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Abstract Classical clustering problems search for a partition of objects into a fixed
number of clusters. Inmany scenarios, however, the number of clusters is not known or
necessarily fixed. Further, clusters are sometimes only considered to be of significance
if they have a certain size. We discuss clustering into sets of minimum cardinality k
without a fixed number of sets and present a general model for these types of problems.
This general framework allows the comparison of different measures to assess the
quality of a clustering. We specifically consider nine quality-measures and classify
the complexity of the resulting problems with respect to k. Further, we derive some
polynomial-time solvable cases for k = 2with connections tomatching-type problems
which, among other graph problems, then are used to compute approximations for
larger values of k.
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1 Introduction

Clusteringproblems arise in different areas in verydiverse formswith the only common
objective of finding a partition of a given set of objects into, by some measure, similar
parts. Most models consider variants of the classical k-means or k-median problem
in the sense that k is a fixed given integer which determines the number of clusters one
searches for. In some applications however it is not necessary to compute a partition
with exactly k parts, sometimes it is not even clear how to reasonably choose a number
for k. We want to discuss a clustering model which does not fix the number of clusters
but instead requires that each cluster contains at least k objects. This constraint can
be seen as searching for a clustering into parts of a specified minimum significance.
For general classification or compression tasks, one might consider small clusters as
disposable outliers.

One concrete scenario for this type of partitioning is Load Balanced Facility

Location [13], a variant of the facility location problemwhere one is only interested in
building facilitieswhich are profitable. In this scenario, a facility is notmeasured by the
initial cost of building it but by its profitability once it is opened.Consequently, it is only
reasonable to build a facility if there are enough (but maybe not too many) customers
who use it but aside from this constraint we can build asmany facilities aswewant. The
considered cardinality-constraint alsomodels the basic principle of “hiding in a crowd”
introduced by the concept of k-anonymity [17] which introduces formal problems such
as r -Gather [2], k-Member Clustering [6] andMicroaggregation [8].A cluster
in this context is a collection of personal records which has to have a certain minimum
cardinality in order to be considered anonymous.

We want to consider the general task of computing a clustering into sets of mini-
mum cardinality k ∈ Nwith the objective to introduce an abstract framework to model
such types of problems. For this purpose, we define the generic problem (‖·‖, f )-k-
cluster and specifically discuss nine variants of it, characterised via three different
choices for the local measure f and the global measure ‖ · ‖; a detailed descrip-
tion of these variants follows in Sect. 2. Our main contributions are the abstract
model and the complexity- and approximation-results which become more appar-
ent due to this model, as they are derived mostly via reductions to/from other graph
problems. Section 3 compares the nine problem variants with respect to structural
differences. In Sects. 4 and 5, we classify the complexity for small values of k by iden-
tifying polynomial-time solvable cases with connections to matching-type problems
and deriving (also improving known) NP-hardness results for the remaining cases.
Section 6 uses a large variety of connections to other graph problems, including the
results from Sect. 4, to develop approximation-algorithms. A more detailed descrip-
tion of the results as well as the comparison to results from related work follows in
the respective sections and is summarised in Tables 1 and 2 in the conclusions.

An extended abstract of this paper was published with ISAAC 2016; see [1].
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2 General Abstract Model

In the following, we consider the general task of partitioning a set of n given objects
into sets of cardinality at least k. Our model represents the objects as vertices of an
undirected graph G = (V, E). A feasible solution is any partition P1, . . . , Ps of V
such that |Pi | ≥ k for all i ∈ {1, . . . , s}. In the following we will refer to such a
partition as k-cluster. Recall that in contrast to the classical clustering problems like
s-means or s-median, the number of clusters s is not necessarily part of the input. Of
course, one does not search for just any k-cluster but for a partition which preferably
only combines objects which are in some sense “close”. This similarity can be very
hard to capture and the appropriate way tomeasure it highly depends on the clustering-
task and the structure of the input. We therefore consider an arbitrary given distance
function d : V×V → Q+ which for any two objects u, v ∈ V represents the distortion
which is caused by combining u and v. This general view allows to simultaneously
study many different measures for dissimilarity.

In our model, the distance d is defined via a given edge-weight function wE : E →
Q+. For two vertices u, v ∈ V we define d(u, v) := wE ({u, v}) if {u, v} ∈ E ,
and if {u, v} /∈ E , the distance d(u, v) is defined by the shortest path from u to v

in G. We will say that d satisfies the triangle inequality (and hence is a metric) if
d(u, v) ≤ d(u, w) + d(w, v) for all u, v, w ∈ V . Observe that our definition allows
for distances d which do not satisfy this property, a simple example is the complete
graph over V = {u, v, w} with wE ({u, v}) = wE ({u, w}) = 1 and wE ({v,w}) = 3.
Violations of the triangle inequality are only possible for distances defined by an edge.
Edges hence do not necessarily imply similarity but can reflect a difference greater
than the shortest path between two objects and make it more unattractive to cluster
them together; very different from the multiedges introduced in the hypergraph-model
for k-anonymous clustering from [20], where hyperedges reflect similar groups.

The overall cost of a partition P1, . . . , Ps is always in some sense proportional to
the dissimilarities within each set or cluster P . On an abstract level, the global cost
induced by a partition P1, . . . , Ps is calculated by first computing the local cost of
each cluster and second by combining all this individual information. In this paper,
we discuss three different measures for the local cost caused by a cluster P:

Radius rad(P) := min{max{d(x, y) : y ∈ P} : x ∈ P}.
Diameter diam(P) := max{max{d(x, y) : y ∈ P} : x ∈ P}.
Average Distortion avg(P) := |P|−1 · min{∑y∈P d(x, y) : x ∈ P}.
Here and throughout the paper d denotes the distance induced on the whole graph;
hence we consider for u, v ∈ P with {u, v} /∈ E as distance d(u, v) the shortest path
from u to v in G even if this path contains vertices which are not in P . For the local
measures average distortion or radius we will sometimes call a vertex x ∈ P a central
vertex for cluster P , if avg(P) = 1

|P|
∑

y∈P d(x, y) or rad(P) = max{d(x, y) : y ∈
P}, respectively. Observe that central vertices with respect to average distortion and
radius may be different; in the cluster P = {x, y, x1, y1, y2} with wE ({y, x}) =
wE ({y, y1}) = wE ({y, y2}) = 1 and wE ({x, x1}) = 2, the vertex x is the only central
vertex with respect to radius and y is the only central vertex with respect to average
distortion.
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The overall cost of a k-cluster P1, . . . , Ps is given by a combination of the local costs
f (P1), . . . , f (Ps) with f ∈ {rad, diam, avg}. In order to model the most common
problem-versions we consider the following three possibilities:

Worst Local Cost: Maximum cost among all clusters, formally computed by
max{ f (Pi ) : 1 ≤ i ≤ s}, denoted by ‖·‖∞ .
Worst Weighted Local Cost: Maximum cost among all clusters, weighted by
their sizes computed by max{|Pi | f (Pi ) : 1 ≤ i ≤ s}, denoted by ‖·‖w

∞ .
Accumulated Weighted Local Cost: The sum of the local costs of all clusters,
weighted by their sizes, computed by

∑s
i=1 |Pi | f (Pi ), denoted by ‖ · ‖w

1
.

Any combination of f ∈ {rad, diam, avg} with ‖ · ‖ ∈ {‖ · ‖w

1
, ‖ · ‖w

∞ , ‖ · ‖∞} yields a
different problem. Structural properties discussed in Sect. 3 will explain why we do
not consider unweighted 1-norm. For a fixed k ∈ N, the general optimisation problem
is given by:

(‖·‖, f )-k-cluster

Input: Graph G = (V, E) with edge-weight function wE : E → Q+, k ∈ N.
Output: A k-cluster P1, . . . , Ps of V for some s ∈ N, which minimises

‖( f (P1), . . . , f (Ps))‖.

We will use the name (‖·‖, f )-k-cluster to also refer to the natural corresponding
decision problem, i.e., given a graph G with edge-weights, an integer k and a bound
D ∈ Q+, does there exist a k-cluster P1, . . . , Ps of V for some s ∈ N such that
‖( f (P1), . . . , f (Ps))‖≤ D.

Some of the variants of (‖·‖, f )-k-cluster are known under different names.
(‖·‖w

1
, diam)-k-cluster is equivalent to k-member clustering [6] and with d cho-

sen as the Euclidean distance, (‖·‖∞ , rad)-k-cluster is the problem r -Gather [2]
(with r = k). The variant (‖·‖w

1
, avg)-k-cluster models Load Balanced Facil-

ity Location [13] with unit demands and without facility costs. Further, again with
d being the Euclidean distance, (‖·‖w

1
, avg)-k-cluster is equivalent to Microag-

gregation [8].
Choosing between the cluster-measures and norms allows adjustment for specific

types of objects and different forms of output representation. The norm decides if the
desired output has preferably uniformly structured clusters with or without uniform
cardinalities (∞-norms) or builds clusters of object-specific irregular structure (1-
norm). For cohesive clustering, the diameter-measure is more suitable for the choice
of f . Average distortion is best used when the output chooses one representative of
each cluster and projects all other objects in this cluster to it; a scenario which for
example occurs for facility-location type problems. If the output does not project to
one representative but considers clusters as circular areas, the radius measure is the
most reasonable choice for f . Optimal k-clusters may differ for different choices of
‖ · ‖ and/or f as we will discuss in the next section. Still, we will see that there are
also very useful similarities.
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3 Structural Properties of Optimal Partitions

The diverse behaviour for different choices of f and ‖ · ‖ is nicely displayed in the
cluster-cardinalities of optimal solutions. For the example G = (V, E) with V =
{c, v1, v2, . . . , vn} and E = {{vi , c} : 1 ≤ i ≤ n} with wE ({c, vi }) = 1 for all i , we
find that for radius and average distortion, the single cluster V is the optimal solution
with ‖ · ‖∞ or ‖ · ‖w

1
. If wE ({vi , v j }) = D for some large value D, any k-cluster with

more than one set is arbitrarily worse. For the diameter-measure however we know
that in general diam(S) ≤ diam(P) for all sets S ⊆ P , which immediately yields:

Proposition 1 From any given solutionP for an instance of (‖ · ‖, diam)-k-cluster
it is possible to compute in polynomial time a solution P′ of the same global cost for
which |P| < 2k for all P ∈ P′, for all choices of ‖ · ‖ ∈ {‖ · ‖w

1
, ‖ · ‖w

∞ , ‖ · ‖∞} and
k ∈ N.

For radius we only have the weaker property that rad(S) ≤ rad(P) for all sets S ⊆ P
such that a central vertex for P with respect to radius is contained in S. Average
distortion lacks such monotone behaviour entirely. Observe that a large cardinality of
a cluster can somehow “smooth over” some larger distances, for example for three
vertices u, v, w with wE ({u, v}) = 3 and wE ({u, w}) = 1, adding w to the cluster
{u, v} decreases the average distortion from 3

2 to 4
3 . Examples like these show that,

even with triangle inequality for d, we cannot in general restrict the maximum cluster-
cardinality for (‖·‖∞ , avg)-k-cluster , which is a bit undesirable, given that most
applications also prefer to have some natural upper bound on the cardinality (not too
many customers). In a realistic scenario, we encounter sets of cardinality 2k or larger in
optimal solutions for (‖·‖∞ , avg)-k-cluster , if they contain an object (often called
outlier) which has a large distance from all objects. Deleting such outliers before
computing clusters is generally a reasonable pre-processing step, which makes large
clusters in (‖·‖∞ , avg)-k-cluster unlikely.

