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The Univariate Marginal Distribution Algorithm (UMDA) – a popular estimation-of-
distribution algorithm – is studied from a run time perspective. On the classical OneMax
benchmark function on bit strings of length n, a lower bound of �(λ + μ

√
n + n log n), 

where μ and λ are algorithm-specific parameters, on its expected run time is proved. This 
is the first direct lower bound on the run time of UMDA. It is stronger than the bounds 
that follow from general black-box complexity theory and is matched by the run time of 
many evolutionary algorithms. The results are obtained through advanced analyses of the 
stochastic change of the frequencies of bit values maintained by the algorithm, including 
carefully designed potential functions. These techniques may prove useful in advancing the 
field of run time analysis for estimation-of-distribution algorithms in general.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Traditional algorithms in the field of Evolutionary Computation optimize problems by sampling a certain amount of 
solutions from the problem domain, the so-called population, and transforming them, such that the new population is closer 
to an optimum. Estimation-of-distribution algorithms (EDAs; [1]) have a very similar approach but do not store an explicit 
population of sample solutions. Instead, they store a probability distribution over the problem domain and update it via an 
algorithm-specific rule that learns from samples drawn from said distribution.

Although many different variants of EDAs (cf. [2]) and many different domains are possible, theoretical analyses of EDAs 
in discrete search spaces often consider run times over {0, 1}n . Further, the focus is on EDAs that store a Poisson binomial 
distribution, i.e., EDAs that store a probability vector p of n independent probabilities, each component pi denoting the 
probability that a sampled bit string will have a 1 at position i.

The first theoretical analysis in this setting was conducted by Droste [3], who analyzed the compact Genetic Algorithm
(cGA) – an EDA that only samples two solutions each iteration – on linear functions. Papers considering other EDAs, like, 
e.g., an iteration-best Ant Colony Optimization (ACO) algorithm by Neumann et al. [4] followed, where the pheromone vector 
represents the probability vector of an EDA.

Recently, the interest in the theoretical analysis of EDAs has increased [5–10]. Most of these works derive upper bounds 
for a specific EDA on the popular OneMax function, which counts the number of 1s in a bit string and is considered to be 
one of the easiest functions with a unique optimum for most EAs [11,12]. The only exceptions are Friedrich et al. [6], who 
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look at general properties of EDAs, Sudholt and Witt [9], who derive lower bounds on OneMax for the aforementioned cGA 
and an iteration-best ACO, and Dang and Lehre [5], who focus on general methods for upper bounds.

In this paper, we follow the ideas of Sudholt and Witt [9] and derive a lower bound of �(n log n) for the Univariate 
Marginal Distribution Algorithm (UMDA; [13]) on OneMax, which is a typical lower bound for many evolutionary algorithms 
on this function. UMDA is an EDA that samples λ solutions each iteration, selects μ < λ best solutions, and then sets pi to 
the relative occurrence of 1s among these μ individuals. The algorithm has already been analyzed some years ago for several 
artificially designed example functions [14–17]. However, none of these papers consider the standard benchmark function 
for theory: the OneMax function. In fact, the run time analysis of UMDA on the simple OneMax function has turned out 
to be rather challenging; the first such result, showing an upper bound of O(n log n log log n) on its expected run time for 
certain settings of μ and λ, was not published until 2015 [5]. Specific lower bounds for UMDA were to date missing; the 
previous best result �(n/ log n) on the expected run time followed from general black box complexity theory [18] and did 
not shed light on the working principles of UMDA.

Recently, two matching upper bounds of O(n log n) of UMDA on OneMax have been proved independently from one 
another [8,10] for certain cases of μ and λ. Our results match almost all of these cases, providing a tight run time bound 
of �(n log n).

The concepts of the proofs in this paper are based on the prior work from Sudholt and Witt [9]. However, analyzing 
UMDA is much more difficult than analyzing cGA or iteration-best ACO, since the update of the latter algorithms is bounded 
by an algorithm-specific parameter and the algorithms only have up to three distinct successor states for each value pi . 
UMDA, on the other hand, can change each of its pi to any value x/μ with a certain probability, where x ∈ {0, . . . , μ}, 
due to the nature of its update rule. This makes analyzing UMDA far more involved, because every single update has to be 
bounded probabilistically. Further, the simple update rules for cGA and iteration-best ACO allow for a distinction into two 
cases that determines whether a value pi will increase or decrease; a fact that was heavily exploited in the analyses in [9]. 
For UMDA, no such simple case distinction can be made.

This paper is structured as follows: in Section 2, we shortly introduce the setting we are going to analyze and go into 
detail about UMDA’s update rule, that is, we explain and analyze a property of the algorithm that leads to the lower bound 
when optimizing OneMax.

Then in Section 3, we state our main result – a run time bound of �(n log n) (Theorem 6) – and prove it step by step. 
The rough outline of the proof follows the one presented in [9]. However, we think that our style of presentation is more 
accessible, due to dissecting our proof into smaller (and often independent) lemmas.

