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a b s t r a c t

We examine the complexity of constraint satisfaction problems that consist of a set of
AllDiff constraints. Such CSPs naturallymodel awide range of real-world and combinatorial
problems, like scheduling, frequency allocations, and graph coloring problems. As this
problem is known to be NP-complete, we investigate under which further assumptions
it becomes tractable. We observe that a crucial property seems to be the convexity of
the variable domains and constraints. Our main contribution is an extensive study of
the complexity of Multiple AllDiff CSPs for a set of natural parameters, like maximum
domain size and maximum size of the constraint scopes. We show that, depending on the
parameter, convexity canmake the problem tractable even though it is provably intractable
in general. Interestingly, the convexity of constraints is the key property in achieving fixed
parameter tractability, while the convexity of domains does not usually make the problem
easier.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Constraint satisfaction is a general framework that allows structure preserving encoding of many real world problems,
including formal verification, vehicle routing and scheduling. A constraint satisfaction problem (CSP) consists of a set of
variables that must be assigned values from their respective domains in such a way that a set of constraints is satisfied.
In general, finding a solution of a CSP is an NP-complete problem. Hence, much research has been devoted to finding
restricted classes of CSPs that admit polynomial time algorithms. This area of research includes twomain directions. The first
direction exploits structural properties of relations between variables and constraints of a CSP instance [12,18]. The second
direction investigates limitations on the types of constraints in the CSP constraint language, so-called tractable constraint
languages [23,41].

In this work we continue this line of research and investigate CSPs under both structural restrictions and limitations on
constraint types. Such combinations allowus to identify interesting classes of CSPs that have expressive constraint languages
and are still tractable under some natural conditions on relations between variables and constraints in the framework of
parameterized complexity.

✩ A preliminary conference version [16] appeared in the 22nd International Joint Conferences on Artificial Intelligence (IJCAI 2011). This work was done
while all five authors were visiting the University of Newcastle, Australia.
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We restrict the type of allowed constraints to the most common constraint, called the AllDiff constraint [29,38]. The
AllDiff constraint requires a set of variables to take pairwise distinct values. We call a CSP with the language that consists
of only AllDiff constraints the Multiple AllDiff constraint satisfaction problem (MAD-CSP). Finding a solution of the
MAD-CSP is NP-complete due to a straightforward reduction from a graph coloring problem.

Our structural limitations of MAD-CSPs are inspired by a large body of research on global constraints in constraint
programming. We consider a class of MAD-CSPs that possess the convexity of constraints property. This property means
that the variables are linearly ordered so that all AllDiff constraints are defined over intervals of variables in this order.
Such MAD-CSPs can be seen as a generalization of the SLIDE constraint where AllDiff is the relation to slide [3]. We also
investigate another restriction on CSPs that comes from work on global constraints over variables with interval domains
that we call convex domains. This means that every domain constitutes an interval of values. It is interesting to consider the
convex domain restriction in the context ofMAD-CSPs, as it has proved useful for constructing efficient inference algorithms
for global constraints. Many global constraints, like NValue [2] or overlapping AllDiff [4], that are NP-hard to reason about
become polynomially solvable if the domains of the variables are intervals of values.We further say that aMAD-CSP instance
is biconvex if it has both convex domains and convex constraints.

To motivate the AllDiff constraint and our notion of convexity, consider the following examples of real-world and
combinatorial problems that can be naturally encoded as MAD-CSP problems:

• The time table of a workshop on CSP might be modeled with one variable per speaker with the domain of the variables
corresponding to the availability of the speakers [37,45]. For example, speakers A and B might be available during the
first and third sessions and speaker C during all sessions. We introduce three variables S1, S2 and S3 with domains
D(S1) = {1, 3}, D(S2) = {1, 3}, and D(S3) = {1, 2, 3}. One (convex) AllDiff constraint containing all variables encodes
that there are no two talks at the same time. If the available times of the speakers are intervals, this MAD-CSP instance
is biconvex.

