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Abstract A random geometric graph (RGG) is defined by placing n points uni-
formly at random in [0, n1/d ]d , and joining two points by an edge whenever their
Euclidean distance is at most some fixed r . We assume that r is larger than the crit-
ical value for the emergence of a connected component with Ω(n) nodes. We show
that, with high probability (w.h.p.), for any two connected nodes with a Euclidean
distance of ω(

logn

rd−1 ), their graph distance is only a constant factor larger than their
Euclidean distance. This implies that the diameter of the largest connected compo-
nent is Θ(n1/d/r) w.h.p. We also prove that the condition on the Euclidean distance
above is essentially tight.

We also analyze the following randomized broadcast algorithm on RGGs. At the
beginning, only one node from the largest connected component of the RGG is in-
formed. Then, in each round, each informed node chooses a neighbor independently
and uniformly at random and informs it. We prove that w.h.p. this algorithm informs
every node in the largest connected component of an RGG within Θ(n1/d/r + logn)

rounds.
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1 Introduction

We study Random Geometric Graphs (RGGs) in d ≥ 2 dimensions. An RGG is
a graph resulting by placing n nodes independently and uniformly at random on
[0, n1/d ]d and creating edges between pairs of nodes if and only if their Euclidean
distance is at most r . These graphs have been studied intensively in relation to sub-
jects such as cluster analysis, statistical physics, and wireless sensor networks [26].
Traditionally, most work on RGGs is restricted to two dimensions. However, wireless
sensor networks also expand in three dimensions. Examples are sensors in water bod-
ies [1] and sensor networks based on the use of flying anchors [20]. Another motiva-
tion for RGGs in arbitrary dimensions is multivariate statistics of high-dimensional
data [24]. In this case the coordinates of the nodes of the RGG represent different
attributes of the data. The metric imposed by the RGG then depicts the similarity be-
tween data elements in the high-dimensional space. Also in bioinformatics, RGGs in
up to four dimensions have been observed to give an excellent fit for various global
and local measures of protein-protein interaction networks [16].

Several algorithms and processes have been studied on RGGs. One prominent
example is the cover time of random walks. Avin and Ercal [3] considered RGGs in
two dimensions when the coverage radius is a constant large enough to assure that
the RGG is connected with probability 1 − o(1). They proved that in this regime, the
cover time of an RGG is Θ(n logn) with probability 1 − o(1), which is optimal up to
constant factors. This has been improved by Cooper and Frieze [6] who gave a more
precise estimate of the cover time on RGGs that also extends to larger dimensions.
However, all these works are restricted to the case where the probability that the RGG
is connected approaches 1 as n → ∞.

We are interested in a wider range for r . All the following results hold for the
regime where the RGG is likely to contain a connected component with Ω(n) nodes,
which is referred to as the supercritical regime. Bradonjić et al. [4] proved for RGGs
in d = 2 dimensions that, with probability 1 − O(n−1), for any two connected nodes
at a minimum Euclidean distance of Ω(log3.5 n/r2), their graph distance is only a
constant factor larger than their Euclidean distance. A similar result that holds for all
pairs of nodes was previously established in the regime where the RGG is connected
with high probability by Muthukrishnan and Pandurangan [19, Theorem 3.5] and
Ellis, Martin and Yan [8, Theorem 8]. We establish this result for all dimensions
d ≥ 2 under the weaker condition that the minimum Euclidean distance is ω(

logn

rd−1 ).
We also show that this condition is tight in the sense that there are pairs of nodes
within Euclidean distance o(

logn

rd−1 ) for which their graph distance is much larger than
their Euclidean distance. Muthukrishnan and Pandurangan [19] also analyzed for the
case when r is sufficiently large.

For this, we have to employ a different proof technique since the approach of
Bradonjić et al. [4] strongly depends on restrictions imposed by the geometry in two
dimensions. Our result implies that the diameter of the largest connected component
is Θ(n1/d/r) with high probability;1 this was previously open for d ≥ 3 and matches

1By “with high probability” (short: w.h.p.), we denote an event that holds with probability at least 1 −
O(n−1).
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the corresponding bound for d = 2 [4, 8, 19]. Our techniques are inspired by perco-
lation theory and we believe them to be useful for other problems, such as estimating
the cover time for the largest connected component of RGGs.

Broadcasting Information

We use the aforementioned structural result of RGGs to study the problem of broad-
casting information in RGGs. We study the well known randomized rumor spreading
algorithm which is also known as the push algorithm [11]. In this algorithm, in every
round, each informed node chooses a neighbor independently and uniformly at ran-
dom and informs it. We are interested in the runtime, i.e., how long it takes to spread
a piece of information from an arbitrary node of the largest connected component to
all other nodes in that component.

The obvious lower bound of this process on an arbitrary graph G is Ω(diam(G)+
logn), where diam(G) denotes the diameter of the largest connected component.
A matching upper bound of O(diam(G) + logn) is known for complete graphs [14,
25], hypercubes [11], expander graphs [13, 27], several Cayley graphs [9], bounded-
degree graphs [11], and RGGs in two dimensions [4]. In this paper we prove that
RGGs in d ≥ 3 dimensions also allow an optimal broadcast time of O(diam(G) +
logn) = O(n1/d/r + logn) w.h.p. This generalizes the two-dimensional result of
Bradonjić et al. [4] and significantly improves upon the general bound of O(� ·
(diam(G) + logn)) [11], since for sparse RGGs (where r = Θ(1)) the maximum
degree is � = Θ(logn/ log logn). Note that our result implies that all nodes get in-
formed after O(n1/d/r + logn) rounds for connected RGGs as well.

The rest of this paper is organized as follows. In Sect. 2, we give a precise defini-
tion of the random broadcast algorithm and the random geometric graph, as well as
introduce some notation and state our results. In Sect. 3, we derive an upper bound on
the length of the shortest path between two nodes in an RGG given their Euclidean
distance is large enough. We show in Sect. 4 that this condition on the Euclidean
distance is tight up to constants. In Sect. 5, we perform the runtime analysis of the
random broadcast algorithm. We close in Sect. 6 with some concluding remarks.

2 Precise Model and Results

We consider the following random broadcast algorithm also known as the push algo-
rithm [11]. We are given an undirected graph G. At the beginning, called round 0,
a node s of G owns a piece of information, i.e., it is informed. In each subsequent
round 1,2, . . . , every informed node chooses a neighbor independently and uniformly
at random and informs that neighbor. We are interested in the runtime of this algo-
rithm, which is the time taken until every node in G gets informed; in the case of
G being disconnected, we require every node in the same connected component as
s to get informed. The runtime of this algorithm is a random variable denoted by
R(s,G). Our aim is to prove bounds on R(s,G) that hold with high probability, i.e.,
with probability 1 − O(n−1).

We study R(s,G) for the case of a random geometric graph G in arbitrary di-
mension d ≥ 2. We define the random geometric graph in the space Ω := [0, n1/d ]d
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equipped with the Euclidean norm, which we denote by ‖ · ‖2. The most natural def-
inition of RGG is stated as follows.

Definition 1 (Cf. [24]) Let Xn = {X1,X2, . . . ,Xn} be n points in Ω chosen inde-
pendently and uniformly at random. The random geometric graph G(Xn; r) has node
set Xn and edge set {(x, y) : x, y ∈ Xn,‖x − y‖2 ≤ r}.

In our analysis, it is more advantageous to use to the following definition.

Definition 2 (Cf. [24]) Let Nn be a Poisson random variable with mean n and
let Pn = {X1,X2, . . . ,XNn} be points chosen independently and uniformly at ran-
dom from Ω ; equivalently, Pn is a Poisson Point Process over Ω with intensity 1.
The random geometric graph G(Pn; r) has node set Pn and edge set {(x, y) : x, y ∈
Pn,‖x − y‖2 ≤ r}.

