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Systems biology has emerged over the last decade. Driven by the advances in sophisticated

measurement technology the research community generated huge molecular biology data sets.

These comprise rather static data on the interplay of biological entities, for instance

protein–protein interaction network data, as well as quite dynamic data collected for studying the

behavior of individual cells or tissues in accordance with changing environmental conditions, such

as DNA microarrays or RNA sequencing. Here we bring the two different data types together in

order to gain higher level knowledge. We introduce a significantly improved version of the

KeyPathwayMiner software framework. Given a biological network modelled as a graph and

a set of expression studies, KeyPathwayMiner efficiently finds and visualizes connected

sub-networks where most components are expressed in most cases. It finds all maximal connected

sub-networks where all nodes but k exceptions are expressed in all experimental studies but at

most l exceptions. We demonstrate the power of the new approach by comparing it to similar

approaches with gene expression data previously used to study Huntington’s disease.

In addition, we demonstrate KeyPathwayMiner’s flexibility and applicability to non-array data by

analyzing genome-scale DNA methylation profiles from colorectal tumor cancer patients.

KeyPathwayMiner release 2 is available as a Cytoscape plugin and online at

http://keypathwayminer.mpi-inf.mpg.de.

1 Introduction

Over the last few decades, extensive usage of high-throughput

technologies allowed for producing vast amounts of data in the field

of molecular biology. The so-called next generation sequencing

technologies have opened the way for cheap and fast DNA

sequencing of many organisms. More than 1600 microbial

whole-genome DNA sequences are available for download

from NCBI. To date, 37 completely sequenced eucaryotic

genomes are available; 480 more projects are in the assembly

stage, and B700 more projects are registered to be in progress.21

However, knowing an organism’s genetic code is only the first step

in understanding survival, reproduction and adaptation to

changing environmental conditions.5 Various molecular

mechanisms control and fine tune the interplay of biological

entities of all types, resulting in biological networks that are

modelled as graphs. Nodes correspond to these entities, such

as genes or proteins, and edges represent interactions between

them. The emerging networks, such as gene regulatory networks

or protein–protein interaction networks, are the basis for directed

systems biology studies. In parallel, besides these data regarding

the general possibility of an interplay between genes, proteins,

metabolites, RNAs, etc., we use the so-called OMICS technology
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Insight, innovation, integration

With KeyPathwayMiner we present a computational method

that allows for the combined analysis of biological networks

together with large-scale OMICS data, such as gene expression

data. The software is integrated into Cytoscape as plug-in and

requires minimal user input. Given a network, a PPI network for

instance, KeyPathwayMiner extracts all maximal connected

sub-networks where all genes/proteins but k are expressed

in all patients but l. We demonstrate the efficiency and

flexibility of our approach by computing disease-specific,

dysregulated PPI key pathways for Huntington’s disease

(gene expression data) and colorectal cancer (methylation

data) on a standard desktop PC.

Integrative Biology Dynamic Article Links

www.rsc.org/ibiology PAPER

Pu
bl

is
he

d 
on

 2
1 

Fe
br

ua
ry

 2
01

2.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
SB

IB
L

IO
T

H
E

K
 P

O
T

SD
A

M
 o

n 
24

/0
2/

20
17

 1
0:

42
:3

5.
 

View Article Online / Journal Homepage / Table of Contents for this issue

http://dx.doi.org/10.1039/c2ib00133k
http://dx.doi.org/10.1039/c2ib00133k
http://dx.doi.org/10.1039/c2ib00133k
http://pubs.rsc.org/en/journals/journal/IB
http://pubs.rsc.org/en/journals/journal/IB?issueid=IB004007


This journal is c The Royal Society of Chemistry 2012 Integr. Biol., 2012, 4, 756–764 757

to measure their expression, methylation, ubiquitination, etc.

Typically, these analyses are performed to identify biological

changes in response to external or internal stimuli, perturbations

or diseases.

