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Abstract. We show that finding orthogonal grid embeddings of plane graphs
(planar with fixed combinatorial embedding) with the minimum number of bends
in the so-called Kandinsky model (allowing vertices of degree > 4) is NP-comp-
lete, thus solving a long-standing open problem. On the positive side, we give
an efficient algorithm for several restricted variants, such as graphs of bounded
branch width and a subexponential exact algorithm for general plane graphs.

1 Introduction

Orthogonal grid embeddings are a fundamental topic in computer science and the prob-
lem of finding suitable grid embeddings of planar graphs is a subproblem in many
applications, such as graph visualization [19] and VLSI design [17,21]. Aside from
the area requirement, the typical optimization goal is to minimize the number of bends
on the edges (which heuristically minimizes the area). Traditionally, grid embeddings
have been studied for 4-planar graph (max-deg 4), which is natural since it allows to
represent vertices by grid points and edges by internally disjoint chains of horizontal
and vertical segments on the grid. For plane graphs, Tamassia showed that the number
of bends can be efficiently minimized [14]; the running time was recently reduced to
O(n1.5) [7]. In contrast, if the combinatorial embedding is not fixed, it is NP-complete
to decide whether a 0-embedding (a k-embedding is a planar grid embedding with at
most k bends per edge) exists [14], thus also showing that bend minimization is NP-
complete and hard to approximate. In contrast, a 2-embedding exists for every graph
except the octahedron [2]. Recently it was shown that the existence of a 1-embedding
can be tested efficiently [4]. The problem is FPT if some subset of k edges has to have
0 bends [5]. If there are no 0-bend edges, it is even possible to minimize the number of
bends in the embedding, not counting the first bend on each edge [6].

These results only apply to graphs of maximum degree 4. There have been several
suggestions for possible generalizations to allow vertices of higher degree [16,20]. For
example, it is possible to represent higher-degree vertices by rectangles. The disadvan-
tage is that the vertices may be stretched arbitrarily in order to avoid bends. In partic-
ular, a visibility representation (existing for every planar graph) can be interpreted as a
0-embedding in this model. It is thus natural to forbid stretching of vertices.
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Fößmeier and Kaufmann [13] proposed a generalization of planar orthogonal grid
embeddings, the so-called Kandinsky model (originally called podevsnef), that over-
comes this problem and guarantees that vertices are represented by boxes of uniform
size. Essentially their model allows to map vertices to grid points on a coarse grid, while
routing the edges on a much finer grid. The vertices are then interpreted as boxes on the
finer grid, thus allowing several edges to emanate from the same side of a vertex; see
Sect. 2. Fößmeier and Kaufmann model the bend minimization in the fixed combina-
torial embedding setting by a flow network similar to the work of Tamassia [18] but
with additional constraints that limit the total amount of flow on some pairs of edges.
Fößmeier et al. [12] show that every planar graph admits a 1-embedding in this model.
Concerning bend minimization, reductions of the mentioned flow networks to ordinary
minimum cost flows have been claimed both for general bend minimization [13] and
for bend minimization when every edge may have at most one bend [12].

Eiglsperger [10] pointed out that the reductions to minimum cost flow are flawed and
gave an efficient 2-approximation. Bertolazzi et al. [1] introduced a restricted variant of
the Kandinsky model (requiring more bends), for which bend minimization can be done
in polynomial time. Although the Kandinsky model has been later vastly generalized,
e.g., to apply to the layout of UML class diagrams [11], the fundamental question about
the complexity of bend minimization in the Kandinsky model has remained open for
almost two decades.

Contribution and Outline. We show that the bend minimization problem in the Kandin-
sky model is NP-complete (no matter if we allow or forbid so-called empty faces).
This also holds if each edge may have at most one bend; see Sect. 3. As an intermedi-
ate step, we show NP-hardness of the problem ORTHOGONAL 01-EMBEDDABILITY,
which asks whether a plane graph (with maximum degree 4) admits a grid embedding
when requiring some edges to have exactly one and the remaining edges to have zero
bends. This result is interesting on its own, as it can serve as tool to show hardness of
other grid embedding problems. In particular, it gives a simpler proof for the hardness of
deciding 0-embeddability (maximum degree 4) for graphs with a variable embedding.

