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Abstract. The active global SARS-CoV-2 pandemic caused more than
167 million cases and 3.4 million deaths worldwide. The development
of completely new drugs for such a novel disease is a challenging, time
intensive process and despite researchers around the world working on this
task, no effective treatments have been developed yet. This emphasizes
the importance of drug repurposing, where treatments are found among
existing drugs that are meant for different diseases. A common approach
to this is based on knowledge graphs, that condense relationships between
entities like drugs, diseases and genes. Graph neural networks (GNNs) can
then be used for the task at hand by predicting links in such knowledge
graphs. Expanding on state-of-the-art GNN research, Doshi et al. recently
developed the DR-COVID model. We further extend their work using
additional output interpretation strategies. The best aggregation strategy
derives a top-100 ranking of candidate drugs, 32 of which currently being
in COVID-19-related clinical trials. Moreover, we present an alternative
application for the model, the generation of additional candidates based
on a given pre-selection of drug candidates using collaborative filtering.
In addition, we improved the implementation of the DR-COVID model
by significantly shortening the inference and pre-processing time by
exploiting data-parallelism. As drug repurposing is a task that requires
high computation and memory resources, we further accelerate the post-
processing phase using a new emerging hardware — we propose a new
approach to leverage the use of high-capacity Non-Volatile Memory for
aggregate drug ranking.

Keywords: Drug Repurposing, Knowledge Graphs, Link Prediction, Col-
laborative Filtering, Non-Votile Memory, NVM, MCAS, Python, PyMM
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1 Introduction

With the novel coronavirus, a global pandemic with serious socio-economic
implications for most parts of our daily lives is active [13]. The limited ability to
take precautions for an unsuspected event like this and the rapid spread make
finding an effective treatment as necessary as difficult, since the disease-specific
knowledge is limited at the beginning and human lives are lost every day. Known
and approved drugs happen to be well-studied, thus, they pose a good starting
point for swift development of treatments, and an emerging tactic in fighting the
pandemic [19]. DrugBank, an extensive database compiling information about
drugs approved by the US Food and Drug Administration as well as experimental
drugs, contained more than 2300 approved drugs and over 4 500 experimental
drugs as of 2018; both with a strong upward trend [22]. This emphasizes the need
for computer aided development of treatments.

Drug repurposing with knowledge graphs, as first described by [1], is the
current state-of-the-art approach for finding possible treatments for novel diseases
among known drugs using machine learning. Applying drug repurposing allows for
a better way to maneuver through the pandemic. It can lead to better treatments
for patients infected with one of the COVID-19 strains and a better understanding
of the characteristics of the individual strains. Today, we approach the problem
of drug repurposing using machine learning, focusing on deep learning methods.
The idea of predicting unknown links between entities in a knowledge graph is
traditionally known as Collaborative Filtering, as described by [17]. In this work
we expand on the concept of graph embeddings, which map a fixed-size feature
vectors to graph nodes and relations. A state-of-the-art technique for the creation
of such embeddings based on deep neural networks (DNNs) is TRANSE [2].

Knowledge graph embeddings are already utilized to solve different tasks
related to drug discovery, e.g., they are used to predict potential drug targets
for diseases to reduce cost and increase speed in the drug development process
in general [26]. Regarding the specific application of drug repurposing relying
on edge prediction in a knowledge graph of biomedical data (see Section 2), [6]
present a novel classification approach to this problem by implementing and
merging various different ideas and techniques into one ensemble classifier. At
its core, they deploy a DNN with an encoder-decoder structure. The encoder
mechanism of it, which is based on the Decagon graph neural network by [28],
was initially proposed for the prediction of side effects of concurrent drug use.

Our Contribution. In this paper we extend the work done by Doshi and Chepuri
[4]. Specifically we continue our work in Drug Repurposing [11,12]. We offer the
following contributions to the complex networks community analyzing medicine
networks:

1. We improve the post prediction step of [4] by using a clustering of similar
diseases and increasing by more than 50% the number of predicted drugs in
the top-100 that were or are in clinical trials.



Drug Repurposing 3

2. We explore the additional application of finding drug candidates similar to
a manually pre-selected candidate using collaborative filtering on the same
model output. We show that many drugs that are in clinical trial can be found
by detecting the drugs that are the most similar (e.g. using cosine-distance
on the embedding of the drugs) to a given known drug (or a subset of drugs)
which is or was in clinical trials.

