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Abstract
Our input is a complete graph G on n vertices where each vertex has a strict ranking 
of all other vertices in G. The goal is to construct a matching in G that is popular. 
A matching M is popular if M does not lose a head-to-head election against any 
matching M′ : here each vertex casts a vote for the matching in {M,M

�} in which 
it gets a better assignment. Popular matchings need not exist in the given instance 
G and the popular matching problem is to decide whether one exists or not. The 
popular matching problem in G is easy to solve for odd n. Surprisingly, the problem 
becomes ��-complete for even n, as we show here. This is one of the few graph 
theoretic problems efficiently solvable when n has one parity and ��-complete when 
n has the other parity.
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1 Introduction

Consider a complete graph G = (V ,E) on n vertices where each vertex ranks all 
other vertices in a strict order of preference. Such a graph is called a roommates 
instance with complete preferences. The problem of computing a stable matching 
in G is classical and well-studied. Recall that a matching M is stable if there is no 
blocking pair with respect to M, i.e., a pair (u, v) where both u and v prefer each 
other to their respective assignments in M.

Stable matchings need not always exist in a roommates instance. For example, the 
instance given in Fig. 1 on 4 vertices d0, d1, d2, d3 has no stable matching. (Here d0 ’s 
top choice is d1 , second choice is d2 , and last choice is d3 , and similarly for the other 
vertices.)

Irving [20] gave an efficient algorithm to decide if G admits a stable matching or 
not. In this paper we consider a notion that is more relaxed than stability: this is the 
notion of popularity. For any vertex u, a ranking over neighbors can be extended 
naturally to a ranking over matchings as follows: u prefers matching M to matching 
M′ if (1) u is matched in M and unmatched in M′ or (2) u is matched in both and it 
prefers its partner in M to its partner in M′ . For any two matchings M and M′ , let 
�(M,M�) be the number of vertices that prefer M to M′.

Definition 1 Let M be any matching in G. M is popular if �(M,M�) ≥ �(M�,M) for 
every matching M′ in G.

Suppose an election is held between M and M′ where each vertex casts a vote 
for the matching that it prefers. So �(M,M�) (similarly, �(M�,M) ) is the number of 
votes for M (resp., M′ ). A popular matching M never loses an election to another 
matching M′ since �(M,M�) ≥ �(M�,M) : thus it is a weak Condorcet winner [5, 6] 
in the corresponding voting instance. So popularity captures collective decision by 
the vertex set and it can be considered as a natural relaxation of stability.

The notion of popularity was first introduced in bipartite graphs in 1975 by 
Gärdenfors—popular matchings always exist in bipartite graphs since stable 

Fig. 1  An instance that admits two popular matchings—marked by dotted blue and dashed orange 
edges—but no stable matching. The preference list of each vertex is illustrated by the numbers on its 
edges: a lower number indicates a more preferred neighbor (Color figure online)
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matchings always exist here [13] and every stable matching is popular [14]. The 
proof that every stable matching is popular holds in non-bipartite graphs as well [4]; 
in fact, it is easy to show that every stable matching is a min-size popular match-
ing [17]. Relaxing the constraint of stability to popularity allows us to find feasible 
matchings that may exist in instances that do not admit stable matchings; moreover, 
even when stable matchings exist, there may be popular matchings that achieve more 
“social good” (such as larger size), which might be relevant in many applications.

Observe that the instance in Fig.  1 has two popular matchings: 
M1 = {(d0, d1), (d2, d3)} and M2 = {(d0, d2), (d1, d3)} . However as was the case 
with stable matchings, popular matchings also need not always exist in the given 
instance G. Just take, for example, the same instance as in Fig.  1, but without 
vertex d0 . A complete graph G on an even number of vertices that has no popular 
matching is also easy to describe: take two copies of this instance on 3 vertices, 
i.e., d1, d2, d3 with preferences as given in Fig.  1 (without vertex d0 ) and three 
more vertices d′

1
, d′

2
, d′

3
 whose preferences are analogous to d1, d2, d3 , respectively. 

Since the instance has to be complete, add d1, d2, d3 (similarly, d′
1
, d′

2
, d′

3
 ) at the tail 

of preference lists of d′
1
, d′

2
, d′

3
 (resp., d1, d2, d3 ) in some arbitrary order. It is easy 

to check that this instance on 6 vertices has no popular matching.
The popular roommates problem is to decide if G admits a popular matching 

or not. When the graph is not complete, it is known that the popular roommates 
problem is ��-complete [11, 15]. Here we are interested in the complexity of the 
popular roommates problem when the input instance is complete.

Interestingly, several popular matching problems that are intractable in bipar-
tite graphs become tractable in complete bipartite graphs. The min-cost popu-
lar matching problem in bipartite graphs is such a problem—this is ��-hard in a 
bipartite graph with incomplete lists [11], however it can be solved in polynomial 
time in a bipartite graph with complete lists [8]. The difference is due to the fact 
that while there is no compact extended formulation of the convex hull of edge 
incidence vectors of all popular matchings in a general bipartite graph [10], this 
polytope has a compact extended formulation in a complete bipartite graph.

It is a simple observation (see Sect.  2) that when n is odd, a matching in a 
complete graph G on n vertices is popular only if it is stable. Since there is an 
efficient algorithm to decide if G admits a stable matching or not, the popular 
roommates problem in a complete graph G can be efficiently solved when n is 
odd. We show the following result here.

Theorem 1 Let G be a complete graph on n vertices, where n is even. The problem 
of deciding whether G admits a popular matching or not is ��-complete.

So the popular roommates problem with complete preference lists is ��-com-
plete for even n while it is easy to solve for odd n. Some problems possess an 
inherently different nature depending on the parity of some characteristic input 
parameter, such as Latin squares [21] or various problems in voting [12]. Popular 
matchings do not belong to this set of problems—note that the popular room-
mates problem is non-trivial for every n ≥ 5 , i.e., there are both “yes instances” 
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and “no instances” of size n. It is rare and unusual for a natural decision problem 
in combinatorial optimization to be efficiently solvable when n has one parity and 
become ��-complete when n has the other parity. We are not aware of any natural 
optimization problem on graphs that is non-trivially tractable when the cardinal-
ity of the vertex set has one parity, which becomes intractable for the other parity.

1.1  Background and related work

The first polynomial time algorithm for the stable roommates problem was given by 
Irving [20] in 1985. Roommates instances that admit stable matchings were charac-
terized in [30]. New polynomial time algorithms for the stable roommates problem 
were given in [29, 31].

Algorithmic questions for popular matchings in bipartite graphs have been well-
studied in the last decade [1, 8, 17, 19, 22–24]. Not much was known on popular 
matchings in non-bipartite graphs. Biró et al. [1] proved that validating whether a 
given matching is popular can be done in polynomial time, even when ties are pre-
sent in the preference lists. It was shown in [18] that every roommates instance on n 
vertices admits a matching with unpopularity factor O(log n) and that it is ��-hard to 
compute a least unpopularity factor matching. It was shown in [19] that computing 
a max-weight popular matching in a roommates instance with edge weights is ��
-hard, and more recently, that computing a max-size popular matching in a room-
mates instance is ��-hard [3].

The complexity of the popular roommates problem was open for several years [1, 
7, 18, 19, 27] and two independent ��-completeness proofs [11, 15] of this problem 
were shown very recently. Interestingly, both these hardness proofs need “incom-
plete preference lists”, i.e., the underlying graph is not complete. The reduction in 
[15] is from a variant of the vertex cover problem called the partitioned vertex cover 
problem and we discuss the reduction in [11] in Sect. 1.2 below. So the complexity 
status of the popular roommates problem in a complete graph was an open problem 
and we resolve it here.

An interpretation of roommate instances with complete preference lists might 
be that each vertex finds every other vertex acceptable, or that being matched to 
any vertex is better than being unmatched, or that there is no outside option and 
the agents are all obliged to be matched within the market. Computational hardness 
for instances with complete lists has been investigated in various matching prob-
lems under preferences. An example is the three-sided stable matching problem 
with cyclic preferences: this involves three groups of participants, say, men, women, 
and dogs, where dogs have strictly ordered preferences over men only, men have 
preferences over women only, and finally, women only list the dogs. If these prefer-
ences are allowed to be incomplete, the problem of finding a weakly stable match-
ing is known to be ��-complete [2]. Until very recently, it had been one of the most 
intriguing open questions in stable matchings [27, 32] as to whether the same prob-
lem becomes tractable when lists are complete. Lam and Plaxton gave a hardness 
proof for complete preference lists very recently, disproving the published conjec-
tures [26].



1497

1 3

Algorithmica (2021) 83:1493–1523 

1.2  Techniques

The 1-in-3 SAT problem is a well-known ��-complete problem [28]: it consists of 
a Boolean formula B in CNF where every clause has 3 literals (none negated) and 
the problem is to find a satisfying truth assignment to the variables in B such that 
every clause has exactly one literal set to ���� . We show a polynomial time reduc-
tion from 1-in-3 SAT to the popular roommates problem with complete lists.

Our construction is based on the reduction in [11] that proved the ��-complete-
ness of the popular roommates problem. However there are several differences 
between our reduction and the reduction in [11]. The reduction in [11] considered 
a popular matching problem in bipartite graphs called the “exclusive popular set” 
problem and showed it to be ��-complete—when preference lists are complete, 
this problem can be easily solved. Thus the reduction in [11] needs incomplete 
preference lists.

The exclusive popular set problem asks if there is a popular matching in the 
given bipartite graph where the set of matched vertices is S, for a given even-
sized subset S. A key step in the reduction in [11] from this problem in bipartite 
graphs to the popular matching problem in non-bipartite graphs merges all ver-
tices outside S into a single node. Thus the total number of vertices in the non-
bipartite graph used in [11] is odd. Moreover, the fact that popular matchings 
always exist in bipartite graphs is crucially used in this reduction. However in our 
setting, the whole problem is to decide if any popular matching exists in the given 
graph—thus there are no popular matchings that “always exist” here.

The reduction in [11] primarily uses the LP framework of popular matchings 
in bipartite graphs from [22, 23, 25] to analyze the structure of popular matchings 
in their instance. The LP framework characterizing popular matchings in non-
bipartite graphs is more complex [25], so we use the combinatorial characteriza-
tion of popular matchings [17] in terms of forbidden alternating paths/cycles to 
show that any popular matching in our instance will yield a 1-in-3 satisfying truth 
assignment for B. To show the converse, we use a dual certificate similar to the 
one used in [11] to prove the popularity of the matching that we construct using a 
1-in-3 satisfying truth assignment for B.

Organization of the paper We discuss preliminaries in Section  2. Section  3 
describes the construction of our complete graph G corresponding to a given 
1-in-3 SAT formula  B. Section  4 studies the structure of the graph G and Sec-
tion  5 shows that any popular matching in G yields a 1-in-3 satisfying truth 
assignment for B. Section 6 completes the reduction by showing how to obtain a 
popular matching in G from any 1-in-3 satisfying truth assignment for B.