• Scheduling of n jobs with given start and end times on m machines can be modeled as a MAD-CSP with one variable
per job and values corresponding to machines on which the job can be run. Each job can be performed by a subset of
machines. Suppose we have 3 jobs with the following time intervals (ordered by their starting points and then by the
end points): J1 has to be performed in the interval [1, 2] and can be assigned to one of the machines {1, 3}, J2 in the
interval [2, 4] on one of the machines {1, 3}, and J3 in the interval [3, 5] on one of the machines {2, 3}. The domains of
variables Ji are as follows: D(J1) = D(J2) = {1, 3} and D(J3) = {2, 3}. Convex AllDiff constraints then ensure that each
machine only runs one job per time slot: AllDiff[J1, J2] and AllDiff[J2, J3]. Our results demonstrate that this scheduling
problem is FPT parameterized by the total number of machines.

• The classical graph coloring problemwhere two adjacent vertices should get different colors can be described as a MAD-
CSP with one variable per vertex and one AllDiff constraint per edge. If there is no restriction on the set of colors used,
the domains are convex. If the graph is an interval graph, also the constraints are convex (see Theorem 4.1).

• Finding frequency allocations can be modeled with one variable per cell, and domains corresponding to the available
frequencies. The AllDiff constraints enforce that nearby cells get different frequencies to avoid distortions. The domains
here are convex as well.

• Solving a Sudoku of size N × N can be modeled with one variable per cell and one constraint per row, column, and box.
The domain of variable is either all possible numbers or the respective clue of the cell. Hence this MAD-CSP also has
convex domains.

• The n-queens problem can be modeled as MAD-CSP as described in [34].

It should be noted that finding a solution of a MAD-CSP with convex domains and constraints is still an NP-complete
problem due to a reduction from the list coloring of an interval graph problem (Section 4). Hence, we use the more fine-
scaled framework of parameterized complexity [14,17,36] to analyze its complexity.

1.1. Our results

We examine MAD-CSPs in several dimensions [16]. First, the domains and/or constraints can be convex as observed in
the examples above. Second, there are various natural parameters which might be fixed or bounded for typical problem
instances. We explore several commonly used parameters of the problem to identify whether bounding these parameters
leads to a fixed parameter tractable MAD-CSP: the number of variables, the number of values (universe size), the maximum
size of the constraint scopes (arity), and themaximumdomain size. From the theoretical point of view, our parameterizations
allow us to reveal the core of the hardness of this problem. From a practical point of view, they can be used to construct
efficient filtering algorithms for the Multiple AllDiff constraint. For more information about filtering algorithms for global
constraints we refer the reader to [46]. Note that even though some of these parameters, like the number of variables or
the number of values, may not typically be bounded in some applications, during the backtracking search of a constraint
solver these parameters become bounded due to the solver’s branching and inference mechanisms (see e.g. [42,44]). Hence
efficient algorithms for bounded parameters are of high practical relevance.
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Table 1
Overview of our results.

Parameter n =number of variables m = size of the universe k =maximum size of constraint scopes ℓ =maximum domain size

No convexity FPT para-NPC para-NPC para-NPC
(Theorem 3.1) (Lemma 2.1) (Lemma 2.1) (Lemma 2.1)

Convex domains FPT para-NPC para-NPC para-NPC
(Theorem 3.1) (Lemma 2.1) (Lemma 2.1) (Lemma 2.1)

Convex constraints FPT FPT FPT para-NPC
(Theorem 3.1) (Theorem 4.5) (Theorem 6.2) (Lemma 5.1)

Bi-convex FPT FPT FPT Open1
(Theorem 3.1) (Theorem 4.5) (Theorem 6.2)

Our results for the four chosen parameters, depending on the convexity of the domains and constraints, are presented in
Table 1. For the first parameter (number of variables), we give an FPT algorithm independent of the convexity (Theorem 3.1).
For this case we can also show that there is a polynomial-sized problem kernel (Theorem 3.3). For the second and third
parameters (size of the universe andmaximum size of the constraint scopes), we give an FPT algorithm if the constraints are
convex (Theorems 4.5 and 6.2). For most of the remaining cases we can prove that there is no FPT algorithm unless P = NP
(Lemmas 2.1 and 5.1). More precisely, we show that these cases are para-NPC, that is, NP-complete for some (small) fixed
parameter. There is one case left open. This is the case of bi-convex MAD-CSP instances when parameterized by maximum
domain size. We conjecture that this case is in FPT, but we can prove this only for the aggregate parameter domain size and
number of constraints (Theorem 5.5). See Section 5 for details.