In general, we would like the computation of global cost to somehow favour finer
partitions in order to exploit the difference to clustering models which bound the
number of sets. This is the reason why we do not consider the unweighted 1-norm,
i.e., ‖ ( f (P1), . . . , f (Ps)) ‖1 :=

∑s
i=1 f (Pi ). For the example V = {v1i , v2i : 1 ≤

i ≤ n} with wE ({v1i , v2i }) = 1 for i ∈ {1, . . . , n} and wE ({vhi , vkj }) = n − 1 for
i, j ∈ {1, . . . , n} with i 
= j and h, k ∈ {1, 2}, the best 2-cluster w.r.t. ‖ · ‖1 with
any choice for f is V itself, while the most reasonable 2-cluster for most applications
one can think of for this graph is obviously {{v1i , v2i } : 1 ≤ i ≤ n}. This makes ‖ · ‖1

very unattractive for our clustering purposes. Observe that triangle inequality does not
improve this behaviour, since the distance d for this example satisfies it.

Triangle inequality however has the strong advantage that we can restrict (for most
variants of (‖·‖, f )-k-cluster without loss of generality) the set of solutions to only
contain clusters of a maximum cardinality of 2k − 1.

Theorem 1 For any k ∈ N and any graph G with edge-weights for which the induced
distance d satisfies the triangle inequality, it is possible to compute in polynomial time
from any given k-cluster P for G, a k-cluster P′ for which |P| < 2k for all P ∈ P′
and such that:
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– P′ has the same global cost as P with respect to ‖·‖w

∞ and rad or avg.
– P′ has at most twice the global cost ofP with respect to ‖·‖w

1
and rad or avg, and

also with respect to ‖·‖∞ and rad.

Proof Consider a k-clusterP containing a cluster P of cardinality s = tk+r for some
t ≥ 2 and k > r ≥ 0 with some central vertex c ∈ P with respect to the considered
local measure f ∈ {rad, avg}. Construct successively for i ∈ {1, . . . , t − 1} the sets
Vi containing k vertices from Pi\{c}, where Pi := P\(V1 ∪ · · · ∪ Vi−1), including
vi := argmin{d(p, c) : p ∈ Pi\{c}}. We consider the increase of global cost for
replacing P by V1, . . . , Vt−1, Pt−1 in P:

For the local measure radius, we see that rad(Pi ) ≤ rad(P) for all i and hence
especially for i = t − 1. The radius of the sets Vi can be bounded by:

rad(Vi ) ≤ max{d(vi , p) : p ∈ Vi } ≤ d(vi , c) + max{d(c, p) : p ∈ Vi } ≤ 2 · rad(P).

The global cost for (‖·‖w

1
, rad)-k-cluster and (‖·‖∞ , rad)-k-cluster only

increases by a factor of at most two. For the weighted ∞-norm, these inequalities
yield:

|Vi | · rad(Vi ) = k · rad(Vi ) ≤ 2k · rad(P) ≤ |P| · rad(P).

The global cost for (‖·‖w

∞, rad)-k-cluster consequently does not increase.
For the local measure average distortion, the weighted average for each Pi with

i ∈ {1, . . . , t − 1} is bounded by:

|Pi | · avg(Pi ) ≤
∑

p∈Pi

d(c, p) ≤ |P| · avg(P).

The local cost for Vi with i ∈ {1, . . . , t − 1} is bounded by:

|Vi | · avg(Vi ) ≤
∑

p∈Vi
d(vi , p) ≤ k · d(vi , c) +

∑

p∈Vi
d(c, p).

By the choice of the vertices vi we can bound k · d(vi , c) ≤ ∑
p∈Pi d(c, p) and

conclude that:

|Vi | · avg(Vi ) ≤
∑

p∈Pi

d(c, p) +
∑

p∈Vi
d(c, p) =

∑

p∈Pi−1

d(c, p) ≤ |P| · avg(P).

The global cost with respect to the weighted ∞-norm ‖ · ‖w

∞ consequently does not
increase by replacing P by V1, . . . , Vt−1, Pt−1. For (‖·‖w

1
, avg)-k-cluster the parti-

tionV1, . . . , Vt−1, Pt−1 adds eachdistanced(c, p)with p ∈ P atmost twice compared
to partitioning into P , which also means that the global cost is at most doubled. �
We will look at the particular case of k = 2 in the next section and therefore also
show:
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Proposition 2 For any instance of (‖·‖w

1
, avg)-2-cluster for which the induced

distance d satisfies the triangle inequality, it is possible to compute in polynomial time
from any optimal solution P, an optimal solution P′ for which |P| ∈ {2, 3} for all
P ∈ P′.
Proof For a cluster P = {x1, x2 . . . , xr } with r > 3, let xr be a central vertex with
respect to average distortion. A further partitioning of P into {x2i , x2i+1} for i ∈
{1, . . . , z − 1} with z = � r

2� and {x1, x2z, xr } does not increase the global cost for
(‖·‖w

1
, avg)-2-cluster , since:

|P| · avg(P) =
r∑

i=1

d(xi , xr )

= d(x2z, xr ) + d(xr , x1) +
z−1∑

i=1

d(x2i , xr ) + d(x2i+1, xr )

≥ |{x1, x2z, xr }| · avg({x1, x2z, xr }) +
z−1∑

i=1

d(x2i , x2i+1)

= |{x1, x2z, xr }| · avg({x1, x2z, xr }) +
z−1∑

i=1

2 · avg({x2i , x2i+1})

= ‖ avg({x1, x2z, xr }), avg({x2, x3}), . . . , avg({x2z−2, x2z−1}) ‖w

1

�

4 Connections to Matching Problems

The graph-representation we chose to define (‖·‖, f )-k-cluster reveals relations
to other well studied graph problems, in case of k = 2 not to classical clustering but
to matching problems. Some variants can be reduced to finding a minimum-weight
edge cover in a graph, that is, a problem which can be reduced to the problem of
finding a minimum weight perfect matching (a simple reduction is described, e.g., in
the first volume of Schrijver’s monograph [[18], Section 19.3]). As a consequence, a
minimum-weight edge cover can be found in O(n3) time by the results of Edmonds
and Johnson [10].

Theorem 2 (‖·‖w

1
, avg)-2-cluster can be solved in O(n3) time.

Proof (‖·‖w

1
, avg)-2-cluster searches for a 2-cluster P1, . . . , Ps minimising:

s∑

i=1

min

⎧
⎨

⎩

∑

y∈Pi

d(x, y) : x ∈ Pi

⎫
⎬

⎭
.

In other words, for any graphG = (V, E), the global cost is the weight of the cheapest
edge-set E ′ ⊆ V ×V for which the graph G ′ := (V, E ′) has s connected components
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P1, . . . , Ps with at least 2 vertices such that the induced subgraph of each Pi is a star-
graph. This property is equivalent to E ′ being a minimum-weight edge cover for the
complete graph on V with edge-weights equal to the distance d; observe that the graph
(V, E ′) is a forest without isolates and without paths of length 3 for every minimum-
weight edge cover E ′ which means that its connected components are star-graphs.

�
Proposition 3 (‖·‖∞ , rad)-2-cluster can be solved in O(n3) time.

Proof For a graphG = (V, E), first check all vertices in V and find the smallest value
c > 0 such that each vertex v has distance at most c from at least one other vertex.
This c is obviously a general lower bound on the global cost, since each vertex needs
at least one ‘partner’.

For k = 2, this c is also the optimal value. To see this, let Ē be any minimum
edge cover for the graph G ′ := (V, E ′) with E ′ := {{u, v} : 0 < d(u, v) ≤ c}.
Such a cover exists, as there are no isolated vertices in G ′ by the choice of c. Let
C1, . . . ,Cs be the connected components of the graph induced by the edges in Ē .
Each such component Ci is a star graph by the minimality of the edge cover and
contains at least two vertices, hence the partition {V [Ci ] : 1 ≤ i ≤ s} is a 2-cluster
for G with radius at most c for each cluster. An optimal solution for (‖·‖∞, rad)-2-
cluster can hence be obtained by computing a minimum edge cover for G ′. �
With respect to diameter, this edge cover strategy is not applicable for clusters of
cardinality larger than two. Even for k = 2 there are cases for which clusters of
cardinality 3 are required in every optimal solution. It seems difficult to compute the
diameter of a cluster by summing up certain edge-weights. We therefore consider the
followingmatchingproblemwhich ismore involvedbut still solvable inO(n3m2 log n)

[3] (this kind of generalised matching can also be used for anonymisation by deletion,
see [5]):

Simplex Matching

Input: Hypergraph H = (V, F) with F ⊆ (V 2 ∪ V 3) and cost-function
c : F → Q satisfying:

(a) {{u, v}, {v,w}, {u, w}} ⊆ F for all {u, v, w} ∈ F . (subset condition)
(b) c({u, v})+ c({v,w})+ c({u, w}) ≤ 2c({u, v, w}) for all {u, v, w} ∈

F . (simplex condition)
Output: A perfect matching of H (that is a set S ⊆ F such that every vertex

in V appears in exactly one hyperedge of S) of minimal cost.

Proposition 4 (‖·‖w

1
, diam)-2-cluster can be solved in O(n9 log n) time.

Proof We model our problem as a particular instance of Simplex Matching. Let
G = (V, E) be an input graph for (‖·‖w

1
, diam)-2-cluster . The corresponding

input for Simplex Matching is the hypergraph H = (V, V 2 ∪ V 3) which obvi-
ously satisfies the subset condition. By Proposition 1, there exists an optimal solution
for (‖·‖w

1
, diam)-2-cluster among the perfect matchings for H . According to the

original problem, the cost-function c for any u, v, w ∈ V is defined as:
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– c({u, v}) := 2d(u, v) and
– c({u, v, w}) := 3 · max{d(u, v), d(v,w), d(u, w)}

and hence satisfies the simplex condition. Since this complete hypergraph has O(n3)
hyperedges, the overall running-time is in O(n9 log n). �
Diameter combined with the ∞-norms could be solved using Proposition 4 by fixing
some maximum diameter D and multiplying all hyperedge-costs which exceed D
with a large value C , say C = n · max{d(u, v) : u, v ∈ V }. This does not violate the
simplex condition for the cost-function and there exists a solution for (‖·‖∞ , diam)-2-
cluster of value D for the input graph if and only if the hypergraph with adjusted
costs has a Simplex Matching solution of value less than C .

To improve upon the running-time from Proposition 4 for the ∞-norms, we will
use following problem from [22].1

Simplex Cover

Input: Hypergraph H = (V, F) with F ⊆ (V 2 ∪ V 3) satisfying the subset
condition, i.e., {{u, v}, {v,w}, {u, w}} ⊆ F for all {u, v, w} ∈ F .

Output: A perfect matching of H .

Proposition 5 (‖·‖∞ , diam)- and (‖·‖w

∞ , diam)-2-cluster and can be solved
in O(n6 log n) time. On instances for which d satisfies the triangle inequality,
(‖·‖w

∞ , avg)-2-cluster can also be solved in O(n6 log n) time.

Proof We will reduce solving each of the 2-Cluster problem variants to solving an
instance of Simplex Cover. Let G = (V, E) be the input graph for the clustering
problem. By Proposition 1 and Theorem 1 we can find optimal solutions for each
considered problem variant among the set of perfect matchings for the hypergraph
H = (V, F) with F = V 2 ∪ V 3. For a fixed value D, we build a subset F ′ ⊆ F by
removing from F all e ∈ F depending on the problem variant by the following rule:

– Remove e if diam(e) > D for (‖·‖∞ , diam)-2-cluster .
– Remove e if |e|·diam(e) > D for (‖·‖w

∞ , diam)-2-cluster .
– Remove e if |e|·avg(e) > D for (‖·‖w

∞ , avg)-2-cluster .

We claim that in all three cases, this deletion yields a subset of V 2 ∪ V 3 that satisfies
the subset condition:

– {u, v, w} ∈ F ′ for (‖·‖∞ , diam)-2-cluster implies diam({u, v, w}) ≤ D
and hence diam({u, v}), diam({u, w}), diam({v,w}) ≤ diam({u, v, w}) ≤ D, so
{{u, v}, {v,w}, {u, w}} ⊆ F ′.