2  Preliminaries

This section contains a characterization of popular matchings from [17]. We also 
include a simple proof of the claim stated in Section 1 that when n is odd, every 
popular matching in G has to be stable.
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Let M be any matching in G = (V ,E) . For any pair (u, v) ∉ M , define ����u(v,M) 
as follows: (here M(u) is u’s partner in M and M(u) = ���� if u is unmatched in M)

Label every edge (u,  v) that does not belong to M by the pair 
(����u(v,M), ����v(u,M)) . Thus every non-matching edge has a label in {(±,±)} . For 
example, if we consider the matching marked by the dashed orange edges in Fig. 1, 
then (d1, d2) is labeled (+,+) , (d2, d3) is labeled (+,−) , (d0, d1) is labeled (+,−) , and 
(d0, d3) is labeled (−,−) . Note that an edge is labeled (+,+) if and only if it is a 
blocking edge to M.

We remind the reader that an alternating path/cycle with respect to M is a path/cycle 
whose alternate edges belong to M: thus edges in this path/cycle alternate between 
belonging to the matching M and not belonging to the matching M. Let GM be the sub-
graph of G obtained by deleting edges labeled (−,−) from G. The following theorem 
characterizes popular matchings in G.

Theorem 2 ([17]) M is popular in G if and only if GM does not contain any of the 
following with respect to M: 

(1) an alternating cycle with a (+,+) edge;
(2) an alternating path with two distinct (+,+) edges;
(3) an alternating path with a (+,+) edge and an unmatched vertex as an endpoint 

of the path.

Using the above characterization, it can be easily checked whether a given matching 
is popular or not [17]. Thus our ��-hardness result implies that the popular roommates 
problem with complete preferences is ��-complete.

When n  is odd. Recall the claim made in Sect. 1 that when n is odd, every popular 
matching in G has to be stable. A simple proof of this statement is included below.

Observation 1 ([16]) Let G be a complete graph on n vertices, where n is odd. Any 
popular matching in G has to be stable.

Proof Since n is odd and G is complete, any popular matching leaves exactly 
one vertex unmatched. Let M be a popular matching and let v be the vertex left 
unmatched in M. Consider a vertex u adjacent to v. We know that (u,w) ∈ M for 
some w ∈ V ⧵ {v} , and due to Part (3) in Theorem 2, no (+,+) edge is incident to w. 
Since v is adjacent not only to u, but to all vertices in the graph, this holds for all 
w ∈ V  , i.e., there is no (+,+) edge incident to any vertex. Thus M is stable.   ◻

����u(v,M) =

{

+ if u prefers v to M(u);

− if u prefers M(u) to v.
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3  The graph G

Recall that B is the input formula to 1-in-3 SAT. We assume that B has � varia-
bles X1,… ,X� . The graph G that we construct here consists of gadgets in 4 levels 
along with 2 special gadgets that we will call the D-gadget and Z-gadget. Gadgets 
in level 1 correspond to variables in the formula B while gadgets in levels 0, 2, 
and 3 correspond to clauses in B. Variants of the gadgets in levels  0-3 and the 
D-gadget were used in [11] while the Z-gadget is new.

An overview We will first show that any popular matching M in G uses only intra-
gadget edges. Every gadget will be in one of the following two states in M: stable 
state or unstable state. A gadget is in stable state if and only if there is no edge e 
with both its endpoints in this gadget such that e blocks M. Our aim is to show that 
for every clause c in B, the gadget of exactly one of the three variables in c is in 
unstable state in M—this will translate to a 1-in-3 satisfying truth assignment for B.

Preferences will be set such that unstable (similarly, stable) states of gadgets 
in one level force a certain number of gadgets in the adjacent level to be in unsta-
ble (resp., stable) state. The reduction in [11] is also based on the same idea and 
for each clause in B, it used three level 0 gadgets, three level 2 gadgets, and one 
level 3 gadget (recall that clause gadgets are in levels 0, 2, 3). In our setting of 
complete preference lists, we will need “duplicates” or counterparts of all these 
gadgets to show the above reduction. So for each clause, we will use six level 0 
gadgets, six level 2 gadgets, and two level 3 gadgets. In order to use Theorem 2, 
we will also need a new gadget to “glue” alternating paths across gadgets: this 
role will be performed by the Z-gadget which will be in stable state in M.

We will show that every level 3 gadget has to be in unstable state in M. Our 
technical lemma (Lemma  8) proves that this forces either two of the first three 
level 2 gadgets or two of the last three level 2 gadgets of every clause to be unsta-
ble state in M. We then show this forces at least one gadget of the three variables 
in every clause in B to be in unstable state in M.

We also show that every level  0 gadget has to be in stable state in M. This 
will induce at most one gadget of the three variables in every clause in B to be in 
unstable state in M. Thus exactly one gadget of the three variables in every clause 
in B will be in unstable state in M.

Our gadgets We will now describe all the gadgets that we use here: along with 
a figure, we provide the preference lists of vertices in this gadget. The tail of each 
list consists of all vertices not listed yet, in an arbitrary order. Even though the 
preference lists are complete, the structure of the gadgets and the preference lists 
will ensure that inter-gadget edges will not belong to any popular matching, as we 
will show in Section 4.

The D-gadget The D-gadget is on 4 vertices d0, d1, d2, d3 and the preference 
lists of these vertices are as given in Fig. 1 with all vertices outside the D-gadget 
at the tail of each list (in an arbitrary order). Recall that this gadget admits no 
stable matching. The role of D-gadget will be that of a delimiter—we will show 
that every vertex will have to be matched in any popular matching to a neighbor 
preferred to all its neighbors in the D-gadget.
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We describe gadgets from level  1 first, then levels  0, 2, 3, and finally, the 
Z-gadget. The stable matchings within the gadgets are highlighted by colors in the 
figures. The gray elements in the preference lists denote vertices that are outside this 
gadget. We will assume that D in a preference list stands for d0 > d1 > d2 > d3.

Level 1 For each variable Xi in the formula B, we construct a gadget on four verti-
ces as shown in Fig. 2.

The bottom vertices x′
i
 and y′

i
 will be preferred by some vertices in level  0 to 

vertices in their own gadget, while the top vertices xi and yi will be preferred by 
some vertices in level 2 to vertices in their own gadget. All four vertices in a level 1 
gadget prefer to be matched among themselves, along the four edges drawn than be 
matched to any other vertex in the graph. This gadget has a unique stable matching 
{

(xi, yi), (x
�
i
, y�

i
)
}

.
Level 0 For each clause c = Xi ∨ Xj ∨ Xk in the formula B, we create 6 gadgets in 

level 0. For every ordered pair of elements in {i, j, k} , there is one such gadget. One 
of these gadgets (this corresponds to the pair (j, k)) can be seen in Fig. 3. The top 
two vertices, i.e. ac

1
 and bc

1
 , rank y′

j
 and x′

k
 in level  1, as their respective second 

choices. Recall that indices j and k are well-defined in the clause c = Xi ∨ Xj ∨ Xk . 
Within this level  0 gadget on ac

1
, bc

1
, ac

2
, bc

2
 , both {(ac

1
, bc

1
), (ac

2
, bc

2
)} and 

{(ac
1
, bc

2
), (ac

2
, bc

1
)} are stable matchings. In the preference lists below (and also for 

gadgets in levels 2 and 3), we have omitted the superscript c in their lists for the sake 
of readability.

The gadget on vertices 
{

ac
3
, ac

4
, bc

3
, bc

4

}

 is built analogously: the vertex ac
3
 ranks y′

k
 

as its second choice, while bc
3
 ranks x′

i
 second. In the third gadget, the vertex ac

5
 ranks 

y′
i
 second, while bc

5
 ranks x′

j
 second. Observe the shift in i,  j,  k indices as second 

choices for vertices ac
1
, ac

3
, ac

5
 (and similarly, for bc

1
, bc

3
, bc

5
).

The fourth, fifth, and sixth gadgets are analogous to their counterparts, the 
first, second, and third gadgets, respectively, but there is a slight twist. More pre-
cisely, the preferences of a′c

1
, a′c

2
, b′c

1
, b′c

2
 in the fourth gadget are analogous to the 

preferences in Fig. 3, except that a′c
1

 ranks y′
k
 second, while b′c

1
 ranks x′

j
 second. 

Fig. 2  The variable gadget in level 1

Fig. 3  A clause gadget in level 0. The set of preference lists on the left belongs to the first gadget, while 
the set of preference lists on the right belongs to the fourth gadget (this corresponds to the pair (k, j))
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Similarly, the second choice of a′c
3

 is y′
i
 , the second choice of b′c

3
 is x′

k
 , and finally, 

a′c
5

 ranks y′
j
 second, while b′c

5
 ranks x′

i
 second. Observe the change in orientation 

of the indices i,  j, k as second choice neighbors when comparing the first three 
level 0 gadgets of c with its last three level 0 gadgets. This will be important to us 
later.

Level 2 For each clause c = Xi ∨ Xj ∨ Xk in the formula B, we create 6 gadgets 
in level 2. The first gadget in level 2 is on vertices pc

0
, pc

1
, pc

2
, qc

0
, qc

1
, qc

2
 and their 

preference lists are described in Fig. 4. Note that pc
2
 ranks yj from level 1 as its 

second choice, while qc
2
 ranks xk from level 1 second.

The second gadget in level 2 is on vertices pc
3
, pc

4
, pc

5
, qc

3
, qc

4
, qc

5
 and it is built analo-

gously. That is, pc
3
 and qc

3
 are each other’s top choices and similarly, pc

4
 and qc

4
 are each 

other’s top choices, and so on. The preference list of pc
5
 is qc

3
> yk > qc

4
> qc

5
> D > … 

and the preference list of qc
5
 is pc

4
> xi > pc

3
> pc

5
> D > …

The third gadget in level 2 is on vertices pc
6
, pc

7
, pc

8
, qc

6
, qc

7
, qc

8
 and it is built anal-

ogously. In particular, the preference list of pc
8
 is qc

6
> yi > qc

7
> qc

8
> D > … and 

the preference list of qc
8
 is pc

7
> xj > pc

6
> pc

8
> D > …

The fourth gadget in level 2 is on vertices p′c
0
, p′c

1
, p′c

2
, q′c

0
, q′c

1
, q′c

2
 and it is totally 

analogous to its counterpart, the first gadget in level  2. That is, p′c
0

 and q′c
0

 are 
each other’s top choices and similarly, p′c

1
 and q′c

1
 are each other’s top choices, and 

so on. In particular, the preference list of p′c
2

 is q�c
0
> yj > q�c

1
> q�c

2
> D > … and 

the preference list of q′c
2

 is p�c
1
> xk > p�c

0
> p�c

2
> D > …

Similarly, the fifth gadget in level  2 is on vertices p′c
3
, p′c

4
, p′c

5
, q′c

3
, q′c

4
, q′c

5
 and 

it is totally analogous to the second gadget in level 2. Also, the sixth gadget in 
level 2 is on vertices p′c

6
, p′c

7
, p′c

8
, q′c

6
, q′c

7
, q′c

8
 and it is totally analogous to the third 

gadget in level 2.
Level 3 For each clause c = Xi ∨ Xj ∨ Xk in the formula B, we create 2 gadgets 

in level 3. The first gadget is on vertices sc
0
, sc

1
, sc

2
, sc

3
, tc
0
, tc
1
, tc
2
, tc
3
 and the preference 

lists of these vertices are described in Fig. 5.
The counterpart of the first gadget in level 3 is the second gadget in level 3. It 

is on vertices s′c
0
, s′c

1
, s′c

2
, s′c

3
, t′c
0
, t′c
1
, t′c
2
, t′c
3

 and their preference lists are totally analo-
gous to the preference lists of the first gadget in level 3.

