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We show that given a k-bounded pseudo-Boolean function f , one can always compute the
cth moment of f over regions of arbitrary radius in Hamming space in polynomial time
using algebraic information from the adjacency structure (where k and c are constants).
This result has implications for evolutionary algorithms and local search algorithms
because information about promising regions of the search space can be efficiently
retrieved, even if the cardinality of the region is exponential in the problem size. Finally,
we use our results to introduce a method of efficiently calculating the expected fitness of
mutations for evolutionary algorithms.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The class of k-bounded pseudo-Boolean functions (i.e., real-valued functions over binary strings that are epistatically
bounded by a constant k) plays an important role in evolutionary computation, combinatorial optimization, biophysics, and
machine learning. These functions appear as objective functions in a number of well-studied combinatorial optimization
problems over the set of binary strings, e.g., MAX-k-SAT problems, NK-landscapes, spin models, and several graph
optimization problems such as MAX-CUT.

In the fields of evolutionary computation and local search, a landscape is a mathematical formalism which can be
expressed as a tuple (X,N , f ). Here X is a finite set of configurations that constitutes the domain of a real-valued objective
function f . N is a neighborhood structure which is a geometric, topological, or algebraic structure on X that imposes
connectivity on its elements. In evolutionary computation, f is often called the fitness function, and the configurations that
comprise X are called genotypes. In this case, the landscape is often referred to as a fitness landscape.

In this paper, we will consider partitioning X into local regions about a given configuration and give a procedure for
efficiently retrieving the moments of the distribution of objective function values across the region. We study landscapes
where the configuration set is the set X = {0, 1}n (i.e., all binary strings of length n), the fitness function f is any k-bounded
pseudo-Boolean function, and the neighborhood N is given by the standard Hamming operator.

We will show that every k-bounded pseudo-Boolean function has a sparse representation in an eigenbasis of the
Hamming adjacencymatrix anduse this to derive polynomial-time computations of themoments of the fitness function over
regions of the landscape.Weprove that any k-bounded pseudo-Boolean function f can bewritten as a linear combination of a
bounded number of eigenfunctions of the Hamming neighborhood structure, each of which is polynomially computable.We
first show that, for such functions, higher powers of f can also be written as sums over eigenfunctions of the neighborhood
structure, each polynomially computable. This allows us to compute the moments of f over the neighborhood of any point
without explicitly examining any of the neighbors.

We then recursively generalize the neighborhood structure and show that eigenfunctions over the Hamming
neighborhood are also eigenfunctions over radius-r Hamming spheres, i.e., sets of points that lie at Hamming distance r .
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We show that the cth moment of any k-bounded pseudo-Boolean function f can be computed in polynomial time over any
sphere of arbitrary radius and any Hamming ball (i.e., union of spheres) of arbitrary radius.

One immediate consequence is that central moments of f (such as the mean, variance, skewness, and kurtosis) can be
computed in polynomial time over specialized regions of the landscape. This result is significant since the cardinality of such
regions can be exponential in the problem size. For example, a radius n/2 Hamming sphere containsΩ(2n/2) unique states
and any Hamming ball of radius εn for 0 ≤ ε ≤ 1 has Ω(2εn) unique states. If the epistasis of f is bounded by a constant
k, our approach has a time complexity of O(nck) to calculate the exact value for the cth moment of f over any sphere and a
time complexity of O(rnck) to calculate the exact moment over a ball of radius r . Furthermore, if f can be expressed as a sum
overm≪ nk subfunctions, the complexity results can be improved to O(mc) and O(rmc), respectively.

The information provided by these calculations allows for a better characterization of the distribution of codomain values
of a function over localized regions of the landscape. Such information may be useful for the design and analysis of heuristic
search algorithms. Currently, the only way to characterize the distribution of a function over localized regions is either by
exhaustive enumeration of the region, or estimation via direct sampling.

Finally, we present an application of the results developed in this paper and introduce an efficient algorithm for
computing the exact expected fitness of mutations for a binary evolutionary algorithm using a k-bounded fitness function
and a fixed mutation rate.

1.1. Background

Landscape analysis has been a useful tool to study the characteristics of the state space explored by search algorithms
and evolutionary processes [13,21,22,14,1,19,18]. In this paper, we will study the expansion of functions in an eigenbasis of
the landscape neighborhood structure. A number of combinatorial optimization domains were first observed by Grover
[6] to be related by a difference equation to the neighborhood structure imposed by natural search operators. Further
analysis by Stadler [22,23] has produced a number of important results that capture many characteristics of landscapes.
The method used in this paper also relies on representing functions in the orthogonal Walsh basis [25]. Walsh analysis was
first introduced to the evolutionary computation community by Holland and Bethke [11,2] and later developed by Goldberg
[5].

This paper generalizes thework of Heckendorn et al. [8]. Using aWalsh decomposition, they compute summary statistics
(e.g., central moments such as the mean, variance, skewness, and kurtosis) over the entire search space for MAX-3-SAT and
all k-bounded pseudo-Boolean functions, which they call embedded landscapes. In this paper we will give a method for
calculating the exact summary statistics for subsets of the landscape corresponding to Hamming spheres and volumes of
arbitrary radius.

Unless P = NP, NP-complete problems require in the worst case superpolynomial time to solve exactly. Problems such
as MAX-k-SAT are therefore often ‘‘heuristically solved’’ in practice using local search methods. Information that is relevant
to evolutionary systems and local search algorithms can often be computed in polynomial time for some classic problems
that are NP-complete. The moment calculations that are presented in this paper quantify topological statistics of the search
space that is explored by high-performance local search algorithms used to solve MAX-k-SAT problems [12].

Artificial evolutionary models, and in particular Holland’s genetic algorithm [11] and Kauffman’s NK-Landscapes [16], also
assume that the distribution of fitness function values over different regions of the search space is important. In both systems,
chromosomes are represented as simple binary strings with 0 and 1 alleles. These artificial bit chromosomes are decoded
as simple haploid structures. From this perspective, evolutionary algorithms are often viewed as optimization procedures
or search methods acting on pseudo-Boolean functions.

The method presented in this paper relies on direct knowledge of the Walsh coefficients. If the Walsh coefficients
are unknown, but f is still epistatically bounded by a constant k, the Walsh coefficients can be efficiently retrieved
deterministically in O(nk) time [15], or stochastically with negligible error in O(n2 log n) time [10]. If there are m nonzero
Walsh coefficients, Choi et al. [3] present an O(m log n) adaptive randomized algorithm for finding all of them with high
probability.

