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Abstract
We investigate language learning in the limit from text with various cautious learning restrictions.
Learning is cautious if no hypothesis is a proper subset of a previous guess. While dealing with a
seemingly natural learning behaviour, cautious learning does severely restrict explanatory (syntac-
tic) learning power. To further understand why exactly this loss of learning power arises, Kötzing
and Palenta (2016) introduced weakened versions of cautious learning and gave first partial results
on their relation.

In this paper, we aim to understand the restriction of cautious learning more fully. To this
end we compare the known variants in a number of different settings, namely full-information and
(partially) set-driven learning, paired either with the syntactic convergence restriction (explanatory
learning) or the semantic convergence restriction (behaviourally correct learning). To do so, we
make use of normal forms presented in Kötzing et al. (2017), most notably strongly locking and
consistent learning. While strongly locking learners have been exploited when dealing with a va-
riety of syntactic learning restrictions, we show how they can be beneficial in the semantic case as
well. Furthermore, we expand the normal forms to a broader range of learning restrictions, includ-
ing an answer to the open question of whether cautious learners can be assumed to be consistent,
as stated in Kötzing et al. (2017).
Keywords: language learning in the limit, inductive inference, behaviourally correct learning,
explanatory learning, cautious learning, normal forms

1. Introduction

Introduced by Gold (1967), in Computational Learning Theory we analyse the problem of algo-
rithmically learning a description of a formal language when successively presented all and only
the elements of that very language. For example, a learner h may be presented more and more
odd numbers divisible by three. After each new input, h outputs a description of a language as its
suggestion. While only being presented powers of three, the learner h might choose to output a
description of the set of all powers of three as its suggestion. Once it sees an odd number divisible
by three which is no power of three, it may change its mind to the set of all odd numbers divisible
by three.

In his pioneer paper, Gold (1967) introduced a first criterion when such learning can be consid-
ered successful, called explanatory learning. We define when a learner h (a computable function)
explanatory learns a target language L (a computably enumerable subset of the natural numbers).
The learner is successively presented all and only the elements of L. A list of such elements is called
a text T of the language L. With every new input, h makes a conjecture (a natural number inter-
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preted as code for a computably enumerable set) which language it believes to be presented. Once
h sticks to a single, correct description of the target language, we say that h successfully learned
the target language L on text T . If h learns L on every text T of L, denoted by T ∈ Txt(L), we
say that h TxtGEx-learned the language L. Here, Txt indicates that only positive examples of
the language are presented, G, for Gold-style or full-information learning, specifies that the learner
has full information on the elements presented so far and Ex stands for explanatory learning (giv-
ing a final, syntactically unchanging hypothesis explaining the data). Every single language can be
learned by a TxtGEx-learner which constantly outputs one and the same correct description of
the language. Thus, we are interested in learning classes of languages, where a single learner h has
to successfully TxtGEx-learn each member of the class.

We strive to investigate the learning power of TxtGEx-learners. To that end, we compare
the set of all TxtGEx-learnable classes, denoted as [TxtGEx], to other learning criteria. Such
restrictions may be modelled to reflect an expected behaviour or be inspired by learning observed in
nature. To provide an example, it seems natural that the suggestions of a learner always include the
information they are based on. This is known as consistent learning, denoted as Cons, see Angluin
(1980). Although being a seemingly natural learning behaviour, consistent learning is known to
severely lessen the learning power of explanatory learners, that is, [TxtGConsEx] ( [TxtGEx].
This is known as the inconsistency phenomenon, see Bārzdiņš (1977). This is due to TxtGEx-
learning requiring syntactic convergence for successful learning. In the semantic counterpart, where
the learner needs to converge to a semantically correct, but not syntactically identical description of
the target language, known as behaviourally correct learning (Bc), see Case and Lynes (1982) and
Osherson and Weinstein (1982), this phenomenon does not occur.

In this paper we investigate other seemingly natural learning restrictions, namely those which
prohibit overgeneralization. For example, suggesting more than the target language may seem as an
unnatural behaviour, especially considering that there is no way to refute this suggestion given only
positive information. Learners that are target cautious do not show such a behaviour, see Kötzing
and Palenta (2016). However, it is well-known that target cautious learners cannot achieve full learn-
ing power, see Kötzing and Palenta (2016). We prove that the same is true for the behaviourally cor-
rect case. Target cautious learning was proposed as an elegant way to deal with the more restrictive
cautious learning restriction (Caut), see Osherson et al. (1982), where the learner may never sug-
gest a proper subset of any of its previous conjectures. As both cautious learning restrictions present
a proper constraint, Kötzing and Palenta (2016) also investigated slightly different versions, in order
to understand where this unexpected loss in learning power comes from. They proposed learning
restrictions which are cautious only on finite, respectively infinite, suggestions, called finitely cau-
tious learning (CautFin), respectively infinitely cautious learning (Caut∞). While the behaviour
of these learners is well-known in the explanatory case, see Kötzing and Palenta (2016), we provide
the picture in the behaviourally correct case.

Another widely studied question in literature is whether learners need full information, G, to
maintain full learning power. For example, a learner may only be presented the set of elements
shown so far, called set-driven learning (Sd), see Wexler and Culicover (1980). This is known
to severely weaken unrestricted explanatory learning, see Fulk (1990). However, additionally pro-
viding the total amount of elements shown so far, called partially set-driven or rearrangement-
independent learning (Psd), see Schäfer-Richter (1984) and Blum and Blum (1975), is enough to
retain full learning power in this unrestricted case, see Fulk (1990). The question naturally trans-
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lates to restricted explanatory learning. While only partial results to this question are known, we
complete the picture for explanatory learning in Section 2, see Figure 1.
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Figure 1: Relation of [TxtβδEx] for β ∈ {G,Psd,Sd} and various learning restrictions δ. While
T indicates the absence of a restriction, black solid lines imply trivial inclusions (bottom-
to-top, right-to-left) and greyly edged areas illustrate a collapse of the enclosed learning
criteria. Our contributions are collected in Corollary 3, Lemma 4 and Theorem 5.

As semantic learners show a different behaviour in general, the question how cautious restric-
tions interfere with behaviourally correct learning is only natural. While obtaining the results for
Figure 1, searching for locking sequences turned out to be a fruitful approach. Intuitively, a (Bc)
locking sequence contains sufficient information for the learner to guess the target language cor-
rectly and to prevent the learner from ever (semantically) changing its mind whatever information
of the language is yet to come, see Jain et al. (1999). The partially set-driven and set-driven coun-
terparts are called (Bc) locking information and (Bc) locking set, respectively. We also use the
term (Bc) locking information to subsume all three concepts. While it is known that there are
learners and texts where no initial sequence is locking, Kötzing and Palenta (2016); Kötzing et al.
(2017) showed when this undesired property can be forgone. A learner where every text has an
initial sequence that serves as (Bc) locking sequence is called strongly (Bc) locking, see Kötzing
and Palenta (2016). While, for explanatory learning, many ways to search for locking information
are known, methods to do so in the behaviourally correct case are still sparse. In Section 3, we
propose first approaches on how to search for Bc-locking information, in order to obtain a full map
depicting how cautious learning restrictions interfere with Bc-learners, see Figure 2.
Furthermore, we have seen that consistency does not lessen the power of unrestricted Bc-learners
given full-information or (partially) set-driven information. In this case, we say that the restriction
allows for consistent Bc-learning. We ask, whether this holds true when adding further restric-
tions. While it is known that CautTar allows for consistent Bc-learning, see Kötzing et al. (2017),
in Section 3, we provide the results for the remaining restrictions of interest. Most notably, we
hereby solve an open problem stated by Kötzing et al. (2017).

Although syntactic learners are severely weaker than their semantic counterpart in general, com-
paring their learning power also gives interesting insights. Given the full pictures for explanatory
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Figure 2: Relation of [TxtβδBc] for β ∈ {G,Psd,Sd} and various learning restrictions δ.
While T indicates the absence of a restriction, black solid lines imply trivial inclu-
sions (bottom-to-top, right-to-left) and greyly edged areas illustrate a collapse of the en-
closed learning criteria. The only previously known results were [TxtSdCautTarBc] =
[TxtPsdCautTarBc], see Kötzing et al. (2017), and [TxtSdBc] ( [TxtPsdBc] =
[TxtGBc], see Fulk (1990) and Carlucci et al. (2006). Furthermore, all learning can be
assumed to be done consistently.

and behaviourally correct learning, see Figures 1 and 2, respectively, we draw the picture showing
the full comparison, see Figure 3. The only non-trivial result here is the separation for TxtGEx-
and TxtSdBc-learning, which follows from Fulk (1990) and Kötzing and Schirneck (2016).

GδBc PsdδBc

GδEx PsdδEx
Gδ′Bc Psdδ′Bc

SdδBc Sdδ′Bc

Gδ′Ex Psdδ′Ex

SdδEx Sdδ′Ex

δ ∈ {T,Caut∞}
δ′ ∈ {CautTar,Caut,CautFin}

Figure 3: Relation of all considered learning restrictions (Txt is omitted for convenience). While
T indicates the absence of a restriction, black solid lines imply trivial inclusions (bottom-
to-top) and greyly edged areas illustrate a collapse of the enclosed learning criteria.
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Throughout this paper we follow standard notations used in computability theory, for an over-
view see Rogers Jr. (1987). For the learning restrictions we follow Kötzing (2009). For a full
overview on the formal setting and used notation we refer the reader to the appendix. There, the
reader can also find the detailed proofs which are only sketched in the paper for reasons of space.