The Z-gadget. The Z-gadget is on 6 vertices z0, z1, z2, z3, z4, z5 and the prefer-
ence lists of these vertices are given in Fig. 6. The vertices in a set stand for all 

Fig. 4  A clause gadget in level 2
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these vertices in a fixed arbitrary order. For example, ∪�
i=1

{

xi, yi
}

 denotes all the 
“top” vertices belonging to all the � variable gadgets in a fixed arbitrary order.

Note that G is a complete graph on an even number of vertices and so every pop-
ular matching in G has to be a perfect matching.

4  Popular edges in G

Call an edge e in G popular if there is a popular matching M in G such that e ∈ M . 
In this section we identify edges that cannot be popular and show that every popular 
edge has to be an intra-gadget edge, i.e., it connects two vertices of the same gadget.

The following observation, which is straightforward, will be used repeatedly in 
our proofs.

Observation 2 Let v be u’s top choice neighbor. If v is matched in M to a neighbor 
worse than u then (u, v) is a blocking edge to M.

We now start restricting the set of edges that can possibly occur in a popular 
matching. Our first lemma eliminates some of the inter-gadget edges incident to ver-
tices sc

0
 , tc

0
 , s′c

0
 , and t′c

0
 in level 3.

Fig. 5  A clause gadget in level 3

Fig. 6  The Z-gadget
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Lemma 1 For any clause c, no popular matching in G can match sc
0
 (similarly, tc

0
 ) 

to a neighbor worse than tc
0
 (resp., sc

0
 ). An analogous statement holds for s′c

0
 and t′c

0
.

Proof Let M be a popular matching such that (sc
0
, v) ∈ M for some vertex v such that 

tc
0
> v in sc

0
 ’s list, i.e., sc

0
 prefers tc

0
 to v. We claim this implies:

– a (+,+) edge reachable from v via an alternating path in GM that begins with a 
non-matching edge incident to v and

– a (+,+) edge reachable from sc
0
 via an alternating path in GM that begins with a 

non-matching edge incident to sc
0
.

If this is the same (+,+) edge then we have an alternating cycle in GM with a 
(+,+) edge, a contradiction to M’s popularity (by Theorem 2). If these are two 
different (+,+) edges then there is an alternating path in GM with two (+,+) 
edges, again a contradiction to M’s popularity (by Theorem 2). 

(1) If v is a top choice neighbor for some vertex (such as xi, yi, zj for 1 ≤ i ≤ � , 
0 ≤ j ≤ 5 or d1, d2, d3 or ar

�
, br

�
, pr

3h
, pr

3h+1
, qr

3h
, qr

3h+1
 or their counterparts for 

1 ≤ � ≤ 6 , 0 ≤ h ≤ 2 and any clause r) then there is a (+,+) edge incident to v 
(by Observation 2).

(2) Suppose v is one of sr
0
, tr
0
, s′r

0
, t′r
0

 for some clause r (note that r ≠ c in the case 
of sr

0
, tr
0
 ). Assume without loss of generality that v = sr

0
 . Then either (sr

0
, tr
0
) is a 

(+,+) edge or tr
0
 is matched in M to a neighbor better than sr

0
 . Recall tr

0
 ’s prefer-

ence list: every vertex that tr
0
 prefers to sr

0
 is either a top choice neighbor or it is 

d0 . In the former case, there is a (+,+) edge incident to tr
0
 ’s partner (by Obser-

vation 2) and in the latter case also there is a (+,+) edge incident to d0 since 
one of d1, d2, d3 is matched to a neighbor worse than d0 and so there is a (+,+) 
edge between this vertex in the set {d1, d2, d3} and d0 . Since the edge (sr

0
, tr
0
) is a 

(+,−) edge, there is a (+,+) edge reachable from v = sr
0
 via an alternating path 

of length 2.
(3) The only case left is when v is neither a top choice neighbor of some vertex 

nor one of sr
0
, tr
0
, s′r

0
, t′r
0

 for some clause r. So v is a vertex such as d0 or x′
i
, y′

i
 (for 

1 ≤ i ≤ � ) or pr
3h+2

, qr
3h+2

, p�r
3h+2

, q�r
3h+2

 (for h = 0, 1, 2 and some clause r). It is 
easy to see that there is a (+,+) edge reachable from v via an alternating path of 
length at most 2. For instance, either (x�

i
, y�

i
) is a (+,+) edge or (xi, y�i) ∈ M which 

creates the alternating path (sc
0
, x�

i
) − (y�

i
, xi) − (yi, ∗) , where (xi, yi) is a (+,+) 

edge.

Similarly, we can argue that there is a (+,+) edge reachable from sc
0
 via an alternat-

ing path in GM . If tc
0
 is matched to a neighbor worse than sc

0
 then the edge (sc

0
, tc
0
) is a 

(+,+) edge. Else tc
0
 is matched to a neighbor u better than sc

0
 and this means there is 

a (+,+) edge incident to u, as we argued above in case (2). Hence there is a (+,+) 
edge reachable from sc

0
 via an alternating path of length at most 2 in GM .   ◻

Next we show that no inter-gadget edge incident to any vertex in the D-gadget 
can appear in any popular matching.
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Lemma 2 Every popular matching matches the vertices in the D-gadget among 
themselves.

Proof Let M be a matching that matches di for some i ∈ {0, 1, 2, 3} to a vertex v 
outside the D-gadget. This means at least 2 vertices di and dj in the D-gadget are 
matched to vertices outside the D-gadget. So (di, dj) is a (+,+) edge. We now 
claim there is a forbidden alternating path or cycle (as given in Theorem 2) to M’s 
popularity.

If v is a top choice neighbor or a vertex such as x′
i
, y′

i
 (for 1 ≤ i ≤ � ) or 

pc
3h+2

, qc
3h+2

, p�c
3h+2

, q�c
3h+2

 (for h = 0, 1, 2 and some clause c) then there is a (+,+) 
edge e reachable from v via an alternating path of length at most 2 as seen in the 
proof of Lemma 1. This creates an alternating path in GM with 2 (+,+) edges: (dj, di) 
and e.

The other possibility is that v is sc
0
, tc
0
, s′c

0
, t′c
0

 for some clause c. Assume without 
loss of generality that v = sc

0
 . Consider the vertex tc

0
 . We know from Lemma 1 that 

tc
0
 has to be matched to a neighbor at least as good as sc

0
 . So we have the following 

cases: 

(1) tc
0
 is matched to dj in the D-gadget: this means there is either an alternating path 

with 2 (+,+) edges or an alternating cycle with a (+,+) edge: 

 If sc
1
 is matched to a neighbor worse than tc

0
 then the former is an alternating 

path with two (+,+) edges: these are (di, dj) and (tc
0
, sc

1
) . Else sc

1
 is matched to tc

1
 

and the latter is an alternating cycle with a (+,+) edge, which is (di, dj).
(2) tc

0
 is matched to sc

i
 for some i ∈ {1, 2, 3} : this means tc

i
 is matched to a neighbor 

worse than sc
0
 and so (sc

0
, tc
i
) is a (+,+) edge and thus we have the following alter-

nating path with two (+,+) edges (tc
i
, sc

0
) and (di, dj) : 

(3) tc
0
 is matched to either pc

4
 or pc

7
 : we will show that this results in an alternating 

path with two (+,+) edges. Assume without loss of generality that tc
0
 is matched 

to pc
4
 . Consider the following alternating path: 

Recall that sc
3
 is the top choice neighbor of tc

0
 and the vertex pc

4
 is the top choice 

neighbor of qc
5
 . If the vertex sc

3
 is matched to a neighbor worse than tc

0
 then the 

former path is an alternating path in GM with two (+,+) edges in it: these are 
(sc

3
, tc
0
) and (pc

4
, qc

5
) . Else (sc

3
, tc
3
) ∈ M and recall that the edge (sc

0
, tc
3
) is a (+,−) 

(sc
0
, di)

(+,+)
− (dj, t

c
0
)
(+,+)
− (sc

1
, ∗) or

(sc
0
, di)

(+,+)
− (dj, t

c
0
)
(+,−)
− (sc

1
, tc
1
)
(−,+)
− (sc

0
, di).

(∗, tc
i
)
(+,+)
− (sc

0
, di)

(+,+)
− (dj, ∗).

(∗, sc
3
)
(+,+)
− (tc

0
, pc

4
)
(+,+)
− (qc

5
, ∗) or

(∗, dj)
(+,+)
− (di, s

c
0
)
(+,−)
− (tc

3
, sc

3
)
(−,+)
− (tc

0
, pc

4
)
(+,+)
− (qc

5
, ∗).
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edge as sc
0
 prefers tc

3
 to di . This creates the latter path which is an alternating path 

in GM with 2 (+,+) edges in it: these are (di, dj) and (pc
4
, qc

5
) .   ◻

The gadget D admits 2 popular matchings: {(d0, d1), (d2, d3)} and 
{(d0, d2), (d1, d3)} . So if M is a popular matching then either {(d0, d1), (d2, d3)} ⊂ M 
or {(d0, d2), (d1, d3)} ⊂ M.The following lemma further restricts the set of popular 
edges and this will be used repeatedly in our proof.

Lemma 3 Let (u, v) be an edge in G where both u and v prefer d0 to each other. Then 
(u, v) cannot be a popular edge.

Proof Let M be a popular matching in G that contains such an edge (u, v). We know 
from Lemma  2 that either {(d0, d1), (d2, d3)} ⊂ M or {(d0, d2), (d1, d3)} ⊂ M . So 
there is always a blocking edge (di, dj) ∈ {(d1, d3), (d1, d2)} to M.

Observe that both u and v cannot belong to the D-gadget as there is no such pair 
within D. If exactly one of u, v belongs to the D-gadget then (u, v) is not a popular 
edge (by Lemma 2). So neither u nor v belongs to the D-gadget and this implies that 
u prefers d0, d1, d2, d3 to v and symmetrically, v prefers d0, d1, d2, d3 to u.

Consider the following alternating cycle C with respect to M:

where (di� , di) and (dj, dj� ) are edges from the D-gadget in M and (di, dj) is a blocking 
edge. Thus C is an alternating cycle in GM with a (+,+) edge. This contradicts the 
popularity of M (by Theorem 2).   ◻

Corollary 1 The edges (sc
0
, tc
0
) and (s�c

0
, t�c
0
) are not popular edges for any clause c.