1.2. Preliminaries

We first give a brief introduction of the notation and concepts used in this paper. A pseudo-Boolean function is a function
f : {0, 1}n → R that maps strings over a binary alphabet into the real numbers. We say a pseudo-Boolean function is k-
bounded if it can be expressed as the sum of subfunctions that each depend on at most k bits (where k is a constant). Let
x, y ∈ {0, 1}n be two points in the domain of f . We define their inner product as

⟨x, y⟩ =
n

b=1

x[b]y[b],

where x[b] ∈ {0, 1} denotes the bth element of x. The Hamming distanceD(x, y) between x and y is the number of positions
in which x and y differ. We can write

D(x, y) = ⟨x⊕ y, x⊕ y⟩,
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where⊕ denotes componentwise exclusive or. The Hamming neighborhood of a point x ∈ {0, 1}n is the setN(x) of all points
y such that D(x, y) = 1. The points in {0, 1}n along with the Hamming neighborhood form a distance transitive graph on
2n vertices which is typically referred to as a hypercube graph. We can define the adjacency matrix as

Axy =


1 if y ∈ N(x),
0 otherwise.

Note that A is a 2n
× 2n matrix. Consider a pseudo-Boolean function

f : {0, 1}n → R.

We will write the cth power of f as a function f c where

f c : {0, 1}n → R; f c(x) = (f (x))c, ∀x ∈ {0, 1}n.

The cth moment of a discrete random variable Z can be written as

µc =

z

zc Pr{Z = z},

where Pr{Z = z} is the probability mass function of Z .
Let X ⊆ {0, 1}n be a nonempty set of points. Moments of f over X are defined as moments of a random variable that

assumes the value of f evaluated at a point drawn uniformly at random from X . Since each element of X is drawnwith equal
probability, the probability mass function is 1

|X | and we can define

µc(X) =
1
|X |


x∈X

f c(x) (1)

to be the cth moment of f over the set X . For any nonempty set X , it should be clear that µ0(X) = 1. The first moment,
µ1(X), is the average value of the function f evaluated over each point in X . The variance of f (the second central moment)
over the set X can be written as

σ 2
= µ2(X)− µ1(X)2.

In general, the cth central moment of f over the subset X can be computed as
c

i=0


c
i


(−1)c−iµi(X)µ1(X)c−i. (2)

Higher central moments correspond to statistical quantities such as skewness and kurtosis which further characterize the
shape of the distribution of the random variable in question.

We identify the elements of {0, 1}n with the integers 0, 1, . . . , 2n
− 1 in the natural way. Specifically, each bitstring is

the n-digit binary representation of a unique integer in the interval [0, 2n). For example, the integer 0 corresponds to the
point (000 . . . 0), and the integer 2a (where 0 ≤ a ≤ n− 1) corresponds to the point xwhere

x[b] =

1 if a = b,
0 otherwise.

Note that by identifying binary strings with integers in this way, we can characterize a function f as an element of a real
vector space of dimension 2n by associating each state x ∈ {0, 1}n with a standard basis function ex where ex(y) = δxy is the
Kronecker delta. Thus f (x) can be written as the inner product of the vector representations of the standard basis function
corresponding to x and f :

f (x) = e⊤x f ,

This characterization will be useful for studying landscapes algebraically. In particular, 2n
× 2n matrices can be considered

as linear operators on f .
For example the matrix-vector product Af also lies in R2n and can in turn be seen as a discrete function over {0, 1}n. In

particular, the xth element of this vector is the inner product of f with the row of A corresponding to x.

Af (x) = e⊤x Af

=


y∈{0,1}n

Axyf (y)

=


y∈N(x)

f (y). (3)

So we can view

A : R2n
→ R2n



A.M. Sutton et al. / Theoretical Computer Science 425 (2012) 58–74 61

as a linear map acting on f . The image of f under A,
Af : {0, 1}n → R,

can be treated as a function that sums the values of f over the neighborhood of each state.
The Hamming sphere of radius r around a point x is defined as the set

S(r)(x) = {y ∈ {0, 1}n : D(x, y) = r}. (4)

The Hamming sphere is a straightforward generalization of the Hamming neighborhood since
N(x) = S(1)(x).

The Hamming ball of radius r around a point x consists of the union of all Hamming spheres of radius less than or equal to
r around x:

B(r)(x) = {y ∈ {0, 1}n : D(x, y) ≤ r}. (5)

2. Eigenfunctions of the neighborhood structure

In order to study the relationship of a k-bounded pseudo-Boolean function to the Hamming neighborhood structure, we
will utilize a decomposition of the function into eigenfunctions of the neighborhood structure. We say a pseudo-Boolean
function g is an eigenfunction of the Hamming neighborhood structure if and only if

Ag = λg
for a scalar λ. That is, we have ∀x ∈ {0, 1}n,

Ag(x) = e⊤x Ag = e⊤x λg = λg(x).

In other words, the image of x under the function Ag can be compactly represented by the image of x under g multiplied
by a constant λ. Functions with this property (up to an additive constant) together with the neighborhood structure are
exactly the so-called elementary landscapes of Stadler [22].

For 0 ≤ i ≤ 2n
− 1, the ith Walsh function is defined as

ψi(x) = (−1)⟨i,x⟩,

where the inner product is taken over x and the length-n binary string representation of i. The order of the ithWalsh function
is ⟨i, i⟩, that is, the number of ones in the length-n binary string representation of i. The following simple identitywill become
useful.

ψi(x)ψj(x) = (−1)⟨i,x⟩+⟨j,x⟩

= (−1)⟨i⊕j,x⟩ = ψi⊕j(x). (6)

In this paper, we will rely on the fact that the Walsh functions form an orthogonal basis of eigenfunctions of the Hamming
neighborhood matrix A. This is partially captured by the following Lemma.
Lemma 1 (Walsh Eigenfunction Lemma). The ith Walsh function is an eigenfunction of A:

Aψi = (n− 2⟨i, i⟩)ψi.

Proof. Let x ∈ {0, 1}n be arbitrary. We have

Aψi(x) =


y∈N(x)

ψi(y) by Eq. (3);

=


y∈N(x)

(−1)⟨i,y⟩.