– If {u, v, w} ∈ F ′ for (‖·‖w

∞ , diam)-2-cluster , we have 3·diam({u, v, w}) ≤ D,
hence 2·diam({u, v}) ≤ D, 2·diam({u, w}) ≤ D and 2·diam({v,w}) ≤ D, so
{{u, v}, {v,w}, {u, w}} ⊆ F ′.

1 This covering problem is sometimes also called Unweighted Simplex Matching and is equivalent to
{K2, K3}-packing, an old, well studied generalisation of the classical matching problem [7].
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– If {u, v, w} ∈ F ′ for (‖·‖w

∞ , avg)-2-cluster , we have 3·avg({u, v, w}) ≤ D. Let
u be central for {u, v, w}, so d(u, v)+d(u, w) = 3 ·avg({u, v, w}). It follows that
2·avg({u, v}) = d(u, v) ≤ D, 2·avg({u, w}) = d(u, w) ≤ D. For the edge {v,w}
we require that d satisfies the triangle inequality, in which case 2 · avg({v,w}) =
d(v,w) ≤ d(u, v) + d(u, w) ≤ D, so {{u, v}, {v,w}, {u, w}} ⊆ F ′.

In all three cases, any subset of F ′ which exactly covers V , i.e., a simplex cover for
H ′ := (V, F ′), yields a feasible 2-cluster with global cost at most D. The augmenting-
path strategy from [19] solves Simplex Cover in timeO(m2), wherem is the number
of hyperedges of the input graph, here at most O(n3). Possible values for D are the
O(n2) possible different distances d(u, v) for all u, v ∈ V , which, including a binary
search among all possible values for D, yields an overall running-time inO(n6 log n)

to solve each of the 2-Cluster variants. �
Remark 1 We would like to point out that Simplex Matching is also an interest-
ing way to solve a sort of geometric version of (‖·‖w

1
, avg)-2-cluster , originally

introduced as microaggregation in [8], which considers clustering a set of vectors
in R

d and measures local cost for a cluster {x1, . . . , xt } by ∑t
i=1 ||xi − x ||22 where x

is the centroid 1
t (x1 + · · · + xt ) and ‖ · ‖22 is the squared Euclidean norm. With the

hypergraph (V, V 2 ∪ V 3) with V = {v1, . . . , vn} representing {x1, . . . , xn} and the
cost-function c defined by: c({vi , v j , vk}) := ∑

h∈{i, j,k} ||xh − 1
3 (xi + x j + xk)||22 for

all 1 ≤ i < j < k ≤ n and c({vi , v j }) := 1
2 ||xi − x j ||22 for all 1 ≤ i < j ≤ n, the

simplex condition holds, since:

2 · c({vi , v j , vk}) = 4
3 (c({vi , v j }) + c({v j , vk}) + c({vi , vk})).

This construction gives a polynomial-time algorithm to solve 2- microaggregation
which improves on the 2-approximation from [9].

Observe that a similar construction for (‖·‖w

1
, rad)-2-cluster does not work, since

the cluster-cardinality is not bounded by three. Also, even if d satisfies the triangle
inequality, the corresponding cost-function c would not satisfy the simplex condition,
since for the small example of three vertices u, v, w with d(u, v) = d(u, w) = 1
and d(v,w) = 2, the cost with respect to radius would give 1 = c({u, v, w}) <
1
2 (c({u, v}) + c({u, w}) + c({v,w})) = 2. Similar problems arise for the other so far
unresolved variants of (‖·‖, f )-2-cluster .

At last, wewould like to point out that the running-times presented in this section all
assume the worst-case in which there are O(n2) pairs of vertices with small distance
to each other; a property that might be avoided for certain specific clustering tasks.
We further believe that an augmenting path strategy which is specifically tailored to
the above problems can also yield significant improvement on the worst-case running-
time.

5 Complexity Results

The problem variant (‖·‖∞ , rad)-k-cluster with the specific choice of d being
the Euclidean distance was discussed in [2] under the name r -gather (where r
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takes the role of k) and was there shown to be NP-complete for k ≥ 7. In [4]
this result was strengthened by a reduction from Exact- t- Cover to k ≥ 3, how-
ever for a type of problem where the cluster-center exists as an input vertex but
is assigned to a different cluster (i.e., with the radius of a cluster P calculated by:
min{max{d(x, y) : y ∈ P} : x ∈ V }) which does not comply with our definition. We
establish different reductions which show NP-hardness for all variants of (‖·‖, f )-k-
cluster with k ≥ 3. We also reduce from the problem Exact- t- Cover, formally
given by:

Exact- t- Cover

Input: A universe X = {x1, . . . , xn} and a collection C = {S1, . . . , Sr } of
subsets of X , such that each Si , i ∈ {1, . . . , r}, has cardinality t .

Question: Does there exist a subset C ′ ⊆ C (exact cover) that is a partition of
X?

Exact-t- Cover is known to be NP-hard for all t ≥ 3 [11].

Theorem 3 The problem (‖ · ‖, rad)-k- cluster is NP-hard for each k ≥ 3 and all
choices of ‖ ·‖ ∈ {‖ ·‖∞ , ‖ ·‖w

∞ , ‖ ·‖w

1
}, even with the restriction to distances d which

satisfy the triangle inequality.

Proof We reduce from Exact-k-Cover. Let S1, . . . , Sr be subsets of the universe
{x1, . . . , xn}, with |Si | = k, an instance of Exact-k-Cover and let � := r − n

k
(exactly the number of sets not included in an exact cover). We construct a graph
G = (V, E) for (‖ · ‖, rad)-k-cluster with a vertex set V built from the following
three types of vertices (for an illustration of this construction see Fig. 1):

– u1, . . . , un representing x1, . . . , xn ,
– w1, . . . , wr representing S1, . . . , Sr and
– y j

i for i ∈ {1, . . . , �} and j ∈ {1, . . . , k−1}, vertices which will be clustered with
the w-vertices corresponding to sets which are not in the exact cover.

The set E contains the following edges, all of weight 1:

Fig. 1 Illustration of the
reduction for Theorem 3
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– {ui , w j } for all i ∈ {1, . . . , n} and j ∈ {1, . . . , r} with xi ∈ S j ,
– {y1i , w j } for each i ∈ {1, . . . , �} and j ∈ {1, . . . , r} and
– {y1i , yhi } for each i ∈ {1, . . . , �} and h ∈ {2, . . . , k − 1}.

We claim that there exists a k-cluster for G which only contains clusters of radius 1 if
and only if there exists an exact cover for S1, . . . , Sr .

LetP be a k-cluster for G which only contains clusters of radius 1, and let d be the
distance on V ×V induced by the edges ofG. For each i ∈ {1, . . . , �}, let Pi denote the
cluster inP containing y2i , as k ≥ 3, a vertex y j

i with index j = 2 is always included
in G. Since y1i is the only vertex at distance 1 from y2i , it follows that y

1
i is included

as the unique central vertex in Pi which means that Pi ⊆ {v ∈ V : d(v, y1i ) ≤ 1}. As
{v ∈ V : d(v, y1i ) = 1} = {y1i , . . . , yk−1

i } ∪ {w1, . . . , wr } and |Pi | ≥ k, it follows
that at least � of the vertices w1, . . . , wr are included in the clusters P1, . . . , P�, none
of which contain a vertex from {u1, . . . , un}. Since d(ui , u j ) ≥ 2 for all i 
= j , a
cluster in P which contains two vertices from {u1, . . . , un} has to contain at least
one of the vertices wz as central vertex. Such a cluster then has to be a subset of
{wz} ∪ {ui : xi ∈ Sz}. There are only n

k vertices from {w1, . . . , wr } which lie in
such a cluster, so P has to contain exactly the clusters {wz} ∪ {ui : xi ∈ Sz} for all
wz /∈ P1∪· · ·∪P� in order to include all vertices ui in a cluster of radius 1. This means
that the sets Sz with {wz}∪ {ui : xi ∈ Sz} ∈ P build an exact cover for {x1, . . . , xn}. It
also follows that all clusters in a k-cluster of maximum radius 1 contain at most k + 1
vertices.

Conversely, for any exact cover S ⊆ {S1, . . . , Sr } the union of the sets {wz} ∪
{ui : xi ∈ Sz} for all z with Sz ∈ S and {y1i , . . . , yk−1

i } ∪ {w ji } for all i ∈ {1, . . . , �}
where {S1, . . . , Sr }\S = {S j1, . . . , S j�} yields a k-cluster of radius 1 for G.

If rad(P) > 1 for some cluster P in a k-clusterP for G, it follows that rad(P) ≥ 2;
observe that since G only has edges of weight 1, all shortest paths have integer length.
This means that the global cost ofP with respect to radius and ‖·‖w

∞ is at least 2k, so
strictly larger than the global cost of a k-cluster of maximum radius 1 for this norm,
which is k + 1 by the above stated property of k-cluster of maximum radius 1 for G.
Also, the global cost ofPwith respect to ‖·‖w

1
is at least kr + n

k +k (at least k vertices
produce a cost of 2), while a k-cluster of maximum radius 1 with respect to this norm
yields a global cost of kr+ n

k (each vertex produces a cost of 1). In summary, there exists
an exact cover for S1, . . . , Sr if and only if there exists a solution for (‖ · ‖, rad)-k-
cluster of global cost 1, k + 1 and kr + n

k for norm ‖ · ‖∞ , ‖ · ‖w

∞ and ‖ · ‖w

1
,

respectively. �
In the above proof of Theorem 3 there is a gap of 2 for the maximum radius between
“yes”- and “no”-instance for Exact- k- Cover, which implies:

Corollary 1 There is no (2− ε)-approximation for (‖·‖∞ , rad)-k-cluster in poly-
nomial time for any k ≥ 3 and any ε > 0, unless P = N P, even if d satisfies the
triangle inequality.

If we alter the reduction used for Theorem 3 for k ≥ 4 to reduce to Exact-(k − 1)-
Cover, we can conclude that in case of a “yes”-instance for Exact-(k − 1)-Cover
all clusters in a k-cluster of maximum radius 1 for the corresponding graph G contain
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exactly k vertices. This yields a gap of 2 also for themaximumweighted radius between
“yes”- and “no”-instance for Exact-(k − 1)-Cover, which implies:

Corollary 2 There is no (2− ε)-approximation for (‖·‖w

∞ , rad)-k-cluster in poly-
nomial time for any k ≥ 4 and any ε > 0, unless P = N P, even if d satisfies the
triangle inequality.

For diameter, we need a different construction, since for this measure, the vertices
u1, . . . , un have to also be at distance 1 to enable some of them to be in the same
cluster. With such distances, we need a different structure which makes sure that a
solution of diameter 1 does not build clusters only containing vertices from u1, . . . , un .

Theorem 4 The problem (‖ · ‖, diam)-k-cluster is NP-hard for each k ≥ 3 and all
choices for ‖·‖ ∈ {‖·‖∞ , ‖·‖w

∞ , ‖·‖w

1
}, even with the restriction to distances d which

satisfy the triangle inequality.

Proof We reduce from Exact- t- Coverwith t = (k−1)2. Let S1, . . . , Sr be subsets
of {x1, . . . , xn}, with |Si | = t , an instance of Exact- t- Cover and let � := r − n

t .
We construct a graph G for (‖ · ‖, diam)-k-cluster with the following three types
of vertices (for an illustration of this construction see Fig. 2):

– u1, . . . , un representing x1, . . . , xn ,
– w1

i , . . . , w
k−1
i representing Si for i ∈ {1, . . . , r} and

– v1, . . . , v� which will be used to select the � sets which are not in the cover.