Each kind of data type, the rather static network data as well as

the OMICS data, is usually studied in isolation. We may study

statistical network properties, such as over-represented network

patterns,12 node degree distributions,4 or network centrality

nodes.3 More dedicated approaches can be used to identify, for

instance, protein complexes in protein–protein interaction (PPI)

networks.26 On the other hand, numerous methods exist

for high-throughput OMICS data analysis, such as cancer

sub-typing based on the identification of genome-wide gene

expression similarities25 to give only one of many examples.

The number of available data sets is growing rapidly. In GEO,

the Gene Expression Omnibus, we find transcriptomics data

for 4630 000 samples.10 To give an impression about the

available network data, the PSICQUIC platform integrates

16 interactome databases and covers more than 16 million

protein–protein interactions of various evidence levels.2

Here, we aim to combine both kinds of data types in order

to find key pathways, i.e. well connected sub-networks where

most of the nodes are active/expressed/methylated/etc. in most

cases/measurements/patients/etc. In 2008, Ulitsky et al. presented

an approach that integrates gene expression data with PPI

networks. They solve the hard problem of finding minimal

connected subnetworks with at least k nodes differentially

expressed in all but l analyzed samples by using the CUSP

heuristic (covering using shortest paths).24 The variables k and l

are given by the user. They may be seen as parameters for

controlling the amount of accepted noise in the network (k) as

well as in the expression data (l). Both k and l impact the size of

the reported key pathways: the smaller k and l, the less noise we

allow, and the smaller are the reported sub-networks. Since

finding maximal connected sub-networks that maximize a

certain scoring function based on all nodes in the result set

is NP-hard,15 Ulitsky et al. search for minimal connected

subgraphs with at least k nodes. This allows them to pre-process

each node individually by excluding all genes that are not

expressed in all but l cases. This causes a practical problem

for the end-user if no solution for a given k exists, the algorithm

needs to be re-started with a smaller value of k. However,

suitable values for k are generally unknown a priori. Therefore,

we recently introduced an adapted interpretation of finding key

pathways with given k and l parameters.1 In our previous work,

we aimed to detect all maximal connected subnetworks where

all but k nodes are differentially expressed in all but l analyzed

samples. Here, the user does not need to know good values for k

in advance since KeyPathwayMiner reports all subgraphs

where all nodes but k are ‘‘dysregulated’’ in all but l gene

expression samples. We compared KeyPathwayMiner 1.0 with

the CUSP method and three other approaches. We used the

same data and the same evaluation scheme that Ulitsky et al.

previously utilized for demonstrating the power of their CUSP

method. In terms of accuracy, we were able to show that

KeyPathwayMiner keeps up with or outperforms CUSP and

the other approaches. However, our worst case run time

complexity is |V|k (note that it is generally independent of l).

Hence, in ref. 1 we used a basic Ant Colony Optimization

(ACO) based heuristic for tackling this problem. Unfortunately,

this sometimes may lead to sub-optimal solutions and a slow

running time, especially for larger l-values. KeyPathwayMiner

1.0 was applicable only to smaller values of k and l on a

standard desktop PC and to relatively small PPI networks

(see ref. 1 for a detailed description of the previous release).

The KeyPathwayMiner 1.0 implementation came with a very

basic user interface and did not support parallel computing for

speeding up the pathway extraction process.

Here, we present KeyPathwayMiner 2.0. We describe three

algorithmic approaches that (1) solve the computational problem

exactly or (2) significantly improve approximation accuracy with

only slightly increased running time. The newKeyPathwayMiner

version (3) can run in parallel on multi-processor machines and

(4) ensures flexibility, i.e. applicability to many kinds of networks

as well as ‘‘expression’’ data types. Afterwards, we introduce

two data sets that we will use to demonstrate the power of

KeyPathwayMiner. First, we apply our tool to the same

evaluation data described in ref. 1 and 24 (gene expression

data of Huntington’s disease patients) in order to compare

KeyPathwayMiner 2.0 against the previous version 1.0 and

against other approaches, e.g. CUSP24 and jActiveModules.15

Finally, we demonstrate KeyPathwayMiner’s flexibility and

applicability to non-gene expression data by analyzing genome-

scale DNAmethylation profiles from colorectal cancer patients.