For each y ∈ N(x), because x and y differ by a single bit, there exists a unique 0 ≤ a ≤ 2n
− 1 for which x⊕ y = 2a. Thus we

canmake the following case distinction. Let∧ denote componentwise conjunction in the binary representation. If i∧2a
= 0

(i.e., ⟨i, (x⊕ y)⟩ = 0) then ⟨i, y⟩ = ⟨i, x⟩ and ψi(y) = ψi(x). On the other hand, if i ∧ 2a
= 2a then |⟨i, y⟩ − ⟨i, x⟩| = 1 and

(−1)⟨i,y⟩ = −(−1)⟨i,x⟩, or equivalently, ψi(y) = −ψi(x).
Since each Hamming neighbor differs from x in each of the n possible bit positions, there are n−⟨i, i⟩ elements y of N(x)

that satisfy the first condition and ⟨i, i⟩ that satisfy the second. Hence
y∈N(x)

ψi(y) = ((n− ⟨i, i⟩) ψi(x)− ⟨i, i⟩ψi(x))

= (n− 2⟨i, i⟩) ψi(x).

Since we chose x arbitrarily, the property holds for any basis function ex and we have the general equation
Aψi = (n− 2⟨i, i⟩) ψi,

and ψi is an eigenfunction of A. �
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From Lemma 1 it is easy to show the following is true. Summing over all i with ⟨i, i⟩ = p, we have

A

 
i:⟨i,i⟩=p

aiψi


= (n− 2p)


i:⟨i,i⟩=p

aiψi. (7)

where ai is an arbitrary coefficient. Therefore the Walsh functions of a particular order p form the basis of an eigenspace
corresponding to eigenvalue n− 2p. Thus any function that can be expressed as a linear combination of Walsh functions of
a given order p is also an eigenfunction of A. This is critical because it supports analysis by decomposition.

Proposition 1. If g is an eigenfunction of A that lies in the eigenspace spanned by a set of Walsh functions of the same order p
then the first moment of g over the neighborhood of an arbitrary point x is

µ1(N(x)) =

1−

2p
n


g(x).

Proof.

µ1(N(x)) =
1
n


y∈N(x)

g(y)

=
1
n
Ag(x) by Eq. (3);

=


1−

2p
n


g(x) by Eq. (7). �

This means that for such an eigenfunction, the first moment of g over the entire Hamming neighborhood of x is directly
proportional to the image of xunder g . So ifN(x) = {y1, y2, . . .} is the set of points that compose theHamming neighborhood
of an arbitrarily selected point x, we can immediately compute the mean of their images under g , i.e., the mean of
{g(y1), g(y2), . . .}, without enumerating any of the elements of N(x).

2.1. Decompositions of k-bounded pseudo-Boolean functions

Eigenfunctions of the Hamming neighborhood structure are a very restricted class of functions and thus their properties
may not seem immediately clear. The power of these functions however comes from the fact that we can represent arbitrary
pseudo-Boolean functions as linear combinations of component eigenfunctions of the neighborhood structure. Any linear
map applied to a pseudo-Boolean function can be represented as a sum of the images of its component eigenfunctions under
that map.

The Walsh basis is functionally complete over {0, 1}n [25], that is, any arbitrary pseudo-Boolean function f : {0, 1}n → R
can be written as a linear combination of at most 2n orthogonal Walsh functions

f (x) =
2n−1
i=0

wiψi(x),

wherewi is a scalar called the ithWalsh coefficient. We can group each term by its order

f (x) =
n

p=0

ϕ[p](x), (8)

where ϕ[p] is an eigenfunction of order p defined as

ϕ[p](x) =


i:⟨i,i⟩=p

wiψi(x). (9)

Hence ϕ[p] is a linear combination of Walsh functions of order p. In other words, ϕ[p] is a component eigenfunction of f that
lies in the eigenspace of A corresponding to eigenvalue n − 2p. Since there are

n
p


orthogonal Walsh functions of a given

order p, ϕ[p] contains at most
n
p


terms.

We now prove some simple bounds on the order of nonzero Walsh coefficients which will later be used in our main
theorems. This is critical to demonstrating the tractability of these computations.

Lemma 2 (Heckendorn et al. [9]). Let f be a k-bounded pseudo-Boolean function on {0, 1}n. For any length-n binary string i,

wi ≠ 0 =⇒ ⟨i, i⟩ ≤ k,

wherewi is the ith coefficient in the decomposition of f .
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Proof. Since f is k-bounded it can be expressed as a sum over a finite number of subfunctions fj that each depend on at most
k bits. Denote as w

(fj)
i the ith Walsh coefficient on the jth subfunction. Since the Walsh transform is linear, the ith Walsh

coefficient of f is the sum of the ith Walsh coefficients of the subfunctions, i.e.,

wi =

m
j=1

w
(fj)
i

where m denotes the number of subfunctions. Since any fj depends on at most k bits, if ⟨i, i⟩ > k then ∀j, w
(fj)
i = 0. Thus

⟨i, i⟩ > k =⇒ wi = 0 which gives the contrapositive. �

Lemma 2 generalizes easily to collections of binary strings and the corresponding coefficients.

Lemma 3. Let f be a k-bounded pseudo-Boolean function on {0, 1}n. Let I be a set of length-n binary strings. Consider the string

⊕⊕⊕(I) =

i∈I

i.

We have

∀i ∈ I, wi ≠ 0 =⇒ ⟨⊕⊕⊕(I),⊕⊕⊕(I)⟩ ≤ |I|k,

wherewi is the ith coefficient in the decomposition of f .

Proof. By induction on |I|. In the base case we have |I| = 1 which is proved by Lemma 2.
Let J be a set of length-n binary strings with |J| ≥ 1. Consider the string

⊕⊕⊕(J) =

j∈J

j.

By the inductive hypothesis assume for strings of length n

∀j ∈ J, wj ≠ 0 =⇒ ⟨⊕⊕⊕(J),⊕⊕⊕(J)⟩ ≤ |J|k.

Now consider a string h such thatwh ≠ 0 in the Walsh decomposition of f . By Lemma 2 we know ⟨h, h⟩ ≤ k. Let

I = J ∪ h.

We are interested in the string

⊕⊕⊕(I) =

i∈I

i =

i∈J

i⊕ h =⊕⊕⊕(J)⊕ h.

But the order of h is bounded by k and the order of⊕⊕⊕(J) is bounded by |J|k so we have

⟨⊕⊕⊕(I),⊕⊕⊕(I)⟩ = ⟨⊕⊕⊕(J)⊕ h,⊕⊕⊕(J)⊕ h⟩
≤ |J|k+ k = |I|k. �

We are now ready to prove theorems about the decomposition of k-bounded pseudo-Boolean functions (and their powers)
into eigenfunctions. Lemma 2 constrains the order of nonzero coefficients in the Walsh expansion of a k-bounded pseudo-
Boolean function. This means we can write any such function as a linear combination of exactly thoseWalsh functions with
nonzero coefficients. This is captured by the following theorem.

Theorem 1 (Decomposition Theorem). Every k-bounded pseudo-Boolean function f can be written as a linear combination of
k+ 1 eigenfunctions of A.