The graph G contains the following edges, all of of weight 1:

– edges such that the set {u1, . . . , un} is a clique,
– edges such that the set {w1

i , . . . , w
k−1
i } is a clique for each i ∈ {1, . . . , r},

Fig. 2 Illustration of the
reduction for Theorem 4. Dotted
ellipses surround cliques
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– each vh , h ∈ {1, . . . , �} is connected to all wz
i with i ∈ {1, . . . , r} and z ∈

{1, . . . , k − 1} and
– to model the sets, edges connect u j to one of the verticesw1

i , . . . , w
k−1
i if x j ∈ Si ,

more precisely, for every set Si pick and fix an arbitrary partition Si = S1i ∪ · · · ∪
Sk−1
i into disjoint subsets of cardinality k − 1 and connect u j with wz

i if u j ∈ Szi .

We claim that there exists an exact cover for S1, . . . , Sr if and only if a there exists
a k-cluster of maximum diameter 1 for G.

LetP be a k-cluster for G which only contains clusters of diameter 1, and let d be
the distance on V × V induced by the edges of G. Since d(w

y
i , wz

j ) = 2 for i 
= j
and any y, z ∈ {1, . . . , k − 1} and d(vq , vp) = 2 for q 
= p, each vertex vh can
only be in a cluster of cardinality at least k and diameter 1, if vh is contained in the
cluster Nh

i := {vh, w1
i , . . . , w

k−1
i } for some i ∈ {1, . . . , r}. The only possibilities

for a a cluster of cardinality at least k and diameter 1 which contains a vertex wz
i is

either exactly the cluster Cz
i := {wz

i } ∪ {u j : x j ∈ Szi } or the cluster Nh
i for some

h ∈ {1, . . . , �}. As |Nh
i | = |Cz

i | = k and Nh
i ∩ Cz

i = {wz
i } for all i ∈ {1, . . . , r},

h ∈ {1, . . . , �} and z ∈ {1, . . . , k − 1}, it follows that for each i ∈ {1, . . . , r} either
Nh
i ∈ P for some h ∈ {1, . . . , �} or Cz

i ∈ P for all z ∈ {1, . . . , k − 1}. As there are
exactly � = r− n

t vertices vh , which have to be included in some cluster Nh
i ,P contains

exactly n
t cluster-sets C1

i , . . . ,C
k−1
i which is possible if and only if {Si : C1

i ∈ P} is
an exact cover; observe that all sets in P are disjoint, so the (k − 1) nt sets of type C

z
i

in P contain exactly (k − 1)(k − 1) nt = n vertices from {u1, . . . , un}.
Conversely, for every exact cover S ⊆ {S1, . . . , Sr }, the union of the set

{C1
i , . . . ,C

k−1
i : Si ∈ S} and {Nh

jh
: 1 ≤ h ≤ �} where {S1, . . . , Sr }\S =:

{S j1, . . . , S jh } is a k-cluster of diameter 1 for G.
Specific to the norm, it follows that there exists a k-cluster of global cost 1 for

(‖·‖∞ , diam)-k-cluster if and only if S1, . . . , Sr is a “yes”-instance for Exact-t-
Cover. Further, each cluster that has the possibility of being of diameter 1 contains
exactly k vertices, so S1, . . . , Sr is a “yes”-instance for Exact-t-Cover if and only if
there exists a solution of global cost k for (‖·‖w

∞ , diam)-k-cluster . At last, a solution
of global cost n + r(k − 1) + � for (‖·‖w

1
, diam)-k-cluster is possible if and only

if each cluster has diameter 1, hence if and only if S1, . . . , Sr is a “yes”-instance for
Exact-t-Cover. �
The reduction shown in the above proof of Theorem 4 is also a gap-reduction with a
gap of 2 for the maximum diameter between “yes”- and “no”-instance for Exact-
t- Cover. The maximum cardinality of a cluster in an optimal solution in case of a
“yes”-instance for Exact- t- Cover is k, so the reduction also gives a gap of 2 for
the maximum weighted diameter and hence implies:

Corollary 3 There is no (2 − ε)-approximation for (‖·‖∞ , diam)-k-cluster and
(‖·‖w

∞ , diam)-k-cluster in polynomial time for any k ≥ 3 and any ε > 0, unless
P = N P, even if d satisfies the triangle inequality.

The construction in the proof of Theorem 3 almost also shows the same hardness result
for average distortion. The only problem is that an optimal solution requires clusters
of cardinality k + 1 which means that with respect to ‖·‖w

∞ , we have a global cost of
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k, which is also achieved by a cluster of cardinality k in which 1 vertex has distance 2
from the central vertex. We will therefore use a third reduction for average distortion
which represents each set by k − 1 vertices as in the construction for diameter and
combines this with the idea to use stars with k − 1 vertices to disable r − n

t sets from
being used to “cover” u1, . . . , un , as used for radius.

Theorem 5 The problem (‖ · ‖, avg)-k-cluster is NP-hard for each k ≥ 3 and all
choices for ‖·‖ ∈ {‖·‖∞ , ‖·‖w

∞ , ‖·‖w

1
}, even with the restriction to distances d which

satisfy the triangle inequality.

Proof We reduce from Exact- t- Coverwith t = (k−1)2. Let S1, . . . , Sr be subsets
of {x1, . . . , xn}, with |Si | = t , an instance of Exact- t- Cover. We construct a graph
G for (‖ · ‖, avg)-k-cluster with the following vertices (for an illustration of this
construction see Fig. 3):

– u1, . . . , un representing x1, . . . , xn ,
– w1

i , . . . , w
k−1
i representing Si for i ∈ {1, . . . , r},

– w̄z
i for all i ∈ {1, . . . , r} and z ∈ {1, . . . , k − 1},

– a set of k − 2 vertices Wz
i for all i ∈ {1, . . . , r} and z ∈ {1, . . . , k − 1},

– vi , v
1
i , . . . , v

k−1
i for all i ∈ {1, . . . , r} and

– y j
i for i ∈ {1, . . . , n

t } and j ∈ {1, . . . , k − 1}.
The graph G contains the following edges, all of weight 1:

– like for diameter, pick and fix for every set Si an arbitrary partition Si = S1i ∪· · ·∪
Sk−1
i into disjoint subsets of cardinality k − 1 and connect u j with wz

i if u j ∈ Szi ,
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Fig. 3 Illustration of the reduction for Theorem 5. Thick vertices have to be central in a k-cluster of
maximum radius 1
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– {w, w̄z
i } for all w ∈ Wz

i , i ∈ {1, . . . , r} and z ∈ {1, . . . , k − 1} (the graph induced
by the vertices Wz

i ∪ {w̄z
i } is a star graph with center w̄z

i ),
– {vi , vhi } for all i ∈ {1, . . . , r} and h ∈ {1, . . . , k − 1},
– {wz

i , w̄
z
i } and {w̄z

i , v
z
i } for all i ∈ {1, . . . , r} and z ∈ {1, . . . , r},

– {vi , y1j } for all i ∈ {1, . . . , r} and j ∈ {1, . . . , n
t },

– {y1i , yhi } for each i ∈ {1, . . . , n
t } and h ∈ {2, . . . , k − 1}.

We claim that there exists an exact cover for S1, . . . , Sr if and only if a there exists
a k-cluster for G such that each cluster has average distortion k−1

k .
LetP be a k-cluster for G such that each cluster has average distortion k−1

k , and let
d be the distance on V × V induced by the edges of G. First of all, observe that any
cluster of cardinality at least k has average distortion k−1

k if and only if it hast radius
1 and cardinality k. Similar to the proof of Theorem 3, denote for each i ∈ {1, . . . , n

t }
by Pi the cluster in P which contains y2i . With the property of Pi having radius 1
and cardinality k for each i ∈ {1, . . . , n

t }, it follows that exactly n
t of the vertices

v1, . . . , vr are included in some cluster Pi , which otherwise only contains the vertices
y1i , . . . , y

k−1
i . A similar argument applies for a cluster P which contains a vertex from

Wr
i , as these vertices also only have one vertex (w̄

z
i ) at distance 1, which then has to be

central for P; this cluster then always contains the whole setWr
i . So, denote by Pz

i the
cluster containing the set Wr

i and w̄z
i . For each i ∈ {1, . . . , r} and r ∈ {1, . . . , k − 1},

the set Pz
i contains either vzi or wz

i , as these are the only other vertices at distance 1
from w̄z

i . For each of the exactly r − n
t vertices vi which are not contained in any of

the clusters P1, . . . , Pn
t
, the only option for a cluster of cardinality k and radius 1 is

the cluster Vi := {vi , v1i , . . . , vk−1
i }; observe that a vertex vhi with h ∈ {1, . . . , k − 1}

cannot be central for a cluster of cardinality k ≥ 3 as the only vertices at distance
1 from vhi are vi and w̄z

i and the latter one already has to be the central vertex for
Pz
i . Also, the only vertices at distance 1 from vi which are not in some cluster Pj

are v1i , . . . , v
k−1
i . Hence there are exactly r − n

t indices i in {1, . . . , r} such that Vi
is a cluster in P. For all i ∈ {1, . . . , r} for which Vi is a cluster in P, the cluster
Pz
i contains wz

i for all z ∈ {1, . . . , k − 1} since vzi is not available as k-th vertex in
Pz
i . Again similar to the proof of Theorem 3, there are exactly enough vertices wz

i
not included in a set of the form Pz

i in P to build clusters of radius 1 for the vertices
{u1, . . . , un} if and only if the sets Si with indices i ∈ {1, . . . , r} for which Vi is not
a cluster in P are an exact cover.

Conversely, for every exact cover S ⊆ {S1, . . . , Sr }, a k-cluster of average distortion
k−1
k for G can be built with the following sets:

– {wz
i } ∪ {u j : x j ∈ Szi } and Pz

i ∪ {vzi } for all i with Si ∈ S, z ∈ {1, . . . , k − 1},
– Vi and Pz

i ∪ {wz
i } for all i with Si /∈ S, z ∈ {1, . . . , k − 1} and

– {v ji , y
1
i , . . . , y

k−1
i } for all i ∈ {1, . . . , n

t } with S = {S j1 , . . . , S j n
t
}.

So, there exists an exact cover for S1, . . . , Sr if and only if there exists a solution for
(‖·‖∞ , avg)-k-cluster of global cost k−1

k . Further, for any k-cluster for G, a global
cost of k−1with respect to average distortion and ‖·‖w

∞ is only possible if each cluster
has radius 1 and cardinality k; a cluster with k′ > k vertices gives a global cost of at
least k′ − 1 > k − 1 and a cluster of radius larger than 1 contains at least one vertex at
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distance 2 from the central vertexwhich gives a global cost of at least k. So, there exists
an exact cover for S1, . . . , Sr if and only if there exists a solution for (‖·‖w

∞ , avg)-k-
cluster of global cost k − 1. At last, for any k-cluster for G, a global cost of
n+r(k−1)k with respect to average distortion and ‖·‖1

∞ is only possible if each vertex

contributes exactly the minimum cost of k−1
k to the global cost. Hence there exists

an exact cover for S1, . . . , Sr if and only if there exists a solution for (‖·‖w

1
, avg)-k-

cluster of global cost n + r(k − 1)k. �
In the above reduction used to prove Theorem 5, a “yes”-instance for Exact- t-

Cover corresponds to a graph for which there exists a k-cluster of maximumweighted
average k − 1 while a “no”-instance for Exact- t- Cover corresponds to graph for
which the maximum weighted average of any k-cluster is at least k. This gives the
following result.

Corollary 4 There is no ( k
k−1 − ε)-approximation for (‖·‖w

∞ , avg)-k-cluster in
polynomial time for any k ≥ 3 and any ε > 0, unless P = N P, even if d satisfies the
triangle inequality.

If we consider instances of (‖·‖, f )-k-cluster for which the induced distance d can
violate the triangle inequality, additional edges of a large weightw in the constructions
for Theorems 3 and 4 can be used to amplify the gap between a “yes”- and a “no”-
instance of Exact- t- Cover strictly monotonically with w which gives:

Proposition 6 If d violates the triangle inequality, there is no polynomial constant-
factor approximation for (‖·‖, f )-k-cluster , for all choices of f ∈ {rad, diam, avg}
and ‖·‖ ∈ {‖·‖w

1
, ‖·‖w

∞ , ‖·‖∞}, unless P = N P.