2 Methods and data

2.1 Algorithms

In this section we give three algorithms (one greedy, one optimal,

one based on ant colony optimization). All three algorithms solve

the same formal graph problem, which is an abstraction of the

problem of finding key pathways (as described above) to the level

of labeled graphs. Note that we describe these algorithms as

returning only the best solution found, while our implementation

of these algorithms will output several of the top solutions found.

Definition 2.1. Let G = (V, E, d) be a labeled graph on a set

of vertices V, edges (sets of exactly two vertices) E and a

labeling function d: V - N. Let k, l A N. Then the (k, l)-

KeyPathway problem asks for a set U D V of maximal

cardinality such that

� U is connected;

� the number of elements u A U with d(u) r l is at most k.

We call any set U such that the above two bullets are

fulfilled a (k, l)-component. Any vertex v A V with d(v) r l

is called an exception vertex.

The interpretation of the graph, the labels, and the (k, l)-

component is as follows. Vertices of the graph represent

biological entities (here, genes or proteins); edges correspond

to an interplay between two entities, e.g. a protein–protein

interaction; and the labels on a vertex v correspond to the

number of cases where v is active/expressed/methylated/etc.

2.1.1 Preprocessing. In order to derive efficient algorithms,

we apply a preprocessing stage (the same for all algorithms).

Essentially, we construct an auxiliary labeled graph to

decrease the problem size and to help direct the algorithms

to better regions of the search space. The main idea for this

kind of preprocessing was derived from ref. 1.
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Definition 2.2. Given a labeled graph G = (V, E, d) and

l A N, we let C(G, l) be the l-component graph derived from

G as follows. The vertex set of C(G, l) are all the exception

vertices of G. Two exception vertices are connected by an edge

in C(G, l) if there is a path between them in G which does not

use exception vertices as inner vertices.

For any set U D V of exception vertices we define S(U) as

the set of all vertices v A V reachable in G from an element of

U without passing by an exception vertex not in U. Intuitively,

we just need to choose a connected set of exception vertices

U in C(G, l) with k vertices to get a (k, l)-component of G,

namely S(U).

2.1.2 Greedy algorithm. We define the following greedy

algorithm on C(G, l). For every vertex u, we iteratively

construct a set Wu starting with Wu = {u}. In every iteration

we add to Wu a vertex v from C(G, l) which is adjacent

(in C(G, l)) to Wu and which maximizes |S(Wu , {v})|. We

stop the iterations when |Wu| = k. Return S(Wu) of maximal

size found for some u.

2.1.3 Exact branch and bound algorithm. We define the

following algorithm for the computation of the optimal

solution by employing a branch and bound method. As a

lower bound, the best current solution is used. To compute an

upper bound, the algorithm proceeds as follows. If, for some x,

the algorithm has a partial solution which already has k � x

exception vertices, then the algorithm determines all possible

new exception vertices that can be reached from the current

subgraph in x steps, takes the x nodes with the highest weights

and adds those together. This is an upper bound for the fitness

this partial solution can achieve.

Using these two bounds, the algorithm finds the optimal

solution by an (otherwise) exhaustive search. This branch and

bound method guarantees optimality of the solution.