2. Cautious Ex-Learning

In this section, we provide a full map depicting the learning power of explanatory learners under
various cautious restrictions. Whatever information is provided, i.e. full-information, set-driven or
partially set-driven, cautious learners are known to achieve equal learning power as target cautious
learners, see Kötzing and Palenta (2016); Kötzing and Schirneck (2016). Furthermore, in the full-
information and set-driven case, these are as powerful as finitely cautious learners, see Kötzing and
Palenta (2016). In Corollary 3, we show that the same holds true for the partially set-driven case.
In addition, we show that partially set-driven information suffices, see Theorem 2 for the general
result and Corollary 3 for the application to the current case, while set-driven information does not,
see Lemma 4. Lastly, we show that just as in the full-information case, see Kötzing and Palenta
(2016), partially set-driven infinitely cautious learning is as powerful as its unrestricted counterpart,
see Theorem 5. As it is known that unrestricted partially set-driven learners are equally powerful
as their Gold-style counterpart while set-driven learners are not, see Fulk (1990), this concludes the
map. For convenience, we first gather the discussed known results in the next theorem.

Theorem 1 Let δ ∈ {T,Caut∞,CautTar,CautFin,Caut}. Then, we have

[TxtPsdCautEx] = [TxtPsdCautTarEx], (1)

[TxtGCautTarEx] = [TxtGCautEx] = [TxtGCautFinEx], (2)

[TxtSdδEx] = [TxtSdEx]. (3)

All of those are known to be separated from [TxtPsdEx] = [TxtGEx] = [TxtGCaut∞Ex].

To get the full map for cautions Ex-learning as shown in Figure 1, we first show that target
cautious learners do not need all information on the data given in order to maintain learning power,
i.e. the learning restrictions from Equations (1) and (2) are equal in learning power. To that end,
we make use of an idea from Fulk (1990), where an analogous result is shown for unrestricted ex-
planatory learning. There, the partially set-driven learner mimics the Gold-style learner on possible
locking sequences. It succeeds in learning once it finds the minimal such sequence.
We strive to generalize this result to a wide range of learning restrictions, namely, to restrictions δ
where each hypothesis fulfils a predicate P also depending on languages. Formally, a learner h
learns the language L under the restriction δ if and only if for every text T of the target language L
the sequence p of hypotheses made by h fulfils predicate P pointwise. Notationally, that is, δ(p, T )
if and only if for all i we have P (p(i), content(T )). As every suggested hypothesis has to fulfil P ,
mimicking the learner will also maintain this property. We state this insight in the next theorem.

Theorem 2 Let P be a predicate on hypotheses and languages. Let δ be a learning restriction
such that

δ(p, T )⇔ ∀i : P (p(i), content(T )).

Then, [TxtPsdδEx] = [TxtGδEx].
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As target cautiousness depends only on the target language and the current hypothesis at a time,
Theorem 2 can be applied to show that the learning restrictions from Equations (1) and (2) coincide
in learning power.

Corollary 3 We have [TxtPsdCautTarEx] = [TxtGCautTarEx] and, in particular, for β ∈
{G,Psd} and δ ∈ {CautTar,CautFin,Caut}, we have [TxtβδEx] = [TxtGCautEx].

Next, we show that the learning restrictions from Equations (1) and (2) separate from the learn-
ing restrictions in Equation (3). We do so by showing the existence of a class of languages which
can be learned under the first restriction, but not the latter. This is done using self-learning classes,
see Case and Kötzing (2016), and the Operator Recursion Theorem, see Case (1974).

Lemma 4 We have [TxtPsdCautEx] \ [TxtSdEx] 6= ∅.

To obtain the missing piece of Figure 1, we show that explanatory learners, if ever, only need to
fall back to finite subsets of previous hypotheses. That is, Caut∞ does not form a restriction in the
partially set-driven case. We carry over the idea from the full-information proof, see Kötzing and
Palenta (2016), where infinite sets were only enumerated if the underlying sequence was a locking
sequence. As no information on the elements’ presented order is available in partially set-driven
learning, we have to put some additional work into choosing the right hypothesis to output.

Theorem 5 We have [TxtPsdCaut∞Ex] = [TxtPsdEx]. Particularly, for β ∈ {G,Psd}
and δ ∈ {T,Caut∞}, we have [TxtβδEx] = [TxtGEx].

3. Cautious Bc-Learning

In the last section we have obtained a full comparison of the cautious learning variants for explana-
tory learning, see Figure 1. In this section, we do the same for the behaviourally correct case, see
Figure 2. While the unrestricted learning behaves just as its syntactic counterpart, see Fulk (1990)
and Carlucci et al. (2006), target cautious set-driven learners do accomplish the same learning power
as their partially set-driven counterparts, see Kötzing et al. (2017). Again, we gather the discussed
results for convenience.

Theorem 6 We have

[TxtSdBc] ( [TxtPsdBc] = [TxtGBc],

[TxtSdCautTarBc] = [TxtPsdCautTarBc]. (4)

Target cautious learning already shows a different behaviour than the explanatory counterpart,
see Equation (4), indicating that this map will turn out differently. For the remaining, we elaborate
the set-driven part in Section 3.1, and then continue with incorporating the partially set-driven and
full-information results in Section 3.2.
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3.1. Forward Verification and Backwards Search

We have seen that set-driven explanatory learners can be assumed to be cautious without losing
learning power. We show that the same holds true in the behaviourally correct case, see Theorem 9.
We will do so stepwise. For the further discussion, let h be a learner, let L be a target language and
let σ, τ ∈ L∗# be finite sequences of elements from L# := L ∪ {#}, where # is a pause symbol.

As we have seen, searching for locking sequences for h is a fruitful attempt in order to attain
the learning power of h. While in explanatory learning, where syntactic convergence is required,
h(σ) 6= h(στ) implies that σ cannot be a locking sequence for h on L, this does not hold true for
the semantic counterpart. We elaborate a way to search for Bc-locking sequences. By doing so, we
show that, amongst other useful properties, Sd-learning can be done target cautiously in general. In
the set-driven behaviourally correct case, the Weak Forward Verification (WFV), see Algorithm 1,
serves as a first step to circumvent this problem.

Algorithm 1: Weak Forward Verification (WFV), hw
Parameter: Sd-learner h, function enum such that ∀e : We = range(enum(e, .)).
Input: Finite set D ⊆ N.
Semantic Output: Whw(D) =

⋃
i∈NEi.

Initialization: E0 ← D.
1 for i = 0 to∞ do
2 xi ← enum(h(D), i)
3 if xi /∈ Ei then
4 for D′, D ⊆ D′ ⊆ Ei ∪ {xi} do
5 search for t such that Ei ∪ {xi} ⊆W t

h(D′)

6 end
7 end
8 Ei+1 ← Ei ∪ {xi}
9 end

The intuition is the following. Given a finite input D ⊆ L, WFV will start by enumerating
D. Now, at step i, let Ei be what WFV has enumerated so far and let xi be the element newly
enumerated by h(D), see line 2. If D were a Bc-locking set for h on L, every possible next
hypothesis h(D′), with D ⊆ D′ ⊆ Ei ∪ {xi}, would have to witness at least Ei ∪ {xi}, see lines 4
and 5. If all of this is witnessed, chances that D is a Bc-locking set are still sustained, thus, WFV
enumerates xi and continues with step i+ 1.

As every Sd-learner is strongly Bc-locking, see Kötzing et al. (2017), the WFV algorithm,
upon enumerating the whole target language L, also has to enumerate Bc-locking sets for h on L.
These sets, in the checking phase of the WFV, see lines 4 and 5, will prevent the algorithm from
enumerating more than the target language, resulting in target cautious learning.

Lemma 7 We have [TxtSdCautTarBc] = [TxtSdBc].

The WFV approach is extendable. While we wait for every possible hypothesis h(D′) to witness
at least Ei ∪ {xi}, other elements could be witnessed as well, that is, for the minimal t in line 5
of Algorithm 1 we have Ei ∪ {xi} ( W t

h(D′). We show how to exploit such elements in the
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search for Bc-locking sets. If D, and thus every D′ as well, were Bc-locking sets, all elements in
W t
h(D′) must be elements of the target language, and thus every hypothesis h(D′) also would have

to witness these elements. We capture the idea of extending the check from Algorithm 1, lines 4
and 5, in the Strong Forward Verification (SFV), see Algorithm 2, lines 4-8. For later usage, we
state the algorithm in a generalized form, accepting any β-learner.

Algorithm 2: Strong Forward Verification (SFV), hs
Parameter: Learner h, function enum such that ∀e : We = range(enum(e, .)).
Input: Finite sequence σ.
Semantic Output: Whs(σ) =

⋃
i∈NEi.