3. We re-implement? the model described by [4] and improve it by allowing
flexible neighborhood capture sizes. We also improve the implementation
by [12] by improving training speed, inference time, readability and by
reducing pre-processing time from 30 minutes to 2 minutes by leveraging
matrix operations. We further extend the implementation to support Self-
Label-Enhancement.

We also contribute to the way drug repurposing is computed. Drug repur-
posing is a task that requires high computation and memory resources. The
emerging hardware of Intel Optane Persistent Memory Modules (Optane-PM)
communicates via the memory bus, mitigating bottlenecks such as PCl-express
lane availability, using the same interface as DRAM. While there are other
Persistent Memory technologies, Optane-PM being the most mature product
on the market is based on 3D-XPoint (3DXP) technology and operates at a
cache-line granularity with a latency of around 300ns [8], which is more than
an order of magnitude faster than the current state of the art NVMe SSDs, but
approximately three times slower than DRAM. Additionally, it has high capacity
which is 8x larger than the available DRAM — a single DIMM of Optane-PM
can reach 512GB. We note that it is practically necessary to use Optane-PM as
the scale of the problem increases [24, 23].

To the best of our knowledge, in this paper, we show for the first time
an application of the emerging Optane-PM for the task of Drug Repurposing.
We generate a large dataset for the Drug Repurposing problem by extending
(both vertically and horizontally) the dataset we have and evaluate two simple
aggregation strategies which are implemented and processed on the Optane-PM .
We obtain fast and promising results for the use of Optane-PM to process large
datasets in the context of Drug Repurposing.

2 Dataset

Our work relies on the Drug Repurposing Knowledge Graph (DRKG) by [7],
which compiles data from different biomedical databases. It contains 97,238
entities belonging to 13 entity types and 5,874,261 triplets belonging to 107 edge
types. We restrict ourselves to 98 edge types between 4 entity types, namely
gene, compound, anatomy and disease, which leaves us with a knowledge graph
with 69,036 entities and 4, 885,854 edges. In particular, it contains drugs and

4 Qur implementation of the experiments and the model can be found
here: https://drive.google.com/file/d/1hYxMe3AFwcJ4UKsn8SPsZVPW3buXeOu4/
view?usp=sharing.
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Fig. 1. The architecture of our model as described in Section 3.

substances as compound entities, as well as different COVID-19 variants as disease
entities. The edge types include e.g. compound-treats-disease edges, which is the
kind of edge our model predicts.

One part of DRKG are the precomputed TRANSE embeddings trained using
dgl-ke by [27]. To train our model to predict whether a given edge in some
compound-treats-disease relation exists, we have to create suitable training data.
To provide our model with both positive and negative samples for training, for
each positive edge we sample 30 non-edges in the dataset, which results in a ratio
similar to DR-COVID. This process tries to account for the imbalance of edges
and non-edges in the ground truth. The set of edges included in the dataset is not
complete, however, it is quite certain to be correct. Consequently, the positive
edges are given a higher weight in the loss calculation, and the higher number
of negative edges (which are not certain to be truly negative) are given a lower
weight. To prevent too much imbalance in the individual minibatches, we use a
weighted random batch sampler that over-samples the positive samples yielding
an expected ratio of 1: 1.5 of positive to negative samples in each batch.

3 Model Architecture

A Graph Neural Network (GNN) is a message passing framework where vertex
embeddings are passed along edges of a graph. A single GNN layer traditionally
performs a single round of message passing where messages are transformed via
an edge function, are collected together into a single message via an aggregator
function, and finally are used to produce new messages using a vertexr function.
We refer the reader to [28,18,10] for a more in-depth description.

In our experiments, we used a traditional encoder-decoder architecture using
a two-layer GNN encoder and a custom decoder. The architecture of our model
is illustrated in Figure 1. It consists of a SIGN [5] architecture encoder, which
provides an embedding y € R?°° for each node. We apply tanh to the encoder
output and forward it into our decoder. Given two nodes u, v, the decoder takes
their encodings y,,y, and assigns a score s,, € [0,1], which measures the
probability for an edge between nodes u and v to exist. The decoder consists
of two linear layers ¢;(u) and ¢3(v) that process the encodings y, and y, via
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a sigmoid function, that is, o(yy * £1(yu) + Yu - £2(y»)). The loss of the model
is computed using a binary cross entropy loss with logits with weights set as
described in Section 2.