Proof. We can write f in the Walsh basis

f (x) =
2n−1
i=0

wiψi(x).

By the contraposition of Lemma 2,wi is zero for all ⟨i, i⟩ > k so we may write

f (x) =


i:⟨i,i⟩≤k

wiψi(x) =
k

p=0

ϕ[p](x),

where ϕ[p] is defined as in Eq. (9). Each ϕ[p] is a linear combination of at most
n
p


Walsh functions of order p and is thus an

eigenfunction of A corresponding to eigenvalue n− 2p. �
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We are thus taking advantage of the fact that f has a sparse representation in theWalsh basis. It is important to see that,
for any f bounded epistatically by k, there are atmost k+1 eigenfunctionsϕ[p], each ofwhich consists of a linear combination
of at most

n
p


terms. Since p ≤ k, the number of terms in the linear combination is bounded by a polynomial in n of degree

at most k.
In order to compute higher moments of f , it will be necessary to work with higher powers of f . If f can be written as a

linear combination of Walsh functions, then clearly f c can be written as a degree c polynomial in the Walsh functions.
To understand this more clearly, we will first present the case for c = 2. In other words, we will show that if f is a

k-bounded pseudo-Boolean function, f 2 can be written as a second degree polynomial in the Walsh functions. Using the
identity in Eq. (6) and Lemma 3, we can carry the bounds on the order of nonzero Walsh coefficients over to this case. This
leads to the following theorem.

Theorem 2 (Square Decomposition Theorem). Every k-bounded pseudo-Boolean taken to the second power can be written as a
sum of 2k+ 1 eigenfunctions of A.

Proof. Again, writing f 2 in the Walsh basis we have

f 2(x) =


2n−1
i=0

wiψi(x)

2

=

2n−1
i=0

2n−1
j=0

wiwjψi(x)ψj(x)

=

2n−1
i=0

2n−1
j=0

wiwjψi⊕j(x) by Eq. (6).

By Lemma 2, the order of each i and j are bounded by k so we can first define the following set of strings,

Q = {i ∈ {0, 1}n : ⟨i, i⟩ ≤ k}, (10)

then take the sum over the Cartesian square of Q.

f 2(x) =


(i,j)∈Q×Q

wiwjψi⊕j(x).

We can again group together all the terms by Walsh function order,

ϕ[p](x) =


(i,j)∈Q×Q:⟨i⊕j,i⊕j⟩=p

wiwjψi⊕j(x). (11)

Obviously, the term corresponding to pair (i, j) is only nonzero if bothwi andwj are nonzero. Hence, by Lemma 3, the order
of i⊕ j is at most 2k so we can write f 2 as a linear combination of each ϕ[p] as defined in Eq. (11):

f 2(x) =
2k
p=0

ϕ[p](x),

and each ϕ[p] is an eigenfunction of A corresponding to eigenvalue n− 2p. �

Generalizing this decomposition to higher powers of f is now simply an exercise of writing f c as a degree c polynomial
in the component eigenfunctions and carrying the order bounds into this case in a similar manner to the above theorem.
We will refer to any product of Walsh coefficientswiwjwk . . . as a Walsh monomial.

Theorem 3 (General Power Decomposition Theorem). Every k-bounded pseudo-Boolean function taken to the cth power can be
written as a sum of ck+ 1 eigenfunctions of A.

Proof. We write f c in the Walsh basis

f c(x) =


2n−1
i=0

wiψi(x)

c

.

By Lemma 2, the order of i is bounded by k. To simplify notation, we define the set

Qc
= Q ×Q × · · · ×Q  

c

,

where Q is as defined in Eq. (10). An element of Qc is hence a c-tuple of bitstrings qi:

q = (q1, q2, . . . , qc).
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We thus have the following equality.

f c(x) =

 
i:⟨i,i⟩≤k

wiψi(x)

c

=


q∈Qc


c

i=1

wqi


c

i=1

ψqi(x)


.

Letting⊕⊕⊕(q) =
c

i=1

qi,

=


q∈Qc


c

i=1

wqi


ψ⊕⊕⊕(q)(x) by Eq. (6).

Finally, grouping the terms by Walsh function order,

ϕ[p](x) =


q∈Qc :⟨⊕⊕⊕(q),⊕⊕⊕(q)⟩=p


c

i=1

wqi


ψ⊕⊕⊕(q)(x). (12)

The degree-c Walsh monomial
c

i=1wqi


corresponding to the c-tuple q is only nonzero if all the wqi are nonzero. Hence,

by Lemma 3, the order of⊕⊕⊕(q) is at most ck so we can write f c as a linear combination of each ϕ[p] as defined in Eq. (12):

f c(x) =
ck

p=0

ϕ[p](x), (13)

and each ϕ[p] is an eigenfunction of A corresponding to eigenvalue n− 2p. �

3. Computing the moments in polynomial time

In this section we use the decomposition of an arbitrary k-bounded pseudo-Boolean function into eigenfunctions of
the Hamming neighborhood structure to compute the cth moment of f over regions in polynomial time. To construct the
moments, wemust, for each value of p, compute the value of ϕ[p](x) in Eq. (12) by enumerating each of its constituentWalsh
monomials. Thus, for expressions involving eigenfunctions ϕ[p], we would like to bound the number of Walsh monomials
that must be explicitly constructed.

3.1. Bounding the number of Walsh monomials in a series of eigenfunctions

Consider the following series
ck

p=0

apϕ[p](x) (14)

for arbitrary scalars ap. Eq. (13) is the special case when ap = 1. Since each ϕ[p](x) is a linear combination of Walsh
monomials, we would like to bound the number of individual Walsh monomials in such a series. This bound will become
useful later when we analyze the complexity of the approach.

Lemma 4. There are O(nck) individual Walsh monomials in the series given by Eq. (14).

Proof. By Eq. (12) there are at most |{q ∈ Qc
: ⟨⊕⊕⊕(q),⊕⊕⊕(q)⟩ = p}| individual Walsh monomials in ϕ[p](x). Thus there are

ck
p=0

|{q ∈ Qc
: ⟨⊕⊕⊕(q),⊕⊕⊕(q)⟩ = p}| ≤ |Qc

| = |Q|c

total nonzero Walsh monomials in Eq. (14). Since |Q | =
k

j=0

n
j


and k is fixed we see that |Q | is O


nk

, and we have at

most O(nck) total Walsh monomials in Eq. (14). �

Recall that a k-bounded pseudo-Boolean function can be expressed as the sum of subfunctions that each depend on at
most k bits. Formany combinatorial problems (e.g.,MAX-k-SAT andMAX-CUT on sparse graphs), the number of subfunctions
is small (e.g., m ≪ nk). In these cases, we can put an even tighter bound on the number of individual terms in Eq. (14). In
particular, if f can be expressed as a sum of m subfunctions that each depend on at most k bits, then there are at most m2k

nonzero Walsh coefficients [8].
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Lemma 5. Suppose f is a k-bounded pseudo-Boolean function that can be written as a sum of m subfunctions that each depend
on at most k bits. Then there are at most (m2k)c Walsh monomials in the series given by Eq. (14).