Proof Let G = (V, E) be the graph constructed in the proof of Theorem 3 for a given
instance I of Exact- k- Cover, so there exists a k-cluster of maximum radius 1 for
G if and only if I is a “yes”-instance. Further, every k-cluster of maximum radius 1
for G only contains sets of maximum cardinality k + 1. If I is a “no”-instance, any
k-cluster for G contains at least one set S of radius larger than 1, so for every choice
of v ∈ S there exists at least one vertex v′ ∈ S\{v} such that {v, v′} /∈ E . If we now
turn the graph G into a complete graph with additional edges of weight w, it follows
that the radius of such a cluster S is w. This also means that the average distortion for
such a cluster S is larger than w

n , while the minimum average distortion of a k-cluster
for G is k

k+1 in case I is a “yes”-instance. For every norm, the global cost grows
strictly monotonically with the local cost. This means that the gap between I being
a “yes” or “no”-instance for the optimum value of a k-cluster for G with respect to
radius or average distortion with any norm grows strictly monotonically with w. As
this is true for every value of w, a constant-factor approximation in polynomial time
for (‖·‖, f )-k-cluster with f ∈ {rad,avg} with any norm would solve Exact- k-
Cover which however is NP-hard for any k ≥ 3.

For diameter, we use the same idea and turn the graph G constructed in the proof of
Theorem 4 into a complete graph by adding edges of weight w. Similarly, it follows
that there exists a k-cluster of maximum diameter 1 if the corresponding instance I of
Exact- t- Cover is a “yes”-instance, while the maximum diameter isw if I is a “no”-
instance. So, a constant-factor approximation in polynomial time for (‖ · ‖, diam)-k-
cluster with any norm would solve the NP-hard problem Exact- t- Cover. �
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The previous section only provided polynomial-time solvability for roughly half of
the variants of (‖·‖, f )-2-cluster . We will now complete the complexity picture
for k = 2. For (‖·‖w

1
, rad)-2-cluster we give a reduction that does not only show

NP-hardness for the associated decision problem but also proves APX-hardness for
the optimisation problem. We reduce from the restriction of the vertex cover problem
to cubic graphs, formally defined by:

Cubic Vertex Cover

Input: Graph G = (V, E) such that all vertices v ∈ V have degree 3.
Output: A setC ⊆ V (vertex cover) of minimum cardinality such that e∩C 
=

∅ for all e ∈ E .

Cubic Vertex Cover is APX-hard by [16].

Theorem 6 (‖·‖w

1
, rad)-2-cluster is APX-hard, even with the restriction to dis-

tances d which satisfy the triangle inequality.

Proof Let G = (V, E) with V = {v1, . . . , vn} and m := |E | be the input for Cubic
Vertex Cover.We construct a graphG ′ = (V ′, E ′) for (‖·‖w

1
, rad)-2-cluster with

vertex set V ′ := {v1i , v2i : 1 ≤ i ≤ n}∪{ve : e ∈ E} and edge set E ′ := {{v1i , v2i } : 1 ≤
i ≤ n}∪ {{v1i , ve} : vi ∈ e} with weights wE ({v1i , v2i }) = 1 and wE ({v1i , ve}) = 2. We
claim that G has a vertex cover of cardinality � if and only if there exists a solution
for (‖·‖w

1
, rad)-2-cluster with global cost 2n + 2� + 2m.

For any vertex coverC ofG, we construct a 2-cluster forG ′ by first building clusters
{v1i , v2i } for all i ∈ {1, . . . , n}. We then pick (arbitrarily, if there is a choice) for every
edge e = {u, w} ∈ E an index i ∈ {1, . . . , n} such that vi ∈ C and vi ∈ {u, w} and
add the vertex ve to the cluster {v1i , v2i }. As C is a vertex cover for G, we can assign
each vertex ve in such a way and arrive at a 2-cluster P for G ′ which contains only
the following two types of clusters:

– {v1i , v2i } ∈ P for all i ∈ {1, . . . , n} with vi /∈ C ,
– for all i ∈ {1, . . . , n} with vi ∈ C , P contains a cluster Pi with {v1i , v2i } ⊆ Pi
and Pi\{v1i , v2i } ⊆ {ve : ∃1 ≤ j ≤ n : e = {vi , v j }}. With v1i considered as central
vertex, Pi has radius at most 2, as all vertices ve with e = {vi , v j } for some
j ∈ {1, . . . , n} have distance 2 from v1i .

Considering, w.l.o.g., a vertex numbering such that C = {v1, . . . , v�}, the global cost
of P with respect to radius and weighted 1-norm is hence at most:

n∑

i=�+1

2 · rad({v1i , v2i }) +
�∑

i=1

|Pi | · rad(Pi ) ≤ 2(n − �) + 2 ·
�∑

i=1

|Pi |.

As the union of all the clusters Pi with i ∈ {1, . . . , �} contains exactly all vertices
ve, e ∈ E and all vertices v1i , v

2
i with i ∈ {1, . . . , �}, it follows that ∑�

i=1 |Pi | =
|E |+2�. The global cost ofP as solution for (‖·‖w

1
, rad)-2-cluster is hence at most

2(n − �) + 2(m + 2�) = 2n + 2� + 2m.
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Conversely, let P be a 2-cluster for G ′ such that the global cost with respect to
radius and 1-norm is at most 2n+2�+2m. We define for this solution a cost-function
c on V ′ by c(v) := rad(P) for all v ∈ P and P ∈ P. The global cost of P with
respect to (‖·‖w

1
, rad) can hence be computed by

∑
v∈V ′ c(v). Observe first that from

the structure of the graph G ′ it immediately follows that c(v) ≥ 1 and c(v) ∈ N for
all v ∈ V ′. We consider the possible costs c(v) for all types of vertices:

– For all i ∈ {1, . . . , n} and h ∈ {1, 2}, c(vhi ) = 1 if and only if {v1i , v2i } ∈ P.
– For all e ∈ E , we know that c(ve) ≥ 2.
– For any e = {vi , v j } ∈ E , c(ve) = 2 is only possible if {v1i , v1j } ∩ P 
= ∅ for the
set P ∈ P with ve ∈ P .

– For any e = {vi , v j } ∈ E , d(ve, w) = 3 is only possible if {v2i , v2j } ∩ P 
= ∅ for
the set P ∈ P with ve ∈ P .

Assume that C := {vi : c(v1i ) ≥ 2} is not a vertex-cover of size � for G. If |C | > �,
we see that, since c(v1i ) ≥ 2 if and only if c(v2i ) ≥ 2, the global cost ofP exceeds the
assumed value, as:

∑

v∈V ′
c(v) ≥

n∑

i=1

(c(v1i ) + c(v2i )) + 2m ≥ 2 · 2|C |

+ 2(n − |C |) + 2m > 2n + 2� + 2m.

If there is some edge e = {vi , v j } which is not covered by C , the sets {v1i , v2i } and
{v1j , v2j } are both in P by the definition of C , hence c(ve) ≥ 4. So let Ē ⊆ E be the
set of edges which are not covered by C . It follows that:

2n+2�+2m ≥
∑

vi∈C
(c(v1i )+c(v2i )) +

∑

vi /∈C
(c(v1i )+c(v2i )) +

∑

e∈Ē
c(ve) +

∑

e∈E\Ē
c(ve)

≥ 4 · |C | + 2(n − |C |) + 4 · |Ē | + 2(m − |Ē |)
= 2n + 2m + 2(|C | + |Ē |)

This means that |C | ≤ � − |Ē |, so if C is not already a vertex cover for G, we can
greedily chose for each edge in Ē an arbitrary adjacent vertex to cover it and arrive at
a vertex cover for G of cardinality at most �.

At last, sincem = 3n/2 and � ≥ n/2 for a cubic graph,we have 2n+2�+2m ≤ 12k
which makes this reduction an L-reduction and hence translates the APX-hardness
from Cubic Vertex Cover to (‖·‖w

1
, rad)-2-cluster . �

The reduction above cannot be adapted for the cases of (‖·‖, f )-2-cluster which
were not shown to be polynomial-time solvable so far. We therefore consider the
following variation of Satisfiability for the remaining cases:

123



2536 Algorithmica (2018) 80:2517–2550

(3, 3)-Satisfiability (or (3, 3)-SAT)

Input: Boolean formula F in conjunctive normal form such that each clause
contains at most 3 literals and each variable occurs both positively and
negatively in F and overall at most 3 times.

Question: Does there exist a satisfying assignment for F?

(3, 3)-SAT is NP-hard by [21].

Theorem 7 (‖·‖w

∞ , avg)-, (‖·‖∞ , avg) - and (‖·‖w

∞ , rad)-2-cluster are NP-hard,
for the latter two even with the restriction to distances d which satisfy the triangle
inequality.

Proof Letv1, . . . , vn be the variables and c1, . . . , cm be the clauses of a (3, 3)-SAT for-
mula F . We construct a graphG = (V, E) by introducing five vertices ti , fi , xi , ai , bi
for each vi and edges {xi , fi }, {xi , ti } of weight w1 and {ai , fi }, {bi , ti }, {ai , bi } of
weight w2 as in the picture below.

fi tixi

ai bi

w1w1

w2 w2w2

Also, for each clause c j , introduce a vertex y j and edges of weightw2 from y j to each
literal in c j , i.e., to fi if v̄i is a literal in c j and to ti if vi is a literal in c j . We will
assign values for w1 and w2 differently for each problem variant such that a 2-cluster
for G has global cost (and hence maximum (weighted) cost of each cluster) at most 1
if and only if the following assignment properties hold:

– Each xi has to be in a cluster of cardinality 2 with either ti or fi (this reflects the
assignment for vi to be the vertex not clustered with xi ).

– Each y j is in a cluster with 1 adjacent vertex, so ti (or fi ) for some i with vi (v̄i )
being a literal in c j (this literal satisfies the clause).

– For all i ∈ {1, . . . , n}, the vertices ai and bi lie in the same cluster which otherwise
can only possibly contain either ti or fi (in case we do not need the variable vi to
satisfy any clause).

Assuming w1 ≥ w2, the induced distance d on G satisfies:

– d(xi , v) ≥ w1 + w2 for all v ∈ V \{xi , ti , fi },
– d(ti , y j ) ≥ 3w2 for all i, j such that vi is no literal in c j ,
– d( fi , y j ) ≥ 3w2 for all i, j such that v̄i is no literal in c j ,
– d(y j , v) ≥ 2w2 for all v ∈ V \{ti , fi : 1 ≤ i ≤ n}.
These distances imply that a 2-cluster which does not satisfy the assignment prop-

erties contains at least one cluster of either a cardinality at least 3 and radius at least
w1 (some vertex xi not properly clustered), or a radius of at least 2w2 (some vertex
y j not in a cluster with adjacent vertex). We now consider each problem variant and
define respective weights w1 and w2.

For (‖·‖w

∞ , rad)-2-cluster we choosew1 = 1
2 andw2 = 1

3 . With these weights, a
cluster P in a 2-cluster for G of weighted radius at most 1 can have radiusw1 only if it
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has cardinality 2 and otherwise has radiusw2 and cardinality at most 3. As 2w2 > w1,
a solution for (‖·‖w

∞ , rad)-2-cluster of global cost at most 1 fulfils the assignment
properties.

For (‖·‖∞ , avg)-2-cluster we choose w1 = 2 and w2 = 3
2 . With these weights,

all pairs of distinct vertices in G have a distance at least 3
2 and hence the average

distortion of every cluster is at least 3
2 (|P| − 1)/|P|, which means that the maximum

cardinality of a cluster of average distortion 1 is 3. Also, a cluster of cardinality 3 has
average distortion at most 1 only if it has radius 3

2 = w2. A cluster of cardinality 2 has
average distortion at most 1 only if it has radius at most 2 = w1. As again 2w2 > w1,
this means that a solution for (‖·‖∞ , avg)-2-cluster of global cost at most 1 fulfils
the assignment properties.