The following basic lemma says that any result that holds in the setting of Defini-
tion 2 with sufficiently large probability holds with similar probability in the setting
of Definition 1.

Lemma 1 Let A be any event that holds with probability at least 1 − α in G(Pn; r).
Then, A also holds in G(Xn; r) with probability 1 − O(α

√
n).

Proof In this proof, we use subscripts to indicate the space over which the probabili-
ties are calculated. Recall that Nn denotes the number of nodes in Pn. Then it follows
by Stirling’s formula that PrG(Pn;r)[Nn = n] = Θ(1/

√
n). Note that conditioned on

Nn = n, G(Pn; r) is a realization of G(Xn; r). Let Ac denote the complement of A.
Therefore

PrG(Xn;r)
[

Ac
] = PrG(Pn;r)

[
Ac | Nn = n

] ≤ PrG(Pn;r)[Ac]
PrG(Pn;r)[Nn = n] = O(α

√
n). �

Henceforth, we consider an RGG given by G = G(Pn; r), and refer to r as the
coverage radius of G. It is known that, for d ≥ 2, there exists a critical value rc =
rc(d) = Θ(1) such that if r > rc, then with high probability the largest connected
component of G has cardinality Ω(n). On the contrary, if r < rc, each connected
component of G has O(logn) nodes with probability 1 − o(1) [24]. The exact value
of rc is not known, though some bounds have been derived in [18]. In addition, if
rd ≥ logn+ω(1)

bd
, where bd is the volume of the d-dimensional ball of radius 1, then G

is connected with probability 1 − o(1) [22, 23].
Our main result is stated in the next theorem. It shows that if r > rc, with probabil-

ity 1 − O(n−1), R(s,G) = O(n1/d/r + logn) for all s inside the largest connected
component of G. Note that rc does not depend on n, but if r is regarded as a function
of n, then here and in what follows, r > rc means that this strict inequality must hold
in the limit as n → ∞.

Theorem 2 For a random geometric graph G = G(Pn; r) in d ≥ 2 dimensions, if
r > rc, then R(s,G) = O(n1/d/r + logn) with probability 1 − O(n−1) for all nodes
s of G.
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The proof of Theorem 2, which we provide in Sect. 5, requires an upper bound on
the length of the shortest path between nodes of G. Our result on this matter, which is
stated in the next theorem, provides that for any two nodes that are sufficiently distant
in Ω , the distance between them in the metric induced by G is only a constant factor
larger than the optimum with probability 1− O(n−1). In particular, this result implies
that the diameter of the largest connected component of G is O(n1/d/r), a result
previously known only for two dimensions or values of r that yield a connected G

with probability 1 − o(1).
For all v1, v2 ∈ G, we say that v1 and v2 are connected if there exists a path in G

from v1 to v2, and define dG(v1, v2) as the graph distance between v1 and v2 on G,
that is, dG(v1, v2) is the length of the shortest path from v1 to v2 in G. Also, we
denote the Euclidean distance between the locations of v1 and v2 by ‖v1 − v2‖2.
Clearly, the length of the shortest path between two nodes v1 and v2 in G satisfies
dG(v1, v2) ≥ ‖v1−v2‖2

r
.

Theorem 3 If d ≥ 2 and r > rc, for any two connected nodes v1 and v2 in G =
G(Pn; r) such that ‖v1 − v2‖2 = ω(

logn

rd−1 ), we obtain dG(v1, v2) = O(‖v1 − v2‖2/r)

with probability 1 − O(n−1).

Remark 4 In the proof of Theorem 3, we focus on the case r = O(log1/d n). If r =
ω(log1/d n), then the upper bound on dG(v1, v2) above follows from [8, Theorem 8]
and [19, Theorem 3.5].

Remark 5 It is not hard to see that our proof establishes that there exist large enough
constants C = C(d) and n0 = n0(d) such that dG(v1, v2) = O(‖v1 − v2‖2/r) for all
connected pairs v1, v2 for which ‖v1 − v2‖2 ≥ C

logn

rd−1 for all n ≥ n0. We used the ω

notation above only to simplify the statement of Theorem 3.

Corollary 6 If r > rc, the diameter of the largest connected component of G =
G(Pn; r) is O(n1/d/r) with probability 1 − O(n−1).

The statement of Theorem 3 generalizes and improves upon Theorem 2.3 of [4],
which holds only for d = 2 and ‖v1 − v2‖2 = Ω(log3.5 n/r2). The current paper not
only improves upon the previous results, but also employs different proof techniques
which are necessary to tackle the geometrically more involved case where d ≥ 3.

Our last result establishes that the condition for ‖v1 − v2‖2 in Theorem 3 is neces-
sary. We show that there exists a pair of nodes in the largest connected component of
the RGG whose graph distance is much larger than the Euclidean distance. We prove
this result in Sect. 4.

Theorem 7 Let rd = o(logn). Then, with probability 1 − O(n−1), there exist
two connected nodes v1 and v2 in G = G(Pn; r) such that ‖v1 − v2‖2 ≤ 3r

but dG(v1, v2) = Ω(
logn

rd ).

Remark 8 In other words, since rd = o(logn), Theorem 7 above establishes that
there exists a pair of connected nodes v1, v2 such that ‖v1 −v2‖2 = o(

logn

rd−1 ) for which

dG(v1, v2) = ω(
‖v1−v2‖2

r
). This means that the condition for ‖v1 −v2‖2 in Theorem 3

(see also Remark 5) is essentially tight.
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3 The Diameter of the Largest Connected Component

We devote this section to proving Theorem 3. We consider G = G(Pn; r). Recall
that we assume r > rc and rd = O(logn). (When rd = ω(logn), G is connected
with probability 1 − o(1) and Theorem 3 becomes a slightly different version of [8,
Theorem 8] and [19, Theorem 3.5].) Note also that r = Ω(1) since rc = Θ(1). We
show that, for any two connected nodes v1 and v2 of G such that ‖v1 − v2‖2 =
ω(

logn

rd−1 ), we have dG(v1, v2) = O(‖v1 − v2‖2/r) with probability 1 − O(n−1).
The proof follows by a renormalization argument that allows us to relate the largest

connected component of G with the so-called percolation cluster of the square lattice.
We start in Sect. 3.1 discussing some results for the lattice that we will need later.
Then, in Sect. 3.2, we discuss the renormalization argument, whose main ideas we
present here. We tessellate Ω into cubes that are large enough but whose side length
is Θ(r). We say that a cube is open if the graph induced by the nodes of G inside the
cube contains a unique large component and the large components of two adjacent
open cubes intersect. We make the cubes large enough so that the probability that any
given cube is open is sufficiently close to 1 and, consequently, the set of open cubes
percolates. Then, the main idea is that, in order to bound the size of the shortest
path between two vertices v1 and v2 of G, we consider a path of adjacent cubes
j1, j2, . . . , j� of the tessellation so that cube j1 contains v1 and cube j� contains
v2. Note that we can choose j1, j2, . . . , j� so that � = Θ(‖v1 − v2‖2/r). If all the
cubes in this path are open, then we use the largest components of these cubes to
obtain a path from v1 to v2. Note that, since the side length of the cubes is Θ(r),
any shortest path within a given cube contains only a constant number of edges, so
the shortest path on G between v1 to v2 within the cubes j1, j2, . . . , j� has length
Θ(�) = Θ(‖v1 − v2‖2/r). So, with this renormalization, we can reduce the problem
of estimating the graph distance between v1 and v2 to the problem of finding the
shortest path of open cubes from a cube that is close enough to v1 to a cube that is
close enough to v2. However, in general, not all the cubes in the path will be open.
When this happens, we need to estimate how far away from the cubes j1, j2, . . . , j�

the path from v1 to v2 goes. The details of this analysis is given in Sect. 3.3. The main
idea behind this step is that, if cube jk is closed, then we consider all closed cubes
that can be reached from jk by a path of adjacent closed cubes. In other words, we
consider the connected component of closed cubes that contains jk . The boundary of
this connected component is a collection of open cubes, so the nodes of G inside the
largest components of these open cubes yield a detour around jk ; i.e., they contain
a path that goes around jk and reaches some cube jk′ with k′ > k. We show that,
whenever the Euclidean distance between v1 and v2 is sufficiently large, these detours
only increase the graph distance by a constant factor, which concludes the proof. Now
we proceed to the detailed argument.