Proof. Choosing any ap ≠ 0 cannot decrease the count of nonzeroWalshmonomials in the series.Without loss of generality
we choose ap = 1 and thus

ck
p=0

apϕ[p](x) =
ck

p=0

ϕ[p](x)

=


q∈Qc


c

i=1

wqi


ψ⊕⊕⊕(q)(x) by Eq. (12). (15)

Each Walsh monomial in the sum in Eq. (15) is nonzero if and only if all of its component Walsh coefficients are nonzero.
Hence there is a bijection between nonzero Walsh monomials in Eq. (15) and the set of all c-tuples of nonzero Walsh
coefficients of f . Since f must have at most m2k nonzero Walsh coefficients, there are at most (m2k)c c-tuples of nonzero
Walsh coefficients. The bijection gives the claimed bound. �

Any algorithm to compute a series that takes the form of Eq. (14) must construct each nonzero order-c Walshmonomial.
We can further improve the efficiency of such an algorithm by removing symmetries in the multinomial expansion. The
number of monomials of degree c on b variables is equal to

c+b−1
c


. Since there are at mostm2k nonzero Walsh coefficients

there we can claim the following.

Corollary 1. If f is a k-bounded pseudo-Boolean function that can be written as a sum of m subfunctions that each depend on at
most k bits, there are at most

c+m2k−1
c


unique individual Walsh monomials in the series given by Eq. (14).

Thus any algorithm that computes the series in Eq. (14)must only enumerate the uniquenonzeromonomials andmultiply
them by the requisite monomial coefficient. In any case, the count of individual Walsh monomials in a series that takes the
form of Eq. (14) is a polynomial in n. We will exploit this result to give polynomial-time algorithms for moments of f over
regions of the landscape. We begin by giving a general formula for computing moments over the immediate Hamming
neighborhood.

3.2. Hamming neighborhoods

We have already seen in Eq. (3) that Af is a function that evaluates the sum of objective function values over
neighborhoods and thus 1

nAf (x) is the first moment of f over the Hamming neighbors of x. Since f can be written as a
linear combination of a bounded number of component functions, the first moment of f can be characterized as the sum of
images of these components under the linear map. Furthermore, since each of these components are eigenfunctions of that
map, the calculation of their images under the map reduces to multiplication by a scalar.

It is useful to note that the cth moment of f over the neighborhood is equal to the first moment of f c over the
neighborhood. Since we have seen that f c is representable by a bounded number of component functions, we can extend
the above reasoning to f c .

To compute the cth moment of f over the neighborhood N(x) of an arbitrary point x, we simply use the fact that f c can
be decomposed into ck+ 1 eigenfunctions of A.

µc(N(x)) =
1
n


y∈N(x)

f (y)c

=
1
n
Af c(x) by Eq. (3);

=
1
n
A

ck
p=0

ϕ[p](x) by Eq. (13);

=

ck
p=0


1−

2p
n


ϕ[p](x). (16)

Assuming c and k are constants, the calculation ofµc(N(x)) is bounded by the number of individual terms in the series in
Eq. (16). Since this series takes the form of Eq. (14) with ap = (1− 2p/n), Lemma 4 holds and there are at most nck nonzero
terms in the series. If f can be expressed as the sum of m ≪ nk subfunctions that each depend on at most k bits, then by
Lemma 5 there are at most (m2k)c nonzero terms.
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Fig. 1. Illustration of approaching set α(x, y) and retreating set β(x, y). For some y with D(x, y) = r .

3.3. Hamming balls of arbitrary radius

Wehave characterized the cthmoment of f over the neighborhood as a function given by the image of f c under the linear
operator A. We have also taken into account the fact that f c is decomposable into a bounded number of eigenfunctions of
A to show that the moments over the neighborhood of any given point can be computed in polynomial time. Of course, the
members of the Hamming neighborhood itself can be enumerated in linear time so this approach offers no computational
advantage in this case (though it may prove useful when analyzing the expected value of the Walsh coefficients over a
problem distribution as in [24]).

However, we note that if f has a sparse representation in the eigenbasis of any linear map, the above analysis holds.
In this section we will see that the adjacency structure for any general radius-r Hamming sphere provides such a
map.

We begin by characterizing the adjacency structure for radius-r Hamming spheres. Let x be an arbitrary but fixed point
in {0, 1}n. Consider a vertex y at some distance D(x, y). All Hamming neighbors of y are either one vertex closer to x or one
vertex further away. Define the approaching set

α(x, y) = {z ∈ N(y) : D(x, z) = D(x, y)− 1}

and the retreating set

β(x, y) = {z ∈ N(y) : D(x, z) = D(x, y)+ 1}.

Thus the approaching and retreating sets partition the neighborhood set of y and

α(x, y) ∪ β(x, y) = N(y). (17)

See Fig. 1 for an illustration.
The set S(r)(x) consists of all strings at Hamming distance r from x: those strings that differ from x in exactly r positions.

Hence |S(r)(x)| =
n
r


. Consider a state y on this sphere, that is, D(x, y) = r . Since y differs from x in exactly r positions,

there are r Hamming moves that result in some state z1 with D(x, z1) = r − 1. Thus we have |α(x, y)| = r . Furthermore,
there are n− r Hamming moves from y that result in a state z2 with D(x, z2) = r + 1. Hence, |β(x, y)| = n− r .

A generalization of the adjacency matrix Awhich we will call the sphere matrix of radius r we define as

S(r)xy =


1 if y ∈ S(r)(x), that is, D(x, y) = r ,
0 otherwise.

This matrix identifies all vertex pairs in which one is contained in the radius-r sphere of the other. We construct the sphere
matrix S(r) of radius r recursively in terms of A. In order to do so, we will first prove some useful properties about sphere
matrices.