In Section 4, we relax the condition of Theorem 6 with respect to the dependency of μ to λ and also prove a bound of 
�(n log n) (Theorem 20). Our result holds for values of μ ≤ c log n, for a sufficiently small constant c. This includes the case 
μ = 1, for which no matching upper bound has explicitly been proved up to date.1

Finally, we conclude and discuss our results and future work in the Conclusions section.
We think that parts of our results (especially the detailed analysis of the selection process in Section 2.2) can also be 

used when analyzing UMDA on other functions than OneMax.
This version is an extension of our prior lower-bound analysis of UMDA [20] in the way that we also consider the case 

of μ ≤ c log n (for a sufficiently small constant c), independent of λ > μ.

2. Preliminaries

We consider the Univariate Marginal Distribution Algorithm (UMDA [13]; Algorithm 1) maximizing the pseudo-Boolean 
function OneMax, where, for all x ∈ {0, 1}n ,

OneMax(x) =
n∑

i=1

xi .

Note that the function’s unique maximum is the all-ones bit string. However, a more general version can be defined by 
choosing an arbitrary optimum a ∈ {0, 1}n and defining, for all x ∈ {0, 1}n ,

OneMaxa(x) = n − dH(x,a) ,

where dH(x, a) denotes the Hamming distance of the bit strings x and a. Note that OneMax1n is equivalent to the original 
definition of OneMax. Our analyses hold true for any function OneMaxa , with a ∈ {0, 1}n , due to symmetry of UMDA’s 
update rule.

We call bit strings individuals and their respective OneMax values fitness.
UMDA does not store an explicit population but does so implicitly, which makes it an estimation-of-distribution algo-

rithm (EDA). For each of the n different bit positions, it stores a rational number pi , which we call frequency, determining 

1 Note that for this case, UMDA (with frequency borders) basically is a (1, λ) EA with standard bit mutation, for which matching upper bounds have been 
proved [19].
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Algorithm 1: Univariate Marginal Distribution Algorithm (UMDA).

1 t ← 0;

2 p1,t ← p2,t ← ·· · ← pn,t ← 1
2 ;

3 while termination criterion not met do
4 Pt ← ∅;
5 for j ∈ {1, . . . , λ} do
6 for i ∈ {1, . . . , n} do
7 x( j)

i,t ← 1 with prob. pi,t , x( j)
i,t ← 0 with prob. 1 − pi,t ;

8 Pt ← Pt ∪ {
x( j)

t

}
;

9 Sort individuals in P descending by fitness, breaking ties uniformly at random;
10 for i ∈ {1, . . . , n} do

11 pi,t+1 ← 1
μ

∑μ
j=1 x( j)

i,t ;

12 Restrict pi,t+1 to be within [ 1
n , 1 − 1

n

]
;

13 t ← t + 1;

how likely it is that a hypothetical individual would have a 1 at this position. In other words, UMDA stores a probability 
distribution over {0, 1}n . The starting distribution is the uniform distribution.

In each iteration, UMDA samples λ individuals such that each individual has a 1 at position i (i ∈ {1, . . . , n}) with 
probability pi , independent of all of the other frequencies. Thus, individuals are sampled such that their number of 1s 
follows a Poisson binomial distribution with probability vector (pi)i∈{1,...,n} .

After sampling λ individuals, μ of them with highest fitness are chosen, breaking ties uniformly at random (so-called 
selection). Then, for each position, the respective frequency is set to the relative occurrence of 1s in this position. That is, if 
x of the chosen μ best individuals have a 1 at position i, the frequency pi will be updated to x/μ for the next iteration. 
Note that such an update allows large jumps like, e.g., from (μ − 1)/μ to 1/μ, spanning almost the entire interval of a 
frequency!

If a frequency reaches either 0 or 1, it cannot change anymore, since then all bits at this position will be either 0 or 1. 
To prevent UMDA from getting stuck in such a way, we narrow the interval of possible frequencies down to [1/n, 1 − 1/n]. 
This way, there is always a chance of sampling 0s and 1s for each position. This is a common approach used by other EDAs 
as well, such as cGA or ACO algorithms (mentioned in the introduction).

Overall, we are interested in a lower bound of UMDA’s expected number of function evaluations on OneMax until the 
optimum is sampled. Note that this is at least the expected number of iterations until the optimum is sampled (minus one) 
times λ, as we do not necessarily have to evaluate all λ offspring in the last iteration.

In all of our calculations except Section 4, we always assume that λ = (1 + β)μ, for some constant β > 0. Of course, we 
could also choose λ = ω(μ) but then each iteration would be even more expensive. Choosing λ = �(μ) lets us basically 
focus on the minimal number of function evaluations per iteration, as μ of them are at least needed to make an update.

Given two random variables X and Y , we say that X dominates Y , written as X 	 Y , if, for all x, Pr(X ≥ x) ≥ Pr(Y ≥ x).