2.1.4 Ant colony algorithm. In ref. 23 a search heuristic was

proposed for solving the traveling salesperson problem, based on

ant colony optimization (ACO), called MMAS (Max–Min Ant

System). This algorithm (or variations thereof) has undergone

thorough theoretical investigation.18,27

We employ a variant of MMAS which works as follows. For

every vertex u of C(G, l) we construct a solution containing u;

finally, we pick the best solution found. For each such u we

iteratively try to find better solutions until some termination

criterion is met; in our implementation we use a fixed number of

iterations as the termination criterion. In each iteration we create

a fixed number a of new solutions, see Chart 1.

The construction of a new candidate solution for a target

graph G works as follows. We imagine an artificial ant

performing a random walk on C(G, l), at each step choosing

vertices of a new candidate solution. The construction terminates

when k vertices have been chosen.

In each step of its random walk on C(G, l), we want the ant

to choose a vertex v in C(G, l) adjacent to one of the

previously chosen vertices with a probability based on the

pheromone value t(v) and on the heuristic value Z(v) of that

vertex. Pheromone values represent the memory of the ACO

algorithm about the quality of previously sampled tours and

direct the search towards promising areas; we will say more

about pheromones later. The heuristic information on a vertex v

is the number of new vertices in G that can be reached when

including v, i.e. Z(v) = |S(U , {v})| � |S(U)|; we use the

heuristic value to bias the algorithm to favor promising vertices

which make many new vertices reachable. Our ACO algorithm

takes two parameters a and b; when choosing a new edge, we

sample proportionally to the pheromone value to the power of a
times the heuristic value to the power of b.
We use a procedure construct based on the pheromones t as

given in Chart 2.

Pheromones are the values t(v) associated with the vertices

v A C(G, l) and range between 1 and |V|; they are initialized as

|V|/2. After each iteration, the pheromones will be updated; we

now describe the update procedure. This procedure depends

on the evaporation factor r (0 r r r 1, a parameter of the

ACO algorithm); small values of r (close to 0) indicate low

evaporation and small changes to pheromones per iterations;

large values (close to 1) indicate fast changes. The evaporation

factor r is a tunable parameter of the algorithm.

At the beginning, all pheromones are decreased bymultiplication

with (1 � r); this corresponds to the evaporation of old

pheromone, deposited in previous iterations.

Next, for each solutionWi found, we add a value of |S(Wi)|�
r to the pheromone value of each vertex in Wi; this way the

algorithm is biased to choose those vertices which are included

in solutions leading to a large (k, l)-component.

The Max–Min Ant System derives its name from maximal

and minimal pheromone values that can be attained. At the end

of the update procedure, all pheromone values below 1 are

increased to be 1, and all values above |V| are decreased to be |V|.

2.2 Data sources

2.2.1 Evaluation network data—Ulitsky et al. In order to

evaluate the newly developed algorithms and compare them to

previous methods, we tested them using the same PPI network

from Ulitsky et al.,24 which consists of 7384 nodes corresponding

to Entrez Gene identifiers and 23462 interactions based mostly

on small scale experiments and obtained from several interaction

databases. The network as well as more detailed information

Chart 1 The algorithm MMAs.

Chart 2 The algorithm construct.
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about this data source can be obtained from the CUSP web

site http://acgt.cs.tau.ac.il/clean. We will use this network for

evaluation with the below-described Huntington’s disease gene

expression data set, as previously done in ref. 1 and 24.

2.2.2 New network data—HPRD. To complement the

network compiled by Ulitsky and colleagues, we merged it

with the latest protein–protein interactions contained in the

Human Protein Reference Database.20 HPRD is a protein

interaction repository consisting of high quality human curated

interaction data sets. Their latest version (release 9) consists of

9672 proteins and 39194 interactions. Computing the union of

both results in a network consisting of 9867 proteins and 41 609

interactions. We will use this extended network for analyzing

the colon cancer methylation data, as described below.

2.2.3 Gene expression data set—Huntington’s disease.

Huntington’s disease (HD) is a degenerative neurological

disorder caused by a genetic defect on chromosome number

four which encodes a mutated version of the huntingtin (HTT)

protein. Studies have shown that mutant huntingtin interferes

with the function of widely expressed transcription factors,

suggesting that gene expression may be altered in a variety of

tissues in HD and may be a good target for ‘‘systems’’ methods

that take into account its interacting partners.