The set {0, 1}n together with the Hamming distance function form a metric space so we have for all x, y ∈
{0, 1}n, D(x, y) = D(y, x) and sphere matrices of any radius are symmetric:

S(r)xy = S(r)yx . (18)
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Given any two sphere matrices, their product is a matrix that gives the number of elements in the intersection of the
spheres they represent. Formally, let S(r) and S(s) be sphere matrices of radius r and s respectively. The product is the matrix


S(r)S(s)


xy =

2n−1
z=0

S(r)xz S
(s)
zy

=

2n−1
z=0

S(r)xz S
(s)
yz by Eq. (18);

= |S(r)(x) ∩ S(s)(y)|. (19)

We now characterize the particular matrix product (S(r−1)A)which will be used in our recursive expression for S(r).

Lemma 6. Over {0, 1}n we have,

(S(r−1)A)xy =

r if y ∈ S(r)(x),
n− r + 2 if y ∈ S(r−2)(x),
0 otherwise.

Proof. By Eq. (19) we have

(S(r−1)A)xy = |S(r−1)(x) ∩ N(y)|,

since A = S(1) and N(x) = S(1)(x). Consider the neighbor set N(y) of y. Recall from Eq. (17) that the approaching and
retreating sets α(x, y), β(x, y) partition N(y).

Suppose y ∈ S(r)(x). For all z ∈ α(x, y),D(x, z) = D(x, y)−1 = r−1. The neighbors of y that are in S(r−1)(x) are exactly
the approaching set α(x, y). Thus we have

(S(r−1)A)xy = |S(r−1)(x) ∩ N(y)|
= |α(x, y)|
= r.

Now suppose y ∈ S(r−2)(x). For all z ∈ β(x, y), D(x, z) = D(x, y)+ 1 = r − 1. Thus the neighbors of y that are in S(r−1)(x)
are exactly the retreating set β(x, y). Thus we have

(S(r−1)A)xy = |S(r−1)(x) ∩ N(y)|
= |β(x, y)|
= n− r + 2.

Finally suppose y is in neither sphere S(r)(x) nor S(r−2)(x). Then D(x, y) ≠ r and D(x, y) ≠ r − 2. So

(S(r−1)A)xy = |S(r−1)(x) ∩ N(y)|

= |(α(x, y) ∪ β(x, y)) ∩ S(r−1)(x)|
= |∅|

= 0,

since D(x, y)− 1 ≠ r − 1 and D(x, y)+ 1 ≠ r − 1. �

The following lemma uses the above result to provide a matrix expression for the characteristic function of y ∈ S(r)(x).
The expression involves the sphere matrices of radius r − 1 and r − 2. This will allow us to define S(r) recursively in terms
of lower radius sphere matrices.

Lemma 7. Let x and y be arbitrary points in {0, 1}n. Given sphere matrices S(r−1) and S(r−2) we have the following identity.

1
r


(S(r−1)A)xy − (n− r + 2)S(r−2)xy


=


1 if y ∈ S(r)(x),
0 otherwise. (20)

Proof. We prove this result by cases.
Case 1: y ∈ S(r)(x) By Lemma 6 we have S(r−1)Axy = r . Furthermore, since y /∈ S(r−2)(x) we have S(r−2)xy = 0. Thus Eq. (20)
evaluates to

1
r


(S(r−1)A)xy − (n− r + 2)S(r−2)xy


=

1
r
(r − 0) = 1.
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Case 2: y ∈ S(r−2)(x) By Lemma 6 we have S(r−1)Axy = (n− r + 2). Since y ∈ S(r−2)(x), S(r−2)xy = 1 and Eq. (20) evaluates to

1
r


(S(r−1)A)xy − (n− r + 2)S(r−2)xy


=

1
r
((n− r + 2)− (n− r + 2)) = 0.

Case 3: y /∈ S(r)(x) and y /∈ S(r−2)(x) By Lemma 6we have S(r−1)Axy = 0. Furthermore, since y /∈ S(r−2)(x)we have S(r−2)xy = 0.
Thus Eq. (20) evaluates to

1
r


(S(r−1)A)xy − (n− r + 2)S(r−2)xy


=

1
r
(0− 0) = 0. �

Hence, by Lemma 7 we can now define the sphere matrix recursively.

S(r) =
1
r


S(r−1)A− (n− r + 2)S(r−2)


. (21)

We have the two base cases S(1) = A and S(0) = I, where I is the 2n
× 2n identity matrix (this corresponds to the degenerate

sphere S(0)(x) = {x}). We now show that if f is an eigenfunction of A with eigenvalue λ, it is also an eigenfunction of the
sphere matrix S(r) with an eigenvalue that is a degree-r polynomial in λ.

Let f be an eigenfunction of A. Consider the matrix-vector product S(r)f evaluated at state x.

S(r)f (x) = e⊤x S
(r)f

=


y∈{0,1}n

S(r)xy f (y)

=


y∈S(r)(x)

f (y) (22)

since S(r)xy = 1 ⇐⇒ y ∈ S(r)(x), otherwise it is equal to zero. Clearly, Eq. (3) is the special case when r = 1.
It is now straightforward to show that eigenfunctions of the immediate Hamming neighborhood structure are also

eigenfunctions of the radius-r Hamming sphere. In particular, if f is an eigenfunction of A with eigenvalue λp, it must also
be an eigenfunction of S(r) with eigenvalue γ (r)p : a scalar that can be defined recursively using γ (1)p = λp and γ (0)p = 1 as
base cases. We capture this in the following theorem.

Theorem 4. If f is an eigenfunction of A with eigenvalue λp, then f is an eigenfunction of S(r) with eigenvalue γ (r)p given by the

recurrence γ (r)p =
1
r


λpγ

(r−1)
p − (n− r + 2)γ (r−2)p


with γ (1)p = λp and γ

(0)
p = 1.

Proof. We proceed by induction on r . We have two base cases,

S(0)f = If = f

S(1)f = Af = λpf .

Thus γ (0)p = 1 and γ (1)p = λp. Suppose for induction that

S(r−1)f = γ (r−1)p f

and

S(r−2)f = γ (r−2)p f

for scalars γ (r−1)p and γ (r−2)p . Thus,

S(r)f =
1
r


S(r−1)A− (n− r + 2)S(r−2)


f by Eq. (21);

=
1
r


λpS(r−1)f − (n− r + 2)S(r−2)f


=

1
r


λpγ

(r−1)
p − (n− r + 2)γ (r−2)p


f by induction,

so we have the recurrence

γ (r)p =
1
r


λpγ

(r−1)
p − (n− r + 2)γ (r−2)p


. � (23)
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By Eq. (23), for the eigenfunction ϕ[p] we have

S(r)ϕ[p](x) = γ (r)p ϕ[p](x),

where

γ (r)p =


n− 2p

r


γ (r−1)p −


n− r + 2

r


γ (r−2)p

...