3.1 Lattice

For m ≥ 0, whose value we will set later, let Sm be the elements of Z
d contained in the

cube of side length m centered at the origin (i.e., Sm = {i ∈ Z
d : ‖i‖∞ ≤ m/2}). Let

L be the graph with vertex set Sm such that an edge between two vertices i, j ∈ Sm
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Fig. 1 (a) The graph L over Sm. (b) Illustration of the neighboring cubes Qi and Qj

exists if and only if ‖i − j‖∞ = 1 (see Fig. 1(a)). It is easy to see that the maximum
degree � of L is � = 3d − 1. The following is an adaptation of a well-known result
regarding the number of lattice animals in the square lattice [15, Theorem 4.20] to
our lattice L. We include the proof here for the sake of completeness.

Lemma 9 A subset of vertices V ⊆ Sm is called a lattice animal if the subgraph of
Sm induced by V is connected. Then, the number of lattice animals that contain the
origin and have exactly k vertices is at most 3�k .

Proof We follow [15, Theorem 4.20]. Construct a random subgraph H of L by keep-
ing each edge of L independently with probability 1/2; otherwise, we remove the
edge. Let H0 be the subgraph of H induced by the vertices that are in the same con-
nected component of the origin in H . Clearly, H0 is a lattice animal. Now, we refer
to the edges of L that have exactly one endpoint in H0 as the boundary edges of H0.
The probability that H0 has av vertices, ae edges, and ab boundary edges is exactly
wav,ae,ab 2−ae−ab , where wav,ae,ab is the number of possible choices for the subgraph
H0 with exactly av vertices, ae edges and ab boundary edges. Clearly, the probability
that H0 has exactly av vertices is

∑

ae,ab

wav,ae,ab 2−ae−ab ≤ 1.

Then, since the maximum degree of L is �, we have that ab ≤ av� and ae ≤ av�/2.
Plugging this into the equation above gives the total number of choices for H0 such
that H0 has av vertices as

∑

ae,ab

wav,ae,ab ≤ 23av�/2 ≤ 3av�,

which concludes the proof of Lemma 9. �

Now, let Xi for all i ∈ Sm be a collection of binary random variables. For two
vertices i, j ∈ Sm, let dL(i, j) be their graph distance in L. Also, for any i ∈ Sm and
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k ≥ 0, let Fk(i) be the σ -field generated by all Xj with dL(i, j) > k. Then, for k ≥ 0
and p ∈ (0,1), we say that X is a k-dependent site percolation process on L with
probability p if, for any i ∈ Sm, we have Pr[Xi = 1] ≥ p and Pr[Xi = 1 | Fk(i)] =
Pr[Xi = 1]; i.e., Xi is independent of any collection (Xj )j for which the distance
between i and j in L is larger than k for all j in the collection. Let L(X) be the
subgraph of L induced by the vertices i with Xi = 1. The following lemma is a direct
application of a result by Liggett, Schonmann and Stacey [17, Theorem 1.3] that
provides that L(X) stochastically dominates an independent site percolation process.
For two processes X = (Xi)i∈Sm

and Y = (Yi)i∈Sm
, we say that L(X) stochastically

dominates L(Y ) if there exists a coupling between X and Y such that L(Y ) is a
subgraph of L(X) with probability 1.

Lemma 10 [17, Theorem 1.3] For given constants α > 0 and k ≥ 0, let L(X) be the
subgraph of L obtained via a k-dependent site percolation process X with probability
1 − e−α . If α is large enough, then there exists a positive constant c < 1 depending
only on k and d so that L(X) stochastically dominates a collection of independent
Bernoulli random variables with mean 1 − e−cα .

3.2 Renormalization Argument

Fix a sufficiently large constant M > 0. For each i = (i1, i2, . . . , id ) ∈ Z
d , define the

cube

Qi = (i1Mr/2, i2Mr/2, . . . , idMr/2) + [−Mr/2,Mr/2]d ,

which is centered at (i1Mr/2, i2Mr/2, . . . , idMr/2) and has sides of length Mr (see
Fig. 1(b)). Let Q be the set of cubes Qi having center inside Ω and set m so that
Sm = {i : Qi ∈ Q}). Note that m = Θ(n1/d/r) and the cubes in Q cover the whole
of Ω . We call two cubes Qi and Qj neighbors if ‖i − j‖∞ ≤ 1. Note that in this
case i and j are also neighbors in L. Therefore each cube has at most � = 3d − 1

neighbors, and there are at most K = � n1/d

Mr/2�d = Θ(n/rd) cubes in Q.

We say that a parallelepiped R in R
d has a crossing component if there exists a

connected component inside R such that, for each face of R, there exists at least one
node of the component within Euclidean distance r of the face. Define the region of a
component of G as the set of points of Ω within Euclidean distance r of at least one
node of the component. Also, we say that

a connected component has spatial diameter k if the region of
the connected component has diameter k, (1)

where for any set A ⊂ Ω we define the diameter of A as supx,y∈A ‖x − y‖2. Then,
for each i ∈ Sm, let Ei be defined as the event where both of the following happen:

(i) For each neighbor Qj of Qi , the parallelepiped Qi ∩ Qj contains a crossing
component.

(ii) Qi contains only one connected component with spatial diameter larger than
Mr/5.
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Note that when Ei happens for some Qi , then (ii) above implies that the largest
component of Qi intersects the crossing components of all parallelograms Qi ∩ Qj ,
where Qj is a neighbor of Qi . Moreover, for two i and j neighbors in L, we have
that, if Ei and Ej both happen, then the crossing components of Qi and Qj intersect.
The following lemma is a direct consequence of a result of Penrose and Pisztora [21,
Theorem 2] when r = Θ(1). We extend it so that we can handle the case r = ω(1).
For any set A ⊂ R

d and positive number γ > 0, we denote Aγ = {x ∈ R
d : x/γ ∈ A}

as the γ -enlargement of A; e.g., if A is the cube of side length 1, then Aγ is the cube
of side length γ .

Lemma 11 Let R be a parallelepiped whose side lengths are independent of n and
whose smallest side is 1. Then there exists a positive number γ0 and constant c = c(d)

so that, for all γ > γ0 and r > rc,

(i) Pr[Rγr has a crossing component] ≥ 1 − exp(−cγ rd).
(ii) Pr[Rγr has only one component with spatial diameter at least γ r/5] ≥

1 − exp(−cγ rd).