2.1. Selecting individuals

In order to optimize a function efficiently, UMDA needs to evolve its frequencies toward the right direction, making it 
more likely to sample an optimum. In the setting of OneMax, this means that each frequency should be increased (toward 
a value of 1 − 1/n). This is where selection comes into play.

By selecting μ best individuals every iteration w.r.t. their fitness, we hope that many of them have correctly set bits 
at each position, such that the respective frequencies increase. However, even in the simple case of OneMax, where a 1 is 
always better than a 0, there is a flaw in the update process that prevents UMDA from optimizing OneMax too fast. To see 
why this flaw occurs, consider an arbitrary position j in the following.

When selecting individuals for an update to p j , UMDA does so by always considering the fitness of each entire individual. 
That is, although each frequency is independently updated from the others, selection is done w.r.t. all positions at once. Thus, 
when looking at position j, it can happen that we have many 0s, because the individuals chosen for the update may have 
many 1s in their remaining positions, which can lead to a decrease of p j .

Since having a 1 at a position is always better than a 0 when considering OneMax, the selection is biased, pushing for 
more 1s at each position. However, this bias is not necessarily too large: Consider that for each individual each bit but bit j
has already been sampled. When looking at selection w.r.t. only n − 1 bits in each individual, some individuals may already 
be so good that they are determined to be chosen for selection, whereas others may be so bad that they definitely cannot 
be chosen for selection, regardless of the outcome of bit j.

Consider the fitness of all individuals sampled during one iteration of UMDA w.r.t. n − 1 bits, i.e., all bits but bit j. We 
call each of these n different fitness values (from 0 to n − 1) a level. Assume that the individuals are sorted decreasingly by 
their level; each individual having a unique index. Let w+ be the level of the individual with rank μ, and let w− be the 
level of the individual with rank μ + 1. Since bit j has not been considered so far, its value can potentially increase each 
individual’s level by 1. Now assume that w+ = w− + 1. Then, individuals from level w− can end up with the same fitness 
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Fig. 1. An exemplary visualization of the different definitions we need. The boxes depict all of the n levels, the numbers above show their respective fitness, 
and the dots symbolize individuals in these levels. The line cutting through level M − 1 marks the point where more than μ individuals have been sampled 
when starting from the top. In that level, not all individuals are going to be selected. Further, the individuals from the level below can be selected (as their 
fitness can still increase by one when sampling the last bit), and individuals from the level above can be not selected. Hence, the individuals in those levels 
are 2nd-class candidates. The individuals in higher levels will always be selected, thus they are 1st-class individuals. Out of the 2nd-class candidates, those 
individuals that are chosen during selection are the 2nd-class individuals (in this example, those would be two individuals, i.e., C∗ = 2). Last, M depicts the 
cut level, i.e., the topmost level such that the number of sampled individuals is greater than μ when including the next (lower) level.

as individuals from level w+ , once bit j has been sampled. Thus, individuals from level w+ were still prone to selection. This 
means that the outcome of bis j can influence whether the individual is being selected or not.

Among the μ individuals chosen during selection, we distinguish between two different types: 1st-class and 2nd-class 
individuals. 1st-class individuals are those which are chosen during selection no matter which value bit j has. The remaining 
of the μ individuals are the 2nd-class individuals; they had to compete with other individuals for selection. Therefore, 
their bit value j is biased toward 1 compared to 1st-class individuals. Note that 2nd-class individuals can only exist if 
w+ ≤ w− + 1, since in this case, individuals from level w− can still be as good as individuals from level w+ after sampling 
bit j.

Let Xt be the number of 1s at position j of the μ selected individuals in iteration t of UMDA, and let C∗ denote the 
number of 2nd-class individuals in iteration t + 1. Note that the number of 1s of 1st-class individuals during iteration t + 1
follows a binomial distribution with success probability Xt/μ. Since we have μ − C∗ 1st-class individuals, the distribution 
of the number of 1s of these follows Bin(μ − C∗, Xt/μ). Note that the actual frequency in iteration t + 1 might be set to 
either 1/n or 1 − 1/n if the number of 1s in the μ selected individuals is too close to 0 or μ, respectively. We will be able 
to ignore this fact in our forthcoming analyses since all considerations are stopped when a frequency drops below 1/n or 
exceeds 1 − 1/n.

2.2. The number of 2nd-class individuals

As in the previous section, consider again a bit position j. In this section, we again speak of levels as defined in the 
previous section. Those definitions as well as the following ones are also depicted in Fig. 1. Level n − 1 is the topmost, and 
level 0 is the bottommost. For all i ∈ {0, . . . , n − 1}, let Ci denote the cardinality of level i, i.e., the number of individuals in 
level i during an arbitrary iteration of UMDA, and let C≥i = ∑n−1

a=i Ca .
Let M denote the index of the first level from the top such that the number of sampled individuals is greater than μ

when including the following level, i.e.,

M = max{i | C≥i−1 > μ} .