We then study the complexity of the problem subject to structural graph parame-
ters in Sect. 4. For graphs with branch width k, we obtain an algorithm with running
time 2O(k logn). For fixed branch width this yields a polynomial-time algorithm (O(n3)
for series-parallel graphs), for general plane graphs the result is an exact algorithm with
subexponential running time 2O(

√
n logn).

For detailed proofs, we refer to the full version of this paper [3].

2 Preliminaries

Kandinsky Embedding. Let G be a plane graph. An orthogonal embedding of G maps
vertices to grid points and edges to paths in the grid such that the resulting drawing is
planar and respects the combinatorial embedding of G; see Fig. 1a. Clearly, G admits
an orthogonal embedding if and only if it is 4-planar. The Kandinsky model [13] over-
comes this limitation. A Kandinsky embedding of G (Fig. 1b) maps each vertex to a box
of constant size centered at a grid point and each edge to a path in a finer grid such that
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Fig. 1. (a) An orthogonal embedding of the K4. (b) A Kandinsky embedding of the wheel of
size 5. (c) A Kandinsky embedding with an empty face. (d–e) The rotation of a vertex (d) and an
edge (e) in a face f (shaded blue).

the resulting drawing is planar, respects the combinatorial embedding of G, and has no
empty faces. A face is empty if it does not include a grid cell of the coarser grid; see
Fig. 1c.

One can declare a bend on an edge uv to be close to v if it is the last bend on uv
(traversing uv from u to v). A bend cannot simultaneously be close to u and to v.
Kandinsky embeddings have the bend-or-end property [13], requiring that a 0◦ angle
between edges uv and vw in the face f implies that at least one of the edges uv and vw
has a bend close to v forming a 270◦ angle in f .

Kandinsky Representation. A Kandinsky embedding of a planar graph can be speci-
fied in three stages. First, its topology is fixed by choosing a combinatorial embedding.
Second, its shape in terms of angles between edges and sequences of bends on edges
is fixed. Third, the geometry is fixed by specifying coordinates for vertices and bend
points. In analogy to combinatorial embeddings as equivalence classes of planar draw-
ings with the same topology, one can define Kandinsky representations as equivalence
classes of Kandinsky embeddings with the same topology and the same shape. This ap-
proach was first introduced for orthogonal embeddings [18] and extended to Kandinsky
embeddings [13].

Let Γ be a Kandinsky embedding. Let f be a face with an edge e1 in its boundary
and let e2 be the successor of e1 in clockwise direction (counter-clockwise if f is the
outer face). Let further v be the vertex between e1 and e2 and let α be the angle at v in f .
We define the rotation rotf (e1, e2) between e1 and e2 to be rotf (e1, e2) = 2− α/90◦;
see Fig. 1d. The rotation rotf (e1, e2) can be interpreted as the number of right turns
between the edges e1 and e2 at the vertex v in the face f . We also write rotf (v) instead
of rotf (e1, e2) if the edges are clear from the context and call it the rotation of v in f .

The shape of every edge can also be described in terms of its rotation. Let e = uv
be an edge incident to a face f such that v is the clockwise successor of u along the
boundary of f (counter-clockwise if f is the outer face). The rotation rotf (e) of e in
f is the number of right bends minus the number of left bends one encounters, when
traversing e from u to v; see Fig. 1e.

Let uv, vw be a path of length 2 in the face f . If uv and vw form an angle of 0◦

(rotf (v) = 2), at least one of the edges uv or vw has a bend close to v with rotation −1
in f (bend-or-end property). We represent the information of which bends are close to
vertices as follows. If uv has a bend close to v, we define the rotation rotf (uv[v]) at
the end v of uv to be 1 (−1) if it has rotation 1 (−1) in f . If uv has no bend close to v,
we set rotf (uv[v]) = 0.
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A set of values for the rotations is a Kandinsky representation (i.e., there is a corre-
sponding embedding) if and only if it satisfies the following properties [13].
(1) The sum over all rotations in a face is 4 (−4 for the outer face).
(2) For every edge uv with incident faces f� and fr, we have rotf�(uv) + rotfr (uv) =

0, rotf�(uv[u]) + rotfr (uv[u]) = 0, and rotf�(uv[v]) + rotfr (uv[v]) = 0.
(3) The sum of rotations around a vertex v is 2 · deg(v) − 4.
(4) The rotations at vertices lie in the range [−2, 2].
(5) If rotf (uv, vw) = 2 then rotf (uv[v]) = −1 or rotf (vw[v]) = −1.