Corollary 1 follows from Lemma 3 by setting u and v to sc
0
 and tc

0
 (similarly, s′c

0
 

and t′c
0

 ), respectively. Let us call u a level i vertex if u belongs to a level i gadget. 
Lemma 4 further restricts the set of popular edges; the proof of this lemma con-
sists of three main claims.

Lemma 4 No edge between a level  i vertex and a level i + 1 vertex is popular, for 
0 ≤ i ≤ 2.

The proof of Lemma 4 follows from Claims 1–3 proved below.

Claim 1 There is no popular edge between a level 0 vertex and a level 1 vertex.

Proof Let M be a popular matching in G with such an edge, say (ac
1
, y�

j
) , where 

c = Xi ∨ Xj ∨ Xk . We claim this would create an alternating path in GM with two 
(+,+) edges in it (this would contradict Theorem 2). Consider the vertex bc

1
 . There 

are 3 possibilities for bc
1
 ’s partner in M. 

(u, v)
(+,−)
− (di� , di)

(+,+)
− (dj, dj� )

(−,+)
− (u, v),
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(1) bc
1
 is matched to ac

2

  So (ac
2
, bc

2
) is labeled (+,+) . Recall that bc

2
 is ac

2
 ’s top choice and the only 

neighbor that bc
2
 prefers to ac

2
 is ac

1
 (which is matched to y′

j
 ). Consider the follow-

ing alternating path in GM ∶ 

If x′
j
 is matched to a neighbor worse than y′

j
 then the above is an alternating path 

in GM with two (+,+) edges: these are (bc
2
, ac

2
) and (y�

j
, x�

j
) . Else replace (x�

j
, ∗) in 

the above path with (x�
j
, yj) − (xj, ∗) : the (+,+) edges here are (bc

2
, ac

2
) and (yj, xj).

(2) bc
1
 is matched to x′

k

  Either the edge (x�
k
, y�

k
) or the edge (xk, yk) will block M. Suppose y′

k
 is matched 

to a neighbor worse than x′
k
 in M. Consider the following alternating path in GM : 

 Either the above is an alternating path in GM with two (+,+) edges or by 
replacing (x�

j
, ∗) with (x�

j
, yj) − (xj, ∗) (as done in case (1)), we get an alternating 

path in GM with two (+,+) edges. If y′
k
 is matched to a neighbor better than x′

k
 

in M, i.e., if (xk, y�k) ∈ M then prefix both these alternating paths with (∗, yk) . 
This will yield an alternating path in GM with (xk, yk) as a blocking edge and 
either (x�

j
, y�

j
) or (xj, yj) as a blocking edge.

(3) bc
1
 is matched to a neighbor worse than ac

1

  Then the edge (ac
1
, bc

1
) is labeled (+,+) . Consider the following alternating 

path in GM : 

 That is, if x′
j
 is matched to a neighbor worse than y′

j
 then consider the first alter-

nating path above: this is an alternating path in GM with both (bc
1
, ac

1
) and (y�

j
, x�

j
) 

as (+,+) edges. Else (x�
j
, yj) ∈ M and the second alternating path is an alternat-

ing path in GM with (bc
1
, ac

1
) and (yj, xj) as (+,+) edges.

Thus (ac
1
, y�

j
) cannot belong to any popular matching in G. Similarly, (bc

1
, x�

k
) also 

cannot belong to any popular matching. Suppose (bc
1
, x�

k
) ∈ M . Consider the ver-

tex ac
2
 : there are 2 possibilities for ac

2
 ’s partner in M. 

(1) ac
2
 is matched to bc

2

  Recall that ac
1
 is bc

2
 ’s top choice and since ac

1
 is not matched to either y′

j
 (by our 

proof above) or bc
1
 (which is matched to x′

k
 ), the edge (ac

1
, bc

2
) is labeled (+,+) . 

Consider the following alternating path in GM : 

(∗, bc
2
)
(+,+)
− (ac

2
, bc

1
)
(−,+)
− (ac

1
, y�

j
)
(+,+)
− (x�

j
, ∗).

(∗, y�
k
)
(+,+)
− (x�

k
, bc

1
)
(−,+)
− (ac

1
, y�

j
)
(+,+)
− (x�

j
, ∗).

(∗, bc
1
)
(+,+)
− (ac

1
, y�

j
)
(+,+)
− (x�

j
, ∗) or

(∗, bc
1
)
(+,+)
− (ac

1
, y�

j
)
(+,−)
− (x�

j
, yj)

(+,+)
− (xj, ∗).
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 If y′
k
 is matched to a neighbor worse than x′

k
 then the above is an alternating 

path in GM with two (+,+) edges: these are (ac
1
, bc

2
) and (x�

k
, y�

k
) . Else replace 

(y�
k
, ∗) in the above path with (y�

k
, xk) − (yk, ∗) : the (+,+) edges here are (ac

1
, bc

2
) 

and (xk, yk).
(2) ac

2
 is matched to a neighbor worse than bc

1

  Since ac
2
 is bc

1
 ’s top choice, the edge (ac

2
, bc

1
) is labeled (+,+) . Consider the 

following alternating path in GM : 

 That is, if y′
k
 is matched to a neighbor worse than x′

k
 then consider the first 

alternating path above: this is an alternating path in GM with both (ac
2
, bc

1
) and 

(x�
k
, y�

k
) as (+,+) edges. Else (y�

k
, xk) ∈ M and the second alternating path is an 

alternating path in GM with (ac
2
, bc

1
) and (xk, yk) as (+,+) edges.

Thus (bc
1
, x�

k
) is also not a popular edge. The proof that 

(ac
3
, y�

k
), (ac

5
, y�

i
), (a�c

1
, y�

k
), (a�c

3
, y�

i
), (a�c

5
, y�

j
) are not popular edges is analogous to the 

proof that (ac
1
, y�

j
) is not a popular edge. Similarly, the proof that 

(bc
3
, x�

i
), (bc

5
, x�

j
), (b�c

1
, x�

j
), (b�c

3
, x�

k
), (b�c

5
, x�

i
) are not popular edges is analogous to the 

proof that (bc
1
, x�

k
) is not a popular edge. The presence of any other edge between a 

level 0 vertex corresponding to clause c and a level 1 vertex in the popular matching 
M would contradict Lemma 3.   ◻

Claim 2 There is no popular edge between a level 1 vertex and a level 2 vertex.

Proof Let M be a popular matching in G that contains such an edge, say (pc
2
, yj) , 

where c = Xi ∨ Xj ∨ Xk . Consider the following alternating path with respect to M:

Since M is a perfect matching, x′
j
 is matched in M. We know that no edge between x′

j
 

and a level 0 vertex belongs to M (by Claim 1). Also, M cannot match x′
j
 to a neigh-

bor that it regards worse than d0 (by Lemma 3) or to any neighbor in the D-gadget 
(by Lemma 2). Thus x′

j
 has to be matched to y′

j
 in M and so the above alternating 

path has two (+,+) edges: (x�
j
, yj) and (xj, y�j) . This is a contradiction to M’s popular-

ity (by Theorem 2).
It can similarly be shown that (qc

2
, xk) cannot belong to M. We consider the alter-

nating path (qc
2
, xk) − (y�

k
, x�

k
) − (yk, ∗) here to get a contradiction to Theorem 2.

The proof that M cannot include any other edge between a level 1 vertex and a 
level 2 vertex corresponding to clause c is either analogous to the above proof or the 
presence of such an edge in M violates Lemma 3.   ◻

Claim 3 There is no popular edge between a level 2 vertex and a level 3 vertex.

(∗, ac
1
)
(+,+)
− (bc

2
, ac

2
)
(−,+)
− (bc

1
, x�

k
)
(+,+)
− (y�

k
, ∗).

(∗, ac
2
)
(+,+)
− (bc

1
, x�

k
)
(+,+)
− (y�

k
, ∗) or

(∗, ac
2
)
(+,+)
− (bc

1
, x�

k
)
(+,−)
− (y�

k
, xk)

(+,+)
− (yk, ∗).

(pc
2
, yj)

(+,+)
− (x�

j
, y�

j
)
(+,+)
− (xj, ∗).
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Proof Let M be a popular matching in G that contains such an edge, say (sc
0
, qc

0
) , for 

some clause c. Consider the following alternating path with respect to M:

The vertex pc
2
 is matched in M and its partner cannot be a level 1 vertex (by Claim 2) 

or a neighbor worse than d0 (by Lemma 3) or to any neighbor in the D-gadget (by 
Lemma 2). So either (pc

2
, qc

2
) or (pc

2
, qc

1
) is in M. This means either the first alternat-

ing path given above or the second one is an alternating path in GM with two (+,+) 
edges: (pc

2
, qc

0
) and (pc

0
, qc

2
) in the former and (pc

2
, qc

0
) and (pc

1
, qc

1
) in the latter. This is a 

contradiction to M’s popularity (by Theorem 2).
The proof that M cannot include any other edge between a level 2 vertex and a 

level 3 vertex is either analogous to the above proof or the presence of such an edge 
in M violates Lemma 3.   ◻

We now show that no popular matching contains an inter-gadget edge incident to 
any vertex in the Z-gadget. This is analogous to Lemma 2, which showed the same 
property for the D-gadget.

Lemma 5 All popular matchings match the 6 vertices of the Z-gadget among 
themselves.

Proof Let M be any popular matching in G. It follows from Lemma 3 that M has 
to match z2, z3, z4 , and z5 within the Z-gadget. Let us now show that z0 also has to 
be matched within the Z-gadget. Then it immediately follows that z1 also has to be 
matched within the Z-gadget. We have the following 3 cases: 

(1) Suppose z0 is matched in M to a level 0 neighbor, say bc
1
 , for some clause c. 

Then (ac
1
, bc

1
) is a blocking edge to M. Lemmas 2, 3, and 4 ensure that ac

1
 is either 

matched to z1 or to bc
2
 . We investigate these two cases below.

• (ac
1
, z1) ∈ M : Here both z0 and z1 are matched to vertices they prefer to all 

their neighbors inside the Z-gadget, except for z4 and z5 . We know that z4 and 
z5 must be matched inside the Z-gadget. There are 3 subcases and in each case 
there is an alternating cycle in GM with a blocking edge (ac

1
, bc

1
) : a contradic-

tion to M’s popularity (by Theorem 2).

• (z4, z2) ∈ M : the alternating cycle is 
(bc

1
, z0)

(+,−)
− (z4, z2)

(+,−)
− (z1, a

c
1
)
(+,+)
− (bc

1
, z0).

• (z4, z3) ∈ M : the alternating cycle is 
(bc

1
, z0)

(+,−)
− (z4, z3)

(+,−)
− (z1, a

c
1
)
(+,+)
− (bc

1
, z0).

• (z4, z5) ∈ M : the alternating cycle is 
(bc

1
, z0)

(+,−)
− (z4, z5)

(−,+)
− (z1, a

c
1
)
(+,+)
− (bc

1
, z0).