Implementation. The dataset presents itself as a list of triples, each posing source,
relation-type and sink of an edge. This is accompanied by precomputed knowledge
graph embeddings. For the preprocessing we first filter out the edges belonging
to the part of the knowledge graph we restrict ourselves to. We then construct
a graph with the help of DGL [21]. To compute the neighborhood embeddings
we feed into the model, we first derive an adjacency matrix A € {0,1}"*" from
the reduced graph, from which the edges we try to predict, i.e., compound-treats-
disease edges, have been removed. We then derive the normalized graph Laplacian
A= D"3AD"% where D, ; is the degree of node i. Suppose X € R"*1% is the
matrix of graph embeddings for the n nodes, then the kth neighborhood is defined
as AFX.

4 Output Interpretation

In this section we present different strategies for interpreting the scores that
the model outputs for the application of predicting the top-k most promising
compound nodes for a given set of disease nodes D. Note that this is important
as there are multiple COVID-19 diseases. Let n be the total amount of compound
nodes. Predicting all n-|D| edge combinations, our model yields a matrix of scores
S € RIPIXn For each of the following strategies we first perform a standardization

of the scores per disease using 34, = %, where d is the index of a disease

in D, ¢ being the index of the compound, p(s4«) and o(s4«) denote the mean
and standard deviation over all diseases.

Certain “mild” diseases may be affected by plenty of compounds resulting
in those being linked more likely. The standardization helps to achieve a better
comparability across different diseases, allowing us to identify the suited com-
pounds for every disease individually and compare those. However, this could
also give good scores to some compounds in the case of diseases with no “good”
scores in the first place, potentially yielding some less useful proposals.

An aggregation strategy takes our matrix of standardized scores (§4.) and
derives a list of compounds from it, the top-k of which are our result. We propose
the following aggregation strategies. For global score mean, we calculate the
means of (54.) along axis 0, that is, over all diseases per compound; then we
sort the compounds by their respective scores and select the top-k. For global
score maximum, we find the maxima of (§4.) along axis 0; then again we sort
the compounds and select the top-k. For union over disease rankings, we
calculate top-x compounds per disease with x as small as possible such that we
get at least k unique compounds in the union. We then concatenate all those
top-x lists together to get a top-k compound list.

We also propose greedy max-min fairness. Inspired by a game-theoretic
approach from auction theory, where we think of the COVID-strains as players
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and the compounds as items from which we can only pick a small set, we try to
heuristically find a set of compounds that will maximize the COVID strain whose
total score is the minimum. Note that Global Score Mean can be considered as
allocating the drugs to the COVID strains in a way that obtains the maximum
social welfare. In contrast, in the Greedy Max Min Fairness we allocate the
candidate drugs among the COVID-strains in a way favoring fairness over social
welfare. More precisely, we rank the drugs by iteratively selecting the drug that
benefits the disease with the lowest sum of scores over all already selected drugs.
From this ordering we then pick the top-k drugs. Because our standardized model
outputs 4. can be negative, we normalize these by additively shifting them into
the positive numbers. This bias however does not interfere with the resulting
order because it increases uniformly on all parts of the sum.

Furthermore, in cluster score maximum, grouping similar disease types
can be used to enhance the accuracy of our top-k predictions. We perform such
a grouping using the k-means clustering algorithm. For each cluster, which now
represents a group of similar diseases, we use a mean reduction to calculate the
score of a compound and then reduce to the maximum across these clusters. A
sensible number of clusters to create can be chosen by performing a principal
component analysis (PCA) [15] on the standardized scores. Lastly, for union
over cluster rankings, we perform the top-z selection on clusters calculated
with the clustering method described above. This not only allows us to use a
greater x because we have fewer lists to pick from, but also to get more consistent
top picks because of the internal averages that we apply inside each cluster.

5 Collaborative Filtering

Suppose we already have pre-selected some candidates for clinical trials. Now
we would like to identify similar candidates that could be interesting. This new
application can be approached using collaborative filtering on our model output.
We measure the similarity® along the model’s edge predictions per compound.
We test this application by ranking the remaining compounds of our dataset
by the cosine similarity to pre-selected candidates. Our pre-selections are sampled
randomly from the clinical trial dataset. In the case of one single pre-selected
candidate, for selecting the top-100 drugs ranked by similarity to the pre-selected
candidate we get a mean of 18 (min. 0, max. 32) hits. Conducting the experiment
with 15 pre-selected candidates and selecting drugs corresponding to the top-100
of a global ranking of all similarities yields on average 18 (min. 0, max. 37) hits.