Note that M can never be 0, and only if M = n − 1, CM can be greater than μ. Note further that CM can be 0.
Due to the definition of M , if M �= n − 1, level M − 1 contains the individual of rank μ + 1, as described in the previous 

section. Thus, levels M , M − 1, and M − 2 contain all of the individuals that are prone to selection (if such exist at all). 
Hence, individuals in levels at least M + 1 are definitely 1st-class individuals. 2nd-class individuals, if any, have to come 
from level M , M − 1, or M − 2. We call the individuals from these three levels 2nd-class candidates. Note that the actual 
number of 2nd-class individuals is bounded from above by μ − C≥M+1 = μ − C≥M + CM , since exactly μ individuals are 
selected.

Since the 2nd-class individuals are the only ones that are prone to selection and thus the only ones that actively help in 
progressing a single frequency toward 1 −1/n, it is of utmost importance to understand the distribution of C∗ := μ −C≥M+1, 
that is, the biased impact to an update as introduced in Section 2.1. Moreover, we will also need a bound on the number of 
2nd-class candidates.

Before we get to analyzing the 2nd-class individuals, we introduce several auxiliary statements. We start with a very 
useful lemma on conditional binomially distributed random variables.

Lemma 1. Let X be a binomially distributed random variable with arbitrary parameters. Then for any x, y ≥ 0, it holds

Pr(X ≥ x + y | X ≥ x) ≤ Pr(X ≥ y) .
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Proof. Let n and p be the parameters of the underlying binomial distribution. Given x ≥ 0, we define the random variable 
Yx := X − x. Conditioning on X ≥ x, we have Yx ∼ Bin(k, p) for 0 ≤ k ≤ n − x and therefore Yx 
 X . Hence, Pr(X ≥ x + y | X ≥
x) = Pr(Yx ≥ y | X ≥ x) ≤ Pr(X ≥ y). �

Moreover, we are going to use a corollary that is based on Lemma 8 from [9], the proof of which can be seen in [21, 
Lemma 9]. Also, the idea behind the corollary is given in [21] but not presented as an independent statement.

Lemma 2. Let S be the sum of m independent Poisson trials with probabilities pi ∈ [1/6, 5/6] for all i ∈ {1, . . . , m}. Then, for all 
0 ≤ s ≤ m, Pr(S = s) = O(1/

√
m).

Corollary 3. Let X be the sum of n independent Poisson trials with probabilities pi, i ∈ {1, . . . , n}. Further, let �(n) many pi -s be 
within [1/6, 5/6]. Then, for all 0 ≤ x ≤ n, Pr(X = x) = O(1/

√
n).

Proof. Let m = �(n) denote the number of pi -s that are within [1/6, 5/6]. When sampling X , assume w.l.o.g. that the first 
m trials are the ones with pi ∈ [1/6, 5/6]. Let S denote the sum of these trials, and let Y denote the sum of the remaining 
n − m trials. Since the trials are independent, we get Pr(X = x) = ∑x

s=0 Pr(S = s) Pr(Y = x − s).
We can upper-bound Pr(S = s) = O(1/

√
m) = O(1/

√
n) by using Lemma 2 and m = �(n). Thus, we have Pr(X = x) =

O(1/
√

n) 
∑x

s=0 Pr(Y = x − s). Bounding the sum by 1 concludes the proof. �
The corollary lets us easily get upper bounds for the probability that a sampled individual has a certain (and arbitrary) 

fitness (w.r.t. either all n positions or all positions but j). In order to apply it, we have to make sure that �(n) frequencies 
are still within [1/6, 5/6]. Thus, we assume from now on that this assumption holds. In Section 3.2, we will go into detail 
and prove under which circumstances this assumption holds.

Note that all statements from now on regarding a specific position j hold regardless of the bits at any other of the �(n)

positions that do not stay within [1/6, 5/6]. This means that the statements are even true if the bits at those other positions 
are chosen by an adversary.

We are now ready to analyze C∗ and the number of 2nd-class candidates.

Lemma 4. Consider UMDA with λ = (1 + β)μ optimizing OneMax, and let ̃Z be a random variable that takes values in {1, . . . , λ}
only with probability at most 2e−(ε2/(3+3ε))μ = e−�(μ) and is 0 otherwise, where ε > 0 is a constant such that ε < 1 − 1/(1 + β). 
If there are �(n) frequencies in [1/6, 5/6], then the distribution of C∗ is stochastically dominated by Bin

(
λ, O(1/

√
n)

) + Z̃ and the 
distribution of CM + CM−1 + CM−2 is stochastically dominated by 1 + Bin

(
λ, O(1/

√
n)

) + Z̃ .

Proof. The proof carefully investigates and then reformulates the stochastic process generating the λ individuals (before 
selection), restricted to n − 1 bits. Each individual is sampled by a Poisson binomial distribution for a vector of probabilities 
p′ = (p′

1, . . . , p
′
n−1) obtained from the frequencies of UMDA by leaving one entry out. By counting its number of 1s, each of 

the λ individuals then falls into some level i, where 0 ≤ i ≤ n −1, with some probability qi depending on the vector p′ . Since 
the individuals are created independently, the number of individuals in level i is binomially distributed with parameters λ
and qi .