• (ac
1
, bc

2
) ∈ M : Lemmas 2, 3, and 4 ensure that ac

2
 is matched to z1 (recall that 

M is perfect). This leads to the same 3 subcases as above, except that instead 

(sc
0
, qc

0
)
(+,+)
− (pc

2
, qc

2
)
(+,+)
− (pc

0
, ∗) or

(sc
0
, qc

0
)
(+,+)
− (pc

2
, qc

1
)
(+,+)
− (pc

1
, ∗).
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of the edge (z1, ac1) , there is the path (z1, ac2) − (bc
2
, ac

1
) in GM : here (ac

2
, bc

2
) is 

labeled (+,−).

(2) Suppose z0 is matched in M to a level 1 neighbor, say yi , for some i ∈ {1,… , �} . 
This case is similar to the previous case. Here the edge (xi, yi) becomes the block-
ing edge to M. It follows from Lemmas 2, 3, and 4 that xi is either matched to 
z1 or to y′

i
 . The latter case leaves x′

i
 unmatched and the subcases that arise in the 

former case are analogous to the ones in case (1).
(3) Suppose z0 is matched in M to a level 2 neighbor, say qc

0
 , for some clause c. It 

follows from Lemmas 2, 3, and 4 that (pc
0
, qc

2
), (pc

2
, qc

1
) , and (pc

1
, z1) are in M. 

Consider the alternating path (z0, qc0) − (pc
2
, qc

1
) − (pc

1
, z1) : it has two blocking 

edges (pc
2
, qc

0
) and (pc

1
, qc

1
) . This is again a contradiction to M’s popularity.

Recall that Lemma  2 showed that all vertices of the D-gadget must be matched 
within the gadget. Thus z0 cannot be matched to a vertex in the D-gadget. The case 
where z0 is matched in M to a level 3 neighbor does not arise as such an edge would 
violate Lemma 3. This finishes our proof that any popular matching M matches the 6 
vertices of the Z-gadget among themselves.   ◻

Our next lemma shows that the Z-gadget has a unique popular matching. The fact 
that the edge (z0, z1) has to be in any popular matching M will be used repeatedly in 
Section 5.

Lemma 6 The only popular matching inside the Z-gadget is 
{

(z0, z1), (z2, z3), (z4, z5)
}

.

Proof The matching {(z0, z1), (z2, z3), (z4, z5)} is stable in the Z-gadget, thus this is a 
popular matching. Note that this gadget has no other stable matching.

Let M be any popular matching. We know from Lemma 5 that M matches the 6 
vertices of the Z-gadget among themselves. Suppose M contains one or more of the 
edges (zi, zj) where i = j mod 2 (colored black in Fig. 6).

This means one of the edges (z0, z2), (z2, z4), (z0, z4) is in M. Let (z0, z2) ∈ M . 
There are three candidate matchings that we need to check for popularity: note that 
none is popular (by Theorem 2).

– 
{

(z0, z2), (z1, z3), (z4, z5)
}

 : this has the alternating cycle 
(z2, z0)

(+,+)
− (z1, z3)

(−,+)
− (z5, z4)

(+,−)
− (z2, z0) with the blocking edge (z0, z1).

– 
{

(z0, z2), (z1, z4), (z3, z5)
}

 : this has the alternating cycle 
(z0, z2)

(−,+)
− (z3, z5)

(−,+)
− (z1, z4)

(+,+)
− (z0, z2) with the blocking edge (z0, z4).

– 
{

(z0, z2), (z1, z5), (z3, z4)
}

 : this has the alternating cycle 
(z2, z0)

(+,−)
− (z1, z5)

(+,+)
− (z3, z4)

(+,−)
− (z2, z0) with the blocking edge (z3, z5).

So (z0, z2) does not belong to M. We now claim that neither (z2, z4) nor (z4, z0) also 
belongs to  M. This is because when confined to edges within the Z-gadget, the 
Z-gadget is symmetric with respect to z0, z2, z4 (similarly, wrt z1, z3, z5 ). Thus the same 
analysis as shown above for (z0, z2) holds for (z2, z4) and (z4, z0) as well by replacing 
every subscript s with (s + 2) mod 6 for the former edge and with (s + 4) mod 6 for 
the latter edge. Hence we can conclude that M ⊂

{

z0, z2, z4
}

×
{

z1, z3, z5
}

.
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Suppose M contains an unstable edge here (dotted and gray in Fig. 6), say (z0, z3) : 
among the vertices in the Z-gadget, z3 is the last choice of z0 and the edge (z0, z2) 
blocks M. Since z2 has to be matched in M, there are two cases.

– (z1, z2) ∈ M : the 4 vertices z0, z1, z2, z3 prefer {(z0, z2), (z1, z3)} to 
{(z0, z3), (z1, z2)} ⊂ M.

– (z2, z5) ∈ M : the 4 vertices z0, z2, z3, z5 prefer {(z0, z2), (z3, z5)} to 
{(z0, z3), (z2, z5)} ⊂ M.

Thus in both cases we have a contradiction to M’s popularity. Analogous proofs hold 
for other unstable edges chosen from {z0, z2, z4} × {z1, z3, z5} . Thus the only popular 
matching inside the Z-gadget is 

{

(z0, z1), (z2, z3), (z4, z5)
}

 .   ◻

5  Stable states versus unstable states

In this section we will show how to obtain a 1-in-3 satisfying truth assignment for 
the input B from any popular matching in G. The following definition will be useful 
to us.

Definition 2 A gadget A in G = (V ,E) is said to be in unstable state with respect to 
matching M if there is a blocking edge (u, v) ∈ V(A) × V(A) with respect to M. If 
there is no such blocking edge to M then we say A is in stable state with respect to 
M.

In Figures 2, 3, 4, 5 and 6 depicting our gadgets, corresponding to matchings that 
consist of colored edges within the gadget, the relevant gadget is in stable state. A 
level 1 gadget in unstable state will encode the corresponding variable being set to 
true while a level  1 gadget in stable state will encode the corresponding variable 
being set to false. We will now analyze what gadgets are in stable/unstable state 
with respect to any popular matching M in G. This will lead to the proof that for any 
clause c, exactly one of the level 1 gadgets corresponding to the three variables in c 
is in unstable state.

Lemma 7 takes the starting step in this proof. Here M is any popular matching in 
G.

Lemma 7 For any clause c, the following statements hold:

– all its 6 level 0 gadgets are in stable state with respect to M;
– both its level 3 gadgets in G are in unstable state with respect to M.

Proof Consider a level  0 gadget corresponding to clause c, say the one on verti-
ces ac

1
, bc

1
, ac

2
, bc

2
 . Lemmas 2, 3, 4, and 5 imply that either {(ac

1
, bc

1
), (ac

2
, bc

2
)} ⊂ M or 

{(ac
1
, bc

2
), (ac

2
, bc

1
)} ⊂ M . Thus there is no blocking edge within this gadget. As this 
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holds for every level 0 gadget corresponding to c and for every clause c, the first part 
of the lemma follows.

We will now prove the second part of the lemma. Since M is a perfect matching, 
the vertices sc

0
, tc
0
 (also s′c

0
, t′c
0

 ) have to be matched in M, for all clauses c. It follows 
from Lemmas 2 and 3 that both sc

0
 and tc

0
 (similarly, s′c

0
 and t′c

0
 ) have to be matched 

to neighbors that are better than d0 . Lemma 4 showed that there is no popular edge 
between a level  3 vertex and a level  2 vertex. Thus sc

0
 is matched to tc

i
 for some 

i ∈ {1, 2, 3}.
If sc

0
 is matched to tc

i
 then sc

i
 has to be matched to tc

0
—otherwise Lemma 3 would 

be violated by sc
i
 and its partner. So (sc

i
, tc
i
) blocks M and this holds for every clause c. 

Similarly, there is a blocking edge (s�c
j
, t�c
j
) for some j ∈ {1, 2, 3} for every clause c.  

 ◻

Lemma 8 is our main technical lemma. This will be used in Lemma 9 to show 
that at least one of the level  1 gadgets corresponding to the three variables in 
clause c is in unstable state.

Lemma 8 For any clause c, at least one of the following two conditions has to hold:

– two or more of its first three level 2 gadgets are in unstable state with respect 
to M;

– two or more of its last three level 2 gadgets are in unstable state with respect 
to M.

Proof Suppose both statements are false. Let M be a popular matching and c be a 
clause such that corresponding to clause c, at least two among its first three level 2 
gadgets are in stable state with respect to M and at least two among its last three 
level 2 gadgets are in stable state with respect to M.

Consider the two level 3 gadgets corresponding to c. We know that (sc
0
, tc
i
), (sc

i
, tc
0
) 

are in M for some i ∈ {1, 2, 3} and similarly, (s�c
0
, t�c
j
), (s�c

j
, t�c
0
) are in M for some 

j ∈ {1, 2, 3} (see the proof of Lemma  7). We will now show the existence of an 
alternating path � that will contradict M’s popularity.

For this, we claim it suffices to show that one gadget in each of the following two 
sets of gadgets is in stable state:

– the first three level 2 gadgets with a vertex that either sc
0
 or tc

0
 prefers to its part-

ner in M;
– the last three level  2 gadgets with a vertex that either s′c

0
 or t′c

0
 prefers to its 

partner in M.

For instance, suppose i = 1 and j = 2 . So tc
0
 prefers pc

4
 and pc

7
 to its partner sc

1
 in 

M and s′c
0

 prefers q′c
0

 to its partner t′c
2

 in M and t′c
0

 prefers p′c
7

 to its partner s′c
2

 in M. 
Consider the level 2 gadgets containing pc

4
, pc

7
, q′c

0
 , and p′c

7
.
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Observe that by our assumption in the first paragraph above, either the gadget of 
pc
4
 or the gadget of pc

7
 is in stable state, similarly either the gadget of q′c

0
 or the gadget 

of p′c
7

 is in stable state. In all 4 cases, we will show the existence of an alternating 
path � in GM with two blocking edges (sc

1
, tc
1
) and (s�c

2
, t�c
2
) , which is a contradiction to 

M’s popularity (by Theorem 2). 

1. Suppose the gadgets of pc
4
 and q′c

0
 are in stable state. So the edges (pc

�
, qc

�
) ∈ M 

for � = 3, 4, 5 and the edges (p�c
h
, q�c

h
) ∈ M for h = 0, 1, 2 . Consider the following 

alternating path � with respect to M: 

 We know that (z0, z1) ∈ M (by Lemma 6). Note that � is the desired alternating 
path in GM with two blocking edges (sc

1
, tc
1
) and (s�c

2
, t�c
2
).

2. Suppose the gadgets of pc
4
 and p′c

7
 are in stable state. So the edges (pc

�
, qc

�
) ∈ M 

for � = 3, 4, 5 and the edges (p�c
h
, q�c

h
) ∈ M for h = 6, 7, 8 . Consider the following 

alternating path � with respect to M: 

 Observe that the labels on edges of � ⧵M are identical to the first case and 
thus � is the desired alternating path in GM with two blocking edges (sc

1
, tc
1
) and 

(s�c
2
, t�c
2
).