Proof We first scale the graph by 1/r ; i.e., we consider the space Ω1/r , which is a
cube of side length n1/d/r , we take the nodes of the graph to be P 1/r

n and declare
a pair of nodes to be adjacent iff their Euclidean distance is at most 1. The graph
obtained in this way has the same topology as G, but the geometric properties are
different. For example, since the expected number of nodes remains n, the density
of nodes per unit volume becomes λ = n

(n1/d/r)d
= rd . This means that any result

obtained from the model where nodes are given by a Poisson point process with in-
tensity 1 and coverage radius r can be translated to a model where nodes are given by
a Poisson point process with intensity λ = rd and coverage radius 1. For the remain-
der of the proof we will then let G′ stand for the graph given by the latter model. Our
goal is then to study the components of G′ in Rγ .

Now we turn to prove the first inequality. Define λc = rd
c . Using the superposition

property of Poisson processes, we can see the set of nodes of G′ as the union of k

independent Poisson point processes with intensity λ/k. Let k have a value such that
λ/k > λc and, since λc is constant, we can set λ/k constant. Note that if Rγ has
a crossing component for any of these λ/k Poisson point processes, then Rγ has a
crossing component for G′. It follows by [21, Theorem 2] that the probability that this
happens for a Poisson point process with intensity larger than λc is at least 1 − e−c′γ

for some constant c′ > 0. Therefore, using the fact that the k Poisson point processes
are mutually independent, it follows that

Pr
[
Rγ has a crossing component for G′] ≥ 1 − (

e−c′γ )k ≥ 1 − exp
(−cγ rd

)
,

where the last inequality follows since λ/k is constant, which implies that k = Θ(rd).
For the second inequality, we need a different approach since, unlike the event

“Rγ has a crossing component,” the event that Rγ has only one component with
spatial diameter larger than γ /5 is not increasing. Here we assume that λ is larger than
some arbitrarily large constant λ0; otherwise, we can simply use the result from [21,
Theorem 2]. For large λ, we tessellate Ω1/r into cubes of side length 1

2d
, and note
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that nodes in adjacent cubes are neighbors in G′. For G′, we define the region of a
component as the set of points of Ω1/r within Euclidean distance 1 of the nodes of
the component. So, if a node v is in a given cube of the tessellation, then all the points
inside this cube belong to the region of the component of v. Now note that there exists
a positive constant c′ = c′(d) such that, if there are two or more components in Rγ

with spatial diameter larger than γ /5, then there must exist a path with at least γ
5c′

cubes where any two consecutive cubes in the path intersect in at least one point and
each cube in the path contains no node of G′. By Lemma 9, the total number of paths
with exactly k cubes is at most

(bγ )d

( 1
2d

)d
3�k,

where b is the size of the largest side of R. The probability that all cells in these paths
have no node is exactly exp(−λ( 1

2d
)dk). Therefore,

Pr
[
Rγ has only one component with spatial diameter larger than γ /5

]

≥ 1 −
∞∑

k= γ

5c′

(2bγ d)d3�k exp

(
−λ

(
1

2d

)d

k

)
≥ 1 − exp

(−cγ rd
)
,

where the last inequality holds since λ > λ0 is large enough. �

Now it follows from Lemma 11 that

Pr[Ei] ≥ 1 − exp
(−c1r

dM
)

(2)

for all M large enough, where c1 is a positive constant depending only on d .
Now we set Xi = 1(Ei ) for all i ∈ Sm. By construction, Ei does not depend on

the events Ej for which dL(i, j) ≥ 2 since, in this case, the set of nodes in Qi and
the set of nodes in Qj are disjoint. Therefore, (Xi)i∈Sm

is a 1-dependent site perco-
lation process with probability 1 − exp(−c1r

dM). Since M can be made arbitrarily
large, we can apply Lemma 10 to find a collection of independent Bernoulli ran-
dom variables Y = (Yi)i∈Sm

with mean e−c2r
dM so that L(Y ) is a subset of L(X).

Moreover, M is large enough so that L(Y ) has a giant component with probability
1 − exp(−Θ((n1/d/r)d−1)) [15].

3.3 Finding the Path

In this section we will give the proof of Theorem 3.

Proof of Theorem 3 We take two fixed nodes v1 and v2 satisfying the conditions of
Theorem 3 and show that the probability that v1 and v2 are connected by a path and
dG(v1, v2) = ω(‖v1 − v2‖2/r) is O(n−3). Then, we would like to take the union
bound over all pairs of nodes v1 and v2 to conclude the proof of Theorem 3; however,
the number of nodes in G is a random variable and hence the union bound cannot be
employed directly. We employ the following lemma to extend the result to all pairs
of nodes v1 and v2.
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Lemma 12 Let E (w1,w2) be an event associated to a pair of nodes w1,w2 ∈ G =
G(Pn, r). Assume that, for all pairs of nodes, Pr[E (w1,w2)] ≥ 1 − p, with p > 0.
Then,

Pr
[ ⋂

w1,w2∈G

E (w1,w2)

]
≥ 1 − 9n2p − e−Ω(n).

Proof We condition on Nn ≤ 3n. Using a Chernoff bound for Poisson random vari-
ables, it follows that Pr[Nn > 3n] ≤ e−Ω(n). Let E c(w1,w2) denote the complement
of E (w1,w2). Note that Pr[E c(w1,w2) | Nn ≤ 3n] ≤ Pr[E c(w1,w2)]

Pr[Nn≤3n] ≤ p

1−e−Ω(n) , for
all w1,w2 ∈ G. Therefore, using the definition of conditional probabilities and the
union bound, we obtain

Pr
[ ⋃

w1,w2∈G

E c(w1,w2)

]

≤ Pr
[ ⋃

w1,w2∈G

E c(w1,w2) | Nn ≤ 3n

]
Pr[Nn ≤ 3n] + Pr[Nn > 3n]

≤ 9n2 · max
w1,w2∈G

Pr
[

E c(w1,w2) | Nn ≤ 3n
] + e−Ω(n)

≤ 9n2p + e−Ω(n). �

We now show that, for any fixed pair of nodes v1, v2 of G such that ‖v1 − v2‖2 =
ω(

logn

rd−1 ), either v1 and v2 are in different connected components or dG(v1, v2) =
O(‖v1 − v2‖2/r). Let i1 be the closest vertex of Sm from v1 and i2 be the closest
vertex of Sm from v2. Clearly, v1 ∈ Qi1 and v2 ∈ Qi2 . We use some ideas from Antal
and Pisztora [2]. For any connected subset H of Sm, let ∂H be the set of vertices of
Sm \ H from which there exists an edge to a vertex in H ; that is, ∂H is the outer
boundary of H . Note that |∂H | ≤ �|H |. Recall that Y = (Yi)i∈Sm

is a collection of
i.i.d. Bernoulli random variables as defined in the last paragraph of Sect. 3.2, and let
L′(Y ) be the graph induced by the closed vertices of L (which are the vertices j for
which Yj = 0). For each j ∈ Sm, if j is closed, let Zj be the connected component of
L′(Y ) containing j and let Ẑj = ∂Zj (see Fig. 2 for an example). If j is open, then
set Zj = ∅ and Ẑj = {j}. Note that Zj contains only closed vertices and Ẑj contains
only open vertices. Moreover, Ẑj separates Zj from Sm \ (Zj ∪ Ẑj ) in the sense that
any path in L from a vertex in {j} ∪ Zj to a vertex in Sm \ (Zj ∪ Ẑj ) must contain a
vertex of Ẑj . Now, let Aj = ⋃

k : ‖k−j‖∞≤1 Zk and Âj = ⋃
k:‖k−j‖∞≤1 Ẑk .

Now we give an upper bound for the tails of |Zj | and |Aj |.
Lemma 13 Let j ∈ Sm. Then, there exists a positive constant c such that, for all large
enough z > 0,

Pr[|Zj | ≥ z] ≤ exp
(−crdMz

)
and Pr[|Aj | ≥ z] ≤ exp

(−crdMz
)
.