1.2. Related work

TheAllDiff constraint first appeared in the ALICE constraint programming language [29]. The complexity of a single AllDiff
constraint is examined in several papers by different authors [30,31,35,37,38,45]. Recently, much research has been devoted
to constructing efficient algorithms for conjunctions of AllDiff constraints [4,27,28]. Such algorithms offer strong inference
power and can prevent a constraint solver from diving into exponentially large unsatisfiable search sub-trees [25,47].
Unfortunately, in most cases the conjunction of global constraints leads to a global constraint that is NP-hard. This is also
the case for the AllDiff constraint: Even for the conjunction of two AllDiff constraints, a polynomial algorithm does not
exist unless P = NP [22,27]. This motivates a search for tractable subclasses [4,27,28]. Bessiere et al. [4] give a polynomial-
time algorithm for a conjunction of two AllDiff constraints if the domains are convex. We extend this to multiple AllDiff
constraints and explore different parameters and restrictions for which the problem becomes tractable.

In the context of general CSPs, much research has been done on tractable constraint satisfaction problems. One line
of this research deals with tractable constraint languages (e.g. [9,10,23,41]); another exploits structural properties of
CSPs [12,15,18,32,33]. Marx [32,33] investigated general CSPs from the parameterized complexity point of view, and Samer
and Szeider [40] identified relevant parameters in general constraint satisfaction problems.

It should be noted that the problem that we consider is a special case of the Same-Relation constraint studied in [24].
Jefferson et al. [24] consider a binary constraint satisfaction problem with an identical binary relation over each edge of
the primal constraint graph and a set of unary constraints. They showed that such binary CSPs are intractable for many
structures of constraint graphs (cf. Definition 2.1), like cliques, bipartite graphs, grids, or directed acyclic graphs. In ourwork,
we continue this research and identify additional restrictions on the Same-Relation constraint thatmake this constraint fixed
parameter tractable.

In [1,11,26] a similar Interval Constrained Coloring problem was studied. The objective of this problem is to assign a
color to a set of variables such that a set of constraints is satisfied. Each constraint is a convex set of variables which specifies
exactly the number of variables that belong to each color class. Despite the similarity, this problem is neither a generalization
nor a specialization of MAD-CSPs.

1.3. Organization of the paper

We first formally define CSP and MAD-CSP in Section 2. In Sections 3 and 4 we examine the cases of fixed number of
variables and values, respectively. Section 5 discusses fixed maximum domain size. In the last section, we study the fixed
maximum size of the constraint scopes. Note that although each section covers a different parameter, the proofs of Section 6
build on results from Section 5, which in turn depend on Section 4.

1 We know that this case is FPT for several aggregate parameters like domain size and the treewidth of the constraint graph (Lemma 5.2), domain size
and the treewidth of the domain graph (Lemma 5.3), and domain size and the number of constraints (Theorem 5.5), but for the single parameter domain
size it remains open. See Section 5 for details.
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2. Formal model

2.1. General CSP

Formally, a CSP instance is a triple (X, U, C), where X := {x1, . . . , xn} is a set of variables, U ⊆ N is a set of possible
values (also called the universe), andC is a set of constraints. A constraint C is defined over a set of variables, called the scope
of the constraint C and denoted scope(C) ⊆ X. A constraint C can be represented extensionally as a table of valid (or invalid)
assignments to variables in its scope, or intensionally by giving an expression or a formula involving the variables in the
constraint scope [43]. We consider only constraints represented intensionally. Each constraint in C is a triplet (S, R,m),
where S is an m-tuple of variables (constraint scope) and R is an arbitrary m-ary relation over U (constraint relation). We
will slightly abuse notation by writing x ∈ C to indicate that variable x ∈ X is in the scope S of some constraint C ∈ C.
Also, we assume w.l.o.g. that every variable occurs in at least one constraint scope, and every domain element occurs in at
least one constraint relation. A solution to a CSP instance is a function (assignment) τ from the set of variables X to the set
of values U satisfying that for each constraint (S, R,m) with S = (xi1 , xi2 , . . . , xim) the tuple (τ (xi1), τ (xi2), . . . , τ (xim))
is a member of R. If there is such an assignment we say that the CSP instance is satisfiable, and otherwise we say it is
unsatisfiable.