3. Suppose the gadgets of pc
7
 and q′c

0
 are in stable state. So the edges (pc

�
, qc

�
) ∈ M 

for � = 6, 7, 8 and the edges (p�c
h
, q�c

h
) ∈ M for h = 0, 1, 2 . Consider the following 

alternating path � with respect to M: 

 Again, observe that the labels on edges of � ⧵M are identical to the first two 
cases and � is the desired alternating path with two blocking edges (sc

1
, tc
1
) and 

(s�c
2
, t�c
2
).

4. Suppose the gadgets of pc
7
 and p′c

7
 are in stable state. So the edges (pc

�
, qc

�
) ∈ M 

for � = 6, 7, 8 and the edges (p�c
h
, q�c

h
) ∈ M for h = 6, 7, 8 . Consider the following 

alternating path � with respect to M: 

(sc
0
, tc
1
)
(+,+)
− (sc

1
, tc
0
)
(+,−)
− (pc

4
, qc

4
)
(−,+)
− (pc

5
, qc

5
)
(+,−)
− (pc

3
, qc

3
)
(−,+)
−

(z0, z1)
(+,−)
− (p�c

1
, q�c

1
)
(−,+)
− (p�c

2
, q�c

2
)

(+,−)
− (p�c

0
, q�c

0
)
(−,+)
− (s�c

0
, t�c
2
)
(+,+)
− (s�c

2
, t�c
0
).

(sc
0
, tc
1
)
(+,+)
− (sc

1
, tc
0
)
(+,−)
− (pc

4
, qc

4
)
(−,+)
− (pc

5
, qc

5
)
(+,−)
− (pc

3
, qc

3
)
(−,+)
−

(z0, z1)
(+,−)
− (q�c

6
, p�c

6
)
(−,+)
− (q�c

8
, p�c

8
)

(+,−)
− (q�c

7
, p�c

7
)
(−,+)
− (t�c

0
, s�c

2
)
(+,+)
− (t�c

2
, s�c

0
).

(sc
0
, tc
1
)
(+,+)
− (sc

1
, tc
0
)
(+,−)
− (pc

7
, qc

7
)
(−,+)
− (pc

8
, qc

8
)
(+,−)
− (pc

6
, qc

6
)
(−,+)
−

(z0, z1)
(+,−)
− (p�c

1
, q�c

1
)
(−,+)
− (p�c

2
, q�c

2
)

(+,−)
− (p�c

0
, q�c

0
)
(−,+)
− (s�c

0
, t�c
2
)
(+,+)
− (s�c

2
, t�c
0
).
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As before, the labels on edges of � ⧵M are identical to the above three cases and 
� is the desired alternating path with two blocking edges (sc

1
, tc
1
) and (s�c

2
, t�c
2
).

For any (i, j) ∈ {1, 2, 3} × {1, 2, 3} , an analogous construction can be shown.

– Let i = j = 1 . So tc
0
 prefers pc

4
 and pc

7
 to its partner sc

1
 in M and t′c

0
 prefers p′c

4
 and 

p′c
7

 to its partner s′c
1

 in M. We know that either the gadget of pc
4
 or the gadget of 

pc
7
 is in stable state, and similarly, either the gadget of p′c

4
 or the gadget of p′c

7
 

is in stable state. Suppose the gadgets of pc
4
 and p′c

4
 are in stable state. So the 

edges (pc
�
, qc

�
) ∈ M for � = 3, 4, 5 and the edges (p�c

h
, q�c

h
) ∈ M for h = 3, 4, 5 . 

Consider the following alternating path � with respect to M: 

 Observe again that the labels on edges of � ⧵M are identical to the labels 
obtained for the desired alternating paths when i = 1 and j = 2 . The path � is the 
desired alternating path in GM with two blocking edges (sc

1
, tc
1
) and (s�c

1
, t�c
1
) . The 

case when the gadgets of pc
7
 and p′c

7
 are in stable state was already seen in Case 4 

of i = 1 and j = 2 . The only difference between the path that we will construct 
now with the path � seen there is in the last two edges: now we will have (t�c

0
, s�c

1
) 

and (t�c
1
, s�c

0
) in M; thus the blocking edges to our path will be (sc

1
, tc
1
) and (s�c

1
, t�c
1
) . 

The proofs for the remaining two cases: (i) when the gadgets of pc
4
 and p′c

7
 are in 

stable state and (ii) when the gadgets of pc
7
 and p′c

4
 are in stable state are totally 

analogous to the above case. Thus in all 4 cases, we can show the existence of an 
alternating path � in GM with two blocking edges (sc

1
, tc
1
) and (s�c

1
, t�c
1
) : a contradic-

tion to M’s popularity.
– Let i = 1 and j = 3 . So tc

0
 prefers pc

4
 and pc

7
 to its partner sc

1
 in M and s′c

0
 pre-

fers q′c
0

 and q′c
3

 to its partner t′c
3

 in M. We know that either the gadget of pc
4
 or 

the gadget of pc
7
 is in stable state, and similarly, either the gadget of q′c

0
 or the 

gadget of q′c
3

 is in stable state. The cases when the gadgets of pc
4
 and q′c

0
 are in 

stable state and when the gadgets of pc
7
 and q′c

0
 are in stable state were already 

seen in Case 1 and Case 3 of i = 1 and j = 2 : thus we can construct analogous 
alternating paths in these cases. So let us consider the case when the gadgets 
of pc

7
 and q′c

3
 are in stable state. So the edges (pc

�
, qc

�
) ∈ M for � = 6, 7, 8 and 

the edges (p�c
h
, q�c

h
) ∈ M for h = 3, 4, 5 . Consider the following alternating path 

� with respect to M: 

(sc
0
, tc
1
)
(+,+)
− (sc

1
, tc
0
)
(+,−)
− (pc

7
, qc

7
)
(−,+)
− (pc

8
, qc

8
)
(+,−)
− (pc

6
, qc

6
)
(−,+)
−

(z0, z1)
(+,−)
− (q�c

6
, p�c

6
)
(−,+)
− (q�c

8
, p�c

8
)

(+,−)
− (q�c

7
, p�c

7
)
(−,+)
− (t�c

0
, s�c

2
)
(+,+)
− (t�c

2
, s�c

0
).

(sc
0
, tc
1
)
(+,+)
− (sc

1
, tc
0
)
(+,−)
− (pc

4
, qc

4
)
(−,+)
− (pc

5
, qc

5
)
(+,−)
− (pc

3
, qc

3
)
(−,+)
−

(z0, z1)
(+,−)
− (q�c

3
, p�c

3
)
(−,+)
− (q�c

5
, p�c

5
)

(+,−)
− (q�c

4
, p�c

4
)
(−,+)
− (t�c

0
, s�c

1
)
(+,+)
− (t�c

1
, s�c

0
).
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 The above path � is the desired alternating path in GM with two blocking edges 
(sc

1
, tc
1
) and (s�c

3
, t�c
3
) . The remaining case, i.e., when the gadgets of pc

4
 and q′c

3
 are 

in stable state, is totally analogous to the above case and we can again show an 
alternating path in GM with two blocking edges (sc

1
, tc
1
) and (s�c

3
, t�c
3
).

– Let i = 2 and j = 1 . This is a “mirror image” of the very first case considered: 
when i = 1 and j = 2 . The only difference is that we swap primed variables 
and unprimed variables in � . For example, when the gadgets of qc

0
 and p′c

4
 are 

in stable state, the desired alternating path is exactly the same as � in Case 1 
there, except for this swapping of roles. Thus, � with blocking edges (sc

2
, tc
2
) 

and (s�c
1
, t�c
1
) , would be: 

– Let i = j = 2 . So sc
0
 prefers qc

0
 to its partner tc

2
 in M and and tc

0
 prefers pc

7
 to its 

partner sc
2
 in M and s′c

0
 prefers q′c

0
 to its partner t′c

2
 in M and t′c

0
 prefers p′c

7
 to its 

partner s′c
1

 in M. We know that either the gadget of qc
0
 or the gadget of pc

7
 is 

in stable state, and similarly, either the gadget of q′c
0

 or the gadget of p′c
7

 is in 
stable state. The cases when the gadgets of pc

7
 and q′c

0
 are in stable state and 

when the gadgets of pc
7
 and p′c

7
 are in stable state were already seen in Cases 3 

and 4 of i = 1 and j = 2 . Let us consider the case when the gadgets of qc
0
 and 

q′c
0

 are in stable state. So the edges (pc
�
, qc

�
) ∈ M for � = 0, 1, 2 and the edges 

(p�c
h
, q�c

h
) ∈ M for h = 0, 1, 2 . Consider the following alternating path � with 

respect to M: 

  The path � is the desired alternating path in GM with two blocking edges 
(sc

2
, tc
2
) and (s�c

2
, t�c
2
) . The proof for the remaining case is totally analogous. Thus 

in all 4 cases, we can show the existence of an alternating path � in GM with 
two blocking edges (sc

2
, tc
2
) and (s�c

2
, t�c
2
) : a contradiction to M’s popularity. It is 

easy to see that the remaining cases of (i, j) are totally analogous to the ones 
listed above and this finishes the proof of the lemma.   ◻

(sc
0
, tc
1
)
(+,+)
− (sc

1
, tc
0
)
(+,−)
− (pc

7
, qc

7
)
(−,+)
− (pc

8
, qc

8
)
(+,−)
− (pc

6
, qc

6
)
(−,+)
−

(z0, z1)
(+,−)
− (p�c

4
, q�c

4
)
(−,+)
− (p�c

5
, q�c

5
)

(+,−)
− (p�c

3
, q�c

3
)
(−,+)
− (s�c

0
, t�c
3
)
(+,+)
− (s�c

3
, t�c
0
).

(tc
0
, sc

2
)
(+,+)
− (tc

2
, sc

0
)
(+,−)
− (qc

0
, pc

0
)
(−,+)
− (qc

2
, pc

2
)
(+,−)
− (qc

1
, pc

1
)
(−,+)
−

(z0, z1)
(+,−)
− (q�c

3
, p�c

3
)
(−,+)
− (q�c

5
, p�c

5
)

(+,−)
− (q�c

4
, p�c

4
)
(−,+)
− (t�c

0
, s�c

1
)
(+,+)
− (t�c

1
, s�c

0
).

(tc
0
, sc

2
)
(+,+)
− (tc

2
, sc

0
)
(+,−)
− (qc

0
, pc

0
)
(−,+)
− (qc

2
, pc

2
)
(+,−)
− (qc

1
, pc

1
)
(−,+)
−

(z0, z1)
(+,−)
− (p�c

1
, q�c

1
)
(−,+)
− (p�c

2
, q�c

2
)

(+,−)
− (p�c

0
, q�c

0
)
(−,+)
− (s�c

0
, t�c
2
)
(+,+)
− (s�c

2
, t�c
0
).
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Recall that there are three level  1 gadgets associated with any clause c: these 
gadgets correspond to the three variables in c.