Next, we take an alternative view on the process of putting individuals into levels, using the principle of deferred 
decisions. We imagine that the process first samples all individuals in level 0 (through λ trials, all of which either hit the 
level or not), then (using the trials which did not hit level 0) all individuals in level 1, and so on, up to level n − 1.

The number of individuals C0 in level 0 is still binomially distributed with parameters λ and q0. However, after all 
individuals in level 0 have been sampled, the distribution changes. We have λ − C0 trials left, each of which can hit one of 
the levels 1 to n − 1. In particular, such a trial will hit level 1 with probability q1/(1 − q0), by the definition of conditional 
probability, since level 0 is excluded. This holds independently for all of the λ − C0 trials so that C1 follows a binomial 
distribution with parameters λ − C0 and q1/(1 − q0). Inductively, also all Ci for i > 1 are binomially distributed; e.g., Cn−1
is distributed with parameters λ − Cn−2 − · · · − C0 and 1. Note that this model of the sampling process can also be applied 
for any other permutation of the levels; we will make use of this fact.

Analyzing the number of 2nd-class individuals. We first focus on C∗ = μ − C≥M+1 and will later use bounds on its dis-
tribution to analyze CM + CM−1 + CM−2. Formally, by applying the law of total probability, the distribution of C∗ looks as 
follows for k ∈ {0, . . . , λ}:

Pr(C∗ ≥ k) =
n−1∑
i=1

Pr(M = i) · Pr(μ − C≥i+1 ≥ k | M = i) . (1)

We will bound the terms of the sum differently with respect to the index i. First, we look into a particular value i∗ such 
that Pr(M ≥ i∗) is exponentially unlikely, and then make a case distinction via i∗ .
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Let X be the number of 1s in a single individual sampled (without conditioning on certain levels being hit). Choose i∗
such that Pr(X ≥ i∗ − 1) ≤ 1/

(
(1 + ε)(1 + β)

)
and Pr(X ≥ i∗ − 1) ≥ 1/

(
(1 + ε)(1 + β)

) − O(1/
√

n). Such an i∗ must exist, 
since every level is hit with probability O(1/

√
n) when sampling an individual, according to Corollary 3. Clearly, we also 

have i∗ ≤ n − 1.
A crucial observation is that Pr(M ≥ i∗) = e−�(μ) , since the expected number of individuals sampled with at least i∗ − 1

1s is at most λ/
(
(1 + ε)(1 + β)

) = μ/(1 + ε), and the probability of sampling at least (1 + ε) · μ/(1 + ε) = μ is at most 
e−ε2·μ/(3(1+ε)) = e−�(μ) by Chernoff bounds. Note that we have considered level i∗ − 1 since C≥i∗−1 < μ implies M < i∗ .

In Equation (1), considering the partial sum for all i ≥ i∗ , we therefore immediately estimate

n−1∑
i=i∗

Pr(M = i) · Pr(μ − C≥i+1 ≥ k | M = i) ≤ Pr(M ≥ i∗) ≤ e−�(μ) ,

as shown just before.
For the terms with i < i∗ (in particular, the case i = n − 1 is excluded), we take a view on the final expression in 

Equation (1) and focus on Pr(μ − C≥i+1 ≥ k | M = i), in which we want to reformulate the underlying event appropriately. 
Here we note that

{μ − C≥i+1 ≥ k} ∩ {M = i}
is equivalent to

{C≤i ≥ λ − μ + k} ∩ {M = i} ,

where C≤i = ∑i
j=0 C j , and, using the definition of M , this is also equivalent to

{C≤i ≥ λ − μ + k} ∩ {C≤i−2 < λ − μ} ∩ {C≤i−1 ≥ λ − μ} .

We now take the above-mentioned view on the stochastic process and assume that levels 0 to i − 2 have been sampled 
and a number of experiments in a binomial distribution is carried out to determine the individuals from level i − 1. Hence, 
given some C≤i−2 = a < λ − μ, our event is equivalent to that the event

E∗ := {
Ci + Ci−1 ≥ (λ − μ − a) + k

} ∩ {Ci−1 ≥ λ − μ − a}
happens.

Recall from our model above that Ci−1 follows a binomial distribution with λ − a trials and with a certain success 
probability s; similarly, Ci follows a binomial distribution with parameters λ − a − Ci−1 and s′ . As we are interested in a 
cumulative distribution, we may pessimistically upper-bound the total number of trials for Ci−1 by λ. Regarding s, note that 
it denotes the probability to sample an individual with i −1 1s, given that it cannot have less than i −1 1s. Note further that 
Pr(X ≥ i∗ − 1), where X again denotes the level of the individual sampled in a trial, is a lower bound for all probabilities 
Pr(X ≥ i − 1), since i < i∗ . To upper-bound s, we use Corollary 3, which tells us that the unconditional probability to hit a 
level is in O(1/

√
n), regardless of which level is hit. However, we have to condition on the event that certain levels (namely 