2.2. MAD-CSP

We will focus on CSP instances which include only AllDiff constraints, henceforth referred to as Multiple AllDiff CSP
(MAD-CSP) instances. AMAD-CSP instance is a quadruple (X, U, D, C), whereX andU are defined as above,D is a function
assigning domains to variables, and C is the set of AllDiff constraints. The function D is defined from X to 2U, restricting
variable x ∈ X to have values only from D(x). The set C is a set of subsets of 2X enforcing the requirement that all variables
occurring together in one constraint must be assigned different values. We assume w.l.o.g. that all MAD-CSP instances are
in a ‘‘canonic’’ form, that is, the universe is U = {1, 2, . . . , |U|}; there are no values in the definitions of D(x)which are not
used by any variable x; there is no variablewith an empty domain; there are no empty constraints; and there is no constraint
which is a proper subset of another constraint. A solution to a MAD-CSP instance is a function τ : X → U such that:

(i) ∀x ∈ X : τ(x) ∈ D(x).
(ii) ∀C ∈ C and ∀x, y ∈ C : x ≠ y ⇒ τ(x) ≠ τ(y).

Specifically, we are interested in domains and constrains with a particular structure. We say that a domain D(x) of a
variable x is convex, if D(x) = {i, i + 1, i + 2, . . . , j} for some 1 ≤ i ≤ j ≤ m. Analogously, a constraint C ∈ C is called
convex, if C = {xi, xi+1, xi+2, . . . , xj} for some 1 ≤ i ≤ j ≤ n. A MAD-CSP instance has convex domains (constraints) if all
domains (constraints) are convex, and it is bi-convex if it is has convex domains and constraints simultaneously.

Our work focuses on analyzing MAD-CSP instances under the framework of parameterized complexity. Readers are
referred to [14,17,36] for relevant concepts and definitions. We consider the following parameters for MAD-CSP:

• Parameter n := |X| measuring the number of variables.
• Parameter m := |U| measuring the size of the universe.
• Parameter k := maxC∈C |C | measuring the maximum size of the constraint scopes.
• Parameter ℓ := maxx∈X |D(x)| measuring the maximum domain size.

It is not difficult to see that MAD-CSP instances can naturally model the Graph Coloring problem, where we are given a
graph G := (V , E), and an integer k, and the goal is to find a function (k-coloring) f : V → {1, . . . , k} with f (u) ≠ f (v)
for all {u, v} ∈ E. To reduce Graph Coloring to MAD-CSP, we let X = V , U = {1, . . . , k}, D(x) = U for all x ∈ X, and
C = E. Then the MAD-CSP instance is satisfiable iff G has a k-coloring. Since Graph Coloring is known to be NP-complete
for instances with k ≥ 3 [19], we have the following hardness result for MAD-CSP.

Lemma 2.1. MAD-CSP is NP-complete even when restricted to convex domain instances with m = 3, k = 2, and ℓ = 3.

We conclude this section by introducing the notion of a constraint graph, a concept playing an important role in many
works relating toCSP [21,33,40]. After presenting a formal definition of this notion,we state an important theorembyGottlob
et al. [21] relating the fixed-parameter tractability of CSP instances to a structural parameter of the constraint graph, namely
the treewidth parameter (see e.g. [13] for a formal definition).

Definition 2.1. The constraint graph of a CSP instance (X, U, C) is the underlying graph of the hypergraph (X, C). That is,
it is the graph with vertex set X, where two variables x, y ∈ X are connected by an edge iff there is a constraint C ∈ C with
x, y ∈ C.