Proof We prove the lemma for Zj . The result for Aj follows from the same argu-
ment. Note that Zj is a lattice animal as defined in Lemma 9. Therefore, there are at
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Fig. 2 Illustration for the sets Zj and Ẑj . Open vertices are shown as black balls and closed vertices as
white balls. (a) A path from i1 to i2 and shaded areas illustrate Zj for j in the path. (b) The dotted cycles
show Ẑj for j in the path from i1 to i2

most 3k� choices for the vertices of Zj such that |Zj | = k. Since the probability that

a given vertex is closed is 1 − e−c2r
dM , we have Pr[|Zi | ≥ z] ≤ ∑∞

k=z 3k�e−c2r
dMk ,

which converges as z → ∞ as long as M is large enough. �

Therefore, for some sufficiently large constant c3, we obtain Pr[|Zj | ≥ c3
logm

rd ] =
O(m−3d) and Pr[|Aj | ≥ c3

logm

rd ] = O(m−3d), and using the union bound over the md

choices for j , we conclude that, for all j ∈ Sm, we have |Zj | ≤ c3
logm

rd and |Aj | ≤
c3

logm

rd with probability 1 − O(m−2d).
Now we take an arbitrary path j1, j2, . . . , j� in L such that j1 = i1, j� = i2 and � ≤

‖i1 − i2‖1. For 2 ≤ k ≤ �−1 we consider the set Ẑjk
. Note that, since for every j ∈ L

the set Ẑj separates Zj from Sm \ (Zj ∪ Ẑj ), we know that
⋃

k∈[2,�−1] Ẑjk
contains a

connected component with at least one vertex from each Ẑjk
, 2 ≤ k ≤ � − 1. We call

this component the bridging component and denote it by B(i1, i2). For i1 and i2 we
consider the sets Âi1 and Âi2 .

We will show how to find a path from v1 to v2 in G in three parts. We will bound
the length of these parts by F1, F2, and F3 so that this path from v1 to v2 in G contains
F1 + F2 + F3 edges. Note that, since v1 and v2 are such that ‖v1 − v2‖2 = ω(

logn

rd−1 )

and |Aj | ≤ c3
logm

rd = O(logn) for all j , Ai1 and Ai2 must be disjoint. Intuitively, Âi1

envelops the region Qi1 so that, if there exists a path from v1 to v2 in G, this path
must cross the region

⋃
k∈Âi1

Qk . Now, since Âi1 is a set of open vertices, it follows

that, for each j ∈ Âi1 , the cube Qj has a crossing component. For any connected set
V ⊆ Sm of open vertices, where connectivity is defined with respect to L, let C(V ) be
the set of vertices of G that belong to the crossing component of at least one Qj with
j ∈ V . With this definition, the path from v1 to v2 must have a node in C(Âi1). Let
F1 be the length of the shortest path between v1 and a node of C(Âi1) ∩ C(Ẑj2). Note
that this node must exist since Âi1 ∩ Ẑj2 �= ∅ by construction. If we denote by Ψ the
set Ai1 ∪ Âi1 , then this path is completely contained inside

⋃
k∈Ψ Qk . Therefore, we

can bound F1 using the following geometric lemma.
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Lemma 14 Let I be a set of vertices of Sm and Q = ⋃
i∈I Qi . Let w1 and w2 be

two nodes of G inside Q. If there exists a path between w1 and w2 entirely contained
in Q, then there exists a constant c > 0 depending only on d such that

dG(w1,w2) ≤ c|I |Md.

Proof The shortest path between w1 and w2 that is contained inside Q has the prop-
erty that, for any two non-consecutive nodes u and u′ in the path, the Euclidean
distance between u and u′ is larger than r . Otherwise, we could take the edge (u,u′)
and make the path shorter. This means that, if we draw a ball of radius r/2 around
every other node of the path, then the balls will not overlap. Let κ be the number of
nodes in the path. There are κ/2 non-overlapping balls of radius r/2. For each ball,
we know that at least 1/2d of its volume is contained inside Q. Therefore, it must
hold that

κ ≤ 2
Area(Q)

bd(r/2)d/2d
≤ 22d+1 |I |(Mr)d

bdrd
,

where bd is the volume of the d-dimensional ball of radius 1. �

Remark 15 The result in Lemma 14 also holds when I is replaced by any bounded
subset of R

d composed of the union of parallelograms with side length at least r ; in
this case, we set |I |(Mr)d to be the volume of this set.

Lemma 14 then establishes that there exists a constant c4 such that

F1 ≤ c4|Ai1 ∪ Âi1 |Md ≤ c4(1 + �)(|Ai1 | + 1)Md = O
(

logm

rd

)
,

since |Âj | ≤ �|Aj | + � = O(logm) for all j . Similarly, there is a path from v2

to a node inside C(Âi2) ∩ C(Âj�−1), whose length we denote by F2. An analogous

derivation then gives F2 = O(
logm

rd ). These paths must intersect C(B(i1, i2)) since

they intersect C(Âj2) and C(Âj�−1), respectively. Denote the length of the path in
C(B(i1, i2)) that connects the two paths we found above by F3. Using Lemma 14 we
obtain a constant c5 such that

F3 ≤ c5|B(i1, i2)|Md. (3)

In order to bound |B(i1, i2)|, we use a coupling argument by Fontes and Newman [12]
and a result of Deuschel and Pisztora [7, Lemma 2.3], which gives

Pr

[
�−1∑

k=2

|Ẑjk
| ≥ �α

]

≤ Pr

[
�−1∑

k=2

|Zjk
| ≥ (�α − 1)/�

]

≤ Pr

[
�−1∑

k=2

|Z̃jk
| ≥ (�α − 1)/�

]

,
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where the first inequality follows since |Ẑj | ≤ 1 + �|Zj | for all j , and the Z̃s are
defined to be independent random variables such that Z̃jk

has the same distribution as
Zjk

. From Lemma 13 we know that Z̃jk
is stochastically dominated by an exponential

random variable with parameter μ = Θ(rd). Note that the probability that the sum of
�−2 i.i.d. exponential random variables with parameter μ is larger than α� is equal to
the probability that a Poisson random variable with mean α�μ is at most �− 3. Then,
it follows from standard properties of Poisson random variables that there exists a
constant c6 such that, for any large enough α, we have

Pr

[
�−1∑

k=2

|Ẑjk
| ≥ α�

]

≤ exp
(−c6α�rd

)
.

Since � = Θ(‖v1 − v2‖2/r) = ω(
logn

rd ), it holds that Pr[∑�−1
k=2 |Ẑjk

| ≥ α�] =
O(m−3d) for some large enough α. Then, using (3), it follows that, with probability
1 − O(m−3d),

F3 ≤ c5α�Md = O(‖i1 − i2‖1) = O
(‖v1 − v2‖2

r

)
.

Putting everything together, with probability 1 − O(m−3d), we obtain a path from v1

to v2 with length at most

F1 + F2 + F3 = O
(

logn

rd
+ ‖v1 − v2‖2

r

)
. (4)

By Lemma 12, the result above holds for all connected pairs of nodes v1, v2 such that
‖v1 − v2‖2 = ω(

logn

rd−1 ). Then using m = Θ(n1/d) completes the proof. �

4 Existence of Long Paths

In this section we give the proof of Theorem 7. We show that there exist two con-
nected nodes v1 and v2 whose Euclidean distance is at most 3r but whose graph
distance is Ω(

logn

rd ) = ω(1). The proof is based on a geometric construction, which
we define here and use at the end of this section to complete the proof.