γ (1)p = (n− 2p)

γ (0)p = 1.

Note that this recurrence is exactly equivalent to an identity for the well-known Krawtchouk polynomials [17]

γ (r)p = Kr(p, n),

which have the closed form

γ (r)p = Kr(p, n) =
r

j=0


p
j


n− p
r − j


(−1)j. (24)

We are now ready to prove the main results of the paper. The first moment of f c (i.e., the cth moment of f ) over the
sphere of radius r around an arbitrary point x can be calculated using a function corresponding to the image of f c under
the linear map S(r). Using the fact that f c can be decomposed into a constant number of eigenfunctions of S(r) we have the
following.

Theorem 5. Fix c and k. Let f be any k-bounded pseudo-Boolean function. Let S(r)(x) be a sphere of radius r around an arbitrary
state x. The quantity µc(S(r)(x)) (the cth moment of f over the sphere) can be computed in time polynomial in n.

Proof.

µc(S(r)(x)) =
1

|S(r)(x)|


y∈S(r)(x)

f (y)c

=
1

|S(r)(x)|
S(r)f c(x) by Eq. (22);

=
1

|S(r)(x)|
S(r)

ck
p=0

ϕ[p](x) by Eq. (13);

=
1

|S(r)(x)|

ck
p=0

γ (r)p ϕ[p](x) by Theorem 4,

and since ∀x ∈ {0, 1}n, |S(r)(x)| =
n
r


,

=


n
r

−1 ck
p=0

γ (r)p ϕ[p](x). (25)

This series in Eq. (25) takes the form of Eq. (14)with ap = γ
(r)
p . By Lemma 4 there areO(nck) nonzeroWalshmonomials in the

series. Furthermore, when f can be expressed as the sum over m≪ nk subfunctions, by Lemma 5 there are at most (m2k)c

nonzero Walsh monomials in the series. Since k and c are constants, it follows in this case that the number of individual
terms is O(mc). Thus µc(S(r)(x)) can be computed by summing over a polynomial number of terms. �

Recall from Eq. (5) that a Hamming ball of radius r is a union over all spheres of radius at most r . The moment calculation
can be trivially generalized to Hamming balls in the following manner.

Theorem 6. Fix c and k. Let f be any k-bounded pseudo-Boolean function. Let B(r)(x) be a Hamming ball of radius r around an
arbitrary state x. The quantity µc(B(r)(x)) (the cth moment of f over the ball) can be computed in time polynomial in n.



A.M. Sutton et al. / Theoretical Computer Science 425 (2012) 58–74 71

Proof.

µc(B(r)(x)) =
1

|B(r)(x)|

r
s=0


y∈S(s)(x)

f (y)c

=


r

s=0


n
s

−1 r
s=0

ck
p=0

γ (s)p ϕ[p](x). (26)

By Lemma 4, the inner sum in Eq. (26) is a series involving O(nck)Walshmonomials. Hence there are O(rnck) total individual
terms in the sum. If f can be expressed as the sum overm≪ nk subfunctions, by Lemma 5 there are at most (m2k)c nonzero
Walsh monomials in the inner sum. Since k and c are constants, it follows in this case that the total number of individual
terms is O(rmc). Hence the calculation can be performed in time polynomial in n for a Hamming ball of any radius. �

It immediately follows that central moments of the distribution of f over Hamming regions can be computed in polynomial
time in this way.

Corollary 2. Fix c and k. Let f be any k-bounded pseudo-Boolean function. Let X be a Hamming region (sphere or ball) of some
radius around an arbitrary state. The cth central moment of f over X can be computed in time polynomial in n.

Proof. This follows immediately from the definition of central moments in terms of µc as stated in Eq. (2). �

3.4. Algorithm to compute moments

Let us computeµc(B(r)(x)) for a function f . We first compute the nonzeroWalsh coefficients of f and store them in a data
structureW which is an array of (bitstring, value) pairs such that, for the jth nonzeroWalsh coefficient of f in some arbitrary
order, W [j] = (i, wi). We shall assume that arrays are indexed from zero. Since f is k-bounded, this data structure can be
constructed in polynomial time [8]. The eigenvalue γ (r)p , which is stored in an array gamma[p][r], is precomputed using the
closed form expression in Eq. (24).

We first must compute the sum of f c over spheres around x. Let the function Tuples(c, d) return the set of all c-tuples
over the index set {0, 1, . . . , d− 1}. The sum of f c evaluated over a sphere of radius r around x can be computed as

SphereSum(x, r, c,W )
1 if c = 0 return 1
2 sum← 0
3 for each q ∈ Tuples(c, length[W ]) do
4 prod← 1
5 bits← (000 . . . 0)
6 for j← 0 to c − 1 do
7 (i, wi)← W [q[j]]
8 bits← bits⊕i
9 prod← prod×wi

10 p← ⟨bits, bits⟩
11 sum← sum+ prod× gamma[p][r] × (−1)⟨x,bits⟩
12 return sum

In the proof of Theorem 5 we see that the sum of f c evaluated over a sphere of radius r around x is


y∈S(r)(x)

f (y)c =
ck

p=0

γ (r)p ϕ[p](x).

SphereSum computes the sum over all γ (r)p ϕ[p](x) by enumerating all Walsh monomials with their corresponding Walsh
functions, multiplying by the appropriate γ (r)p factor, and accumulating the total in the sum variable. The outer loop in lines 3
to 11 sums over all nonzero order-c Walshmonomials. The inner loop in lines 6 to 9 computes each individual order-c Walsh
monomial. Line 10 determines which ϕ[p](x) the monomial belongs to and line 11 adds the term (i.e., the Walsh monomial
multiplied by the corresponding Walsh function) scaled by the appropriate γ (r)p factor to the running sum for ϕ[p](x). The
total number of nonzero Walsh monomials is given by Lemma 4 and is a polynomial in n.

Note that since multiplication and exclusive or are commutative operations, there are a large number of symmetries in
the sum over all c-tuples. Thus the efficiency of the outer loop in lines 3 to 11 may be improved further using combinatorial
enumeration techniques to remove these symmetries and give the improved efficiency claimed by Corollary 1.
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The ball moment µc(B(r)(x)) is computed as follows.

BallMoment(x, r, c,W )
1 vol← 0
2 sum← 0
3 for s← 0 to r do
4 sum← sum+SphereSum(x, s, c,W )
5 vol← vol+

n
s


6 return sum / vol

The above algorithm directly corresponds to the equality in the first line of the proof of Theorem 6. We also note here that
the efficiency could be improved further by caching the values of ϕ[p](x) during the SphereSum computation.