Initialization: E0 ← D.
1 for i = 0 to∞ do
2 xi ← enum(h(σ), i)
3 if xi /∈ Ei then
4 for τ ′′ ∈ (Ei ∪ {xi})≤i# do
5 sτ ′′ ← min{s : Ei ∪ {xi} ⊆W s

h(στ ′′)}
6 end
7 for τ ′ ∈ (Ei ∪ {xi})≤i# do
8 search for t such that

⋃
τ ′′∈(Ei∪{xi})≤i#

W
sτ ′′
h(στ ′′) ⊆W

t
h(στ ′)

9 end
10 end
11 Ei+1 ← Ei ∪ {xi}
12 end

The extended forward verification yields useful properties. We gather these in the next propo-
sition, extending some which have been observed already by Carlucci et al. (2006) and providing
new ones.

Proposition 8 Let β ∈ {G,Psd,Sd}. Given a learner h and with it the learner hs as built in
Algorithm 2, the following properties hold.

(i) If h is a β-learner, then hs is a β-learner which is consistent on arbitrary input.

(ii) If σ0 is a Bc-locking information for h on some L ⊆ N, then σ0 is a Bc-locking information
for hs on L.

(iii) For1 β 6= G target cautious learning is preserved by the learner hs, that is, we have that
TxtβCautTarBc(h) ⊆ TxtβCautTarBc(hs).

(iv) If Whs(σ) is infinite, then Whs(σ) = Wh(σ) =: L and σ is a Bc-locking information for h and
hs on L.

(v) If L ∈ TxtβCautTarBc(h) and σ0 is a Bc-locking information for hs on L, then σ0 is a
Bc-locking information for h on L.

1. As it will turn out, the same holds true for β = G, see Corollary 11.
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(vi) Let h, and thus hs, be Sd-learners. Let D0 be a Bc-locking set for h on some L. Then, for
D with either (a) D ⊆ D0 or (b) D0 ⊆ D ⊆ L, we have

D0 ⊆Whs(D) ⇒Whs(D) ⊆ L.

So far, we have seen various ways to search for Bc-locking sequences. While this search main-
tains Bc-learning and provides interesting properties, cautious learning seems to be unattainable
this way. We establish a way to solve this problem. As in cautious learning preceding hypotheses
remain important, we include these into the enumeration. Let h be a learner andD some finite input.
We start by enumerating E0 = D. At step i, let Ei be the elements enumerated so far. It seems like
a promising idea to check whether for some D′ ⊆ D a previous hypothesis h(D′) exceeds what is
enumerated so far, i.e. whether we have Ei ⊆ W i

h(D′). If so, for the first such occurring hypothesis
h(D′), enumerate W i

h(D′) and proceed with the next step. This idea is captured in the Backwards
Search (BS), see Algorithm 3.

Algorithm 3: Backwards Search (BS), hb
Parameter: Sd-learner h.
Input: Finite set D ⊆ N.
Semantic Output: Whb(D) =

⋃
i∈NEi.

Initialization: E0 ← D.
1 for i = 0 to∞ do
2 if ∃D′ ⊆ D : W i

h(D′) ) Ei then
3 for the first such D′: Ei+1 ←W i

h(D′)

4 else
5 Ei+1 ← Ei
6 end
7 end

Unfortunately, in general, this approach does not provide cautious learning. This is due to more
information D yielding more possible previous hypotheses h(D′) which can lead the strategy from
Algorithm 3 to wrong hypotheses. However, by combining the SFV and the BS and by exploiting
Proposition 8 (iv) and (vi), we can circumvent this problem. In the next theorem, we use τ(δ) to
indicate that the restriction δ is also satisfied on arbitrary input.

Theorem 9 We have [τ(Cons)TxtSdCautBc] = [TxtSdBc].

Proof The inclusion [τ(Cons)TxtSdCautBc] ⊆ [TxtSdBc] follows immediately. For the
other direction, let h be a total learner and let L ∈ TxtSdBc(h), that is, the language L can
be TxtSdBc-learned by h. By Lemma 7, we may assume L ∈ TxtSdCautTarBc(h). By
Proposition 8 (iii), we may even assume the learning to be done by hs from Algorithm 2, i.e.
L ∈ TxtSdCautTarBc(hs). This way, we are allowed to exploit Proposition 8. Now, let hb be as
in Algorithm 3 with hs as parameter. We will show L ∈ TxtSdConsCautBc(hb) step by step.

First, we show that L ∈ TxtSdBc(hb). Let T ∈ Txt(L). For finite L, let n0 be such that
content(T [n0]) = L. Then, for all n ≥ n0, we get Whb(content(T [n])) = L as Whb(content(T [n]))

starts by enumerating L and never enumerates any more elements as ¬
(
∃D′ ⊆ L : Whs(D′) ) L

)
9
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due to hs being CautTar.
For infinite L, let n0 be such that D0 := content(T [n0]) is a Bc-locking set for hs on L, see
Kötzing et al. (2017). Let n ≥ n0 and D := content(T [n]). We study the candidates for a possible
enumeration, i.e. D′ ⊆ D, with Whs(D′) ⊇ D. We may have the following two situations.

(I) Either Whs(D′) is infinite and, due to2 Proposition 8 (iv), equal to L,

(II) or Whs(D′) is finite and, due to Proposition 8 (vi), a subset of L.

As D ⊇ D0, there exists a D′ fulfilling (I). As these are the only candidates to be enumerated into
Whb(D), we observe Whb(D) ⊆ L.
To prove L ⊆ Whb(D), assume the opposite, that is, there exists some x ∈ L \Whb(D). For each
D′ ⊆ D with D ⊆ Whs(D′) define sD′ in the following way. Either, if x is enumerated into
Whs(D′), then sD′ is the last step before that very enumeration. Or, if x is never to be enumerated
into Whs(D′), then Whs(D′) must be finite as it cannot be equal to L, see (I). In this case, sD′ will be
the first step where the enumeration of Whs(D′) is finished. Formally, we define

sD′ :=

max
{
s : x /∈W s

hs(D′)

}
, x ∈Whs(D′),

min
{
s : W s

hs(D′)
= Whs(D′)

}
, else.

So, no later than at step max{sD′ : D′ ⊆ D ∧D ⊆Whs(D′)} the enumeration of Whb(D) has to be
finished, as any further enumeration would result in x being an element of Whb(D). However, then
Whb(D) is a finite subset of L. Since there exists at least oneD′ fulfilling (I), the enumeration would
have to continue, and thus enumerate x into Whb(D), a contradiction to the assumption. Altogether,
we have Whb(D) = L and thus TxtSdCautTarBc(hs) ⊆ TxtSdBc(hb).

Next, we want to show that hb is Caut. In order to do so, assume the opposite, i.e. there exist
D1 ⊆ D2, with D2 ⊆ L, such that Whb(D1) )Whb(D2). For finite Whb(D2), let i0 be the step where
Whb(D2) is completely enumerated, that is,W i0

hb(D2)
= Whb(D2). AsWhb(D1) )Whb(D2), there also

must exist some i1 ≥ i0 such that W i1
hb(D1)

) W i0
hb(D2)

. Without loss of generality, we may assume

that i1 is also the point where W i1
hb(D1)

got enumerated, i.e. W i1
hs(D′)

= W i1
hb(D1)

for some D′ ⊆ D1.

But now, since D′ ⊆ D2 and W i1
hs(D′)

= W i1
hb(D1)

) W i1
hb(D2)

, the enumeration of Whb(D2) would
have to continue, a contradiction.
If Whb(D2) is infinite, then there exists D′′ ⊆ D2 such that Whs(D′′) = Whb(D2) is infinite and thus,
by Proposition 8 (iv), D′′ is a Bc-locking set for hs on Whs(D′′). Analogously, since Whb(D1) )
Whb(D2), Whb(D1) is infinite too, and there also exists some D′ ⊆ D1 such that Whs(D′) = Whb(D1)

and thus D′ is a Bc-locking set for hs on Whs(D′). However, D2 ⊆Whs(D′′) (Whs(D′) and D2 is
a superset of both D′ and D′′. Hence, D2 is a Bc-locking set for hs on both Whs(D′) and Whs(D′′),
which are different, a contradiction.

Observing that hb is τ(Cons) by definition, we get L ∈ τ(Cons)TxtSdCautBc(hb), which
finishes the proof.

2. By Proposition 8 (iv), D′ must be a Bc-locking set for hs on Whs(D′). Now, as D ⊇ D0 and D ⊇ D′, D must be
both a Bc-locking set for hs on L and Whs(D′), respectively. Thus, L =Whs(D′).

10
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3.2. When full-information learning is necessary

In the previous section we completed the behaviourally correct set-driven map. It remains to study
the full-information and partially set-driven case. Firstly, we show that for CautTar and CautFin
these are equal in learning power, see Corollary 11 and Theorem 12, respectively. Afterwards, we
show how Caut∞ fits into the picture, see Theorem 13. In the end, we get Corollary 14 which
provides the whole picture.

We start by showing when full-information and partially set-driven learners may be assumed
equally powerful, just as in Theorem 2 in the explanatory case. Unfortunately, the same approach
does not bear fruits, as, although performing a search for Bc-locking sequences, we do not mimic
the learner. Rather, we enumerate the learner’s output on possible Bc-locking sequences, as dis-
cussed in private communication with Jain (2017). If, for certain languages, the Gold-style learner
refrains from suggesting more than the target language, our enumeration can maintain this be-
haviour. To formally cover this in the next theorem, recall the setup in Section 2, just before
Theorem 2, regarding the notation used. Again, we use τ(δ) to indicate that the restriction δ is
also satisfied on arbitrary input.

