, r, s] = min
p′,q′∈PX & r′,s′∈PY

p′<q′<p, r′<s′<r

{T [i− 1; p′, q′, r′, s′] + |Sqs | − |Sq
′

s′ | − |Sp,qr,s |}.428

Proof. We prove the recurrence by showing inequalities in both directions. In429

one direction, let (C1, C2, . . . , Ci) be a feasible cut corresponding to the entry430

T [i; p, q, r, s]. Here Ci = G[(p, q), (r, s)]. Let p′, q′, r′, s′ be four points such that431

Ci−1 = G[(p′, q′), (r′, s′)], p′, q′ ∈ PX and r′, s′ ∈ PY . Clearly, p
′ < q′ < p and432

r′ < s′ < r hold. Now, the segments of the set Sqs \ (S
q′

s′ ∪ Sp,qr,s) are cut vertices433

corresponding to the entry T [i; p, q, r, s]. Here we get a set of (i− 1) components434

C1, C2, . . . , Ci−1 in the graph G[q′, s′] with Ci−1 ⊆ G[(p′, q′), (r′, s′)] and cut size435

at most T [i; p, q, r, s] − (|Sqs | − |Sq
′

s′ | − |Sp,qr,s |). Therefore, T [i − 1; p′, q′, r′, s′] ≤436

T [i; p, q, r, s]− (|Sqs | − |Sq
′

s′ | − |Sp,qr,s |).437

In the other direction, let (C ′
1, C

′
2, . . . , C

′
i−1) be a feasible cut corresponding

to the entry T [i − 1; p′, q′, r′, s′], where p′ < q′ < p, r′ < s′ < r and Ci−1 =
G[(p′, q′), (r′, s′)]. The component induced by the subgraph G[(p, q), (r, s)] to-
gether with C ′

1, C
′
2, . . . , C

′
i−1 produces a feasible cut for T [i; p, q, r, s]. Now the

cut corresponding to the entry T [i− 1; p′, q′, r′, s′] together with (|Sqs | − |Sq
′

s′ | −
|Sp,qr,s |) gives a cut that yields the set of components C ′

1, C
′
2, . . . , C

′
i−1, C

′
i =

G[(p, q), (r, s)]. Hence, T [i− 1; p′, q′, r′, s′] + |Sqs | − |Sq
′

s′ | − |Sp,qr,s | ≥ T [i; p, q, r, s].
This completes the proof of the lemma. ⊓⊔

With the insight of Lemma 8, we can now state the following theorem.438

Theorem 5. Vertex k-Way Cut in permutation graph with n vertices can be439

solved in O(kn8) time.440

Proof. Let G be a given graph with a set S of n line segments. Recall that we
use PX and PY to denote the set of all endpoints of line segments in X and
Y , respectively. In the pre-processing step, we do the following: (i) we construct
Sαβ , for every pair of points α ∈ PX and β ∈ PY . (ii) we compute |Sα1,α2

β1,β2
| for

each possible set of four points α1, α2 ∈ PX and β1, β2 ∈ PY . It takes O(n5)
time to perform all these pre-processing steps. Now in the recurrence formula, to
obtain T [i; p, q, r, s], we use the already computed values, where p′, q′ ∈ PX and
r′, s′ ∈ PY with p′ < q′ < p and r′ < s′ < r. Computing any entry takes O(n4)
time. Since i ranges from 1 to k, we can compute all the values T [i; p, q, r, s] in
O(kn8) time. Notice that the entry T [k; ., .] with minimum value gives us the
size of a minimum vertex k-way cut in G. Hence, the theorem holds. ⊓⊔

Partitioning Subclasses of Chordal Graphs with Few Deletions 15

References441

1. Christopher J Augeri and Hesham H Ali. New graph-based algorithms for par-442

titioning VLSI circuits. In 2004 IEEE International Symposium on Circuits and443

Systems (IEEE Cat. No. 04CH37512), volume 4, pages IV–IV. IEEE, 2004.444

2. Chandra Chekuri, Kent Quanrud, and Chao Xu. LP relaxation and tree packing445

for minimum k-cut. SIAM Journal on Discrete Mathematics, 34(2):1334–1353,446

2020.447

3. Derek G Corneil. The complexity of generalized clique packing. Discrete applied448

mathematics, 12(3):233–239, 1985.449

4. Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michal450

Pilipczuk, Saket Saurabh, and MagnusWahlström. Randomized Contractions Meet451

Lean Decompositions. ACM Trans. Algorithms, 17(1):6:1–6:30, 2021.452

5. Rodney G Downey, Vladimir Estivill-Castro, Michael Fellows, Elena Prieto, and453

Frances A Rosamund. Cutting up is hard to do: The parameterised complexity454

of k-cut and related problems. Electronic Notes in Theoretical Computer Science,455

78:209–222, 2003.456

6. Olivier Goldschmidt and Dorit S Hochbaum. A polynomial algorithm for the k-cut457

problem for fixed k. Mathematics of operations research, 19(1):24–37, 1994.458

7. Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier,459

2004.460

8. Anupam Gupta, Euiwoong Lee, and Jason Li. An FPT algorithm beating 2-461

approximation for k-cut. In Proceedings of the Twenty-Ninth Annual ACM-SIAM462

Symposium on Discrete Algorithms, pages 2821–2837. SIAM, 2018.463

9. Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate al-464

gorithms for k-cut. In 2018 IEEE 59th Annual Symposium on Foundations of465

Computer Science (FOCS), pages 113–123. IEEE, 2018.466

10. David R Karger and Clifford Stein. A new approach to the minimum cut problem.467

Journal of the ACM (JACM), 43(4):601–640, 1996.468

11. Ken-ichi Kawarabayashi and Bingkai Lin. A nearly 5/3-approximation FPT Algo-469

rithm for Min-k-Cut. In Proceedings of the Fourteenth Annual ACM-SIAM Sym-470

posium on Discrete Algorithms, pages 990–999. SIAM, 2020.471

12. Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded472

size is fixed-parameter tractable. In 2011 IEEE 52nd Annual Symposium on Foun-473

dations of Computer Science, pages 160–169. IEEE, 2011.474

13. Jason Li. Faster minimum k-cut of a simple graph. In 2019 IEEE 60th Annual475

Symposium on Foundations of Computer Science (FOCS), pages 1056–1077. IEEE,476

2019.477

14. Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A Parameterized478

Approximation Scheme for Min k-Cut. In 2020 IEEE 61st Annual Symposium on479

Foundations of Computer Science (FOCS), pages 798–809. IEEE, 2020.480

15. Pasin Manurangsi. Inapproximability of maximum edge biclique, maximum bal-481

anced biclique and minimum k-cut from the small set expansion hypothesis. In 44th482

International Colloquium on Automata, Languages, and Programming (ICALP483

2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.484

16. Dániel Marx. Parameterized graph separation problems. Theoretical Computer485

Science, 351(3):394–406, 2006.486

17. Huzur Saran and Vijay V Vazirani. Finding k cuts within twice the optimal. SIAM487

Journal on Computing, 24(1):101–108, 1995.488

18. Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall489

Upper Saddle River, 2001.490

	Partitioning Subclasses of Chordal Graphs with Few Deletions