Fix ε > 0 small enough with respect to d , and set

α = ε logn

rd−1
. (5)

Note that the condition rd = o(logn) assures that α
r

= ω(1).
Tessellate Ω into disjoint parallelograms A1,A2, . . . of the form [0,L′]d−1 ×

[0,L] where

L′ = 2r

(
1 + 1

d

)
and L = 2α + r

(
1 + 2

d

)
.
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Fig. 3 Geometric construction to show the existence of long paths

Let A denote the set of these cubes. This tessellation is illustrated in two dimensions
in Fig. 3(a) and in three dimensions in Fig. 3(c).

Consider a fixed parallelogram Ai ∈ A and let xi be such that

Ai = xi + [
0,L′]d−1 × [0,L].

We will partition Ai into two regions; refer to Fig. 3(b) for an illustration of this
partition in two dimensions and Fig. 3(c) for an illustration of the partition in three
dimensions. For k = 1,2, . . . , d , let ek be the vector whose kth element is 1 and
whose other elements are all 0. First, define the four points (see Fig. 3(b, c))

y1 = xi +
d−1∑

k=2

ek

(
L′ − r/d

2

)
, y2 = y1 + e1

(
L′ − r − r

d

)
,

y3 = y2 + ed

(
L − r

2

)
and y4 = y1 + ed

(
L − r

d

)
.

(Note that, in two dimensions, y1 = xi .) We now define the parallelograms

Y1 = y1 + [0, r/d]d−1 × [0,L], Y2 = y2 + [0, r/d]d−1 × [0,L],
Y3 = y3 + [0, r/d]d−1 × [0, r]

and

Y4 = (
y1 + [

0,L′ − r
] × [0, r/d]d−1) ∪ (

y4 + [
0,L′ − r

] × [0, r/d]d−1).
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Finally, we partition Ai into C(Ai) and Ai \ C(Ai), where

C(Ai) = (Y1 ∪ Y2 ∪ Y4) \ Y3.

We see C(Ai) as the core of Ai and tessellate C(Ai) into disjoint cubes of side length
r/d . In Fig. 3(b, c), C(Ai) is the tessellated region that resembles a bracelet with an
opening.

Now we define two events based on the regions described above. Consider the
graph induced by the nodes inside Ai . Let Ei be the event that there is no node inside
Ai \C(Ai) and let E ′

i be the event that each cube of the tessellation of C(Ai) contains
at least one node. The usefulness of these two events is given by the following lemma.

Lemma 16 Suppose that both Ei and E ′
i hold for some Ai ∈ A. Then there exist two

connected nodes v1, v2 in G such that ‖v1 −v2‖2 ≤ 3r and dG(v1, v2) ≥ 4α/r , where
α is given in (5).

Proof Since the cubes in the tessellation of C(Ai) have side length r/d , two nodes
in adjacent cubes are neighbors in G. Then, when E ′

i happens, there is a path of
nodes crossing through the bracelet represented by the region C(Ai). Consider the
two cubes that are adjacent to the opening of the bracelet; more formally, these are
the cubes y3 − ed(r/d)+ [0, r/d]d and y3 + edr + [0, r/d]d . Since E ′

i happens, there
is one node in each such cube, call them v1 and v2. Moreover, v1 and v2 are connected
and

‖v1 − v2‖2 ≤ 2
r

d

√
d + r ≤ 3r.

Since Ei also happens, the path from v1 to v2 must go through the bracelet, which
gives that

dG(v1, v2) ≥ 4α

r
. �

Now we have all the results we need to give the proof of Theorem 7.

Proof of Theorem 7 For any given Ai ∈ A, we have

Pr[Ei] ≥ exp
(−vol(Ai)

) = exp
(−c1r

d−1α
)
,

for some constant c1 = c1(d) > 0 and all large enough n. Using the fact that
vol(Y1) = vol(Y2), the number of cubes in the tessellation of C(Ai) is exactly

vol(C(Ai))

(r/d)d
≤ 2 vol(Y1) + vol(Y4)

(r/d)d

≤ 1

(r/d)d

(
2(r/d)d−1L + 2(r/d)d−1(L′ − r

)) = Θ

(
α

r

)
.

Using this we obtain

Pr
[

E ′
i

] ≥ (
1 − exp

(−(r/d)d
)) vol(C(Ai ))

(r/d)d ≥ exp

(
−c2

α

r

)
,



Algorithmica

for some constant c2 = c2(d) > 0 and all large enough n. Note that Ei and E ′
i are

independent, since they are defined in disjoint regions. Also, since r > rc = Θ(1),
there exists a constant c3 = c3(d) > 0 for which

α

r
≤ c3r

d−1α,

which gives

Pr
[

Ei ∩ E ′
i

] ≥ exp
(−2c3r

d−1α
)
.

Now set ε = 1
100c3

, and using the value definition of α in (5), we obtain

Pr
[

Ei ∩ E ′
i

] ≥ n−1/50.

Using Lemma 16, we need only to show that there exists an Ai ∈ A for which both
Ei and E ′

i occur. But these events are mutually independent over i since the Ai are
disjoint. Noting that

|A| = n

L′d−1L
= Θ

(
n

αrd−1

)
,

it follows that the probability that there exists an i for which Ei and E ′
i both hold is at

least

1 − (
1 − n−1/50)|A| ≥ 1 − exp

(
−Ω

(
n49/50

logn

))
.

This concludes the proof of Theorem 7. �

5 Broadcast Time

In this section we prove Theorem 2. Given two nodes v1 and v2, let R(v1, v2) be
the time it takes for the random broadcast algorithm started at v1 to inform v2 for
the first time. We assume in the sequel that v1 and v2 belong to the largest con-
nected component of G and show that, provided ‖v1 −v2‖2 = ω(log2 n), R(v1, v2) =
O(‖v1 − v2‖2/r). (We deal with the easier case ‖v1 − v2‖2 = O(log2 n) later.)

We assume that r = O(log1/d n). The case r = ω(log1/d n) is simpler; since it uses
different proof techniques, we handle it separately with the lemma below.

Lemma 17 If r = ω(log1/d n), then for all nodes s ∈ G we obtain R(s,G) =
O(n1/d/r + logn) with probability 1 − O(n−1).

Proof In order to prove Lemma 17, we consider a tessellation of Ω into cubes of

side length min{ r

2
√

d
, n1/d

2 }, which we refer to as cells. (If n1/d

2 is not a multiple of
r

2
√

d
, then we make the cells in the last row or column of the tessellation be smaller

than the others.) It is easy to verify that nodes in the same cell are neighbors in G

and that a node in a given cell can only have neighbors in K = (1 + 4
√

d)d differ-
ent cells. Let amin be the number of nodes inside the cell that contains the smallest
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number of nodes, and let amax be the number of nodes inside the cell that contains
the largest number of nodes. Since r = ω(log1/d n), a standard Chernoff bound for
Poisson random variables implies that there are constants c1 < c2 such that a fixed
cell contains at least c1r

d nodes and at most c2r
d nodes with probability larger than

1 − n−2. Using the union bound over all cells of the tessellation, we obtain the result
that amin and amax are Θ(rd) with probability 1 − O(n−1).

We are now in position to start our proof for Lemma 17. We index the cells by
i ∈ Z

d and let Zi be the event that the cell i contains at least one informed node. We
say that cells i and j are adjacent if and only if they intersect in a (d −1)-dimensional
face. Therefore, each cell has exactly 2d adjacent cells. Let C be the graph induced
by this adjacency relation. Note that nodes in adjacent cells are neighbors in G.