If the face is clear from the context, we often omit the subscript in rotf . One can
assume that all bends on an edge (except for bends close to vertices) have the same di-
rection. It follows that the actual number of bends of uv can be computed from rot(uv),
rot(uv[u]), and rot(uv[v]).

Let f be a face of G and let u and v be two vertices on the boundary of f . By
πf (u, v) we denote the path from u to v on the boundary of f in clockwise direction
(counter-clockwise for the outer face). The rotation rotf (π) of a path π in the face f is
the sum of all rotations of edges and inner vertices of π in f .

An orthogonal embedding is basically a Kandinsky embedding without 0◦ angles
at vertices. Thus, we can define orthogonal representations [18] (equivalence class of
orthogonal embeddings), by forbidding rotation 2 at vertices.

3 Complexity

Let S be an instance of 3-SAT. In its variable-clause graph, the variables and clauses
are represented by vertices and there is an edge xc connecting a variable x with a clause
c if and only if x ∈ c or ¬x ∈ c. The NP-hard problem PLANAR MONOTONE 3-
SAT [8] restricts the instances of 3-SAT as follows. Every clause contains only positive
or only negative literals. Moreover, the variable-clause graph admits a planar embedding
such that the edges connecting a variable x to its positive clauses appear consecutively
around x.

The problem ORTHOGONAL 01-EMBEDDABILITY is defined as follows. Let G =
(V,E) be a 4-plane graph having its edges E = E0 ·∪E1 partitioned into 0-edges (E0)
and 1-edges (E1). Decide whether G admits an orthogonal 01-representation such that
every edge in Ei has exactly i bends. In the following, we always consider the variant of
ORTHOGONAL 01-EMBEDDABILITY where we allow to fix angles at vertices. Fixing
the angles at vertices does not make the problem harder since augmenting a vertex v to
have degree 4 by adding degree-1 vertices incident to v has the same effect as fixing the
angles at v.

We first reduce PLANAR MONOTONE 3-SAT to ORTHOGONAL 01-EMBEDDABIL-
ITY, which is further reduced to KANDINSKY BEND MINIMIZATION.

3.1 Orthogonal 01-Embeddability

In the reduction from PLANAR MONOTONE 3-SAT, the decision of setting a variable
to true or false is encoded in the bend-direction of a 1-edge. We show how to
build gadgets for variables (outputting a positive and negative literal) and for clauses
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Fig. 2. (a) The interval gadgets G[0, 1] (≡ 01-edge) and G[−2, 3] (s and t are blue). (b–e) Edges
are color-coded; 0-edges are black; 1-edges are blue; 01-edges are green and directed such that
they may bend right but not left. The building blocks are (b) the box; (c) the bendable box; (d) the
merger; (e) the splitter.

(admitting drawings if and only if at least one input edge encodes the value true). To
carry the decision of one variable to several clauses we need gadgets that impose the
bend direction from one edge on multiple edges (literal duplicator). Finally, we build
bendable pipes to carry the information (in a flexible way) to the clause gadgets. We
first present some basic building blocks.

Building Blocks. An interval gadget G[ρ1, ρ2] is a graph with two designated degree-1
vertices (its endpoints) s and t on the outer face. It has the property that rot(π(s, t)) ∈
[ρ1, ρ2] for any orthogonal embedding. The construction is similar to the tendrils used
by Garg and Tamassia [14]; Fig. 2a shows G[0, 1] and G[−2, 3]. Note that G[0, 1] be-
haves like an edge that may have one bend, but only into a fixed direction. In the follow-
ing, we draw copies of G[0, 1] as directed green edges and refer to them as 01-edges.