We tested the pathway extraction methods on the same

Huntington’s disease data sets used in ref. 1 and 24. The

expression data sets, with GEO accession number GSE3790,

were obtained using oligonucleotide arrays14 consisting of 32

unaffected control samples and 38 affected samples taken from

the caudate nucleus region of the brain. To determine differential

expression and compute the indicator matrix, the same thresholds

and p-values were used as in ref. 24.

2.2.4 Differential methylation data set—colon cancer.

Colorectal cancer (CRC) is a complex form of cancer that arises

from the accumulation of several genetic and epigenetic changes.

Recent efforts have been focusing on trying to integrate these

different sources of biological information in order to extract

meaningful groups of regulatory interactions. Complex diseases

such as CRC are good targets of study from a ‘‘systems’’ point of

view, where both types of biological data can be integrated with

network data to extract affected pathways.

KeyPathwayMiner was tested on a comprehensive genome-

scale DNA methylation profiling of 125 colorectal tumors and

29 adjacent normal tissues.13 Datasets are deposited in GEO

and can be found by their accession number GSE25062.

3 Results and discussion

3.1 Evaluation

Here we used two data sets to compare the running times and

performance of all algorithms. The first set consists of the

same data and the same evaluation scheme as in ref. 1 and 24.

The second sets consist of the CRC methylation data sets

consisting of 125 affected samples, which are mapped to the

extended graph, as described above. All computations have been

performed with our KeyPathwayMiner implementation on a

standard desktop PC (Intel 2.8 GHz Quad Core). We show that

at least for those cases where we can compute the exact solution

with the above introduced branch and bound algorithm, both

heuristics, ACO as well as the greedy algorithm, find the correct

solutions in all cases resulting in an increased accuracy compared to

the previous release. Afterwards, we demonstrate this empirically

with theHDdata set. Finally, we analyze the run time performance

on the CRC methylation data sets and the extended network.

3.1.1 Algorithms. First we compared the running times and

sizes of the largest subnetwork extracted with all algorithms.

For k 4 4 (HD data) and k 4 3 (CRC data) the exact branch

and bound (BB) algorithm was not able to recover a solution in

a reasonable time. Both the new ACO algorithm and the greedy

strategy were able to find the largest pathway computed by the

BB algorithm up to those k values. In most of the cases ACO

terminated faster than greedy; however, for larger values of k

the greedy slightly outperforms the new ACO algorithm by

recovering larger pathways (see Fig. 1). The ACO algorithm

fromKeyPathwayMiner 1.0 (which we will refer to as ACO 1.0)

recovers pathways faster than all algorithms for smaller values

of l, but it gets increasingly slow for larger numbers of accepted

case exceptions. However, ACO 1.0 converges to suboptimal

solutions and recovers smaller key pathways than the new

algorithms for all parameter values, k as well as l (see Fig. 2).

Additionally, both the greedy and the new ACO algorithm

were parallelized in order to take advantage of multi-processor

architectures. Fig. 3 and 4 illustrate the substantial decrease in

running times on two Intel Quad Core CPUs for both algo-

rithms when compared to the old KeyPathwayMiner 1.0 single

threaded versions.

Fig. 1 Performance results of the algorithms on the HD data sets for l= 8 case exceptions and varying values of k (gene/protein exceptions). The

previous ACO algorithm (ACO 1.0) converges faster than the new one (ACO 2.0) but to suboptimal solutions.
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Fig. 2 Performance results of the algorithms for the colon cancer methylation data sets for varying numbers of gene exceptions k and for case

exception values of l between 20% (top row) and 60% (bottom row).