Theorem 10 Let P be a predicate on languages. Let δ be a learning restriction such that

δ(p, T )⇔
(
P (content(T ))⇒ CautTar(p, T )

)
.

Then,

1. δ allows for consistent Bc-learning, that is, for any interaction operator β ∈ {G,Psd,Sd}
we have [τ(Cons)TxtβδBc] = [TxtβδBc], and

2. [TxtPsdδBc] = [TxtGδBc].

In Theorem 10, choosing > as predicate P results in target cautious learning, immediately
providing the following corollary.

Corollary 11 We have

[TxtPsdCautTarBc] = [TxtGCautTarBc].

To deal with CautFin, we introduce a slightly less restrictive version on which we can apply
results established throughout this paper. In its core, this is a similar approach to Kötzing and
Palenta (2016) introducing CautTar in order to deal with Caut.

Theorem 12 We have

[TxtSdCautFinBc] = [TxtPsdCautFinBc] = [TxtGCautFinBc].

To conclude the behaviourally correct cautious map, it remains to show that infinitely cautious
learning, i.e. Caut∞, does not restrict the learning power of full-information and partially set-
driven learners. We use the same idea as in the explanatory case, namely by ensuring that infinite
suggestions only occur when the underlying information is a Bc-locking information. We use the
SFV, see Algorithm 2, to do so.

11
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Lemma 13 We have [τ(Cons)TxtPsdCaut∞Bc] = [TxtPsdBc].

Using the results obtained throughout Sections 3.1 and 3.2, we can sum up the map depicted in
Figure 2 in the following corollary.

Corollary 14 For δ ∈ {Caut,CautTar,CautFin} and β ∈ {G,Psd,Sd} as well as δ′ ∈
{T,Caut∞} and β′ ∈ {G,Psd}, we have

[τ(Cons)TxtSdCautBc] = [TxtβδBc] = [TxtSdBc],

[τ(Cons)TxtPsdCaut∞Bc] = [Txtβ′δ′Bc] = [TxtGBc].

In particular, the previous result shows that any cautious learning restriction can be assumed con-
sistent in general. This answers an open problem stated by Kötzing et al. (2017), namely whether
Caut learning can be done consistently. Furthermore, it answers the same question for all consid-
ered cautious restrictions.

Corollary 15 Let δ ∈ {T,Caut∞,CautTar,CautFin,Caut}. Then, δ allows for consistent
Bc-learning, that is, for β ∈ {G,Psd,Sd} we have [τ(Cons)TxtβδBc] = [TxtβδBc],

4. Conclusion and Future Work

We have shown how cautious learning restrictions interfere with learning power in several learning
settings. In particular, we give a full overview of all pairwise relations of the learning restrictions
considered, as depicted in Figures 1, 2 and 3. To obtain the syntactic cautious map, namely Figure 1,
we conducted searches for locking sequences as done in previous literature, see Blum and Blum
(1975); Fulk (1990); Kötzing and Palenta (2016) for example. However, ways to exploit Bc-locking
sequences in the semantic counterpart are not prevalent. We propose first approaches to do so,
namely with the Weak and Strong Forward Verification, see Algorithms 1 and 2, respectively. While
these only serve as a first step to search for Bc-locking sequences, it remains open how these
searches can be beneficial in other settings, that is, when investigating other learning criteria, see
Jain et al. (1999) for an overview.

Furthermore, we also focused on consistency. While syntactic learning is known to be restricted
by consistency, many semantic learning restrictions are not. Unrestricted behaviourally correct
learning, in addition to target cautious learning are only a few examples, see Kötzing et al. (2017).
We extend this list, adding all restrictions considered in this paper. In particular, this solves an open
problem stated by Kötzing et al. (2017). Extending this list further is left for future research.
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Jānis M. Bārzdiņš. Inductive inference of automata, functions and programs. In American Mathe-
matical Society Translations, pages 107–122, 1977.

Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125–155, 1975.

Manuel Blum. A machine-independent theory of the complexity of recursive functions. Journal of
the ACM, 14:322–336, 1967.

Lorenzo Carlucci, Sanjay Jain, Efim B. Kinber, and Frank Stephan. Variations on U-shaped learn-
ing. Information and Computation, 204:1264–1294, 2006.

John Case. Periodicity in generations of automata. Mathematical Systems Theory, 8:15–32, 1974.

John Case and Timo Kötzing. Strongly non-U-shaped language learning results by general tech-
niques. Information and Computation, 251:1–15, 2016.

John Case and Christopher Lynes. Machine inductive inference and language identification. In
Proceedings of the 9th International Colloquium on Automata, Languages and Programming
(ICALP), pages 107–115, 1982.

John Case and Samuel E. Moelius. Optimal language learning from positive data. Information and
Computation, 209:1293–1311, 2011.

Mark A. Fulk. Prudence and other conditions on formal language learning. Information and Com-
putation, 85:1–11, 1990.

E. Mark Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.

Sanjay Jain. Personal communication, 2017.

Sanjay Jain, Daniel Osherson, James S. Royer, and Arun Sharma. Systems that Learn: An Introduc-
tion to Learning Theory. MIT Press, Cambridge (MA), Second Edition, 1999.

Timo Kötzing and Raphaela Palenta. A map of update constraints in inductive inference. Theoretical
Computer Science, 650:4–24, 2016.

Timo Kötzing and Martin Schirneck. Towards an atlas of computational learning theory. In Pro-
ceedings of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS), pages
47:1–47:13, 2016.

Timo Kötzing, Martin Schirneck, and Karen Seidel. Normal forms in semantic language identi-
fication. In Proceedings of the 28th International Conference on Algorithmic Learning Theory
(ALT), pages 76:493–76:516, 2017.

Timo Kötzing. Abstraction and Complexity in Computational Learning in the Limit. PhD thesis,
University of Delaware, 2009.

13



CAUTIOUS LIMIT LEARNING

Daniel Osherson, Michael Stob, and Scott Weinstein. Systems that Learn: An Introduction to Learn-
ing Theory for Cognitive and Computer Scientists. MIT Press, Cambridge (MA), 1986.

Daniel N. Osherson and Scott Weinstein. Criteria of language learning. Information and Control,
52:123–138, 1982.

Daniel N. Osherson, Michael Stob, and Scott Weinstein. Learning strategies. Information and
Control, 53:32–51, 1982.

Hartley Rogers Jr. Theory of recursive functions and effective computability. Reprinted by MIT
Press, Cambridge (MA), 1987.
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Appendix A. Language Learning in the Limit

In this section we collect the notations and preliminary results used throughout this paper. For a
background on computability theory we refer to Rogers Jr. (1987). For the learning restrictions, we
follow the system given by Kötzing (2009).

A.1. Preliminaries

Starting with the mathematical notation, we use ( and ⊆ to denote the proper subset and subset
relation between sets, respectively. With ⊆Fin we denote finite subsets. With N = {0, 1, 2, . . . }
we denote the set of all natural numbers and, if not stated otherwise, e, i, j, k, n, s, t are elements
thereof. We let P and R be the set of all partial and total functions p : N → N, respectively. The
subset of all computable (partial) functions is (P) R. We fix an effective numbering {ϕe}e∈N of
P and let We = dom(ϕe) denote the e-th computably enumerable set. This way, we interpret the
natural number e as a hypothesis for the set We.

We aim to learn recursively enumerable sets L ⊆ N, also called languages. A learner is a
partial computable function h ∈ P . By # we denote the pause symbol and for any set S we denote
S# := S ∪ {#}. We use an enumeration function enum(., .), where for every e ∈ N we have
We = range(enum(e, .)). A text is a total function T : N → N ∪ {#}, the collection of all texts
is Txt. For any text or sequence T , we let content(T ) := range(T ) \ {#} be the content of T .
A text T of a language L is such that content(T ) = L, the collection of all texts of L is Txt(L).
By T [n] we denote the initial sequence of T of length n, i.e. T [n] := (T (0), . . . , T (n − 1)) and
T [0] := ε. On finite sequences, we use ⊆ to denote the extension relation and ≤ to denote the order
on sequences interpreted as natural numbers. Also, we define an order � on tuples of the form
(D, t), where D ⊆ N and t ∈ N, as (D, t) � (D′, t′) iff t ≤ t′ and there is a text T ∈ Txt such
that content(T [t]) = D and content(T [t′]) = D′.

For learning, an interaction operator is an operator β which takes a learner h ∈ P and a text
T ∈ Txt as arguments and outputs a possibly partial function p. Intuitively, β defines what kind
of information the learner will have available to produce its guesses. For example, the interaction
operators G for full-information or Gold-style learning, see Gold (1967), Psd for partially set-
driven or rearrangement independent learning, see Schäfer-Richter (1984) and Blum and Blum
(1975), and Sd for set-driven learning, see Wexler and Culicover (1980), are defined as

G(h, T )(i) := h(T [i]),

Psd(h, T )(i) := h(content(T [i]), i),

Sd(h, T )(i) := h(content(T [i])).