For (‖·‖w

∞ , avg)-2-cluster we choose w1 = 1 and w2 = 1
2 but also have to add

some more edges; observe that so far, the induced distance d satisfies the triangle
inequality, so by Proposition 5, a 2-cluster could be computed in polynomial time,
hence our construction cannot be complete.With the current definition we have 2w2 =
w1 which yields that clusters of the form {yi , y j } or {ai , y j } could also have aweighted
average distortion of 1 as there could be a shortest path from y j to yi or ai via two
edges of weight 1

2 . If we add edges {yi , y j } for all i 
= j and {ai , y j }, {bi , y j } for
all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} each of weight 2, these types of clusters have a
weighted average distortion of 2. Other clusters in a 2-cluster which yield a violation
of the assignment property have either cardinality at least 3 and radius at least w1,
which yields a weighted average distortion of at least 3

2 , or radius at least min{w1 +
w2, 3w2} = 3

2 , soweighted average distortion at least
3
2 . A solution for (‖·‖w

∞ , avg)-2-
cluster of global cost at most 1 fulfils the assignment properties.

Finally, there exists a 2-cluster with assignment properties for G (for any choice of
the weights w1, w2) if and only if the formula F is satisfiable:

Given a 2-clusterP forG with assignment property, the vertices ofG corresponding
to the clauses are clustered with their satisfying literal and for each variable vi either
{ti , xi } ∈ P or { fi , xi } ∈ P, so the assignment vi = true if and only if { fi , xi } ∈ P
is a satisfying assignment for F .

Conversely, given a satisfying assignmentφ for F , build a partition from the union of
the sets {{xi , ti }, { fi } : φ(vi ) = false}, {{xi , fi }, {ti } : φ(vi ) = true} and {{ai , bi } : 1 ≤
i ≤ n}, and put for each j ∈ {1, . . . ,m} the vertex y j into the cluster which contains
the assignment of the literal (an arbitrary literal if there is a choice) which satisfies c j ,
i.e., if vi (v̄i ) is a literal in c j and φ(vi ) = true (φ(vi ) = false) put y j in the cluster
containing ti ( fi ). As F is an instance of (3,3)-SAT, at most 2 clause-vertices are
assigned to the same cluster. If there is some i such that {ti } or { fi } remains a cluster
of cardinality 1, merge this cluster with {ai , bi }. The resulting partition is a 2-cluster
with assignment properties for G. �

6 Approximation Results

We will now discuss polynomial time approximations for (‖·‖, f )-k-cluster but
only consider the case where d satisfies the triangle inequality in this section. This
restriction is not just reasonable in most scenarios but in some sense necessary to
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achieve any kind of approximation as Proposition 6 indicates. In the following, we
denote the global cost of an optimal solution for (‖·‖, f )-k-cluster on G with
distance d by opt(G, d, ‖·‖, f, k).

Known approximation results for clustering with size constraints include a 9-
approximation from [4] for Load Balanced Facility Location without facility
cost,which is related to (‖·‖w

1
, avg)-k-cluster here, butwith the additional constraint

that at each customer should be assigned to the nearest open facility. The techniques
used for this result highly rely on the additional constraint, which unfortunately means
that they can not be applied here. Other approximations for this problem instead relax
the constraint that each cluster needs to contain at least k vertices; Guha et al. [13] for
example presents a 2k-approximation which constructs clusters of cardinality at least
k/3. We will see that for our problem such an approximation factor can be achieved
without relaxing the cardinality constraints. In general, our results however do not
extend to Load Balanced Facility Location, since the addition of facility-costs
yields a very different type of problem; we especially lose the upper bound of 2k − 1
on the cardinality of clusters in an optimal solution from Theorem 1.

Other known approximation results however also apply here and can be altered
for other problem variants. The problem that we call (‖·‖∞ , rad)-k-cluster is
discussed under the name r -gather in [2], where r takes the role of k. The concept
for the 2-approximation presented there can be altered and also used to compute a
2-approximation for (‖·‖∞ , diam)-k-cluster .

Theorem 8 (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster are 2-approximable in poly-
nomial time for all k ≥ 2, if d satisfies the triangle inequality.

Proof Let G = (V, E) be the input graph with induced distance d. By a binary search
among all values in {d(v, v′) : v, v′ ∈ V }, we search for the smallest value D such that
the procedure described below to build a k-cluster of maximum radius D is successful.

For a fixed D, we first build a partition of V in the following way: Beginning with
i = 1 and V1 := V we iteratively, until Vi = ∅, choose arbitrarily some ci ∈ Vi
and build clusters P(ci ) := {v ∈ Vi : d(ci , v) ≤ D} and set Vi+1 = Vi\P(ci ). This
yields a partition of V into a finite number of clusters P(ci ). Let z be the number of
clusters created by this strategy. If each cluster P(ci ) contains at least k vertices, we
have found a k-cluster of maximum radius D.

Some of the clusters P(ci ) however might have a cardinality of less than k. In
this case, we try to reassign some vertices to adjust the cardinalities. Observe that
by the strategy used to build the clusters, possible vertices outside P(c j ) at distance
at most D from c j can only be in clusters P(ci ) with i < j . Hence, we define the
sets S(i, j) := {v ∈ P(c j )\{c j } : d(v, ci ) ≤ D} for all 1 ≤ j < i to collect all
vertices which can be moved from cluster P(c j ) to cluster P(ci ) without increasing

the radius of P(c j ) to be more than D. If
∑ j−1

i=1 |S(i, j)| < k − |P(c j )| for some
j ∈ {1, . . . , z} there are not enough vertices to move to cluster P(c j ) and we delete
this clustering-attempt and try again for a larger value for D. Otherwise, we try to
move some vertices in S(i, j) from P(c j ) to P(ci ), 1 ≤ j < i ≤ z, in order to arrive
at a partition which is a k-cluster. Moving some vertices from S(i, j) into P(ci ) to
increase the cardinality of P(ci ) might mean that the cardinality of P(c j ) decreases
below k and hence requires moving some vertices from S( j, �) into P(c j ) for some
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� < j . This kind of ripple effect is the reason why we solve this problem of moving
vertices in S(i, j) to create a k-cluster by modelling it as a max-flow problem with the
following network:

– The network has a source s and target t .
– For each i ∈ {1, . . . , z} we create a vertex pi representing P(ci ) in the network.
If |P(ci )| > k we add an arc from s to pi of capacity |P(ci )| − k. If |P(ci )| < k
we add an arc from pi to t of capacity k − |P(ci )| to t .

– For each v ∈ ⋃z−1
i=1

⋃i−1
j=1 S(i, j), create a vertex v′ in the network with an arc of

capacity 1 from v′ to pi for all i with v ∈ S(i, j) for some j and an arc of capacity
1 from p j to v′ for all j with v ∈ S(i, j) for some i .

There exists a maximum flow of
∑z

i=2 max{0, k − |P(ci )|} from s to t in this
network if and only if we can find a reassignment of the vertices in the sets S(i, j)
to turn P(c1), . . . , P(cz) into a k-cluster: Moving a vertex v ∈ S(i, j) from P(ci )
to P(c j ) corresponds to a flow of 1 in the network from pi to v′ and then to p j . If
|P(ci )| > k, at most |P(ci )| − k vertices are allowed to be moved out of P(ci ) which
corresponds to the capacity of the arc from s to pi . If |P(ci )| < k, exactly k − |P(ci )|
vertices have to be moved into P(ci ), saturating the capacities of the arc from pi to
t . Max Flow can be solved in time O(m · n) [14,15] on a directed graph with n
vertices andm edges. If we find a flow of size

∑z
i=2 max{0, k−|P(ci )|}, we can build

a k-cluster for V with maximum radius D and maximum diameter 2D, otherwise we
abort and try a larger value for D.

We claim that the procedure described above is successful for D = 2r∗ with
r∗ = opt(G, d, ‖ · ‖∞ , rad, k). The vertices ci chosen while computing a solution for
D = 2r∗ belong to different clusters in an optimal solution, since vertices in the
same cluster have a distance of at most 2r∗ (observe that this is false if d violates the
triangle inequality). Since at most one vertex from each optimal cluster was chosen to
be some c j , there are enough vertices at distance at most 2r∗ from each such vertex
to distribute them among the sets P(c j ) such that each has a cardinality of at least
k. A similar reasoning proves that the greedy procedure is successful for D = d∗
with d∗ = opt(G, d, ‖ · ‖∞ , diam, k). In case of diameter, the vertices c j can not
belong to the same cluster in the optimal solution as soon as their distance is larger
than d∗. �
Remark 2 A natural greedy procedure for (‖·‖∞ , avg)-k-cluster could build up the
sets P(ci ) by successively adding argmin{d(v, ci ) : v ∈ Vi\P(ci )} until avg(P(ci ))
exceeds D, but moving vertices from S(i, j) to P(ci ) could unfortunately increase the
average distortion of P(c j ).

The general class of constraint forest problems introduced in [12] also has a close
relation to clustering with lower bounds. We will now use the following problem from
the class of constraint forest optimisation problems:
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Lower Capacitated Tree Partitioning

Input: Graph G = (V, E), edge-weights wE : E → Q+, capacity k ∈ N.
Output: A set E ′ ⊆ E minimising

∑
e∈E ′ wE (e) such that each v ∈ V occurs

in at least one e ∈ E ′ and each component in the graph induced by E ′
is a tree with at least k vertices.

Lower Capacitated Tree Partitioning is 2-approximation in polynomial time
by an application of the approximation presented in [12].

Proposition 7 (‖ · ‖w

1
, avg)-k-cluster is 2k-approximable in polynomial time for

all k ≥ 2, if d satisfies the triangle inequality.

Proof Let G = (V, E) be an instance of (‖·‖w

1
, avg)-k-cluster with induced dis-

tances d. We consider solving Lower Capacitated Tree Partitioning with
capacity k on G ′ = (V, V × V ) with edge-weights computed via d. Any solution
P1, . . . , Ps for (‖·‖w

1
, avg)-k-cluster of global cost L on G = (V, E) can be

interpreted as a solution of cost L for Lower Capacitated Tree Partition-

ing on G ′; a spanning forest for G ′ with connected components P1, . . . , Ps and cost
‖(avg(P1), . . . , avg(Ps))‖w

1
is given by the edge-set:

s⋃

i=1

{{ci , vi } : vi ∈ Pi } with ci = argmin

⎧
⎨

⎩

∑

v∈Pi

d(v, c) : c ∈ Pi

⎫
⎬

⎭
.

Conversely, anyminimal solution Ē for Lower Capacitated Tree Partition-

ing for G ′ of cost L can be interpreted as a solution for (‖·‖w

1
, avg)-k-cluster with

global cost at most k · L . Let C be the set of connected components of the graph
induced by Ē . Any component C ∈ C which contains a path with more than 2k − 1
vertices can be split into two connected components, each of cardinality at least k by
deleting an edge (i.e., reducing the cost of the partition). We can hence assume that
for all components C ∈ C there is at least one c ∈ C such that every v ∈ C can be
reached from c travelling via at most k edges in C , for example, a vertex in the middle
of a longest path in C . This implies:

∑

C∈C
|C | · avg(C) ≤

∑

C∈C

∑

v∈C
d(v, c) ≤

∑

C∈C

∑

{u,v}∈E(C)

k · d(u, v) = k · L .

SinceLower Capacitated Tree Partitioning can be 2-approximated, this yields
a 2k-approximation for (‖·‖w

1
, avg)-k-cluster . �

Remark 3 Theorem 2 showed that (‖·‖w

1
, avg)-2-cluster can be solved in polyno-

mial time which also translates to Lower Capacitated Tree Partitioning with
capacity k = 2; tree partitioning with capacity 2 is equivalent to weighted edge cover.