Theorem 2.2 ([12]). CSP can be solved in mt+1
· nO(1) time and space, where t is the treewidth of the constraint graph.
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3. Fixed number of variables

Webegin our discussion by considering the instances ofMAD-CSPwith a fixed number of variables n.Wewill present two
parameterized algorithms for this parameter, both with asymptotically similar dependencies on the parameter, and both
working evenwhenneither the domains nor the constraints are convex.Note that general CSP is not FPTwhenparameterized
by n, as for example k-Clique can be expressed as a CSP with k variables [40]. The first of the two algorithms is given in the
theorem below.

Theorem 3.1. MAD-CSP can be solved in O(n! nm) time, independent of the underlying convexity assumption.

Proof. We examine the following algorithm:

1. Try all permutations π of {1, 2, . . . , n}.
2. For i from 1 to n, assign xπ(i) the smallest valid value from D(xπ(i)).
3. If this is possible for all variables, return yes.
4. If there is no permutation for which a valid assignment is found, return no.

We can easily bound the worst-case runtime of this algorithm by O(n! nm) which is FPT for the parameter being the
number of variables n. It remains to prove correctness of the algorithm. It is clear that if the algorithm returns yes, it has
found a valid assignment and the answer is correct. To show that it is also correct if it returns no, it is sufficient to prove the
following:

(1) If the given instance is satisfiable, then there is a permutation π of {1, 2, . . . , n} such that the algorithm finds a valid
assignment.
In order to prove claim (1), we first show the following claim.

(2) If the given instance is satisfiable, then there is an assignment such that there is a variable x which is assigned to
minD(x).

To show claim (2), assume the contrary, that is, there is a satisfiable instance where in all valid assignments no variable x is
assigned to minD(x). In this case, take any valid assignment and observe that the value 1 cannot have been assigned to any
variable. By the definition of our problem, (cf. Section 2), there must be a variable x with value 1 in its domain. Reassigning
x to 1 gives a valid assignment in which x is assigned to minD(x). This proves claim (2).

It remains to show claim (1). Given a satisfiable instance, we use claim (2) and choose the first variable in the permutation
π to be a variable xwhich is assigned to minD(x) in a valid assignment. To choose the second variable in the permutation,
we reduce the given instance by the already fixed variable x. More precisely, we remove the variable x, the value minD(x),
and all values which are solely used by x from the instance. This new instance must also be satisfiable and claim (2) gives
the second variable in the required permutation for claim (1). Continuing in the same way for the third, fourth, etc. variable,
gives the desired permutation and proves claim (1). The theorem is thus proven. �

Our second algorithm shows that theMAD-CSP problem is not only FPT when parameterized by the number of variables,
it actually also has a polynomial kernel in this parameter (see e.g. [6] for a discussion on this important concept in
parameterized complexity). Our kernelization algorithm is based on a simple reduction rule, which states, roughly speaking,
that if a variable has a large enough domain it can be deleted. The justification of this rule is given in the following simple
lemma.

Lemma 3.2. Let (X, U, D, C) be a MAD-CSP instance and x ∈ X be a variable with |D(x)| ≥ n. Then (X, U, D, C) is
satisfiable iff (X′, U′, D ′, C ′) is satisfiable, where X′

:= X \ {x}, U′
:=


x∈X′ D(x), D ′

:= D|X′ , and C ′
:= {C \ {x} : C ∈

C and C ≠ {x}}.

Proof. If there is an assignment satisfying the instance (X′, U′, D ′, C ′), then since |X′
| = |X| − 1 = n − 1 < |D(x)|,

there must be a value in D(x) not assigned to any variable in X′. We can thus assign this value to x without violating any
constraint in C, and so if (X′, U′, D ′, C ′) is satisfiable so is (X, U, D, C). The other direction is trivial.

Using this rule iteratively until it can no longer be applied, we obtain a MAD-CSP instance where each variable has a
domain size which is bounded by the total number of remaining variables in the instance. This immediately implies that the
problem has a kernel of size O(n2).

Theorem 3.3. The MAD-CSP problem has a kernel of size O(n2), independent of the underlying convexity assumption.
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4. Fixed number of values

In this section we consider the MAD-CSP problem when parameterized by the size of the universem of the instance. We
will show that MAD-CSP with convex constraints is FPT in this parameter. In contrast, as previously shown in Lemma 2.1,
MAD-CSP with convex domains is para-NPC.