All our gadgets are based on the building blocks shown in Fig. 2b–e. We require that
the angles at the vertices in the internal face f are 90◦ (rotation 1). Note that, apart
from the 0-edges, all edges of the building blocks admit precisely two possible rotation
values in each face. Thus, each edge attains its maximum rotation value in one of its
faces and the minimum rotation in the other. It can be shown that in any orthogonal 01-
representation the rotation values of some edge pairs are not independent but are linked
in the sense that exactly one of them must attain its minimum (maximum) rotation value
in f . In Fig. 2b–e such dependencies are displayed as red dashed arrows.

Gadget Constructions. Our gadgets will always have 1-edges on the outer face, whose
bend directions represent truth values (as output or as input). We again use red dashed
arrows to indicate which edges have to bend consistently. It follows that when there is
a path of such red arrows from one edge to another edge, then they are synchronized.

The variable gadget for a variable x consists of a single box. The two 1-bend edges
are called positive and negative output. The variable gadget has exactly two different
representations; see Fig. 3a. We interpret a rotation of −1 and 1 of the positive output
in the outer face as x = true and x = false, respectively.

The literal duplicator is formed by a splitter, which is glued to two mergers via its
01-edges; see Fig. 3b. It has one input edge and two output edges and transfers the state
of the input to both outputs in every orthogonal 01-representation (red dashed paths),
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Fig. 3. The different gadgets we use in our construction

i.e., the output edges have rotation −1 (1) in the outer face if and only if the input edge
has rotation 1 (−1). The literal duplicator admits orthogonal 01-representations for both
inputs true and false; see Fig. 3b.

A zig-zag consists of the two bendable boxes glued along a pair of 1-edges; see
Fig. 3c. It has an input and an output edge, and in any valid drawing the information
encoded in the input is transmitted to the output. Moreover, the decision which of the
bendable boxes bend their 01-edges can be taken independently. Thus, the zig-zag al-
lows to choose the rotations ρ, ρ′ of the paths between the input and the output edge
with ρ = −ρ′ for each ρ ∈ {−1, 0, 1}; see the drawings in Fig. 3c. A k-bendable
pipe is obtained by concatenating k zig-zags; see Fig. 3d. It has the same properties
as a zig-zag, except that the rotation ρ can be in the interval [−k, k]. In a high-level
view, a bendable pipe looks like a flexible edge that transfers information between its
endpoints.

The clause gadget is a cycle of length 4, consisting of three 1-edges, the input edges,
and the interval gadget G[−2, 3]; see Fig. 3e. The inner face lies to the right of G[−2, 3]
(i.e., the rotation of G[−2, 3] in the inner face is in [−2, 3]) and the angles at vertices in



Complexity of Higher-Degree Orthogonal Graph Embedding in the Kandinsky Model 167

inner faces are fixed to 90◦. Interpreting a rotation of −1 (of 1) of an input edge in the
inner face as true (as false), we get a valid embedding if and only if not all inputs
are false; see Fig. 3e.

Putting Things Together. Let S be an instance of PLANAR MONOTONE 3-SAT. To
obtain the graph G(S), we create a variable gadget for every variable and a clause
gadget for every clause, duplicate the literals (using the literal duplicator) outputted by
the variable gadget as often as they occur in clauses, and connect the resulting output
edges with the corresponding input edges of the clauses using bendable pipes of suf-
ficient length. Note that G(S) is planar if we adhere to the planar embedding of the
variable-clause graph of S.

If G(S) admits an orthogonal 01-representation, the drawings of the variable gadgets
imply a truth assignment for the variables in S. Moreover, it satisfies S, since a non-
satisfied clause would imply an orthogonal 01-representation of a clause gadget with
value false on every input edge. Conversely, a satisfying truth assignment of S, com-
pletely fixes the orthogonal 01-representation of each gadget, except for the rotations
along the bendable pipes. One needs to show that these representations can be plugged
together to a representation of the whole graph G(S), which is the case if the bendable
pipes are sufficiently long.

Theorem 1. ORTHOGONAL 01-EMBEDDABILITY is NP-complete.

In fact, we even showed NP-hardness for the case where all angles at vertices incident
to 1-edges are fixed. Moreover, it can be seen that both variants remain hard if the
combinatorial embedding is fixed up to the choice of an outer face.