0, . . . , i − 2, where i < i∗) cannot be hit anymore. We pessimistically exclude even some more levels than possible, more 
precisely, we exclude the levels from 0 up to i∗ − 2. This means that we condition on Pr(X ≥ i∗ − 1). By the definition of 
conditional probability, the probability of O(1/

√
n) from Corollary 3 thus gets increased by a factor of 1/ Pr(X ≥ i∗ − 1), 

which is constant. Hence, Ci−1 is stochastically dominated by a binomial distribution with parameters λ and O(1/
√

n).
Similarly, assuming that also level i − 1 has been sampled, Ci is dominated by a binomial distribution with parameters 

λ − Ci−1 and O(1/
√

n).
To finally bound Pr(E∗) from above, which involves a condition on the outcome on Ci−1, we apply Lemma 1, where 

we let X := Ci−1 and x = λ − μ − a as well as y = k. Since we have bounded Ci−1 (without the condition on Ci−1 ≥ x) 
by a binomial distribution with success probability O(1/

√
n), we get from the lemma that Pr(Ci−1 − x ≥ k | Ci−1 ≥ x) ≤

Pr
(
Bin(λ, O(1/

√
n)) ≥ k

)
. Note that the right-hand side is a bound independent of C0, . . . , Ci−1. With respect to Ci , we do 

not consider an additional condition on its outcome but use the result Pr(Ci ≥ k) ≤ Pr
(
Bin(λ − Ci−1, O(1/

√
n)) ≥ k

)
derived 

in the last paragraph directly. Hence, both Ci−1 − x, conditioned on Ci−1 ≥ x, and Ci have been bounded by binomial 
distributions with second parameter O(1/

√
n). In E∗ , we are confronted with the sum of these two random variables and 

study the distribution of the sum. Together, Pr(E∗) ≤ Pr
(
Bin(λ, O(1/

√
n)) ≥ k

)
, since we consider at most λ trials. Pulling 

this term in front of the sum over i for the terms i < i∗ in (1) and estimating this sum with 1 (since we sum over 
mutually disjoint events) leaves us with an additional term of Pr

(
Bin(λ, O(1/

√
n)) ≥ k

)
for Pr(μ − C≥M+1 ≥ k). This proves 

the lemma’s statement on the distribution of C∗ .

Analyzing the number of 2nd-class candidates. We are left with analyzing C∗∗ := CM + CM−1 + CM−2. We handle the very 
unlikely case M = n − 1, whose probability is upper-bounded by Pr(M ≥ i∗), separately and cover it by adding the random 
variable Z̃ to our result. By a symmetrical argument to the above, for some index i∗∗ such that Pr(X < i∗∗) = 1 − 1/

(
(1 −
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ε)(1 + β)
) + O(1/

√
n)), we obtain that M ≤ i∗∗ also happens with probability at most e−ε2 ·μ/(2(1−ε)) ≤ e−ε2·μ/(3+3ε)) , for 

ε < 1 − 1/(1 + β). This unlikely case is also included in Z̃ . From now on, we assume i∗∗ < M < n − 1. We note that 
by definition of M , we then have C≥M ≤ μ and C≥M−1 ≥ μ + 1. Hence, CM−1 ≥ 1 such that we have to investigate the 
distribution of C∗∗ conditional on CM−1 ≥ 1 + (μ − C≥M).

We take the same view on the stochastic process as above but imagine now that the levels are sampled in the order 
from n − 1 down to 0. Conditioning on that levels n − 1, . . . , M + 1 have been sampled, levels M , M − 1 and M − 2 are still 
hit with probability O(1/

√
n) each, since Pr(X < i∗∗) is a constant. Therefore, the distribution of CM is bounded according 

to

Pr(CM ≥ k) ≤ Pr
(
Bin(λ − C≥M+1,O(1/

√
n)) ≥ k

)
.

To analyze CM−1, we recall that we have to condition on CM−1 ≥ 1 + (μ − C≥M). Hence, we can use Lemma 1 similarly as 
above and get

Pr
(
CM−1 ≥ 1 + (μ − C≥M) + k

∣∣ CM−1 ≥ 1 + (μ − C≥M)
) ≤ Pr

(
Bin(λ − C≥M ,O(1/

√
n)) ≥ k

)
.

Note that the right-hand side of the inequality is independent of C∗ . Applying the argumentation once more for level M − 2
(where no conditions on the size exist), we get Pr(CM−2 ≥ k) ≤ Pr

(
Bin(λ −C≥M−1, O(1/

√
n)) ≥ k

)
. Using our stochastic bound 

on C∗ from above, we altogether obtain that C∗∗ is stochastically dominated by the sum of 1, three binomially distributed 
random variables with a total number of λ trials and success probability O(1/

√
n) each, and the variable Z̃ . �

Now that we understand how C∗ is distributed, we can look at the distribution of both the 1st- and 2nd-class individuals. 
We even can take a finer-grained view on the number of 1s contributed by them.