Given two adjacent cells i and j , at any round of the random broadcast algorithm,
an informed node in cell i chooses a node from cell j with probability larger than
amin/(Kamax) = Θ(1). We want to derive the time until Zi = 1 for all i. Given a path
between two cells j1, j2 ∈ C, the number of rounds the information takes to be trans-
mitted along this path can be bounded above by the sum of independent geometric
random variables with mean Θ(1). Applying a Chernoff bound for geometric random
variables (cf. Lemma 21), we infer that the number of rounds required to transmit
the information from j1 to j2 is smaller than O(diam(C) + logn) with probability
1 − e−Ω(diam(C)+logn). Since there are O(n/rd) cells and diam(C) = O(n1/d/r), it
follows that with probability 1 − O(n−1), Zi = 1 for all i after O(n1/d/r + logn)

rounds.
To complete the spreading within each cell, we consider a faulty version of the

random broadcast algorithm, which proceeds as explained in Sect. 2, but when an in-
formed node is about to transmit the information to a neighbor chosen independently
and uniformly at random, this transmission fails with probability p independently of
all other transmissions. Moreover, a node that was not informed at the beginning of
the algorithm can only get informed if it receives the information from a transmis-
sion that did not fail. We denote by Rp(s,G) the runtime of the faulty version of the
random broadcast algorithm initiated at node s ∈ G, where p is allowed to go to 1
as the number of nodes in G goes to infinity. We use the following relation between
R(s,G) and Rp(s,G).

Lemma 18 [10, Theorem 6] For any graph G, any node s ∈ G, and any p ∈ [0,1),
there exists a coupling between Rp(s,G) and R(s,G) such that

Rp(s,G) = O
( R(s,G)

1 − p

)
.

Assume that each cell contains at least one informed node. We want to determine
how many additional rounds are required until all nodes in G become informed. Note
that each cell constitutes a clique with Θ(rd) nodes. According to the random broad-
cast algorithm, at any round, a node chooses a neighbor inside its own cell with prob-
ability larger than amin/(Kamax) = Θ(1). Therefore, a standard coupling argument
can be used to show that the time taken until all nodes from a given cell get informed
can be bounded above by the time the faulty version of the random broadcast algo-
rithm with failure probability p = 1 − amin/(Kamax) takes to inform all nodes of a
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complete graph with Θ(rd) nodes. Thus, since p is bounded away from 1, we apply
[11, Theorem 4.1] and Lemma 18 to obtain that all nodes of a given cell get informed
within O(log rd + logn) steps with probability 1 − O(n−2). Then, taking the union
bound over all cells it follows that, with probability 1 − O(n−1), all nodes of G get

informed after O(n1/d

r
+ logn) steps, which concludes the proof of Lemma 17. �

Now we give the proof for the more involved case r = O(log1/d n).

Proof of Theorem 2 when r = O(log1/d n) We start with a basic lemma that shows
that the time until a node informs a given neighbor is O(log2 n) with high probability.

Lemma 19 If r = O(log1/d n), then there exists a constant c such that, for all pairs
of nodes w1 and w2 satisfying ‖w1 − w2‖2 ≤ r , the following holds with probability
1 − O(n−1),

R(w1,w2) ≤ c log2 n.

Proof Note that, if the degree of w1 in G is k, then the number of rounds until w1
sends the information to w2 is given by a geometric random variable with mean k. It
is easy to check that there is a constant c such that, with probability 1 − O(n−3), all
nodes of a random geometric graph have degree smaller than c logn [24] provided
r = O(log1/d n). Therefore,

Pr
[

R(w1,w2) ≥ t
] ≤

(
1 − 1

c logn

)t

≤ exp

(
− t

c logn

)
.

If we set t = 3c log2 n, we obtain that Pr[R(w1,w2) ≥ 3c log2 n] ≤ O(n−3) and, by
Lemma 12, we conclude that R(w1,w2) ≤ 3c log2 n for all w1,w2 with probability
1 − O(n−1). �

Before proceeding, note that the lemma above shows that R(v1, v2) can be
bounded above by O(dG(v1, v2) log2 n). We will derive a much better bound in the
sequel.

Let r ′ be defined such that rc < r ′ < r . Note that such an r ′ exists since r > rc.
For convenience, write r ′ = r(1 − 2ε). Now let δ > 0 be sufficiently small and, using
the thinning property of Poisson point processes, split Pn into two Poisson point
processes P ′

n and P ′′
n with intensities 1 − δ and δ, respectively. Since r ′ > rc, we can

set δ sufficiently small so that G′ = G(P ′
n, r

′) contains a connected component of

size Ω(n) with probability 1 − e−Ω(n1−1/d ). Note also that G′ is a subgraph of G.
Our strategy to obtain an upper bound for R(v1, v2) is the following. First, we

assume that v1 and v2 belong to the largest connected component of G′. (We address
the case where they do not belong to the largest connected component of G′ at the
end of this section.) Then, we take a path in G′ from v1 to v2. Instead of calculating
the time it takes for the random broadcast algorithm to transmit the information along
this path, which gives a rather pessimistic upper bound, we enlarge the path using the
fact that G′ is a subgraph of G and calculate the time it takes for the random broadcast
algorithm to transmit the information along this enlarged path.
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Fig. 4 Illustration of the path considered to obtain R(v1, v2). The picture shows three consecutive nodes
ui−1, ui , and ui+1 of the path from v1 to v2 and the balls Xi−1, Xi , and Xi+1 around them. Two other
nodes w ∈ Xi and w′ ∈ Xi+1 are depicted to illustrate the edges that arise from the construction of the
Xi s

Let Eκ (v1, v2) be the event that there exists a path between v1 and v2 in G′ with
length at most κ . Let u1, u2, . . . , uk be a fixed minimal path from v1 to v2 in G′,
where u1 = v1, uk = v2 and k ≤ κ ; we use the nomenclature minimal to refer to the
property that, for all i and j with |i − j | > 1, the Euclidean distance between ui and
uj is larger than r ′. Note that, when Eκ (v1, v2) occurs, we can find such a path. Now,
for each i, we define the region Xi ⊆ Ω in the following way. Set X1 to be the point
where u1 is located and Xk to be the point where uk is located; for 2 ≤ i ≤ k − 1,
define Xi to be the ball with center at ui and radius εr . (Recall that ε ∈ (0,1/2) is
the value so that r ′ = r(1 − 2ε).) Our goal is to get an upper bound for R(v1, v2) by
following the path X1,X2, . . . ,Xk (refer to Fig. 4).

Define the random variable T (Xi,Xi+1), 1 ≤ i ≤ k − 1, as the time the random
broadcast algorithm takes to first inform a node in Xi+1 given that it started in a node
chosen uniformly at random from Xi . For convenience, we set T (Xi,Xi+1) = 0 for
all i ≥ k. Note that, for any two nodes w ∈ Xi and w′ ∈ Xi+1, the triangle inequality
and the definition of Xi give ‖w −w′‖2 ≤ 2εr +‖ui −ui+1‖2 ≤ r . Therefore, w and
w′ are neighbors in G. Moreover, for any i, once a given node inside Xi−1 sends the
information to a node in Xi , then the node that receives the information is a uniformly
random node from Xi . Thus, we set κ = C

‖v1−v2‖2
r

for some large constant C and
use the following lower bound:

Pr
[

R(v1, v2) ≤ ck
] ≥ Pr

[{
R(v1, v2) ≤ ck

} ∩ Eκ (v1, v2)
]
.

Once we know that Eκ (v1, v2) occurs, we can fix a minimal path u1, u2, . . . , uk ac-
cording to any arbitrary order of the nodes of G and write

Pr
[{

R(v1, v2) ≤ ck
} ∩ Eκ (v1, v2)

]

≥ Pr

[{
k∑

i=1

T (Xi,Xi+1) ≤ ck

}

∩ Eκ (v1, v2)

]

≥ Pr

[
k∑

i=1

T (Xi,Xi+1) ≤ ck

]

− (
1 − Pr

[
Eκ(v1, v2)

])
.