It can be shown that ORTHOGONAL 01-EMBEDDABILITY remains NP-hard for sub-
divisions of triconnected graphs [3], which have a unique combinatorial embedding.
Replacing in such an instance every 1-edge with a copy of the interval gadget G[1, 1]
and releasing the combinatorial embedding gives an equivalent instance of 0-EMBEDD-
ABILITY (variable embedding) where mirroring the embedding of G[1, 1] corresponds
to bending a 1-edge in different directions. This simplifies the hardness proof by Garg
and Tamassia [14].

3.2 Kandinsky Bend Minimization

The reduction from ORTHOGONAL 01-EMBEDDABILITY to KANDINSKY BEND

MINIMIZATION consists of two basic building blocks. In an orthogonal embedding,
0◦ angles between edges are forbidden. We show how to enforce this for Kandinsky
embeddings. Moreover, we construct a subgraph whose Kandinsky embeddings behave
like the embeddings of an edge with exactly one bend.

The graph B in Fig. 4a is called corner blocker. The vertex v is its attachment vertex.
Clearly,B admits a Kandinsky representation with two bends. It can be shown that there
is no representation with fewer bends and that three bends are necessary if the angle at
v is 0◦.

Let v be a vertex with incident edges e1 and e2. Assume we attach two corner block-
ers B1 and B2 and embed them as in Fig. 4b. Then the angle between e1 and e2 can-
not be 0◦ without causing B1 or B2 to have three bends. By nesting corner blockers
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Fig. 4. (a) The corner blocker. (b) Two corner blockers enforcing at least 90◦ angles between e1
and e2 (c) Nesting corner blockers. (d) The one-bend gadget.

(Fig. 4c), one can increase this cost arbitrarily. Hence, we can force angles between
edges to be at least 90◦ by adding (nested) corner blockers.

The graph Γ in Fig. 4d with the two endvertices u and v is called one-bend gadget.
The path π from u to v (blue in Fig. 4d) is the bending path of Γ . A Kandinsky rep-
resentation of Γ blocks no corner if all three edges incident to v leave v on the same
side. Clearly, Γ admits Kandinsky representations blocking no corner with three bends
and rotation 1 and −1 on π. We can show that an optimal representation of Γ blocking
no corner requires three bends and rotation either −1 or 1 on π. Thus, Γ behaves like
a 1-edge.

Let G = (V,E = E0 ·∪E1) (with combinatorial embedding) be an instance of OR-
THOGONAL 01-EMBEDDABILITY. We assume that all angles at vertices incident to
a 1-edge in G are fixed. Starting with G, we construct a graph G′ that serves as instance
of KANDINSKY BEND MINIMIZATION. Let v be a vertex of G. If the angles at v are
not fixed, we add a nested corner blocker for every face incident to v, which forbids 0◦

angles between edges of G incident to v. If the angles are fixed, we add α/90◦ nested
corner blockers into a face with angle α, which enforces the correct angles. Then we
replace every 1-edge uv in G with a one-bend gadget Γ . As the angles around v were
fixed (v is incident to a 1-edge), Γ is forced to block no corner. Hence, Γ has at least
three bends in every Kandinsky representation of G′ and its bending path has rotation 1
or −1.

We show that G admits an orthogonal 01-representation if and only if G′ has a
Kandinsky representation with 2b + 3|E1| bends (b is the number of corner blockers).
Given an orthogonal 01-representation of G, one can add the corner blockers (two bends
each) and replace 1-edges by one-bend gadgets (three bends each). Conversely, given a
Kandinsky representation of G′ with 2b + 3|E1| bends, removing the corner blockers
and replacing the one-bend gadgets by edges with one bend gives an orthogonal 01-
representation. The construction still works when allowing empty faces or restricting
edges to have at most one bend (or both).

Theorem 2. KANDINSKY BEND MINIMIZATION is NP-complete.