Essential for the result above is excluding paths of length 2k in all components C ,
but this property does not prevent C from containing arbitrarily many vertices. For
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(‖·‖w

1
, diam)- or (‖·‖w

1
, rad)-k-cluster we need an upper bound on the cardinality

to prove an approximation ratio. We therefore consider Lower Capacitated Path

Partitioning, the restriction ofLower Capacitated Tree Partitioning to paths
as connected components. Onweighted graphs for which the weights obey the triangle
inequality, Goemans and Williamson [12] provides a 4-approximation for Lower

Capacitated Path Partitioning.

Proposition 8 (‖·‖w

1
, diam)-k-cluster is 8(k−1)-approximable in polynomial time

for all k ≥ 2, if d satisfies the triangle inequality.

Proof Consider for any input G = (V, E) with induced distances d for the problem
(‖·‖w

1
, diam)-k-cluster , the complete graph G ′ = (V, V × V ) with d as input for

path partitioning. Let P1, . . . , Ps be an optimal solution for (‖·‖w

1
, diam)-k-cluster

with |Pi | ≤ 2k − 1 (transformed with Proposition 1). For each i ∈ {1, . . . , s}, a
cheapest spanning path for Pi has a cost of at most (|Pi | − 1) · diam(Pi ). Building a
cheapest spanning path for each set Pi hence gives a solution ofLower Capacitated

Path Partitioning on G ′ of cost at most

s∑

i=1

(|Pi | − 1) · diam(Pi ) =
s∑

i=1

|Pi | − 1

|Pi | · |Pi | · diam(Pi )

≤ 2k−2
2k−1 ·

s∑

i=1

|Pi | · diam(Pi )

= 2k−2
2k−1 · opt(G, d, ‖·‖w

1
, diam, k).

This especially implies that the cost T ∗ of an optimal path partitioning for G ′ is at
most 2k−2

2k−1 · opt(G, d, ‖·‖w

1
, diam, k).

Let Ẽ ⊆ V × V be a solution for Lower Capacitated Path Partitioning

for G ′ of cost T . Let P ′
1, . . . , P

′
s be the vertex sets corresponding to the connected

components of the graph induced by Ẽ . The partition P ′
1, . . . , P

′
s yields a solution for

(‖·‖w

1
, diam)-k-cluster of global cost at most (2k − 1)T ; observe that any set P ′

i
contains at most 2k − 1 vertices as a path containing more than 2k − 1 vertices can be
split into 2paths bydeleting an edge from Ẽ . Considering Ē to be a 4-approximation for
Lower Capacitated Path Partitioning on G ′ computed with [12], the partition
P ′
1, . . . , P

′
s gives a solution for (‖·‖w

1
, diam)-k-cluster of global cost at most:

(2k − 1)T ≤ (2k − 1)4T ∗

≤ (2k − 1)4 · 2k−2
2k−1 · opt(G, d, ‖·‖w

1
, diam, k)

≤ 8(k − 1) · opt(G, d, ‖·‖w

1
, diam, k).

�
One advantage of the unified model for (‖·‖, f )-k-cluster is that if d satisfies the
triangle inequality, the different measures relate in the following way:
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avg(Pi ) ≤ rad(Pi ) ≤ diam(Pi ) ≤ 2 · rad(Pi ) (1)

With this relation, Proposition 8 immediately yields:

Corollary 5 (‖·‖w

1
, rad)-k-cluster is 16(k − 1)-approximable in polynomial time

for all k ≥ 2, if d satisfies the triangle inequality.

By definition, the two ∞-norms also relate optimal values in the following way for
every choice of f ∈ {rad,diam,avg}:

opt(G, d, f, ‖·‖w

∞ , k) ≥ k · opt(G, d, f, ‖·‖∞ , k) (2)

This equation is helpful to derive approximations for the weighted ∞-norm:

Proposition 9 (‖·‖w

∞ , diam) and (‖·‖w

∞ , rad)-k-cluster are 4-approximable in
polynomial time for all k ≥ 2, if d satisfies the triangle inequality.

Proof Let for a given graph G with induced distances d the sets P1, . . . , Ps be the
2-approximation for (‖·‖∞ , diam)-k-cluster from Theorem 8. By Proposition 1,
we can assume that |Pi | ≤ 2k − 1. This yields:

max{|Pi | · diam(Pi ) : 1 ≤ i ≤ s}
≤ (2k − 1) · max{diam(Pi ) : 1 ≤ i ≤ s}
≤ 2(2k − 1) · opt(G, d, diam, ‖·‖∞ , k)

By Eq. (2) this implies

max{|Pi | · diam(Pi ) : 1 ≤ i ≤ s} ≤ (4k − 2) · 1
k · opt(G, d, diam, ‖·‖w

∞ , k)

which makes P1, . . . , Ps a 4-approximation for (‖·‖w

∞ , diam)-k-cluster .
A similar reasoning can be usedwith a 2-approximation for (‖·‖∞ , rad)-k-cluster

in order to compute a 4-approximation for (‖·‖w

∞ , rad)-k-cluster . If a cluster P in the
approximate solution for (‖·‖∞ , rad)-k-cluster contains more than 2k−1 vertices,
we remove exactly k vertices from it (keeping at least one of its central vertices with
respect to radius) and build a new cluster P̄ with them. By triangle-inequality this
cluster has a radius of at most 2 · rad(P). We repeat this cluster-splitting until all
clusters have at most 2k − 1 vertices. Let P ′

1, . . . , P
′
s be the clusters created from the

approximation P1, . . . , Ps for (‖·‖∞ , rad)-k-cluster by removing vertices and let
P̄1, . . . , P̄r be all newly created clusters of cardinality k. Since at least one central
vertex of Pi remains in P ′

i , we know that rad(P ′
i ) ≤ rad(Pi ). This partition yields a

solution for (‖·‖w

∞ , rad)-k-cluster of size:

max{max{|P ′
i | · rad(Pi ) : 1 ≤ i ≤ s},max{|P̄j | · rad(P̄j ) : 1 ≤ j ≤ r}}

≤ max{max{(2k − 1) · rad(P ′
i ) : 1 ≤ i ≤ s},max{k · rad(P̄j ) : 1 ≤ j ≤ r}}

≤ max{max{(2k − 1) · rad(Pi ) : 1 ≤ i ≤ s},max{k · (2 · rad(Pi )) : 1 ≤ i ≤ s}}
≤ 2k · max{rad(Pi ) : 1 ≤ i ≤ s}
≤ 4k · opt(G, d, rad, ‖·‖∞ , k)
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By Eq. (2), this means that P ′
1, . . . , P

′
s , P̄1, . . . , P̄r is a 4-approximation for

(‖·‖w

∞ , rad)-k-cluster . �

For (‖·‖w

∞, avg)-k-cluster we do not have a result for (‖·‖∞ , avg)-k-cluster to
transfer. Interestingly, a variant with different norm and measure can be used instead:

Proposition 10 (‖·‖w

∞ , avg)-k-cluster is (4k−2)-approximable in polynomial time
for all k ≥ 2, if d satisfies the triangle inequality.

Proof We first show opt(G, d, avg, ‖ · ‖w

∞ , k) ≥ opt(G, d, diam, ‖ · ‖∞ , k). Consider
any set P in an optimal solution for (‖·‖∞ , avg)-k-cluster . Triangle inequality
yields:

|P| · avg(P) = min

⎧
⎨

⎩

∑

p∈P

d(c, p) : c ∈ P

⎫
⎬

⎭

≥ min{max{d(u, c) + d(v, c) : u, v ∈ P} : c ∈ P}
≥ max{d(u, v) : u, v ∈ P} = diam(P)

Theorem 8 and Proposition 1 produce a 2-approximation for (‖·‖∞ , diam)-k-cluster
for which each set contains at least 2k − 1 vertices. The global cost of this par-
tition with respect to the weighted ∞-norm and average distortion is at most
2(2k − 1) · opt(G, d, diam, ‖ · ‖∞ , k), and hence yields a (4k − 2)-approximation
for (‖·‖w

∞ , avg)-k-cluster . �

At last, we want to present an approximation which exploits the unifiedmodel by com-
bining the solutions for k = 2 derived in Sect. 4 for two different problem variants to
compute an approximate solution for k = 4. Explicitly, we will combine the Simplex
Matching approach for (‖·‖w

1
, diam)-2-cluster and the Edge Cover approach

for (‖·‖w

1
, avg)-2-cluster . For this result, we need the following connection between

(‖ · ‖w

1
, diam)-4-cluster and (‖ · ‖w

1
, avg)-2-cluster.

Lemma 1 Let P1, . . . , Ps with |Pi | ≤ 3 for all i ∈ {1, . . . , s} be an optimal solution
for (‖·‖w

1
, diam)-2-cluster onagraphG with distance d. Let G ′ = (P, P×P)be the

graph with P := {p1, . . . , ps} and edge-weightsw defined bywi, j := w({pi , p j }) :=
min{d(u, v) : u ∈ Pi , v ∈ Pj }, then:

opt(G, d, diam, ‖·‖w

1
, 4) ≥ 3 · opt(G ′, w, avg, ‖·‖w

1
, 2).

Proof Let S1, . . . , Sr be an optimal solution for (‖ · ‖w

1
, diam)-4-cluster on G and

define c(v) := diam(Si ) for all v ∈ Si , i ∈ {1, . . . , r}. This yields:

D∗ := opt(G, d, diam, ‖·‖w

1
, 4) =

∑

v∈V
c(v).
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Let G̃ = (P, Ẽ) be the restriction of G ′ (edge-weights inherited) to the edges:

Ẽ :=
r⋃

k=1

{{pi , p j } : (i 
= j) ∧ (Pi ∩ Sk 
= ∅) ∧ (Pj ∩ Sk) 
= ∅}.

Observe that |Pi | ≤ 3 for all i ∈ {1, . . . , s} implies that the minimum degree in G̃ is
1; each v ∈ Pi lies in some set S j , j ∈ {1, . . . , r}, with |S j | ≥ 4, so there exists a
vertex v′ ∈ S j with v′ ∈ Pi ′ and i ′ 
= i which yields {pi , pi ′ } ∈ Ẽ . By the definition
of G̃, we know that, for any v ∈ Pi

c(v) ≥ min{wi, j : 1 ≤ j ≤ s, {pi , p j } ∈ Ẽ}. (3)

Let C ⊆ Ẽ be a minimum-weight edge cover for G̃. We claim that 3 · w(C) ≤ D∗
and consider three cases for edges C based on the cardinality of the neighbourhoods
of vertices pi in C , formally defined by NC (i) := {r : {pi , pr } ∈ C}. First observe
that if |NC (i)| > 1, minimality of C yields:

wi, j ≤ min{wh, j : 1 ≤ h ≤ s, {ph, p j } ∈ Ẽ} for all j ∈ NC (i). (4)

Case 1: |NC (i)| = |NC ( j)| = 1 for some j ∈ {1, . . . , s} with {pi , p j } ∈ C .
As {pi , p j } ∈ Ẽ , there exists some k ∈ {1, . . . , r} such that Pi ∩ Sk 
= ∅ and

Pj ∩ Sk 
= ∅, so let ui1, u
j
1 ∈ Sk be two vertices with ui1 ∈ Pi and u j

1 ∈ Pj . By
definition of the functions w and c, it follows that:

c(ui1) = c(u j
1) = diam(Sk) ≥ d(ui1, u

j
1) ≥ wi, j .

By minimality of C , we know that wi, j ≤ wi,zi + w j,z j for any choice of

zi , z j ∈ {1, . . . , s} with {pi , pzi }, {p j , pz j } ∈ Ẽ , so especially for zh such that

wh,zh = min{wh,x : 1 ≤ x ≤ s, {ph, px } ∈ Ẽ}, h ∈ {i, j}. By Eq. (3) this means
that for any two vertices vh ∈ Ph , h ∈ {i, j}:

wi, j ≤ wi,zi + w j,z j ≤ c(vi ) + c(v j )

As |Ph | ≥ 2, let vh ∈ Ph\{uh1} for h ∈ {1, 2}, which gives:

c(Pi ∪ Pj ) :=
∑

v∈Pi∪Pj

c(v) ≥ c(ui1) + c(u j
1) + c(vi ) + c(v j ) ≥ 3 · wi, j .