Before presenting our parameterized algorithm, we show that MAD-CSP with convex constraints is equivalent to the
classical List Coloring Proper Interval Graphs (LCPIG) problem. A graph G := (V , E) is an interval graph if there exists a
set S of intervals on the real line and a bijection I : V → S such that {u, v} ∈ E ⇐⇒ I(u) ∩ I(v) ≠ ∅ (see e.g. [20]). If no
interval is properly contained in another in S, then G is a proper interval graph. In LCPIG, we are given a proper interval graph
G, where each vertex v has a list of colors L(v), and the goal is to assign a color to each vertex from its list such that adjacent
vertices are assigned different colors.

To show that MAD-CSP with convex constraints is equivalent to LCPIG, we use an equivalent definition of proper interval
graphs due to Roberts [39], who showed that G is a proper interval graph iff the adjacencymatrix of G has the consecutive 1’s
property; that is, if there is an ordering of the vertices of G such that the adjacency matrix of G under this ordering has 1’s
appearing consecutively in each row and column. Due to the classical Booth and Lueker [8] algorithm, this ordering can
be computed in linear time. It is easy to verify that the adjacency matrix of the constraint graph associated with a MAD-
CSP instance with convex constraints has the consecutive 1’s property. Conversely, any graph whose adjacency matrix has
the consecutive 1’s property can be interpreted as a constraint graph of a MAD-CSP instance with convex constraints. We
therefore obtain the following theorem, which will also be useful in Section 5.

Theorem 4.1. MAD-CSP with convex constraints is equivalent to the LCPIG problem.

Now using the fact that LCPIG is NP-complete even in the case where each list is an interval of consecutive colors [5,7],
we immediately obtain from Theorem 4.1 the following corollary.

Corollary 4.2. MAD-CSP is NP-complete even in the bi-convex case.

We next proceed to describe our parameterized algorithm for the parameter m. We first observe the following simple
lemma that follows directly from the definition of the MAD-CSP problem.

Lemma 4.3. If there is any constraint C ∈ C with scope greater than m, then the given MAD-CSP instance cannot be satisfied.

Proof. Any satisfying assignment of the given MAD-CSP instance must assign all variables in C to different values, which is
impossible, since there arem < |C | different values altogether.

We next use Lemma 4.3 above to bound the treewidth of our constraint graph. For this, we will use a slightly different
graph invariant called pathwidth. The pathwidth of a given graph is always bounded from below by its treewidth, and it is
well known that the graph has pathwidth k iff the smallest clique number of an interval graph that contains it as a subgraph
has maximum clique-size k + 1 (see e.g. [13]). This result together with Lemma 4.3 above and the fact that the constraint
graph of a MAD-CSP instance with convex constraints is an interval graph, immediately gives us the following lemma.

Lemma 4.4. If each constraint scope in a given MAD-CSP instance with convex constraints is of size at most k, then the constraint
graph of the instance has pathwidth at most k − 1.

We now can directly use Theorem 2.2 of Gottlob et al. [21] to obtain the main result of this section.

Theorem 4.5. MAD-CSP with convex constraints can be solved in mm
· nO(1) time.

5. Fixed maximum domain size

We next consider the parameter ℓ := maxx∈X |D(x)| which measures the maximum number of values in any variable
domain. Recall that by Lemma 2.1 we know that MAD-CSP with convex domains is para-NPC for this parameter. The
following lemma shows that this also holds for convex constraints.

Lemma 5.1. MAD-CSP with convex constraints is NP-complete for instances with ℓ ≥ 3.

Proof. The problem is clearly in NP. To show NP-hardness, we use a result of Jansen [22] who proved that the list coloring
problem for graphs that are the union of two cliques is NP-complete, even when the list size of each vertex is at most 3.
Since a graph which is a union of two cliques is a proper interval graph with two maximal cliques, this implies the lemma
by the equivalence proven in Theorem 4.1. �

The proof of Lemma 5.1 uses a result of Jansen [22]. It also implies that MAD-CSP with convex constraints is para-NPC
even when parameterized by both the maximum domain size and the number of constraints. We next show that for these
two parameters, MAD-CSP turns out to be in FPT when the domains are convex. The complexity of the bi-convex case for
the single parameter ℓ := maxx∈X |D(x)| remains open. We begin with the following lemma, which we will also need in
Section 6. Its proof is based on Theorem 2.2.