4 A Subexponential Algorithm

In this section, we give a subexponential algorithm for computing optimal Kandinsky
representations of plane graphs. We use dynamic programming on sphere cut decom-
positions, which are special types of branch decompositions [9]. Assume graph G is
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decomposed into subgraphs G1 and G2. It may be possible to merge Kandinsky rep-
resentations K1 and K2 of G1 and G2 into a representation of G. We show (Sect. 4.1)
which properties of K1 are important when trying to merge it with K2 and derive classes
of Kandinsky representations whose members behave equivalently. If we know optimal
Kandinsky representations of G1 and G2 for each of these equivalence classes, we find
an optimal representation of G by trying to merge every pair of representations of G1

and G2. We bound the number of combinations one has to consider in Sect. 4.2. Itera-
tively applying this merging step in a sphere cut decomposition results in our Algorithm
(Sect. 4.3).

4.1 Interfaces of Kandinsky Representations

Consider two edge-disjoint graphs G1 and G2 sharing a set of attachment vertices. Let
the union G of G1 and G2 be plane. We say that G1 and G2 are glueable if both graphs
are connected and there is a simple closed curve that separates G1 fromG2; see Fig. 5a–
c. We also say that G1 (G2) is a glueable subgraph of G. A sphere cut decomposition of
width k basically recursively decomposes a plane graph into glueable subgraphs with
at most k attachment vertices.

Let K be a Kandinsky representation of G with restriction K1 to G1. Let K′
1 be

another representation of G1. Replacing K1 with K′
1 in K means to set every rotation in

K involving only edges in G1 to its value in K′
1 (other values remain unchanged). The

result is not necessarily a Kandinsky representation. We say that K1 and K′
1 have the

same interface if replacingK1 with K′
1 (and vice versa) in any Kandinsky representation

of G yields a Kandinsky representation of G; see Fig. 5d. In the following we derive a
combinatorial description of an interface.

Consider two glueable subgraphs G1 and G2 of a plane graph G. Let v0, . . . , v� be
the attachment vertices in the order they appear on the simple closed curve separating
G1 from G2. Let f be the face of G1 containing G2 and let Cf be its facial cycle
(Cf contains v0, . . . , v� in that order). The vi decompose Cf into the interface paths
π01, π12, . . . , π�0 with πij = π(vi, vj). For an attachment vertex vi, denote the last
edge of the path πi−1 i by eini and the first edge of the path πi i+1 by eouti (indices are
considered modulo �+ 1); see Fig. 5e.

G1

G2

G1

G2

(a) (b) (c)

G1G2
v

K1

K′
1

v1

v2 v0

π12

π20

π01

ein0

eout0ein1
eout1

ein2

eout2

(d) (e)

Fig. 5. (a) Decomposition of a graph into glueable subgraphs G1 and G2 (attachment vertices are
shaded blue). (b) A non-glueable decomposition (a closed curve separating G1 from G2 cannot
be simple as v must be visited twice). (c) Non-glueable decomposition (G2 is disconnected).
(d) Graph G with glueable subgraph G1 (yellow). Faces shared by G1 and G2 are blue. The
Kandinsky representations K1 and K′

1 are interchangeable. (e) Some notation.
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Fig. 6. (a) Merging G1 and G2. Shared rotations are marked red. (b) A merging step of width 5.
(c) Two ways to choose the shared rotations.

The representations K1 and K′
1 of G1 have compatible interface paths if each πi i+1

has the same rotation in K1 and K′
1. They have the same attachment rotations if for

every attachment vertex vi, the rotation rot(eini , e
out
i ) is the same. In Fig. 5e, interface

paths π01, π12, and π20 have rotations −1, 1, and 0, and the attachment rotations at v0,
v1, and v2 are −1, −1, and −2, respectively.

For an attachment vertex vi, the rotations at the end vi of the edges eini and eouti

(rot(eini [vi]) and rot(eouti [vi])) indicate whether 0◦ angles at vi are allowed. For both
rotations, we define the 0◦ flag to be true if a 0◦ angle is allowed (rotation −1) and
false otherwise (rotations 0, 1). Possible values for the 0◦ flags in Fig. 5e are true
for eout0 [v0] and for ein1 [v1] and false for all other flags.

Lemma 1. Two Kandinsky representations have the same interface iff they have com-
patible interface paths, the same attachment rotations, and the same 0◦ flags.

It follows that each interface class is uniquely described by this information. We
simply call it the interface of G1 (G2) in G.