Fig. 3 Runtime comparison of the greedy and ACO algorithms, single-threaded vs. multi-processor, on the HD data sets for l = 8 and varying

values of k.

Fig. 4 Runtime comparison of the greedy and ACO algorithms, single-threaded vs.multi-processor, on the CRC data sets for l= 50 and varying

values of k.
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3.1.2 Huntington’s disease data. For k = 2, l = 8 exceptions

we find that the optimal solution consists of 37 genes (see Table 1),

four more genes than in the solution found in the previous

KeyPathwayMiner version where one of these genes CTNNB1 is

an HTT modifier (Fig. 5).

When raising the number of gene exceptions to k = 8, the

largest pathways recovered with both the new ACO and

greedy algorithms have 65 genes (Table 2). One of these

pathways (see Fig. 6) contains the PLCB1 and GNAQ genes

which are both part of the HD KEGG and calcium signaling

pathways. In addition, TP53 is present in this pathway, also

part of the HD KEGG pathway and which has been found to

be hyperactive during HD.11

The genesHTT,CTNNB1,GNAQ andTP53 are all ‘‘exception’’

genes, havingmore than eight cases where they are not differentially

expressed. This supports the idea that exception genes may be

important genes that are generally overlooked by most other

methods, although they often connect highly differentially expressed

regions within the biological network.

3.2 Analysis of colon cancer DNA methylation profiles

Colorectal tumors with a CpG island methylator phenotype

(CIMP) exhibit a high frequency of cancer-specific DNA

hypermethylation. DNA hypermethylation of promoter CpG

islands has been associated with transcriptional gene silencing

and can cooperate with other genetic mechanisms to alter key

signaling pathways. In ref. 13 genes were clustered into different

subgroups using DNA methylation profiles of 125 affected

patients with CRC. It is known that CRC can originate from

key mutations in CIMP-related tumor genes such as BRAF,

KRAS, TP53, APC and PIK3CA, where changes in each of

these genes can provoke alterations on different pathways.

Also, hypermethylation of MLH1 has been associated with

development of sporadic CRC with microsatellite instability

(MSI) (Fig. 7).

The samples collected in ref. 13 are quite heterogeneous

where the mentioned genes do not show significant differential

methylation in a large fraction of the cases, and setting l = 25

(exactly a maximum of one fifth of cases) makes them all

exception genes. Although they appear in some of the largest

pathways found (see Table 3), even when setting the maximum

allowed gene exceptions to k= 8, no pathways were recovered

containing at least two of these genes, confirming that CRC

originating from different mutations can affect different pathways,

which highlights the importance of not reporting exclusively the

largest extracted key pathway.

3.3 Implementation. KeyPathwayMiner was implemented

as a Cytoscape6,9,22 (http://www.cytoscape.org) plugin which

is now freely available for download through the Cytoscape’s

plugin manager or through the project’s web site.

Once users install the plugin, they are able to upload their

computed indicator matrix from their own differential expression

Table 1 Comparison of the largest affected pathways found for k=2
and l = 8 by KeyPathwayMiner 1.0 (KPM 1.0), KeyPathwayMiner
2.0 (KPM 2.0) and other pathway extraction methods such as CUSP,24

GiGA,8 jActiveModules15 and the top 34 active genes with the most
significant t-scores

KPM 1.0
(ACO)

KPM 2.0
(ALL) CUSP GiGA

jActive-
Modules

t-test
top

Number of genes 33 37 34 34 282 34
Contains HTT? Yes Yes Yes No No No
HD modifiers 7 8 7 3 12 2
KEGG HD
pathway

8 8 4 0 4 0

Calcium pathway 5 5 6 5 10 3

Fig. 5 Largest subnetwork found for k = 2. Red nodes represent exception nodes, squared nodes are genes also reported as part of the

Huntington’s disease KEGG pathway, nodes with blue borders are HTT modifiers, and nodes with italic font are part of the calcium signaling

pathway.