It is important to remark that, once we have fixed the path u1, u2, . . . , uk , the term
Pr[∑k

i=1 T (Xi,Xi+1) ≤ ck] can be estimated without any additional information
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on G. To see this, let Ψ be the subset of Ω consisting of the location of the
nodes u1, u2, . . . , uk and the points of Ω at which adding a node would violate the
condition that u1, u2, . . . , uk is a minimal path. Then, conditional on the existence
of this particular path, the Poisson point process over Ω \ Ψ remains unchanged.
Also, for this choice of κ , it follows from Theorem 3 (more precisely Eq. (4)) that
1 − Pr[Eκ (v1, v2)] = O(n−3) for all v1 and v2 such that ‖v1 − v2‖2 = ω(

logn

rd−1 ). So

we only need to derive a bound for Pr[∑k
i=1 T (Xi,Xi+1) ≤ ck] for any fixed choice

of u1, u2, . . . , uk that forms a minimal path.
Note that Lemma 19 gives T (Xk−1,Xk) = O(log2 n) with probability 1− O(n−1),

for each choice of v1 and v2. The next lemma gives the expectation of T (Xi,Xi+1)

for each 1 ≤ i ≤ k − 2.

Lemma 20 Given u1, u2, . . . , uk is a minimal path, for any 1 ≤ i ≤ k − 2, it holds
that T (Xi,Xi+1) is a geometric random variable with E[T (Xi,Xi+1)] ≤ c, for some
constant c depending only on d , ε and δ.

Proof Let w be a node chosen uniformly at random from Xi . Assume w �∈ Xi+1
(otherwise, the broadcast time from w to Xi+1 is zero). Let Y be the number of
neighbors of w in G and let Y ′ be 1 plus the number of nodes of P ′′

n in Xi+1, where
the term 1 is to account for ui+1. Therefore, E[T (Xi,Xi+1)] ≤ E[Y/Y ′]. We know
that Y ′ ≥ 1 and Y ′ −1 is a Poisson random variables with mean μ′ = δbdεdrd , where
bd is the volume of the d-dimensional ball of radius 1. We need to account for the fact
that the path is minimal according to G′, but non-adjacent nodes in the path may still
be neighbors in G. To solve this, note that there exists a constant K depending only
on d and ε such that the number of nodes in the path that are neighbors of a given
uj in G is at most K , which follows since the path u1, u2, . . . , uk is minimal with
respect to G′ and r ′ = (1 − 2ε)r . Also, note that Y ≥ Y ′ and we can use a coupling
argument to show that Y ≤ Y ′ +K +Y ′′, where Y ′′ is a Poisson random variable with
mean μ′′ = bdrd − δbdεdrd . We then obtain

E
[
T (Xi,Xi+1)

] ≤
∞∑

y′=0

∞∑

y′′=0

1 + y′ + K + y′′

1 + y′ Pr
[
Y ′ = 1 + y′]Pr

[
Y ′′ = y′′]

=
∞∑

y′=0

1 + y′ + K + μ′′

1 + y′ Pr
[
Y ′ = 1 + y′]

= 1 + K + μ′′

μ′
∞∑

y′=0

(μ′)y′+1

(y′ + 1)!e
−μ′

≤ 1 + K + μ′′

μ′ . �

Using a Chernoff bound for geometric random variables (cf. Lemma 21), we ob-
tain

Pr

[
k∑

i=1

T (Xi,Xi+1) ≥ (1 + x)ck

]

≤ exp

(
−x2 k

2(1 + x)

)
,
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where c is the constant in Lemma 20. Note that k = Θ(‖v1 − v2‖2/r) = Ω(logn)

by construction, since ‖v1 − v2‖2 = ω(log2 n), r = O(log1/d n) and the path
u1, u2, . . . uk is minimal.

Applying Lemma 12, we can conclude that, for any two nodes v1 and v2 in
the largest connected component of G for which ‖v1 − v2‖2 = ω(log2 n), we ob-
tain R(v1, v2) = Θ(‖v1 − v2‖2/r). Note that there exist v1, v2 ∈ G for which
‖v1 − v2‖2 = Θ(n1/d) and, consequently, R(v1, v2) = Θ(n1/d/r).

Now we treat the two remaining cases. First, since G′ is a subgraph of G, there
may exist some nodes in the largest connected component of G that do not belong
to the largest connected component of G′. Nevertheless, it is known that the sec-

ond largest component of a random geometric graph G′ contains O(log
d

d−1 n) nodes
with probability 1 − O(n−1) [24, Theorem 10.18]. Therefore, since R(w1,w2) =
O(log2 n) for every pair of neighbors w1 and w2, we conclude that the time it takes

to inform all the remaining nodes is O(log
d

d−1 +2 n), which is negligible in compari-
son to Θ(n1/d/r).

The second case corresponds to the nodes that are within Euclidean distance
O(log2 n) to the initially informed node, which is denoted here as v1. Take Q to
be a square centered at v1 with side length c log3 n, for some constant c (the orienta-
tion of Q does not matter). Note that Q contains all nodes within Euclidean distance
O(log2 n) of v1. Now, take Q′ to be a square centered at v1, with the same orienta-
tion as Q, but with sides having twice the length of the sides of Q. Clearly, Q′ \ Q is
an annulus centered at v1 and, by standard results on random geometric graphs [24,
Lemma 10.5 and Proposition 10.6], the probability that the intersection of the giant
component of G with the largest connected component of Q′ contains all the nodes
of Q that are connected to v1 is at least 1 − e−Ω(log3 n). This happens because, with
probability 1 − e−Ω(log3 n), Q′ has exactly one connected component with diameter
larger than c log3 n/5 and this component intersects the giant component of G. For all
nodes within Euclidean distance O(log2 n) of v1 that are connected to v1, there exists

a path from them to v1 completely contained in Q′; hence, this path has O(
log3d n

rd )

edges by Lemma 14 and Remark 15. So using Lemma 19 we conclude that all nodes

within Euclidean distance O(log2 n) to v1 are informed after O(
log3d+2 n

rd ) rounds,

which is also negligible in comparison to Θ(n1/d/r). This completes the proof of
Theorem 2. �

6 Conclusion

We have analyzed the performance of the random broadcast algorithm in random
geometric graphs in d dimensions. We proved that with probability 1 − O(n−1)

the algorithm finishes within O(n1/d/r + logn) steps, where r can be an arbitrary
value above the critical coverage radius for the emergence of a connected compo-
nent with Ω(n) nodes. We also showed that for any two nodes v1 and v2 such that
‖v1 − v2‖2 = ω(

logn

rd−1 ), the length of the shortest path between them in the random
geometric graph is O(‖v1 − v2‖2/r). In particular, this implies that the diameter of
the largest connected component is O(n1/d/r).
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Our techniques may be useful to analyze other problems like the cover time of
the largest connected component of RGGs. This would nicely complement results by
Cooper and Frieze for connected RGGs [6] and for the largest connected component
of Erdős-Rényi random graphs [5].

Appendix: Standard Large Deviation Results

Lemma 21 (Chernoff bound for sums of geometric variables) Let X1, . . . ,Xn be
independent geometric random variables, each having parameter p (and thus mean
1/p), and let X = ∑n

i=1 Xi . Then, for any ε > 0,

PrX ≥ (1 + ε)
n

p
≤ exp

(
− ε2

2(1 + ε)
n

)
.
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