Lemma 9 Let c = Xi ∨ Xj ∨ Xk . At least one of the level 1 gadgets corresponding to 
Xi,Xj,Xk is in unstable state with respect to M.

Proof Suppose not. That is, assume that for some clause c, all three of its level 1 
gadgets are in stable state. Let c = Xi ∨ Xj ∨ Xk . So (xr, yr) and (x�

r
, y�

r
) are in M for all 

r ∈ {i, j, k}.
We know from Lemma 8 that either two or more of the first three level 2 gadgets 

corresponding to c are in unstable state with respect to M; or two or more of the last 
three level 2 gadgets corresponding to c are in unstable state with respect to M. We 
assume without loss of generality that the first and second gadgets, i.e., those on 
pc
i
, qc

i
 , for 0 ≤ i ≤ 5 , are in unstable state with respect to M.

We know from our lemmas in Section  4 that there is no popular edge across 
gadgets. Thus M matches the 6 vertices of a level 2 gadget with each other. In par-
ticular, it follows from Lemma 3 that for the level 2 gadget on pc

i
, qc

i
 for i = 0, 1, 2 , 

we have (i)  (pc
0
, qc

0
), (pc

1
, qc

1
), (pc

2
, qc

2
) in M or (ii)  (pc

0
, qc

2
), (pc

1
, qc

1
), (pc

2
, qc

0
) in M or 

(iii) (pc
0
, qc

0
), (pc

1
, qc

2
), (pc

2
, qc

1
) in M.

There are two unstable states for each level  2 gadget, i.e., either (ii) or (iii) 
above for the gadget on pc

i
, qc

i
 for i = 0, 1, 2 . A level  2 gadget can be in either of 

these two unstable states in M—without loss of generality assume that M contains 
(pc

0
, qc

0
), (pc

1
, qc

2
), (pc

2
, qc

1
) and (pc

3
, qc

5
), (pc

4
, qc

4
), (pc

5
, qc

3
) . Observe that pc

2
 likes yj more 

than qc
1
 and similarly, qc

5
 likes xi more than pc

3
 . Consider the following alternating 

path � with respect to M:

Note that M has to contain (z0, z1) (by Lemma 6). Observe that � is an alternating 
path in GM with two blocking edges (pc

1
, qc

1
) and (pc

3
, qc

3
) . This is a contradiction to 

M’s popularity (by Theorem 2) and the lemma follows.   ◻

Lemma 10 Let c = Xi ∨ Xj ∨ Xk . At most one of the level 1 gadgets corresponding to 
Xi,Xj,Xk is in unstable state with respect to M.

Proof Suppose not. So at least two of the three level  1 gadgets corresponding to 
Xi,Xj,Xk are in unstable state with respect to M. Assume without loss of generality 
that the gadgets corresponding to variables Xi and Xj are in unstable state. So the 
edges (xi, y�i), (x

�
i
, yi) are in M, similarly the edges (xj, y�j), (x

�
j
, yj) are in M.

Recall that ac
5
 regards y′

i
 as its second choice neighbor and bc

5
 regards x′

j
 as its sec-

ond choice neighbor. Similarly, b′c
5

 regards x′
i
 as its second choice neighbor and a′c

5
 

regards y′
j
 as its second choice neighbor.

In the popular matching M, level 0 vertices are matched within their own gadget. 
Therefore, either {(ac

5
, bc

5
), (ac

6
, bc

6
)} ⊂ M or {(ac

5
, bc

6
), (ac

6
, bc

5
)} ⊂ M ; similarly, 

(qc
2
, pc

1
)
(+,+)
− (qc

1
, pc

2
)
(+,−)
− (yj, xj)

(−,+)
− (z0, z1)

(+,−)
− (yi, xi)

(−,+)
− (qc

5
, pc

3
)
(+,+)
− (qc

3
, pc

5
).
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{(a�c
5
, b�c

5
), (a�c

6
, b�c

6
)} ⊂ M or {(a�c

5
, b�c

6
), (a�c

6
, b�c

5
)} ⊂ M . Thus, the following two 

observations clearly hold:

– either ac
5
 or bc

5
 is matched to its third choice neighbor;

– either a′c
5

 or b′c
5

 is matched to its third choice neighbor.

Based on which of these vertices are matched to their third choice neighbors, we 
have four cases as shown below. Each of these 4 cases results in a forbidden alter-
nating path/cycle (as given in Theorem 2), thus proving the lemma.

Case 1 The vertices ac
5
 and a′c

5
 are matched to their third choice neighbors. So 

(ac
5
, bc

6
), (ac

6
, bc

5
) and (a�c

5
, b�c

6
), (a�c

6
, b�c

5
) are in M. Consider the following alternating 

path � with respect to M:

Observe that � is an alternating path in GM with two blocking edges (xi, yi) and 
(xj, yj) , a contradiction to M’s popularity.

Case 2 The vertices ac
5
 and b′c

5
 are matched to their third choice neighbors. So 

(ac
5
, bc

6
), (ac

6
, bc

5
) and (a�c

5
, b�c

5
), (a�c

6
, b�c

6
) are in M. Consider the following alternating 

cycle C with respect to M:

Observe that C is an alternating cycle in GM with a blocking edge (xi, yi) , a contra-
diction to M’s popularity.

Case 3 The vertices bc
5
 and a′c

5
 are matched to their third choice neighbors. So 

(ac
5
, bc

5
), (ac

6
, bc

6
) and (a�c

5
, b�c

6
), (a�c

6
, b�c

5
) are in M. Consider the following alternating 

cycle C′ with respect to M:

Observe that C′ is an alternating cycle in GM with a blocking edge (xj, yj) , a contra-
diction to M’s popularity.

Case 4 The vertices bc
5
 and b′c

5
 are matched to their third choice neighbors. So 

(ac
5
, bc

5
), (ac

6
, bc

6
) and (a�c

5
, b�c

5
), (a�c

6
, b�c

6
) are in M. Consider the following alternating 

path �′ with respect to M:

Observe that �′ is an alternating path in GM with two blocking edges (xi, yi) and 
(xj, yj) , a contradiction to M’s popularity.   ◻

(x�
i
, yi)

(+,+)
− (xi, y

�
i
)
(−,+)
− (ac

5
, bc

6
)
(−,+)
− (z0, z1)

(+,−)
− (b�c

6
, a�c

5
)
(+,−)
− (y�

j
, xj)

(+,+)
− (yj, x

�
j
).

(bc
6
, ac

5
)
(+,−)
− (y�

i
, xi)

(+,+)
− (yi, x

�
i
)
(−,+)
− (b�c

5
, a�c

5
)
(−,+)
− (z1, z0)

(+,−)
− (bc

6
, ac

5
).

(ac
5
, bc

5
)
(+,−)
− (x�

j
, yj)

(+,+)
− (xj, y

�
j
)
(−,+)
− (a�c

5
, b�c

6
)
(−,+)
− (z0, z1)

(+,−)
− (ac

5
, bc

5
).

(y�
i
, xi)

(+,+)
− (yi, x

�
i
)
(−,+)
− (b�c

5
, a�c

5
)
(−,+)
− (z0, z1)

(+,−)
− (ac

5
, bc

5
)
(+,−)
− (x�

j
, yj)

(+,+)
− (xj, y

�
j
).
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Let M be a popular matching in G. It follows from Lemmas 9 and 10 that exactly 
one of the level 1 gadgets corresponding to the variables in c, for every clause c in B, 
is in unstable state with respect to M. This allows us to set a 1-in-3 satisfying truth 
assignment to instance B. For each variable Xi in B do:

– if the gadget corresponding to Xi is in unstable state then set Xi = ���� else set 
Xi = �����.

It follows from Lemmas 9 and 10 that this is a 1-in-3 satisfying truth assignment 
for B. We have thus shown the following result.

Theorem  3 If G admits a popular matching then B has a 1-in-3 satisfying truth 
assignment.

6  The converse

We will now show the converse of Theorem 3, i.e., if B has a 1-in-3 satisfying truth 
assignment S then G admits a popular matching. We will use S to construct a popu-
lar matching M in G as follows. To begin with, M = �.

Level 1 For each variable Xi do:

– if Xi is set to ���� in S then add (xi, y�i) and (x�
i
, yi) to M;

– else add (xi, yi) and (x�
i
, y�

i
) to M.

Remark Note that the level 1 gadget of a variable set to true is in unstable state and 
the level 1 gadget of a variable set to false is in stable state.

For each clause c = Xi ∨ Xj ∨ Xk , we know that exactly one of Xi,Xj,Xk is set to 
���� in S. Assume without loss of generality that Xk = ���� in S. For the level 0, 2, 
and 3 gadgets corresponding to c, we do as follows:

Level 0 Recall that there are six level 0 gadgets that correspond to c. For the first 3 
gadgets (these are on vertices ac

i
, bc

i
 for i = 1,… , 6 ) do:

– include (ac
1
, bc

2
), (ac

2
, bc

1
) from the first gadget;

– include (ac
3
, bc

3
), (ac

4
, bc

4
) from the second gadget;

– choose either (ac
5
, bc

5
), (ac

6
, bc

6
) or (ac

5
, bc

6
), (ac

6
, bc

5
) from the third gadget.

Observe that since the third variable Xk of c was set to be ���� , cross edges are fixed 
in the first gadget (see Fig. 3), while the other stable matching (horizontal edges) is 
chosen in the second gadget.

For the fourth and fifth gadgets, we will do exactly the opposite. Also, it will 
not matter which stable pair of edges is chosen from the third and sixth gadgets. 
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So for the last 3 level 0 gadgets corresponding to c (these are on vertices a′c
i
, b′c

i
 for 

i = 1,… , 6 ) do:

– include (a�c
1
, b�c

1
), (a�c

2
, b�c

2
) from the fourth gadget;

– include (a�c
3
, b�c

4
), (a�c

4
, b�c

3
) from the fifth gadget.

– choose either (a�c
5
, b�c

5
), (a�c

6
, b�c

6
) or (a�c

5
, b�c

6
), (a�c

6
, b�c

5
) from the sixth gadget.

Level 2 Recall that there are six level 2 gadgets that correspond to c. For the first 3 
gadgets (these are on vertices pc

i
, qc

i
 for i = 0,… , 8 ) do:

– include (pc
0
, qc

2
), (pc

1
, qc

1
), (pc

2
, qc

0
) from the first gadget

– include (pc
3
, qc

3
), (pc

4
, qc

5
), (pc

5
, qc

4
) from the second gadget

– include (pc
6
, qc

6
), (pc

7
, qc

7
), (pc

8
, qc

8
) from the third gadget

In the first three gadgets, because Xk = ���� , the third one is set to parallel edges, 
reaching the stable state, while the first one is blocked by the top horizontal edge 
and the second one is blocked by the middle horizontal edge. Include isomorphic 
edges (to the above ones) from the last three level 2 gadgets corresponding to c, i.e., 
include (p�c

0
, q�c

2
), (p�c

1
, q�c

1
), (p�c

2
, q�c

0
) from the fourth gadget, and so on. On this level, 

the last three gadgets mimic the matching edges from the first three gadgets, unlike 
in level 0.