While the Gold-style learner has full information on the input, the partially set-driven learner has
no information on the order of the input, and the set-driven learner only has access to the elements
presented.

We can distinguish between different criteria for successful learning. E.g., one could require
the learner to syntactically converge to the correct hypothesis, known as explanatory learning Ex,
see Gold (1967), or to semantically converge to the correct hypothesis, which then is called be-
haviourally correct learning Bc, see Case and Lynes (1982) and Osherson and Weinstein (1982).
Formally, a learning restriction is a predicate δ defined on a total learning sequence, i.e. total func-
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tion, p and a text T ∈ Txt. So, we have

Ex(p, T ) :⇔ ∃n0 ∀n ≥ n0 : p(n) = p(n0) ∧Wp(n) = content(T ),

Bc(p, T ) :⇔ ∃n0 ∀n ≥ n0 : Wp(n) = content(T ).

To model certain learning behaviours found in nature, one can add further restrictions to the hy-
potheses on the way. For example, it may seem reasonable not to suggest strictly less than any
previous hypothesis. We call such behaviour cautious learning (Caut), see Osherson et al. (1986).
Formally,

Caut(p, T ) :⇔ ∀i < j : ¬(Wp(j) (Wp(i)).

In order to deal with a restriction that affects more than one hypothesis at a time, it proved useful
to add stepwise more lenient restrictions. In the case of cautious learning, this has been done in
Kötzing and Palenta (2016). There, three different types of cautious learning were introduced,
namely target cautious (CautTar), infinitely cautious (Caut∞) and finitely cautious (CautFin)
learning. Intuitively, target cautious learning prevents the learner from outputting proper supersets
of the target language, while infinite and finite cautiousness demand cautiousness only on infinite
or finite instances, respectively. Formally, we define

CautTar(p, T ) :⇔ ∀i : ¬(content(T ) (Wp(i)),

Caut∞(p, T ) :⇔
(
∀i < j : Wp(j) (Wp(i) ⇒Wp(j) is finite

)
,

CautFin(p, T ) :⇔
(
∀i < j : Wp(j) (Wp(i) ⇒Wp(j) is infinite

)
.

Finally, the constantly true predicate T denotes the absence of a learning restriction.
Now, a learning criterion is a tuple (α, C, β, δ), where C is a set of admissible learners, typically

P orR, β is an interaction operator and α and δ are learning restrictions. We write τ(α)CTxtβδ to
denote this learning criterion, omitting C in case of C = P and the learning restriction if it equals T.
For an admissible learner h ∈ C, we say that h τ(α)CTxtβδ-learns a language L iff on arbitrary
texts T ∈ Txt we have α(β(h, T ), T ), and on texts for the target language T ∈ Txt(L) we have
δ(β(h, T ), T ). With τ(α)CTxtβδ(h) we denote the class of languages τ(α)CTxtβδ-learned by
h, and with [τ(α)CTxtβδ] the set of all τ(α)CTxtβδ-learnable classes of languages.

A.2. Normal Forms

When mathematically dealing with learners, certain properties come in handy. For example, it is
more convenient if the learner may be assumed to be total. Kötzing and Palenta (2016); Kötzing
et al. (2017) state when this is the case. For example, Kötzing and Palenta (2016) show that this is the
case for full-information delayable restrictions. Informally, a restriction is delayable if hypotheses
can be postponed arbitrarily, but not indefinitely. Formally, a learning restriction δ is delayable iff
for all texts T and T ′ with content(T ) = content(T ′), all learning sequences p and all unbounded
non-decreasing functions r, if δ(p, T ) and, for all n, content(T [r(n)]) ⊆ content(T ′[n]), then
δ(p ◦ r, T ′). A learning restriction δ is called semantic if for any learning sequences p, p′ and
text T , δ(p, T ) and, for all n, Wp(n) = Wp′(n) implies δ(p′, T ). Intuitively, any hypothesis could
be replaced by any semantically equivalent hypothesis. By Kötzing et al. (2017), the learners for
any semantic learning restrictions can be assumed to be total. Thus, we may assume all semantic
learners considered to be total.
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Another very useful object of desire are so-called locking sequences. They encapsulate suffi-
cient information for the learner to identify the target language and prevent it from changing its
mind anymore. Formally, let h ∈ P be a G-learner. A sequence σ ∈ L∗# is called locking se-
quence for h on L iff for every sequence τ ∈ L∗# we have h(σ) = h(στ) and Wh(στ) = L, see
Blum and Blum (1975). The transfer to the Psd and Sd case is immediate. An information (D, t)
is called locking information for h on L iff for every (D′, t′) � (D, t), with D′ ⊆ L, we have
h(D, t) = h(D′, t′) and Wh(D′,t′) = L. A set D is called locking set for h on L iff for every D′,
with D ⊆ D′ ⊆ L, we have h(D) = h(D′) and Wh(D′) = L. We use the term locking information
to subsume all three cases. The three Bc-equivalents are defined analogously, for completeness,
we state the G-case. A sequence σ ∈ L∗# is called Bc-locking sequence for h on L iff for every
sequence τ ∈ L∗# we have Wh(στ) = L, see Jain et al. (1999). By an important observation by
Blum and Blum (1975), every learner has a (Bc-) locking sequence. However, it is well-known that
there are learners where no initial sequence of a given text serves as locking sequence. In certain
cases, such undesired behaviour can be bypassed, as shown in Kötzing and Palenta (2016); Kötzing
and Schirneck (2016); Kötzing et al. (2017). Following them, we call a learner h strongly (Bc-)
locking on some language L iff for every text T ∈ Txt(L) there exists a position n0 such that T [n0]
is a (Bc-) locking sequence. If h is strongly (Bc-) locking on every language it learns, then we call
h strongly (Bc-) locking. The transfer to the Psd- and Sd-case is omitted because it is immediate.

Lastly, consistency will play a key role. We say that learning is consistent if the hypotheses
always include the current information. Formally,

Cons(p, T ) :⇔ ∀i : content(T [i]) ⊆Wp(i).

Although being a natural requirement, consistency can form a severe restriction at times, see Fulk
(1990). The picture changes when considering the Bc-case. We say a restriction δ allows for
consistent Bc-learning iff, for every β ∈ {G,Psd,Sd}, every language learned TxtβδBc can be
learned τ(Cons)TxtβδBc. By Kötzing et al. (2017), we already know that T and CautTar allow
for consistent Bc-learning. We will later extend this to all considered restrictions.

Appendix B. Omitted Proofs of Section 2

Theorem 2 Let P be a predicate on hypotheses and languages. Let δ be a learning restriction such
that

δ(p, T )⇔ ∀i : P (p(i), content(T )).

Then, [TxtPsdδEx] = [TxtGδEx].

Proof The inclusion [TxtPsdδEx] ⊆ [TxtGδEx] is trivial. For the other, let h be a learner and
L ∈ TxtGδEx(h). As δ is delayable, we may assume h to be total without losing generality, see
Kötzing and Palenta (2016). Now, we define a learner h′ to search for the minimal, possible locking
sequence given a finite set D and t ≥ 0 as information. Formally, with D≤t# being the set of all
sequences of elements in D# := D ∪ {#} of at most length t, we define h′ as

MD,t :=
{
σ ∈ D≤t# | ∀τ ∈ D

≤t
# : h(σ) = h(στ)

}
,

h′(D, t) :=

{
h (min(MD,t)) , MD,t 6= ∅,
h(ε), else.
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To show that L ∈ TxtPsdδEx(h′), we first show that L ∈ TxtPsdEx(h′). To that end, let
T ∈ Txt(L). By Blum and Blum (1975) there exists a locking sequence σ for h on L. Let σ0 be a
minimal such locking sequence. Now, let n0 be large enough such that, usingD0 := content(T [n0])
for notational convenience,

• content(σ0) ⊆ D0,

• |σ0| ≤ n0 and

• for all σ′ < σ0 there exists τ ′ ∈ (D0)
≤n0

# witnessing σ′ /∈MD0,n0 .

Then, min(MD0,n0) = σ0. Thus, for n ≥ n0 we have h′(content(T [n]), n) = h(σ0), and
Wh′(content(T [n]),n) = Wh(σ0) = L. Thus, L ∈ TxtPsdEx(h′).

It remains to show that h′ retains the restriction δ. As content(T ) = L, it suffices to show that
for every σ′ ∈ L∗# we have P (h′(σ′), L). By definition, there exists σ ∈ L∗# such that h′(σ′) =
h(σ). As P (h(σ), L), we also have P (h′(σ′), L), concluding the proof.

Lemma 4 We have [TxtPsdCautEx] \ [TxtSdEx] 6= ∅.

Proof The same proof as for a more restrictive case works for this setting as well, see Kötzing
and Schirneck (2016). We include it here for completeness. We interpret natural numbers as coded
triples of natural numbers. Let πi denote the projection of such triples onto their i-th coordinate.
Furthermore, let Φ denote a fixed Blum complexity measure, see Blum (1967). In particular, there
is an algorithm which, given a program p, an input value x and a time t, decides whether Φp(x) > t
holds. Let p0 be an index of the empty set and p1 be an index of the set N of all natural numbers. By
the S-m-n Theorem, there is a total computable function join ∈ R such that, for all numbers e and
all finite sets D, we have Wjoin(e,D) = We ∪D. For any number t and any finite set D, we consider
the following total learner

h(D, t) :=


p0, D = ∅,
p1, else, if ∃x, y ∈ D ∃i ∈ {1, 2} : πi(x) 6= πi(y),

e, else, if ∃p : ((∀x ∈ D ∃i : x = 〈e, p, i〉) ∧ Φp(0) > t),

join(e,D), else.