4.2 Merging Two Kandinsky Representations

Let K1 and K2 be Kandinsky representations of G1 and G2, respectively, and let G =
G1 ∪ G2. We say that K1 and K2 can be merged if there exists a Kandinsky represen-
tation K of G whose restriction to G1 and G2 is K1 and K2, respectively. Note that
the only rotations in K that occur neither in K1 nor in K2 are rotations at attachment
vertices between an edge of G1 and an edge of G2. We call these rotations the shared
rotations; see Fig. 6a. Thus, merging K1 and K2 is the process of choosing values for
the shared rotation such that the resulting set of rotations is a Kandinsky representation
of G.

In the following, we consider the case where G itself is a glueable subgraph of a
larger graph H . We call this the merging step G = G1 � G2. Note that G1 and G2 are
also glueable subgraphs of H . Note further that the interface of G1 (G2) in G can be
deduced from the interface of G1 (G2) in H . When dealing with a merging step, we
always consider the interfaces of G1 and G2 in H . The width of a merging step is the
maximum number of attachment vertices of G1, G2, and G in H ; see Fig. 6b for an
example.

If the Kandinsky representations K1 and K2 can be merged, then every Kandinsky
representation K′

1 with the same interface as K1 can be merged in the same way (i.e.,
with the same shared rotations) with K2. Moreover, the resulting Kandinsky represen-
tations K and K′ of G have the same interface. Thus, the only choices that matter when
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merging two representations are to choose shared rotations and interfaces for G1 and
G2. A choice of shared rotations and interfaces is compatible if these interfaces can be
merged using the chosen rotations.

We bound the number of compatible combinations, depending on the width k of the
merging step and the maximum rotation ρ. The maximum rotation of a graph H is ρ if
H admits an optimal Kandinsky representation such that the absolute rotations of the
interface paths in every glueable subgraph of H are at most ρ; the maximum rotation ρ
of a merging step refers to the maximum rotation of the whole graph H .

A simple bound can be obtained as follows. There are 2k interface paths, each admit-
ting up to (2ρ+1) possible rotations, giving (2ρ+1)2k combinations. Every attachment
vertex has its attachment rotation in [−2, 2] and two binary 0◦-flags, yielding another
202k combinations. Finally, each shared rotation (two per attachment) may be chosen
from [−2, 2], yielding again 52k combinations. That are (2ρ + 1)2k10000k combina-
tions in total. By a careful consideration which combinations are actually meaningful
this number can be reduced greatly.

Lemma 2. In a merging step G = G1 �G2 of width k with maximum rotation ρ, there
are at most (2ρ+1)�1.5k�−1 · 330k compatible choices for the shared rotations and the
interfaces of G1 and G2.

Let G be a glueable subgraph of H . The cost of an interface class is the minimum
cost (e.g., number of bends) of the Kandinsky representations it contains. The cost table
of G is a table containing the cost of each interface class of G.

Lemma 3. Let G = G1 � G2 be a merging step of width k with maximum rotation ρ.
Given the cost tables of G1 and G2, the cost table of G can be computed in O(k · (2ρ+
1)�1.5k�−1 · 330k) time.

4.3 The Algorithm

The previous three lemmas together with an optimal sphere cut decomposition (com-
putable in O(n3) time [15,9]) can be used to prove the following theorem.

Theorem 3. An optimal Kandinsky representation of a plane graphG can be computed
in O(n3 + n · k · (2ρ+ 1)�1.5k�−1 · 330k) time, where k is the branch width and ρ the
maximum rotation of G.

To obtain the following corollaries, we bound ρ in terms of the optimal bend number
and the maximum face size and use upper bounds of 2 and O(

√
n) on the branch width

of series-parallel and planar graphs, respectively.

Corollary 1. Let G be a plane graph with maximum face-degree ΔF , and branch
width k. An optimal Kandinsky representation can be computed in O(n3+n ·k · (2m+
2ΔF − 3)�1.5k�−1 · 330k) time. An optimal b-bend Kandinsky representation can be
computed in O(n3 + n · k · ((2b+ 2) ·ΔF − 2b− 3)�1.5k�−1 · 330k) time.

Corollary 2. For series-parallel and general plane graphs an optimal Kandinsky rep-
resentation can be computed in O(n3) and 2O(

√
n logn) time, respectively.
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