Table 2 Comparison of the largest affected pathway with the most
number of overlap with relevant genes found for k = 8 and l = 8 by
both KeyPathwayMiner versions (greedy and ACO)

KPM 1.0
(ACO)

KPM 2.0
(ACO)

KPM 2.0
(GREEDY)

Number of genes 49 65 65
Contains HTT? Yes Yes Yes
HD modifiers 7 8 8
KEGG HD pathway 10 11 11
Calcium pathway 7 7 7
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analysis and map it to an interaction network. Since the

indicator matrix is highly application specific, we provide

details for gene expression data in ref. 1.

For parameter adjustment, we suggest that l be set in

proportion to the total number of differentially expressed

cases. The higher the difference between control and affected

samples the more restrictive (lower) values should be chosen in

order to filter out genes and recover smaller but more focused

networks. In contrast, if the studies contain very few differentially

expressed cases, then l should be set to larger values to avoid

recovering very small subnetworks with little information. As k

determines the network size it is much more difficult to predict.

We suggest setting it after l has been chosen. Once the rate of

‘‘exception’’ to ‘‘non-exception’’ genes is known, then k should

be proportional to this number. With increasing percentage of

exception genes, then k can be slowly increased in order to find

pathways with genes connecting highly affected regions. If

the number of ‘‘exception’’ genes is too low, then k should

be decreased to prevent recovering very large subnetworks

difficult to analyze.

The new KeyPathwayMiner consists of a renovated user

interface where users can choose from the three implemented

algorithms (greedy, ACO or BB algorithm) presented in this

work. Both greedy and ACO are also implemented to take

Fig. 6 Largest subnetwork found for k= 8 and l= 8 by using the new ACO algorithm. Red nodes represent exception nodes, squared nodes are

genes also reported as part of the Huntington’s disease KEGG pathway, nodes with blue borders areHTTmodifiers, and nodes with italic font are

part of the calcium signaling pathway.

Fig. 7 Largest subnetwork found containing the BRAF gene for k = 8 and l = 25 using the greedy algorithm. Red nodes represent exception

nodes, triangle nodes are hypermethylated genes that also show significant decrease in expression levels and nodes with purple border are genes

with promoters classified as CIMP.
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advantage of multi-core architectures and run concurrently to

produce faster results.

Once the pathway extraction process is completed, the

resulting key pathways are shown in the form of a table where

users can sort them by different criteria, such as average

number of differentially expressed cases. A table lists all the

nodes in the graph, showing the number of pathways that

contain the selected node. Users are also able to create pathway

views from the table to perform further analysis with other

network analysis tools included in Cytoscape.

4 Conclusion

In this paper we presented KeyPathwayMiner 2.0, an assembly of

algorithmic approaches for extracting sub-networks from biological

networks where all nodes but k are active in all studied cases but l.

The major advantage over other methods is the interpretability of

the extracted pathways and the two intuitive parameters. We

described three new algorithmic approaches, an improved user

interface and software implementation, and a new application of

KeyPathwayMiner to methylation data. To sum up, our main

contributions with the new KeyPathwayMiner version are

� We defined a precise algorithm solving the computation-

ally intense problem exactly.

� With an improved ACO algorithm and a new greedy

heuristic we significantly increased accuracy.

� Our new implementation comes with a parallel compute

architecture that allows for using multi-processor computers.

� And finally, we demonstrated the applicability of Key-

PathwayMiner 2.0 to other kinds of ‘‘expression’’ data types,

namely such as genome-wide colorectal cancer methylation.

In the future we plan to extend our approach to directed

networks. Furthermore, we aim to integrate the method into

CoryneRegNet,7,19 MycoRegNet16 and RhizoRegNet.17 We

will also provide computation on a stand-alone web server and

continue improving the Cytoscape front-end (current plug-in

implementation: KeyPathwayMiner 2.1, Dec 21st, 2011).
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