First, we argue why the learner h is cautious on arbitrary texts. As long as all presented data is of
the form 〈e, p, i〉, for some fixed e and p and various i, and the length of the initial sequence shown
so far does not extend Φp(0), the setWe is proposed. Once value Φp(0) is reached by parameter t, if
ever, h switches to the superset We ∪D. If multiple first or second coordinates occur, h conjectures
N as its final guess. As the conjectured sets only become potentially larger, i.e. supersets, h is
cautious. Let L = TxtPsdCautEx(h) be the class of languages h infers.

Assume that L ⊆ TxtSdEx(h′) for some learner h′. As N ∈ L, the learner h′ is total.
Using the Operator Recursion Theorem, see Case (1974), there are indices e and p such that, with
〈〈e, p, j〉〉 := {〈e, p, i〉 : i < j} for any natural number j,

We =
{
〈e, p, i〉 | ∀j ≤ i : h′(〈〈e, p, j〉〉) 6= h′(〈〈e, p, j + 1〉〉)

}
,

ϕp(0) =

{
1, ∃j : h′(〈〈e, p, j〉〉) = h′(〈〈e, p, j + 1〉〉),
↑, else.

18



CAUTIOUS LIMIT LEARNING

In order to get to a contradiction, we distinguish between the following two cases. First, assume the
set We is infinite. In this case, We = {〈e, p, i〉 | i ∈ N} and Φp(0) > t even for arbitrarily large t.
Thus, We ∈ L. However, h′ cannot learn We from the text (〈e, p, i〉)i∈N as it makes infinitely many
mind changes. For the second case, assume the set We is finite. Then, there exists k such that
We = 〈〈e, p, k〉〉. As 〈e, p, k〉 is not in We, we have h′(We) = h′(We ∪ {〈e, p, k〉}). So, there are
t large enough such that Φp(0) ≤ t. Let L := We and L′ := We ∪ {〈e, p, k〉}. Since the learner
h converges correctly to the hypotheses join(e, L) and join(e, L′) on arbitrary texts of L and L′,
respectively, we have L,L′ ∈ L. On the other hand, h′ cannot distinguish between L and L′, as
h′(L) = h′(L′), a contradiction.

Theorem 5 We have [TxtPsdCaut∞Ex] = [TxtPsdEx]. Particularly, for β ∈ {G,Psd} and
δ ∈ {T,Caut∞}, we have [TxtβδEx] = [TxtGEx].

Proof The inclusion [TxtPsdCaut∞Ex] ⊆ [TxtPsdEx] follows immediately. For the other
inclusion, let h be a learner and L ∈ TxtPsdEx(h). By Case and Kötzing (2016), we may assume
h to be total and strongly non-U-shaped3. We will define a learner h′ to learnL in a Caut∞ manner,
i.e. L ∈ TxtPsdCaut∞Ex(h′). First, we need an auxiliary function. Using the S-m-n Theorem
we obtain a total, computable function p ∈ R such that, for all finite D ⊆ N and s, t ≥ 0,

Hs
D,t :=

{
(D′, t′) : (D, t) � (D′, t′) � (W s

h(D,t), t+ s)
}
,

Wp(D,t) = D ∪
⋃
s∈N

{
W s
h(D,t), D ⊆W s

h(D,t) ∧ ∀(D
′, t′) ∈ Hs

D,t : h(D, t) = h(D′, t′),

∅, else.
(5)

Informally, p(D, t) enumerates Wh(D,t) as long as (D, t) acts like a locking information. Formally,
let (D0, t0) be a locking information for h on L and let (D, t) � (D0, t0), with D ⊆ L. We want to
show that Wp(D,t) = L. By definition, Wp(D,t) ⊆ D ∪Wh(D,t) = L. For the other inclusion, let s
be such that D ⊆W s

h(D,t). Such s must exist as D ⊆Fin L = Wh(D,t). As D ∪W s
h(D,t) ⊆Fin L, for

every (D′, t′) ∈ Hs
D,t we have h(D, t) = h(D′, t′). Thus, W s

h(D,t) gets enumerated into Wp(D,t)

and, in the end, we have L =
⋃
s∈NW

s
h(D,t) ⊆Wp(D,t). Altogether, we have Wp(D,t) = L.

We show another property of p(D, t) which will be needed later. Namely,

if Wp(D,t) is infinite, then Wp(D,t) = Wh(D,t). (6)

As Wp(D,t) is infinite, and D is finite, additional elements must have been enumerated through
the case distinction in the union in the Term (5). Thus, D ⊆ Wh(D,t) must have been witnessed
and then, by definition, Wp(D,t) ⊆ Wh(D,t). For the other direction, assume there exists x ∈
Wh(D,t) \ Wp(D,t), and let s0 be minimal such that x ∈ W s0

h(D,t). As x /∈ Wp(D,t), we have
Wp(D,t) ⊆ D ∪

⋃
s<s0

W s
h(D,t), which is finite, a contradiction.

Before we define h′, we fix some notations to ease readability. For any function g, let g∗(σ) :=
g(content(σ), |σ|). Also, let σD,t be the canonical sequence of the set D of length t, that is, the
sequence of elements ofD in ascending order, possibly continued by pause symbols to fit the length.

3. Formally, SNU(p, T ) :⇔ ∀i, j, k : (i ≤ j ≤ k ∧Wp(i) = Wp(k) = content(T )) ⇒ p(i) = p(j), see Case and
Moelius (2011). Informally, in strongly non-U-shaped learning, once the target language is suggested correctly, no
more syntactic mind changes are allowed.
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Now, we can define h′. Intuitively, given the information (D, t), h′ will search for the shortest initial
part of the canonical sequence σD,t[nD,t] that looks like a locking sequence for h. Formally, for any
finite D ⊆ N, t ≥ 0 and 0 ≤ n ≤ t, we define h′ as

InD,t := {(D′, t′) : (content(σD,t[n]), n) � (D′, t′) � (D, t)},
nD,t := min{n | 0 ≤ n ≤ t ∧ ∀(D′, t′) ∈ InD,t : h(D′, t′) = h(D, t)},

h′(D, t) := p∗(σD,t[nD,t]).

We start by showing that L ∈ TxtPsdEx(h′). To that end, let T ∈ Txt(L) and Tc be the
canonical text for L, that is, the text containing all elements of L in ascending order, possibly
continued by infinitely many pause symbols if L is finite. Then, as h is strongly non-U-shaped,
every initial sequence Tc[n] with Wh∗(Tc[n]) = L is a locking information for h on L. Let n0 be
minimal such that σ0 := Tc[n0] is a locking information for h on L. Now, let n1 ≥ n0 such that
content(T [n1]) ⊇ content(σ0). Then, for n ≥ n1, h′(T [n], n) = p∗(σ0) with Wp∗(σ0) = L,
showing that L ∈ TxtPsdEx(h′).

It remains to show that h′ is Caut∞ on L. To that end, assume the opposite, namely that
there exist (D1, t1) � (D2, t2), with D2 ⊆ L, such that Wh′(D1,t1) ) Wh′(D2,t2) and Wh′(D2,t2) is
infinite. For i ∈ {1, 2} let

σi := σDi,ti [nDi,ti ],

(D′i, t
′
i) := (content(σi), |σi|).

Basically, σi is the sequence h′ searches back to, i.e. h′(Di, ti) = p∗(σi). This changes the assump-
tion to Wp∗(σ1) )Wp∗(σ2) and Wp∗(σ2) is infinite. Additionally, we have that

• Wp∗(σ1) is infinite, as Wp∗(σ2) is, and

• Wp∗(σ1) ⊇ D′1 and Wp∗(σ2) ⊇ D′2, due to the definition of p. In particular, we have that
Wp∗(σ1) ⊇ D′1 ∪D′2.

For t∗ := max{t′1, t′2, |D′1 ∪D′2|} the following hold.

(∗): By the definition of p∗(σ1), we have h∗(σ1) = h(D, t) for every (D, t) such that D′1 ⊆ D ⊆
Wp∗(σ1) and t′1 ≤ t. In particular, this holds true for (D, t) = (D′1 ∪D′2, t∗).

(∗∗): As, by definition of σ2, h′(D2, t2) = p∗(σ2), we have for each (D′′, t′′) ∈ I
nD2,t2
D2,t2

that
h∗(σ2) = h(D′′, t′′). In particular, this holds true for (D′′, t′′) = (D′1 ∪D′2, t∗).

Thus, we have

h∗(σ1)
(∗)
= h(D′1 ∪D′2, t∗)

(∗∗)
= h∗(σ2). (7)

Now, we have the contradiction

Wp∗(σ2) (Wp∗(σ1)
(6)
= Wh∗(σ1)

(7)
= Wh∗(σ2)

(6)
= Wp∗(σ2).