Level 3 For the first level 3 gadget corresponding to c do:

– include (sc
0
, tc
3
), (sc

1
, tc
1
), (sc

2
, tc
2
), (sc

3
, tc
0
) in M.

Since the third variable in c was set to be ���� , the vertices sc
0
 and tc

0
 are matched to 

tc
3
 and sc

3
 , respectively—thus the bottom horizontal edge (sc

3
, tc
3
) blocks  M. Include 

isomorphic edges (to the above ones) for the second level 3 gadget corresponding to 
c, i.e., include (s�c

0
, t�c
3
), (s�c

1
, t�c
1
), (s�c

2
, t�c
2
) , (s�c

3
, t�c
0
) in M. Once again, the second gadget 

mimics the matching edges on the first gadget.
Z-gadget and D-gadget. Finally include the edges (z0, z1), (z2, z3), (z4, z5) from 

the Z-gadget in M. By Lemma 6, every popular matching in G has to include these 
edges. Also include the edges (d0, d1), (d2, d3) from the D-gadget in M.

6.1  The popularity of M

We will now prove the popularity of the above matching M via the LP framework 
of popular matchings initiated in [22] for bipartite graphs. This framework general-
izes to provide a sufficient condition for popularity in non-bipartite graphs [11]. This 
involves showing a witness � ∈ ℝ

n such that � is a certificate of M’s popularity. In 
order to define the constraints that � has to satisfy so as to certify M’s popularity, let 
us define an edge weight function wM as follows.

For any edge (u, v) in G do:

– if (u, v) is labeled (−,−) then set wM(u, v) = −2;
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– if (u, v) is labeled (+,+) then set wM(u, v) = 2;
– else set wM(u, v) = 0 . (So wM(e) = 0 for all e ∈ M.)

Let N be any perfect matching in G. It is easy to see from the definition of the 
edge weight function wM that wM(N) = �(N,M) − �(M,N).

Let the max-weight perfect fractional matching LP in the graph G with edge 
weight function wM be our primal LP. This is LP1 defined below. Here �(u) 
denotes the set of edges incident to vertex u.

If the optimal value of LP1 is at most 0 then wM(N) ≤ 0 for all perfect matchings N 
in G, i.e., �(N,M) ≤ �(M,N) . Observe that this means �(M�,M) ≤ �(M,M�) for all 
matchings M′ in G. This is because G is a complete graph on an even number of ver-
tices, so for any matching M′ , there is a perfect matching N such that M′ ⊆ N . Thus 
�(M�,M) ≤ �(N,M) ≤ �(M,N) ≤ �(M,M�) . Hence M is a popular matching in G.

Consider the LP that is dual to LP1. This is LP2 given below in variables �u , 
where u ∈ V .

If we show a dual feasible solution � such that 
∑

u∈V �u = 0 then the primal optimal 
value is at most 0, i.e., M is a popular matching. In order to prove the popularity of 
M, we define � as follows. For r ∈ {1,… , �} do: (recall that � is the number of vari-
ables in the formula B)

– if Xr was set to ���� then set �xr = �yr = 1 and �x�
r
= �y�

r
= −1;

– else set �xr = �yr = �x�
r
= �y�

r
= 0.

Let clause c = Xi ∨ Xj ∨ Xk . Recall that we assumed that Xi = Xj = ����� and 
Xk = ���� . For the vertices in clauses corresponding to c, we will set �-values as 
follows.

– For every level 0 vertex v do: set �v = 0.
– For the first three level 2 gadgets corresponding to c do:

• set �pc
0
= �qc

0
= 1 , �pc

1
= 1, �qc

1
= −1 , and �pc

2
= �qc

2
= −1;

• set �pc
3
= −1, �qc

3
= 1 , �pc

4
= �qc

4
= 1 , and �pc

5
= �qc

5
= −1;

• set �pc
6
= �qc

6
= �pc

7
= �qc

7
= �pc

8
= �qc

8
= 0.

(LP1)

maximize
�

e∈E

wM(e)xe

subject to
∑

e∈�(u) xe = 1 ∀ u ∈ V and xe ≥ 0 ∀ e ∈ E

(LP2)

minimize
∑

u∈V

�u

subject to

�u + �v ≥ wM(u, v) ∀ (u, v) ∈ E
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The setting of �-values is analogous for vertices in the last three level 2 gadgets 
corresponding to c. For the first level 3 gadget corresponding to c do:

– set �sc
0
= �tc

0
= −1 , �sc

1
= −1, �tc

1
= 1 , �sc

2
= −1 , �tc

2
= 1 , and �sc

3
= �tc

3
= 1.

The setting of �-values is analogous for vertices in the other level 3 gadget cor-
responding to c. For the z-vertices do: set �u = 0 for all u ∈ {z0,… , z5} . For the 
d-vertices do:

– set �d0 = �d2 = −1 and �d1 = �d3 = 1.

Properties of � . For every (u, v) ∈ M , either �u = �v = 0 or {�u, �v} = {−1, 1} ; 
so �u + �v = 0 . Since M is a perfect matching, we have 

∑

u∈V �u = 0 . The claims 
stated below show that � is a feasible solution to LP2. This will prove the popu-
larity of M.

We need to show that every edge (u, v) is covered, i.e., �u + �v ≥ wM(u, v) . We 
have already observed that for any (u, v) ∈ M , �u + �v = 0 = wM(u, v).

Claim 4 Let (u,  v) be an intra-gadget blocking edge to M. Then 
�u + �v = 2 = wM(u, v).

Proof Level 1 gadgets that correspond to variables set to ���� have blocking edges. 
More precisely, for every variable Xk set to ���� , (xk, yk) is a blocking edge to M 
and we have �xk = �yk = 1 . Thus �xk + �yk = 2 = wM(xk, yk) . Similarly, consider 
any level 2 or level 3 gadget that is in unstable state: such a gadget has a blocking 
edge within it, say (pc

0
, qc

0
) or (pc

4
, qc

4
) or (sc

3
, tc
3
) , and both endpoints of such an edge 

have their �-values set to 1. For the D-gadget, (d1, d3) is a blocking edge and we 
have �d1 = �d3 = 1 . There are no blocking edges to M in the Z-gadget or in a level 0 
gadget. Thus all intra-gadget blocking edges are covered.   ◻

Claim 5 Let (u,  v) be an intra-gadget edge that is non-blocking. Then 
�u + �v ≥ wM(u, v).

Proof For any edge (zi, zj) where i, j ∈ {0, 1,… , 5} , we have �zi + �zj = 0 = wM(zi, zj) . 
Similarly, all edges within the D-gadget are covered. For any variable Xi set to ����� : 
�xi + �y�

i
= 0 = wM(xi, y

�
i
) and similarly, �x�

i
+ �yi = 0 = wM(x

�
i
, yi) . For any variable 

Xk set to ���� : �x�
k
+ �y�

k
= −2 = wM(x

�
k
, y�

k
).

For any (ac
i
, bc

i
) , we have �ac

i
+ �bc

i
= 0 = wM(a

c
i
, bc

i
) . Similarly, 

�ac
2i−1

+ �bc
2i
= 0 = wM(a

c
2i−1

, bc
2i
) , also �ac

2i
+ �bc

2i−1
= 0 = wM(a

c
2i
, bc

2i−1
) for all i and c.

We also have for all c: �pc
1
+ �qc

2
= 0 = wM(p

c
1
, qc

2
) while 

�pc
2
+ �qc

1
= −2 = wM(p

c
2
, qc

1
) and �pc

2
+ �qc

2
= −2 = wM(p

c
2
, qc

2
) . It is similar for all 

other edges within level 2 gadgets and also for edges within level 3 gadgets. Thus it 
is easy to see that for all intra-gadget non-blocking edges (u,  v), we have 
�u + �v ≥ wM(u, v) .   ◻
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Claim 6 Let (u, v) be any inter-gadget edge. Then �u + �v ≥ wM(u, v).

Proof We show that no inter-gadget edge blocks  M. The vertices z0 and z1 prefer 
some neighbors in levels 0, 1, 2 to each other and the �-value of each of these neigh-
bors is either 0 or 1. In particular, �xi ≥ 0 and �yi ≥ 0 , �pc

1
≥ 0 and �qc

0
≥ 0 , and so on 

while �ac
i
= �bc

i
= �a�c

i
= �b�c

i
= 0 for all i and c. Note that all these vertices prefer 

their partners in M to z0 or z1 ; thus for any such edge e, we have wM(e) = 0 . Since 
�zi = 0 for all i, the edges incident to zi are covered for all i.

Consider edges between a level 0 vertex and a level 1 vertex, such as (ac
1
, y�

j
) or 

(bc
1
, x�

k
) : regarding the former edge, we have wM(a

c
1
, y�

j
) = 0 = �ac

1
+ �y�

j
 and for the 

latter edge, we have wM(b
c
1
, x�

k
) = −2 < −1 = 𝛼bc

1
+ 𝛼x�

k
 . It can similarly be verified 

that every edge between a level 0 vertex and a level 1 vertex is covered.
Consider edges between a level 1 vertex and a level 2 vertex, such as (pc

2
, yj) or 

(xk, q
c
2
) : recall that (pc

0
, qc

2
) and (xk, y�k) are in M and so wM(xk, q

c
2
) = 0 ; we set 

�qc
2
= −1 and �xk = 1 , thus �xk + �qc

2
= wM(xk, q

c
2
) . We have wM(p

c
2
, yj) = −2 since 

(pc
2
, qc

0
) and (xj, yj) are in M and so this edge is covered. It can similarly be verified 

that every edge between a level 1 vertex and a level 2 vertex is covered.
Consider edges between a level 2 vertex and a level 3 vertex, such as those inci-

dent to sc
0
 or tc

0
 : we have wM(s

c
0
, qc

0
) = wM(s

c
0
, qc

3
) = 0 and �sc

0
= −1 while 

�qc
0
= �qc

3
= 1 . Similarly, wM(p

c
7
, tc
0
) = wM(p

c
4
, tc
0
) = −2 and so these edges are cov-

ered. It is analogous with edges incident to s′c
0

 or t′c
0

.
Consider any edge e whose one endpoint is in the D-gadget and the other end-

point is outside the D-gadget. It is easy to see that wM(e) = −2 , hence this edge is 
covered. Similarly, inter-gadget edges between levels 0 and 2, levels 0 and 3, and 
levels 1 and 3 all have weight −2 and hence they are covered.   ◻

Thus we have shown the following theorem.

Theorem 4 If B has a 1-in-3 satisfying truth assignment then G admits a popular 
matching.

Theorem 1 stated in Sect. 1 follows from Theorems 3 and 4. Thus the popular 
matching problem in a roommates instance on n vertices with complete preference 
lists is ��-complete for even n.
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