6 Rank Aggregation Using Non-Volatile Memory

In this section we demonstrate the use of Non-Volatile Memory for aggregate drug
prediction. In general, Optane-PM can perform arbitrary matrix calculations

® To precisely define the cosine similarity between two given drugs i, j, let §., 545 be
their prediction scores along the disease dimension. Then their similarity is defined
as é*i . §*j.
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Aggregation strategy # hits
Single Disease (median) 20
Global Score Maximum 22
Global Score Mean 30
Greedy Max Min Fairness 23
Cluster Score Maximum with KMeans(k=8) 18
Cluster Score Maximum with KMeans(k=3) 20
Union over Disease Rankings

(Dr-COVID, [4]) 21

Union over Cluster Rankings with KMeans(k=8) 24
Union over Cluster Rankings
with KMeans(k=3) [12] 32

Table 1. Hits of proposed candidates in actual clinical trials.

while providing significantly more capacity than ordinary DRAM and optionally
providing persistence. We chose to use Optane-PM to implement the Global
Score Mean and Global Score Maximum aggregation strategies. We chose these
strategies for their decent prediction performance (see Table 1) and because
they were easy to implement using Optane-PM . We note that we did not select
strategies which used clustering due to an incompatibility between scikit-learn [16,
3] (the package clustering was implemented with) and the Optane-PM library.
We show that by using Optane-PM , we can process datasets faster than with
traditional storage methods such as DRAM + NVMe SSD or memory mapping.

To demonstrate the utility of Optane-PM | we artificially increased the size
of the data being operated on. To do so, we extended our ranking matrix of size
2MB by concatenating entries both vertically and horizontally. Using this scheme,
we created data matrices of sizes 33, 66, 131, and 261GB. This was necessary to
show the performance difference between Optane-PM and other storage methods.

6.1 Interacting with Optane-PM

We use a Python 3 library called PyMM to interface with Optane-PM. PyMM
has been developed as part of the Memory Centric Active Storage (MCAS)
system[20]. PyMM provides a set of abstractions and framework for managing
Python variables in locally-attached Optane-PM. For more details regarding
MCAS and PyMM, we direct the reader to [20, 24]. Data that is stored in PyMM
is persistent and can be accessed and manipulated in-place, directly on device,
without requiring a copy or transfer to DRAM. Using PyMM, we store our large
data matrices and create aggregate rankings using the two strategies mentioned
in Section 6.

7 Experiments

7.1 Link Prediction

Our experiments are twofold. We first train our link prediction model to generate
probability scores to a candidate edge using an encoder-decoder architecture
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described in Section 3. We implement the model using PyTorch. We train it using
the Adam optimizer [9]. We use 90% of the data for training and the rest for
validation. The training is performed on Google Colab utilizing a Nvidia Tesla
T4 and it takes ~2 minutes to prepare the graph dataset. We train our model
using 25 epochs with a starting learning rate of 107° and a weight decay of
10~2. Each training epoch took us 30 seconds, which is a significant improvement
over the 610 seconds of the implementation by [4] and can be attributed to the
exploitation of data parallelism we added.

Using this model, we generate prediction matrices by sorting drugs for each
covid strain using the learned model. Our first experiment concludes with using
aggregation strategies to process the prediction matrix to determine the final
drug rankings. These drug rankings are then compared against drugs which are
being currently tested in clinical trials.

7.2 Scalable Drug Rank Aggregation

Our second experiment compares Optane-PM against other storage methods.
We measure the runtime of using different (simple) aggregation strategies imple-
mented on Optane-PM against their implementations using DRAM. We augment
the prediction matrices using the procedure mentioned in Section 6 to produce
arbitrarily large data. Our experiment compares the following implementations:

1. PyMM implementation. Prediction matrices are stored on Optane-PM
and are processed on device using the Global Score Mean and Global Score
Maximum strategies.

2. DRAM implementation. Prediction matrices are stored entirely on NVMe
SSD, and then transferred and processed in DRAM. We note that this
implementation is only possible if the machine has sufficient DRAM.

3. MMAP_384 implementation. Prediction matrices are stored on NVMe
SSD. During processing, the required data is loaded from NVMe SSD to
DRAM using NumPy’s Memory-Mapping functionality. In this implementa-
tion we have 384GB of DRAM. This configuration allows the entire dataset
to be loaded into DRAM, meaning no evictions will occur. Therefore, this is
a best-case scenario for memory mapping performance.

4. MMAP _64 implementation. This implementation is a more realistic mem-
ory mapping scenario. While this implementation is almost identical to the
previous one, the amount of DRAM has been restricted to 64GB. This means
that the memory mapping routine will need to evict data from DRAM during
processing. From a Cloud/infrastructure perspective, this simulates a low-cost
machine memory mapping scenario.