Altogether, we get L ∈ TxtPsdCaut∞Ex(h′) and thus the desired.
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Appendix C. Omitted Proofs of Section 3

C.1. Omitted Proofs of Section 3.1

Lemma 7 We have [TxtSdCautTarBc] = [TxtSdBc].

Proof The inclusion [TxtSdCautTarBc] ⊆ [TxtSdBc] follows immediately. For the other
inclusion, let h be a Sd-learner. We will show that TxtSdBc(h) ⊆ TxtSdCautTarBc(hw) for
hw from Algorithm 1. To that end, let L ∈ TxtSdBc(h) and T ∈ Txt(L).

First, we show thatL ∈ TxtSdBc(hw). As h is strongly Bc-locking, see Kötzing et al. (2017),
there exists n0 such that D0 := content(T [n0]) is a Bc-locking set for h on L. We show that for
every n ≥ n0 and D := content(T [n]) we have Whw(D) = L. Since only x ∈ Wh(D) = L are
considered for the enumeration, see line 2, we get Whw(D) ⊆ L. For the other direction, we show
that the algorithm runs through every step i successfully. Let E0 = D, and let i be the next step in
Algorithm 1. If xi ∈ Ei, then step i is completed and xi is enumerated into Ei+1 ⊆Whw(D). In the
other case, we have xi /∈ Ei. Since Ei ∪ {xi} is a finite subset of Wh(D) = L, for every D′, with
(D0 ⊆)D ⊆ D′ ⊆ Ei ∪ {xi}(⊆ L), Wh(D′) = L will witness Ei ∪ {xi}, i.e. there exists some t
such that Ei ∪ {xi} ⊆ W t

h(D′). Thus, xi will be enumerated into Ei+1 ⊆ Whw(D), and step i is
completed in this case as well. So, every x ∈ Wh(D) = L will also be enumerated into Whw(D),
and we get Whw(D) ⊇ L. Altogether, we have Whw(D) = L, concluding the first part of the proof.

To prove that hw learns L respecting CautTar, assume the opposite, namely the existence of
D′ ⊆ L such that L ( Whw(D′). Let x ∈ Whw(D′) \ L be a witness and let D0 be a Bc-locking
set for h on L such that D′ ⊆ D0 ⊆ L. Let i be the step4 where D0 ∪ {x} is enumerated into
Whw(D′), i.e. D0∪{x} 6⊆ Ei and D0∪{x} ⊆ Ei+1. Then, by lines 4 and 5, for D′′ = D0, we have
x ∈ Ei+1 ⊆Wh(D′′), a contradiction.

Proposition 8 Let β ∈ {G,Psd,Sd}. Given a learner h and with it the learner hs as built in
Algorithm 2, the following properties hold.

(i) If h is a β-learner, then hs is a β-learner which is consistent on arbitrary input.

(ii) If σ0 is a Bc-locking information for h on some L ⊆ N, then σ0 is a Bc-locking information
for hs on L.

(iii) For5 β 6= G target cautious learning is preserved by the learner hs, that is, we have that
TxtβCautTarBc(h) ⊆ TxtβCautTarBc(hs).

(iv) If Whs(σ) is infinite, then Whs(σ) = Wh(σ) =: L and σ is a Bc-locking information for h and
hs on L.

(v) If L ∈ TxtβCautTarBc(h) and σ0 is a Bc-locking information for hs on L, then σ0 is a
Bc-locking information for h on L.

(vi) Let h, and thus hs, be Sd-learners. Let D0 be a Bc-locking set for h on some L. Then, for
D with either (a) D ⊆ D0 or (b) D0 ⊆ D ⊆ L, we have

D0 ⊆Whs(D) ⇒Whs(D) ⊆ L.
4. Note that x and xi may differ.
5. As it will turn out, the same holds true for β = G, see Corollary 11.
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Proof

(i) Let h be a β-learner. By definition, hs is consistent on arbitrary input. As all inquiries to
sequences occur within h, namely h(σ) in line 2, h(στ ′′) in line 5 and h(στ ′′) and h(στ ′) in
line 8, hs requires the same form of information. Thus, hs is a β-learner which is consistent
on arbitrary input.

(ii) Let σ0 be a Bc-locking information for h on some L ⊆ N and let σ ∈ L∗# such that σ0 ⊆ σ.
We want to show that Whs(σ) = L. By definition, Whs(σ) ⊆ Wh(σ) = L. Now, let i be the
current step in the algorithm and let xi = enum(h(σ), i). Either xi ∈ Ei, then this step is
completed and xi will be enumerated into Ei+1. Otherwise, for every τ ′′ ∈ (Ei ∪{xi})≤i# we
can find sτ ′′ such that Ei ∪ {xi} ⊆ W

sτ ′′
h(στ ′′), as Ei ∪ {xi} ⊆Fin L = Wh(στ ′′). Then, again,

for every τ ′ ∈ (Ei ∪ {xi})≤i# we can find t such that⋃
τ ′′∈D≤i#

W
sτ ′′
h(στ ′′) ⊆W

t
h(στ ′),

as the big union is a finite subset of L = Wh(στ ′). Thus, xi will be enumerated into Ei+1. As
every x ∈ Wh(σ) = L will be enumerated into Whs(σ), we also get L = Wh(σ) ⊆ Whs(σ),
concluding the proof.

(iii) For β 6= G, letL ∈ TxtβCautTarBc(h). First, we show that hs from Algorithm 2 preserves
TxtβBc-learning, i.e. L ∈ TxtβBc(hs). To do so, let T ∈ Txt(L). As h is strongly Bc-
locking, see Kötzing et al. (2017), there exists n0 such that T [n0] is a Bc-locking information
for h on L. Then, by Proposition 8 (ii), T [n0] is also a Bc-locking information for hs. Thus,
TxtβBc(h) ⊆ TxtβBc(hs).

To show that hs also preserves CautTar while learning L, assume the opposite, i.e. there ex-
ists σ ∈ L∗# such that L ( Whs(σ). Then, by definition, L ( Whs(σ) ⊆ Wh(σ), contradicting
the target cautiousness of h.

(iv) Let Whs(σ) be infinite. First, we show that Whs(σ) = Wh(σ). By definition, Whs(σ) ⊆Wh(σ).
Now, assume there exists x ∈ Wh(σ) \Whs(σ), and also assume that x is the first such with
respect to enum(h(σ), .). As x /∈ Whs(σ), the enumeration must be stuck either at finding a
minimal s in the lines 4 and 5 or in the check in the lines 7 and 8, and thus Whs(σ) must be
finite, a contradiction.

For the second property, we first show that σ is a Bc-locking information for h on L :=
Whs(σ). Assume the existence of some τ̃ ∈ L∗# such that Wh(στ̃) 6= L. We distinguish
between the following two cases.

1.Case: ∃x ∈ Wh(στ̃) \ L: Let t0 be such that x ∈ W t0
h(στ̃). Let i0 be the step such that |Ei0 | >

|W t0
h(στ̃)|, Ei0 ⊇ content(στ̃) and τ̃ ∈ (Ei0+1)

≤i0
# . Such i0 exists as |Ei|

i→∞→ ∞ and
L = Whs(σ) ⊇ content(στ̃). As the check in the lines 7 and 8 must be successful, we
have for τ ′ = ε ∈ (Ei0+1)

≤i0
# that

(x ∈)
⋃

τ ′′∈(Ei0+1)
≤i0
#

W
sτ ′′
h(στ ′′) ⊆Wh(στ ′).
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The element x is in the union, as |Ei0 | > |W
t0
h(στ̃)| implies sτ̃ > t0, and, thus, we have

x ∈W sτ̃
h(στ̃). Altogether, we get x ∈Wh(σ) = L, a contradiction.

2.Case: ∃x ∈ L\Wh(στ̃): Let i0 be the step6 such that τ̃ ∈ (Ei0+1)
≤i0
# and content(στ̃)∪{x} ⊆

Ei0+1. Then, by the lines 7 and 8 in the SFV, for τ ′ = τ̃ ∈ (Ei0+1)
≤i0
# we have

(x ∈ Ei0+1 ⊆)
⋃

τ ′′∈(Ei0+1)
≤i0
#

W
sτ ′′
h(στ ′′) ⊆Wh(στ ′).

This yields x ∈Wh(στ̃), a contradiction.

Altogether, we get that σ is a Bc-locking information for h on Whs(σ) = Wh(σ). By Propo-
sition 8 (ii), it also is for hs.

(v) Let L ∈ TxtβCautTarBc(h) and let σ0 be a Bc-locking information for hs on L. Assume
that σ0 is no Bc-locking information for h on L, i.e. there exists some τ ′ ∈ L∗# such that
Wh(στ ′) 6= L. As L = Whs(στ ′) ⊆ Wh(στ ′), we get L ( Wh(στ ′), a contradiction to h being
CautTar.

(vi) Let D0 be a Bc-locking set for h on L. For D, with (b) D0 ⊆ D ⊆ L, we have Whs(D) ⊆
Wh(D) = L by definition. For D, with (a) D ⊆ D0, assume the existence of some x ∈
Whs(D) \ L. Let i0 be the step7 of Algorithm 2 such that D0 ∪ {x} 6⊆ Ei0 and D0 ∪ {x} ⊆
Ei0+1. Then, by the lines 7 and 8, for D′ = D0, we have x ∈

⋃
D⊆D′′⊆Ei0+1

W
sD′′
h(D′′) ⊆

Wh(D′) = L, a contradiction.