M. Fellows et al. / Theoretical Computer Science 472 (2013) 81–89 87

Lemma 5.2. MAD-CSP can be solved in ℓt+1
·nO(1), where t is the treewidth of the constraint graph, independent of the underlying

convexity assumption.

Proof. Let (X, U, D, C) be a given instance of MAD-CSP with the treewidth of the constraint graph bounded by some
integer t . To prove the theorem, we use Theorem 2.2 by reducing (X, U, D, C) to a general CSP instance (X, U′, C ′) with
|U′

| = ℓ, and where the treewidth of the constraint graph remains bounded by t .
In order to reduce the universe size to ℓ, we change the domain of every variable x ∈ X to a subset ofU′

:= {1, 2, . . . , ℓ}.
For every variable x ∈ X, we choose some bijective mapping δx from its original domain D(x) to its new domain
D ′(x) := {1, 2, . . . , |D(x)|}. The new domain D ′(x) can be seen as containing only the indices of the entries of the original
domain. To adjust the constraints appropriately, recall that every edge in the constraint graph indicates that the two adjacent
vertices must be assigned different values. Hence for an edge (x, y) in the constraint graph of (X, U, D, C), this can be
formulated as a constraint C ∈ C ′ in the general CSP, which requires us to assign value δx(i) to the variable x and value δy(j)
to the variable y, for i ∈ D(x) and j ∈ D(y), iff i ≠ j. Of course, we only add a constraint if D(x) ∩ D(y) ≠ ∅.

It is clear that every solution to the general CSP (X, D ′, C ′) instance corresponds to a solution of the original MAD-CSP
instance (X, U, D, C) and vice versa. Furthermore, the constraint graphs of the two instances are isomorphic. Since this
reduction can be carried out in polynomial time, applying Theorem 2.2 finishes the proof. �

Wenext introduce a graph ofMAD-CSP instanceswhich is defined by considering the relationships between the domains
of different variables. Following this, we will prove an analogous result to Lemma 5.2 for the case where the treewidth of
the so-called domain graph is bounded.

Definition 5.1. The domain graph of a MAD-CSP instance (X, U, D, C) is a graph with vertex set X where two variables
x, y ∈ X are adjacent iff D(x) ∩ D(y) ≠ ∅.

Lemma 5.3. MAD-CSP can be solved in ℓt+1
· nO(1), where t is the treewidth of the domain graph, independent of the underlying

convexity assumption.

Proof. To prove the theorem, we reduce (X, U, D, C) to a general CSP instance (X, U′, C ′) using the same construction as
in the proof of Lemma 5.2. It is not difficult to see that the constraint graph of the new instance is a subgraph of the domain
graph of the original instance. Since all subgraphs of a graph with treewidth bounded by t also have treewidth bounded by
t , the treewidth of the constraint graph of (X, U′, C ′) is also at most t . The theorem therefore follows, again, by applying
Theorem 2.2. �

Our goal now is to use Lemma 5.3 above to show that MAD-CSP is FPT when parameterized by both ℓ and |C|. To do this,
we show that unless our given MAD-CSP instance is unsatisfiable, the domain graph of this instance has treewidth bounded
by a function of both these parameters. The following lemma gives the first step in this direction.

Lemma 5.4. Let (X, U, D, C) be an instance of MAD-CSP, and let D be a domain of some variable in X. If there are more than
ℓ · |C| variables x ∈ X with D(x) = D, then (X, U, D, C) cannot be satisfied.

Proof. Let C ∈ C be an arbitrary constraint. If there aremore than ℓ variables x ∈ C withD(x) = D then the givenMAD-CSP
instance cannot be satisfied, since all these variables must take different values, and |D| ≤ ℓ. Now if there are more than
ℓ · |C| variables x ∈ X with D(x) = D, by the pigeonhole principle more than ℓ of these belong to same constraint, and the
lemma follows.