Lemma 5. Consider UMDA optimizing OneMax. Consider further that �(n) frequencies are within [1/6, 5/6] and that we are in 
iteration t. Let j be any position, and let Xt−1 denote the number of 1s at position j in iteration t − 1.

The distribution Z1,t of the number of 1s of 1st-class individuals is stochastically dominated by Bin(μ, Xt−1/μ), and the distribu-
tion Z2,t of the number of 1s of 2nd-class individuals is stochastically dominated by C∗, where C∗ is distributed as seen in Lemma 4. 
In particular, the expected value of Z2,t is at most O(μ/

√
n) + e−�(μ) .

Further the expected value of Z2,t , given Xt−1 , is at most O
(

Xt−1/μ + Xt−1/
√

n
) + e−�(μ) .

Proof. The distribution of Z1,t has already been described in Section 2.1 as Bin(μ − C∗, Xt−1/μ), which is dominated by 
Bin(μ, Xt−1/μ). We also know that the number of 2nd-class individuals is bounded from above by C∗ , and their number 
of 1s is trivially bounded by this cardinality too. The first statement on the expected value of Z2,t follows by taking the 
expected value of the binomial distribution and noting that E( Z̃ ) ≤ λe−�(μ) = e−�(μ) , using λ = O(μ).

To show the second statement on the expected value of Z2,t , we recall our definition of 2nd-class candidates from above. 
These candidates have not been subject to selection yet. Each of these candidates samples a 1 at position j independently of 
the others with probability Xt−1/μ, so the expected total number of 1s in 2nd-class candidates is the expected number of 
candidates multiplied with Xt−1/μ, by Wald’s identity. By Lemma 4, there is an expected number of at most 1 +O(μ/

√
n) +

e−�(μ) of candidates, using again λ = O(μ). Since the 2nd-class individuals are only selected from the candidates, the claim 
on the expected value of Z2,t follows. �
3. Lower bound on OneMax

In the following, we derive a lower bound on UMDA’s run time on OneMax. First, we state the main theorem.

Theorem 6. Let λ = (1 + β)μ for some constant β > 0. Then the expected optimization time of UMDA on OneMax is �(μ
√

n +
n log n).

To prove the theorem, we will distinguish between different cases for λ: small, medium, and large. We will cover the 
lemmas we use to prove the different cases in different sections. The first and the last case are fairly easy to prove, hence 
we discuss them first, leaving the second case of medium λ – the most difficult one – to be discussed last.

In each of the following sections, we will introduce the basic idea behind each of the proofs.

3.1. Small population sizes

In this section, we consider a population size of λ ≤ (1 − c1) log2 n, for some constant c1 > 0. If the population size is 
that small, the probability that a frequency reaches 1/n is rather high, and thus the probability to sample the optimum will 
be quite small.

If enough frequencies drop to 1/n, we can bound the expected number of fitness evaluations until we sample the 
optimum by �(n log n). The following lemma and its proof closely follow [21, Lemma 13].
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Lemma 7. Assume that �(nc1) frequencies, c1 > 0 being a constant, are at 1/n. Then UMDA will need with high probability and in 
expectation still �(n logn) function evaluations to optimize any function with a unique global optimum.

Proof. Due to symmetry, we can w.l.o.g. assume that the global optimum is the all-ones string.
We look at (c2n ln n)/(2λ) iterations, where c2 < c1 is a positive constant, and show that it is very unlikely to sample the 

all-ones string during that time. Note that this translates to �(n log n) function evaluations until the optimum is sampled, 
as UMDA samples λ offspring every iteration.

Consider a single position with frequency at 1/n. The probability that this position never samples a 1 during our time of 
(c2n ln n)/(2λ) iterations is at least((

1 − 1

n

)λ
) c2n ln n

2λ

=
(

1 − 1

n

) c2n ln n
2 ≥ (

1 − o(1)
)
e− c2

2 ln n ≥ n−c2

if n is large enough.
Given �(nc1 ) frequencies at 1/n, the probability that all of these positions sample at least one 1 during (c2n ln n)/(2λ)

iterations is at most(
1 − n−c2

)�(nc1 ) ≤ e−�(nc1−c2 ) ,

which is exponentially small in n, since c1 > c2, due to our assumptions.
Hence, with high probability, UMDA will need at least �(n log n) function evaluations to find the optimum.
Since the expected value of function evaluations is finite (due to the bound of 1 − 1/n and 1/n for the frequencies) and 

it is �(n log n) with high probability, it follows that the expected number of fitness evaluations is �(n log n) as well. �
We can now prove our lower bound for small population sizes.

Theorem 8. Let λ ≤ (1 − c1) log2 n for some arbitrarily small constant c1 > 0. Then UMDA will need with high probability and in 
expectation �(n log n) function evaluations to optimize any function with a unique global optimum.

Proof. Due to symmetry, we can w.l.o.g. assume that the global optimum is the all-ones string. We consider an arbitrary 
position i and study the first iteration of UMDA. The probability that all λ bits at position i are sampled as 0 equals 
2−λ ≥ n−(1−c1) . In this case, the frequency of the position is set to 1/n. The expected number of such positions is nc1 , and 
by Chernoff bounds, with high probability �(nc1 ) such positions exist (noting that c1 is a positive constant by assumption).