Our experiments were conducted on a Lenovo SR650 2U server equipped with
two Intel Xeon Gold 6248 (2.5GHz) processors supporting 80 CPU hardware
threads. The server is also equipped with 384GB (12x32GB) of DDR4 DRAM
and 1.5TB of Optane-PM (12x128GB) as well as two NVMe SSD disks with 3TB

each.
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8 Ewvaluation

8.1 Link Prediction and Drug Aggregation Performance

To test our link prediction model, we compare the top-100 drugs for SARS-CoV2
computed by our learned model to those predicted utilizing the weights of [4].
While their model’s top-100 predictions include 22 drugs present in clinical
trials, we only reach 15. We suspect the hand-made adjustments to the dataset
utilizing undisclosed data sources are responsible for this discrepancy, as this is
the sole missing part in our implementation. Consequently, we use their published
rankings to measure different aggregation strategies.

To test drug aggregation strategies, we use each strategy to combine rankings
of each drug for each covid type to produce a final top-100 ranking. We then
compute the number of intersections with the drugs that are currently the subject
of clinical trials related to COVID-19 [25]. This information is available on Kaggle
as a list of drug names [14].

The results of the the different aggregation strategies can be found in Table
1. We see that our Union over Cluster Rankings with KMeans(k=3) outperforms
the other approaches, yielding 32 hits. This is intuitive as using PCA on the
prediction scores shows that there are three clusters among the COVID strains.
In contrast, DR-COVID’s aggregation method, Union over Disease Rankings,
reaches just 21 hits in our evaluation process.

Total time for processing the strategies:
Global Score Mean + Global Score Maximum

350

300

[~e—DRAM ——PyMM —+—MMAP_384GB ——MMAP_64GH|

250

ec)

33 66 131 261
Dataset size (GB)

DRAM load time (sec)
33GB|66GB|131GB|261GB
13.5 ] 26.3 | 83.6 | 203.5

Fig. 2. The total time for processing the two strategies (above): Global Score Mean
and Global Score Maximum one after another. The time to copy data from NVMe SSD
to DRAM as a function of DRAM size (below).
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We observe that hits are not evenly distributed along the rankings of the
aggregation strategies, with more hits towards rank 60 and higher, suggesting we
are unlikely to get better results by predicting more than the top-100 drugs.

8.2 Scalability Results

Our implementation results can be seen in Figure 2. In our experiments, Optane-
PM always outperformed DRAM. We note that DRAM performance gets signifi-
cantly worse after consuming 192GB. This is a result of the dual cpu architecture:
DRAM is split between the two sockets in a Non-uniform Memory Access (NUMA)
architecture. This means that after 192GB, data must cross to the other socket
which induces a latency penalty of around 100ns.

We also note that our experiments include the cost of loading data from disk
(as needed). The loading time is non-trivial (see the table in Figure 2). One
advantage of Optane-PM is that data is persistent and has no loading time. To
measure the cost of compute only, we also tracked the running time after data
was loaded. In this case, using Optane-PM is between two and three times slower
than DRAM, which is expected since the latency of Optane-PM is known to be
approximately three times that of DRAM. We note that the slower latency of
Optane-PM is well worth the trade-off for higher capacity as well as persistence.

Surprisingly, the best-case memory mapping implementation performed almost
as well as the Optane-PM implementation. This is an artifact of our drug rank
aggregation strategies. The two strategies we evaluate are single scan operations,
which behaves efficiently using memory mapping. As the memory size increases,
we observe the same performance degradation as DRAM due to crossing NUMA
node zones.

In a more realistic setting, memory mapping performs the worst. This is due
to the eviction policy and DRAM not being able to store the entire dataset. We
note that this is also a best-case realistic scenario as once evicted, a row will
never be needed again by our strategies. For more advanced strategies, memory
mapping will perform significantly worse as multiple passes (sometimes random
access) of the data is required.

9 Conclusion

Deep learning can help the development of drugs in the face of a global pandemic.
Rather than looking for promising candidates by hand, one can instead rely
on graph neural networks. We have been able to clarify the evaluation part of
DRr-COVID [4] and proposed an aggregation technique yielding better results.
Our own implementation improves both training speed as well as readability. We
have also shown that using Optane-PM allows researchers to scale techniques
efficiently to large datasets, which benefits the drug repurposing community.
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