Theorem 5.5. MAD-CSP with convex domains can be solved in ℓ2cℓ2
· nO(1) time, where c := |C| is the number of constraints in

the given instance.

Proof. We prove the theorem by applying Lemma 5.3. To do this, we first observe that in the case of convex domains, the
domain graph G of a given MAD-CSP instance is an interval graph. This can be seen by assigning each variable its interval
domain. Our algorithm begins by checking whether there is a domain D in our instance where the number of variables with
this domain ismore than cℓ. If this is the case, we report that the instance is unsatisfiable by Lemma 5.4. Otherwise, recalling
that no domain is contained in another, the number of interval domains which start or end at a certain value is at most cℓ.
In this case, the number of interval domains which start or end at a certain value s, which is exactly the number of interval
domains that are contained inside the interval [s, s + l] or [s − l, s], is at most cℓ. From this it follows that any domain
intersects fewer than 2cℓ2 other domains, and therefore G has maximum clique size less than 2cℓ2. Thus, G has treewidth
at most 2cℓ2

− 1, and we can apply Lemma 5.3 to complete the proof. �

6. Fixed maximum size of constraint scope

In this section we examine the parameter k, which measures the maximum size of constraint scopes, that is, k =

maxC∈C |C |. Lemma 2.1 showed that MAD-CSP is para-NPC without convexity of the constraints. To show that convex
constraints make the problem fixed-parameter tractable with respect to k, we first argue that variables with domain size
larger than k2 can be safely removed.
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Lemma 6.1. Let (X, U, D, C) be an instance of MAD-CSP where all constraints C ∈ C are convex and all constraint scopes are
of size at most k. Also, let x ∈ X be a variable with D(x) > k2. Then (X, U, D, C) is satisfiable iff (X′, U′, D ′, C ′) is satisfiable,
where X′

:= X \ {x}, U′
:=


x∈X′ D(x), D ′

:= D|X′ , and C ′
:= {C \ {x} : C ∈ C and C ≠ {x}}.

Proof. Since no constraint is a proper subset of another constraint, and since all constraints are convex, we know that for
every variable x ∈ X there is at most one constraint which has x as its first variable. This in turn implies that a variable can
occur only in at most k constraints. Now suppose there is an assignment satisfying the instance (X′, U′, D ′, C ′). As x is a
member of at most k constraints, and each constraint has at most k variables, the total number of disallowed values for x is
at most k2. Since D(x) > k2, we can always assign a value to xwithout violating any constraint in C, and thus (X, U, D, C)
is also satisfiable. The other direction in the lemma is trivial. �

This reduction rule gives us an FPT algorithm for convex constraints as follows.

Theorem 6.2. MAD-CSP with convex constraints can be solved in k2k · nO(1) time.

Proof. Given aMAD-CSP instance withmaximum size of constraint scopes k, we know from Lemma 4.4 that the pathwidth,
and therefore also the treewidth, of the constraint graph is at most k−1. By above Lemma 6.1, we can reduce, in polynomial
time, the givenMAD-CSP instance to a MAD-CSP instance with maximum domain size k2. As the treewidth of the constraint
graph remains bounded by k − 1, applying Lemma 5.2 finishes the proof. �

7. Conclusions and open problems

We have studied the complexity of MAD-CSPs with structural restrictions under several parameterizations and have
shown a number of cases that are fixed-parameter tractable. The most prominent open problem arising directly from this
investigation is whether in the bi-convex case, the problem is fixed-parameter tractable when parameterized by the domain
size. We conjecture that the problem is FPT, but have only been able to show this for the aggregate parameter: domain size
and number of constraints.

More generally, it would be interesting to similarly investigate CSPs for other kinds of structural restrictions, such as
almost convex variables and domains, and for other constraints or sets of constraints besides Multiple AllDiff. Because of
the wide applicability of CSPs, sometimes these parameterizations are relevant because the parameters may be small for
the natural input distributions faced in practice, but the study of the parameterized complexity of these problems is also
motivated by the observation that during the backtracking search of a constraint solver, relevant parameters may become
small, and thus FPT algorithms may have high practical relevance.
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