4. Computing the expected fitness of mutations

Evolutionary algorithms operating on {0, 1}n often employ some form ofmutation in which each bit of a state (genotype)
under consideration is flipped with some probability ρ, the so-called mutation rate. If the fitness function is a k-bounded
pseudo-Boolean function, we can also apply the decomposition presented in Section 3 to exactly compute the expected
fitness of a mutated offspring.

We assume that the fitness function f : {0, 1}n → R is k-bounded. Let x ∈ {0, 1}n be the state under consideration.
Mutation is a stochastic process that produces an offspring state z by changing components of x. Since the process is
stochastic, we can characterize f (z) as a random variable. We can calculate the expected value of this random variable
as a function of f (x): the fitness of the current state. In other words, we are interested in calculating the first moment of f
over a ball of radius n around x, but now the sampling is no longer uniform throughout the region as it was in Eq. (1). Indeed,
the probability mass function of the random variable corresponding to f (z) now depends on Hamming distance from x,
which is captured by sphere membership.

To produce z, each bit of x is flipped with probability ρ. Thus z lies in a sphere of radius r around x with probability
ρr(1− ρ)n−r . The total fitness value in the sphere at radius r around x is

y∈S(r)(x)

f (y),

so the contribution to the expectation in a sphere at radius x can be obtained by multiplying this sum by the probability of
the offspring lying in the sphere:

ρr(1− ρ)n−r


y∈S(r)(x)

f (y).

Since all spheres around x are disjoint, the expected fitness of the offspring of x under mutation can be computed as the
sum of the expectation contributions from each sphere:

n
r=0

ρr(1− ρ)n−r


y∈S(r)(x)

f (y) =
n

r=0

ρr(1− ρ)n−rS(r)f (x) by Eq. (22);

=

n
r=0

ρr(1− ρ)n−r
k

p=0

γ (r)p ϕ[p](x).

Thus the expected fitness of the offspring of x under mutation with mutation rate ρ can be computed by modifying the
BallMoment computation in Section 3.4. Let W be the appropriate Walsh coefficient data structure corresponding to the
fitness function f .

ExpectedFitness(x, ρ,W )
1 sum← 0
2 for r ← 0 to n do
3 sum← sum+


ρr(1− ρ)n−r


× SphereSum(x, r, 1,W )

4 return sum

In this case c = 1 so the time complexity of each call to SphereSum is O(nk). Summing over all n nontrivial spheres
gives a total complexity of O(nk+1). In the case that f can be represented bym≪ nk subfunctions, the complexity is O(nm).
Since the offspring can lie anywhere in {0, 1}n, a brute-force calculation of the exact expectation would require complete
enumeration which has a time complexity ofΘ(2n).

Higher moments of the distribution of f under mutation can be obtained in an analogous manner.
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5. Discussion

The class of k-bounded pseudo-Boolean functions plays an important role in many fields. In NK-landscape models [16],
for instance, the fitness of a genotype (a string over a binary alphabet) is computed as a sum over individual k-ary gene
interactions. NK-landscapes have also been employed to simulate landscapes that arise from RNA folding [4]. Another
important family of k-bounded pseudo-Boolean functions are those ofMAX-k-SAT problems. Local search algorithms such as
variants ofWalksat [20] have long been counted as among the state-of-the-art for solving critically constrained satisfiability
problems. Since local search algorithms typically use the Hamming neighborhood as a search operator, they can be seen as
exploring the landscapes described in this paper.

The results presented in this paper provide a general approach to computing moments of a k-bounded pseudo-Boolean
function f over arbitrary radius regions (Hamming spheres and balls) in polynomial time. This is significant for the following
reasons.

1. The calculation is exact, i.e., the moments are not approximated.
2. The calculation is computationally efficient with respect to naïve enumeration since, in general, the size of these regions

is exponential in the bitstring length of the domain of f (for instance, spheres of radius n/2 or Hamming balls of radius
Ω(n)).

Exact calculation of the moments affords opportunities not previously available for heuristic search algorithms that rely
on directed sampling. The moments {µ0(X), µ1(X), µ2(X), . . .} characterize the distribution of values in the codomain of f
over particular regions X of the landscape. In the context of local and evolutionary search, an algorithm might exploit this
information by computing statistical information about unexplored regions of the landscape to determine how promising
such a region might be for further exploration.

In the evolutionary computation community, the analysis of hyperplanes is important since the distribution of function
values over hyperplanes influences the dynamics of evolutionary algorithms. By definition, a hyperplane of orderm in {0, 1}n
is obtained by fixingm bit values in the neighborhood function, and allowing all other bits to vary. Since

n
m


is a polynomial

whenm is a fixed constant, summary statistics for all hyperplanes up tom can be computed in polynomial time on k-bounded
pseudo-Boolean functions [7]. This information is useful for making statistical inferences about sampling hyperplanes.

Fixing certain variables during search effectively induces a hyperplane in {0, 1}n to which the search space becomes
constrained. For example, assumewe fix a binary variable to a specific variable assignment in aMAX-k-SATproblem. In effect,
this transforms the objective function to a new objective function defined over the subspace (in this case a hyperplane) of
{0, 1}n. These ‘‘partial’’ Hamming neighborhoods may arise in current heuristic search techniques for constraint satisfaction
problems such as MAX-k-SAT where only certain variables are changed. Fixing a set of variables transforms an objective
function f to a new objective function f ′, and, so long as f is k-bounded, the cth moment of f ′ over arbitrary Hamming
spheres in the induced subspace can also be computed in polynomial time.

Themethodwe present in this paper computes themoments of the distribution of f over regions of the landscape. Hence,
if we can approximate the distribution of f over a region by a probability density function parameterized by the known
moments, this approximation may provide information about the best values of f in the region. Integrating this density with
respect to codomain value supplies uswith a cumulative distribution function over the region that could be used to estimate
the probability of an optimal solution belonging to the region.

6. Conclusion

In this paper we have presented a general mechanism for computing moments of a k-bounded pseudo-Boolean function
over arbitrary radius Hamming spheres. Our approach uses the fact that any epistatically bounded pseudo-Boolean function
taken to a constant power can be characterized as a bounded linear combination of polynomially computable eigenfunctions
of radius-r sphere neighborhood structures.

These results hold the promise of changing the way sampling is done in evolutionary algorithms and local search
algorithms since the methods provide a principled way of quickly assessing moments of the fitness in regions of the search
space without doing explicit sampling. The method we have presented applies to all k-bounded pseudo-Boolean functions
such as MAX-k-SAT and its variants, NK-landscapes, spin glass models, and graph optimization problems such as MAX-CUT.
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