Case 2: If |NC (i)| = 2 let NC (i) = { j, k}. Equation (4) yields wh,z ≥ wh,i for
h ∈ { j, k} and all z ∈ {1, . . . , s} with {ph, pz} ∈ Ẽ . Equation (3) hence yields
c(v) ≥ wi,h for all v ∈ Ph , h ∈ { j, k}. Let the edge {pi , ph} be in Ẽ because of
uih, u

1
h for h ∈ { j, k}, i.e., uih ∈ Pi and u1h ∈ Ph and there exist yh ∈ {1, . . . , r}
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such that uih, u
1
h ∈ Syh . By this definition, it follows that c(uih) ≥ diam(Syh ) ≥

d(uih, u
1
h) = wi,h . If uij 
= uik , it follows that

c(Pi ∪ Pj ∪ Pk) ≥ c(uij ) + c(uik) + |Pj | · wi j + |Pk | · wi,k ≥ 3 · (wi, j + wi,k).

If uij = uik , it follows that y j = yk =: y and hence u1j , u1k ∈ Sy , which means that the

edge {p j , pk} is in Ẽ with weight at most d(u1j , u
1
k) ≤ diam(Sy) = c(uij ). Minimality

of C yields that w j,k +min{wi,x : 1 ≤ x ≤ s} ≥ wi, j +wi,k , hence Eq. (3) yields that
w j,k + c(|Pi\{uij }|) ≥ wi, j + wi,k , so:

c(Pi ) ≥ c(uij ) + c(|Pi\{uij }|) ≥ w j,k + (wi, j + wi,k − w j,k) ≥ wi, j + wi,k,

which overall gives c(Pi ∪ Pj ∪ Pk) ≥ 3 · (wi, j + wi,k).

Case 3: If |NC (i)| ≥ 3, let NC (i) = {i1, . . . , it }. Equations (4) and (3) yield:

c(vi j ) ≥ wi,i j for all vi j ∈ Pi j , j ∈ {1, . . . , t}. (5)

Let for each j ∈ {1, . . . , t}, u j ∈ Pi and v j ∈ Pi j be the vertices defining the edge
{pi , pi j }, i.e., there exists x j ∈ {1, . . . , r} such that u j , v j ∈ Sx j . By this definition,
it follows that:

c(u j ) = diam(Sx j ) ≥ d(u j , v j ) ≥ wi,i j for all j ∈ {1, . . . , t} (6)

If u j = u j ′ for some j 
= j ′, it follows that x j = x j ′ and consequently the edge
{pi j , pi j ′ } is in Ē and has a cost of at most d(v j , v j ′). Minimality of C implies that
d(v j , v j ′) ≥ wi,i j +wi,i j ′ . On the other hand, we have c(v) = diam(Sx j ) ≥ d(v j , v j ′),
for all v ∈ Sx j , so especially for v ∈ {v j , v j ′ }. With Eq. (5), this gives:

c(Pi j ∪ Pi j ′ ) ≥ c(v j ) + c(v j ′) + c(Pi j \{v j }) + c(Pi j ′ \{v j ′ })
≥ 2(wi,i j + wi,i j ′ ) + wi,i j + wi,i j ′
= 3(wi,i j + wi,i j ′ ) (7)

Let M be a maximum matching for the graph H = ({1, . . . , t}, Ê) with Ê =
{{ j, j ′} : u j = u j ′ }. By the definition of the edges, maximality of M yields that for the
unmatched indices N := { j : { j, j ′} /∈ M ∀ 1 ≤ j ′ ≤ t}, we have |{u j : j ∈ N }| =
|N |. With Eqs. (4), (6) and (7) this yields:
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c(Pi ) +
t∑

j=1

c(Pi j ) ≥
∑

{ j, j ′}∈M
c(Pi j ∪ Pi j ′ ) + c(Pi ) +

∑

j∈N
c(Pi j )

≥
∑

{ j, j ′}∈M
3(wi,i j + wi,i j ′ ) +

∑

j∈N
c(Pi j ∪ {u j })

≥
∑

{ j, j ′}∈M
3(wi,i j + wi,i j ′ ) +

∑

j∈N
wi,i j |Pi j ∪ {u j }|

≥ 3 ·
t∑

j=1

wi,i j .

Let C1, . . . ,Cx be the connected components (stars) of the graph induced by the
edges in C , and let pi j be the center of Ci j for each j ∈ {1, . . . , x}, then:

D∗ =
∑

v∈V
c(v) =

r∑

j=1

c(Pj ) =
x∑

t=1

c

⎛

⎝
⋃

p j∈Ct

Pj

⎞

⎠ ≥
x∑

t=1

3 ·
∑

j∈NC (it )

wit , j = 3 · w(C).

At last, since G̃ is a restriction of G ′,w(C) is at least the cost of a minimum-weight
edge cover forG ′ and by the proof of Theorem 2 any minimal edge cover forG ′ yields
a solution for (‖·‖w

1
, avg)-2-cluster . �

With the help of this Lemma, we can show that:

Theorem 9 The problem (‖ · ‖w

1
, diam)-4-cluster can be approximated in polyno-

mial time within a factor of 35
6 , if d satisfies the triangle inequality.

Proof Let G = (V, E) be the input graph with induced distances d. First, com-
pute an optimal solution P1, . . . , Ps for (‖·‖w

1
, diam)-2-cluster with Proposition 4.

This solution satisfies |Pi | ≤ 3 for all i ∈ {1, . . . , s}. Let D∗ be the global cost of
P1, . . . , Ps . It follows that

D∗ ≤ opt(G, d, diam, ‖·‖w

1
, 4), (8)

simply because any 4-cluster is also a 2-cluster.
Then, consider the complete graph G ′ = (P, P × P) with vertices P =

{p1, . . . , ps} (pi represents the set Pi ) and edge-weights w defined by wi, j :=
w({pi , p j }) := min{d(u, v) : u ∈ Pi , v ∈ Pj }. Compute an optimal solution
S1, . . . , Sr for (‖·‖w

1
, avg)-2-cluster on G ′ with Theorem 2 such that with |Si | ≤ 3

for all i ∈ {1, . . . , s} by Proposition 2. Lemma1 then yields:

D∗ ≥ 3 · opt(G ′, w, avg, ‖·‖w

1
, 2) = 3 ·

s∑

j=1

|S j | · avg(S j ). (9)

We interpret this partition S1, . . . , Sr as a partitionS = {S′
1, . . . , S

′
r } on the graph G,

i.e., S′
j := ⋃

pi∈S j Pi for all j ∈ {1, . . . , r}. As |Pi |, |S j | ≥ 2 for all i ∈ {1, . . . , r}
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and j ∈ {1, . . . , s} it follows that |S′
j | ≥ 4 for all j ∈ {1, . . . , s}, so S′

1, . . . , S
′
r is a

4-cluster for G.
If Sq = {pi , p j , pk} with central vertex pi for some i, j, k ∈ {1, . . . , s} with

|Pj | = 3, we replace the cluster S′
q in S by the two clusters P ′ := Pj ∪ {ui } and

P ′′ := S′
q\P ′ with ui ∈ Pi such that

wi, j = min{d(ui , v) : v ∈ Pj }.

These new clusters satisfy:

|P ′| · diam(P ′) ≤ 4 · (diam(Pj ) + wi, j ) < 2 · |Pj | · diam(Pj ) + 4 · wi, j

and

|P ′′| · diam(P ′′) ≤ 5 · (diam(Pi ) + diam(Pk) + wi,k)

≤ 5
2 · |Pi | · diam(Pi ) + 5

2 · |Pk | · diam(Pk) + 5 · wi,k .

Consider any set R ∈ S which is not the result of splitting up a cluster S′
q .

– If R = Pi ∪ Pj , we know that diam(R) ≤ diam(Pi ) + diam(Pj ) + wi, j and
|R| ≤ 6, hence:

|R| · diam(R) ≤ 3 · |Pi | · diam(Pi ) + 3 · |Pj | · diam(Pj ) + 6 · wi, j (10)

– If R = Pi ∪ Pj ∪ Pk , with pi as central vertex for Sq = {pi , p j , pk}; we know
that |R| ≤ 7 (as Pj and Pk have cardinality 2) and

diam(R) ≤ diam(Pi ) + diam(Pj ) + diam(Pk) + wi, j + wi,k,

hence |R| · diam(R) is bounded by:

|R| · diam(R) ≤ 7 · (diam(Pi ) + diam(Pj ) + diam(Pk) + wi, j + wi,k)

≤ 7
2

∑

h∈{i, j,k}
|Ph | · diam(Ph) + 7(wi, j + wi,k) (11)

Equations (9), (10) and (11) yield:

∑

R∈S
|R| · diam(R) ≤ 7

2 ·
r∑

i=1

|Pi | · diam(Pi )+6 ·
∑

R⊆Pi∪Pj

wi, j +7 ·
∑

R=Pi∪Pj∪Pk
(wi, j +wi,k)

≤ 7
2 ‖(diam((P1), . . . , diam(Ps))‖w

1
+7 ·

q∑

i=1

|Si | · avg(Si )

≤ 7
2D

∗ + 7
3D

∗ = 35
6 D∗.

�
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Table 1 Summary of the complexity of all problem variants for k = 2

k = 2 rad diam avg

‖·‖∞ in P (Edge Cover) in P (Simplex Cover) NP-complete

(Proposition 3) (Proposition 5) (Theorem 7)

‖·‖w

∞ NP-complete in P (Simplex Cover) NP-complete

(Theorem 7) (Proposition 5) (Theorem 7)

‖·‖w

1
APX-hard in P (Simplex Matching) in P (Weighted Edge Cover)

(Theorem 6) (Proposition 4) (Theorem 2 )

Table 2 Summary of the approximation ratios for all problem variants

rad diam avg

‖·‖∞ 2 (Theorem 8) 2 (Theorem 8) ?

‖·‖w

∞ 4 (Proposition 9) 4 (Proposition 9) 4k − 2 (Proposition 10)

‖·‖w

∞ 16(k − 1) (Corollary 5) 8(k − 1) (Proposition 8) 2k (Proposition 7)

Remark 4 With Eq. 1, the above result yields a 35
3 -approximation for

(‖ · ‖w

1
, rad)- 4-cluster. Since the approximation-ratios from Theorem 9 are sig-

nificantly better than the path-partitioning approximation from Proposition 8 (factor
24 and 48, respectively), it would be interesting to nest this construction further and
extend it for larger values of k.

7 Conclusions

We have introduced and discussed the general problem (‖·‖, f )-k-cluster to model
clustering tasks which do not fix the number of clusters but require each cluster to
contain at least k objects. The nine chosen problem variants in this paper generalise
many previous models but, of course, do not capture every possible way to measure
the quality of the clustering. We however tried to cover many previous models while
maintaining a clear framework in which similarities turned out to be quite fruitful.

OurNP-hardness result for k = 3 for all variants of (‖·‖, f )-k-cluster generalises
all known complexity-results for these types of problems. Further, we completely
characterise the complexity with respect to k; see Table 1.

The restriction to distances d which satisfy the triangle inequality turns the gen-
erally NP-hard problem (‖·‖w

∞ , avg)-2-cluster into a problem that can be solved
in polynomial time. We further showed that this restriction is necessary for polyno-
mial time approximations and derived a number of approximation strategies, mostly
based on different other graph problems. Our approximation ratios are summarised in
Table 2.

An interesting open question is whether (‖·‖∞ , avg)-k-cluster can be approx-
imated within some constant ratio or at least within some ratio in O(k). The lack
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of monotonicity for average distortion makes this measure the most challenging for
approximation.
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