C.2. Omitted Proofs in Section 3.2

Theorem 10 Let P be a predicate on languages. Let δ be a learning restriction such that

δ(p, T )⇔
(
P (content(T ))⇒ CautTar(p, T )

)
.

Then,

1. δ allows for consistent Bc-learning, that is, for any interaction operator β ∈ {G,Psd,Sd}
we have [τ(Cons)TxtβδBc] = [TxtβδBc], and

2. [TxtPsdδBc] = [TxtGδBc].

Proof

1. We show that δ allows for consistent Bc-learning. We follow the proof of Kötzing et al.
(2017). For a total learner h let L ∈ TxtβδBc(h). Omitting the interaction operators for
clarity, we define h′ on finite sequences σ as

Wh′(σ) = content(σ) ∪
⋃
s∈N

{
W s
h(σ), content(σ) ⊆W s

h(σ),

∅, else.

6. Note that x and xi0 may differ.
7. Note that x and xi0 may differ.
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Obviously, learner h′ is consistent on arbitrary input, and ifWh(σ) = L, thenWh′(σ) = Wh(σ),
preserving Bc-learning. To show that h′ obeys the restriction δ, assume the opposite, i.e. there
exists σ ∈ L∗# such that P (L) and L ( Wh′(σ). Since this cannot be the case if Wh′(σ) =
content(σ), there must have been some additional enumerations, i.e. content(σ) ⊆ Wh(σ)

must have been witnessed at some point. Thus, Wh′(σ) = Wh(σ), and now L ( Wh′(σ) =
Wh(σ), a contradiction.

2. To show that [TxtPsdδBc] = [TxtGδBc], observe that the inclusion [TxtPsdδBc] ⊆
[TxtGδBc] follows immediately. For the other, we follow the idea how TxtGBc-learning
can be done partially set-driven, discussed in private communication with Jain (2017). We
expand that idea so that the restriction δ is also preserved. To that end, let L ∈ TxtGδBc(h)
for a learner h. Now, define the Psd-learner h′ as follows. With the S-m-n Theorem, we get
a total computable function p such that, for finite D ⊆ N and t ≥ 0,

AD,t := Wp(D,t) =
⋃

σ∈D∗#

 ⋂
τ∈D≤t#

Wh(στ) ∩
⋂

σ′<σ,σ′∈D∗#

⋃
τ ′∈D∗#

Wh(σ′τ ′)

 , (8)

Wh′(D,t) =
⋃
s∈N

{
AsD,t, ∃ρ ∈ D

≤t
# : AsD,t ⊆Wh(ρ),

∅, else.

Intuitively, AD,t checks whether the information given is enough to witness a (minimal) Bc-
locking sequence. Then, at every step of the enumeration ofWh′(D,t), there is a check whether
there is a possible hypothesis of h which would enumerate the same. This will ensure to
maintain the restriction δ.

We start by proving L ∈ TxtPsdBc(h′). For that, let T ∈ Txt(L). By Blum and
Blum (1975), there exists a Bc-locking sequence for h on L. Let α be the least such Bc-
locking sequence with respect to <. By Osherson et al. (1986), for each α′ < α such that
content(α′) ⊆ L, there exists τα′ such that α′τα′ is a Bc-locking sequence for h on L. Now,
let n0 be large enough such that

• n0 ≥ |α|,
• content(α) ⊆ content(T [n0]) and

• for all α′ < α such that content(α′) ⊆ L, we have content(α′τα′) ⊆ content(T [n0])
and |τα′ | ≤ n0.

We claim that for t ≥ n0 and D = content(T [t]), we have Wh′(D,t) = L. In order to do so,
we first have to show AD,t = L.

⊆: To show AD,t ⊆ L, let x ∈ AD,t and let σ be the witness of enumerating x into AD,t.
We will distinguish between the following two cases.

σ ≤ α: As x must be an element of the left hand intersection of (8), and as τσ ∈ D≤t# for
σ ≤ α, we get x ∈Wh(στσ) = L.

σ > α: Here, we exploit that x must be an element of the right hand intersection of (8). As
α < σ and α ∈ D≤t# , we have x ∈Wh(ατ) = L for any τ .
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In both cases we have x ∈ L, thus AD,t ⊆ L.

⊇: Next, we show L ⊆ AD,t. Let x ∈ L. As D and t are chosen sufficiently large, α is
a candidate for the enumeration of AD,t. Since α is a Bc-locking sequence, we will
witness x ∈Wh(ατ) = L for every τ ∈ D≤t# . Thus, the left hand intersection of (8) will
contain x.
For the right hand intersection of (8), observe that for every σ′ < α, with content(σ′) ⊆
D, we have τσ′ ∈ D∗#. So, the intersection will contain at least Wσ′τσ′

= L, of which x
is an element. Thus, we have L ⊆ AD,t.

Now that we have shown AD,t = L, it remains to show that Wh′(D,t) = AD,t = L. By
definition, we have Wh′(D,t) ⊆ AD,t. For the other direction, let s be the next step in the
enumeration of Wh′(D,t). We want to check whether we can enumerate AsD,t. As AsD,t ⊆
L = Wh(α) with α ∈ D≤t# , we have a witness that we can enumerate AsD,t. Thus, for all s we
have AsD,t ⊆Wh′(D,t) and so we get Wh′(D,t) = AD,t. In the end, L ∈ TxtPsdBc(h′).

Finally, to see L ∈ TxtPsdδBc(h′), assume there exists some (D, t) such that P (L) and
L ( Wh′(D,t). By definition of Wh′(D,t), there exists some ρ ∈ D≤t# such that Wh′(D,t) ⊆
Wh(ρ). Thus, we have P (L) and L ( Wh′(D,t) ⊆ Wh(ρ), a contradiction to h learning L
according to δ.

Theorem 12 We have

[TxtSdCautFinBc] = [TxtPsdCautFinBc] = [TxtGCautFinBc].

Proof To prove the theorem, we apply the same idea as Kötzing and Palenta (2016) when dealing
with Caut, that is, we introduce a weaker version of CautFin, namely

(CautTar)Fin(p, T ) :⇔
(
content(T ) <∞⇒ ∀i : ¬(content(T ) (Wp(i))

)
.

Intuitively, (CautTar)Fin has to be CautTar only on finite target languages. It follows immediately
that CautTar as well as CautFin ∩Bc imply (CautTar)Fin.

By Theorem 10, we already have [TxtPsd(CautTar)FinBc] = [TxtG(CautTar)FinBc]. To
show [TxtSd(CautTar)FinBc] = [TxtPsd(CautTar)FinBc], let h be a learner and let L ∈
TxtPsd(CautTar)FinBc(h). We first observe that, by Theorem 10, we may assume h to be con-
sistent. Now, we follow the idea from Kötzing et al. (2017) and introduce h′(D) := h(D, |D|). First,
we show that h′ learns L. If L is infinite, then we get L ∈ TxtSdBc(h) by Kötzing et al. (2017).
For finite L, let T ∈ Txt(L) and n0 be such that content(T [n0]) = L. Now, for n ≥ n0 and
D := content(T [n]) = L, we will show L = Wh′(D). Firstly, we have L ⊆ Wh(D,|D|) = Wh′(D)

by consistency of h. By (CautTar)Fin, we also have ¬(L ( Wh(D,|D|) = Wh′(D)), and thus
L = Wh′(D).
To show that h′ follows the restriction (CautTar)Fin, assume the opposite, i.e. there exist a fi-
nite target language L and D ⊆ L such that L ( Wh′(D). As h′(D) = h(D, |D|), we get
L (Wh′(D) = Wh(D,|D|), a contradiction.
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Now, the following inclusion chain closes the proof.

[TxtSdCautBc] ⊆ [TxtSdCautFinBc] ⊆ [TxtPsdCautFinBc] ⊆ [TxtGCautFinBc] ⊆
⊆ [TxtG(CautTar)FinBc] = [TxtSd(CautTar)FinBc] =

= [TxtSdCautBc].

Lemma 13 We have [τ(Cons)TxtPsdCaut∞Bc] = [TxtPsdBc].

Proof By definition, we get [τ(Cons)TxtPsdCaut∞Bc] ⊆ [TxtPsdBc]. For the other di-
rection, let L ∈ TxtPsdBc(h) for some learner h. For the Psd-learner hs from Algorithm 2,
we will show that L ∈ τ(Cons)TxtPsdCaut∞Bc(hs). By Proposition 8 (i), hs is consistent
on arbitrary input. As in the proof of Proposition 8 (iii), we get L ∈ TxtPsdBc(hs). To show
that hs is Caut∞, assume the opposite, i.e. there exists (D, t) � (D′, t′) with D′ ⊆ L such
that Whs(D,t) ) Whs(D′,t′) and Whs(D′,t′) is infinite. Then, Whs(D,t) is infinite, too. By Proposi-
tion 8 (iv), (D′, t′) must be a Bc-locking information both for Whs(D′,t′) and, as (D, t) � (D′, t′)
and (D, t) is a Bc-locking information for Whs(D,t), for Whs(D,t) as well, which are not equal,
yielding a contradiction.
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