Applying Lemma 7 yields the result, since we already have �(nc1 ) frequencies at 1/n after a single iteration of UMDA 
with high probability. �
3.2. Large population sizes

Here we are going to show that a population size of λ = �(
√

n log n) leads to a run time of �(n log n). To prove this, we 
first show that it is unlikely that too many frequencies leave the interval [1/6, 5/6] quickly in this scenario. Thus, it is also 
unlikely to sample the optimum.

We start by proving that a single frequency does not leave [1/6, 5/6] too quickly, for μ = ω(1). We make use of Corol-
lary 3 and the lemmas following from it, all of which make use of the lemmas we prove here themselves. At the end of this 
section, we will discuss why this seemingly contradictory approach is feasible.

Lemma 9. Consider an arbitrary frequency of UMDA with λ = ω(1) optimizing OneMax. During the first at least γ · min{μ, 
√

n}
iterations, for a sufficiently small constant γ , this frequency will not leave [1/6, 5/6] with a probability of at least a constant greater 
than 0.

Proof. We consider the expected change of an arbitrary position’s frequency pt over time t . Let Xt , again, denote the 
number of 1s of the μ selected individuals. Note that pt+1 = Xt/μ.

Due to Lemma 5, we know that Xt is the sum of two random variables Z1,t and Z2,t , where Z1,t ≺ Bin(μ, Xt−1/μ)

corresponds to the number of 1s due to the 1st-class individuals, and Z2,t ≺ Bin
(
λ, O(1/

√
n)

) + Z̃t corresponds to the 
2nd-class individuals’ number of 1s, pessimistically assuming that each 2nd-class individual contributes a 1.

First, we are going to upper-bound the probability of pt reaching 5/6 during γ · min{μ, 
√

n} iterations. Then, we do the 
same for reaching 1/6. Taking the converse probability of a union bound over both cases then yields the result.

The probability of reaching 5/6. Since Z1,t is dominated by a martingale which we want to account for in the process, we 
analyze φt+1 := (Xt/μ)2, with φ0 = (1/2)2. Note that the square function is injective in this case because both Xt and μ
are nonnegative. The original process of pt reaching 5/6 translates into the new process p2

t reaching (5/6)2.
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We bound the expected change during one step:

E(φt+1 − φt | φt) = 1

μ2

(
E(X2

t | φt) − X2
t−1

)
= 1

μ2

(
E
(
(Z1,t + Z2,t)

2 | φt
) − X2

t−1

)
= 1

μ2

(
E(Z 2

1,t | φt) + E(Z 2
2,t | φt) + 2E(Z1,t · Z2,t | φt) − X2

t−1

)
.

As discussed before, we will look at the dominating distributions of Z1,t and Z2,t . Further, note that Z1,t and Z2,t are 
not independent, but their dominating distributions are.

We calculate the different terms separately:

E(Z 2
1,t | φt) ≤ μ

Xt−1

μ

(
1 − Xt−1

μ

)
+

(
μ

Xt−1

μ

)2

≤ Xt−1 + X2
t−1 ,

i.e., the second moment of a binomially distributed random variable, as seen by noting that E(Z 2
1,t | φt) = Var(Z1,t | φt) +

E(Z1,t | φt)
2.

For Z2,t , let Z∗
t ∼ Bin

(
λ, O(1/

√
n)

)
, and recall that Z̃ is a random variable that takes values in {1, . . . , λ} with probability 

e−�(μ) and is 0 otherwise. Using, again, the second moment of a binomially distributed random variable, we get

E(Z 2
2,t | φt) ≤ E

(
(Z∗

t )2 | φt
) + E

(
( Z̃t)

2 | φt
) + 2E(Z∗

t | φt)E( Z̃t | φt)

≤ O

(
μ√

n

)
+ O

(
μ2

n

)
+ μ2e−�(μ) + O

(
μ2

√
n

e−�(μ)

)
≤ max

{
O

(
μ√

n

)
,O

(
μ2

n

)
,μ2e−�(μ)

}
,

because the term O
(
μ2/(

√
ne�(μ))

)
is always dominated by another term. Note that O(μ/

√
n) dominates if μ = o(

√
n) and 

if μ ≥ c ln n for a sufficiently large constant c > 0. For μ = �(
√

n), the term O(μ2/n) dominates. In the remaining cases 
(when μ is logarithmic), the term μ2e−�(μ) dominates.

For the first moment of Z2,t , we can get a similar bound:

E(Z2,t | φt) ≤ max

{
O

(
μ√

n

)
,μe−�(μ)

}
,

where the term μe−�(μ) only dominates if μ ≤ c ln n for a sufficiently small constant c > 0.
Using our prior calculations and independence of the dominating distributions, we can bound

2E
(

Z1,t · Z2,t | φt
) ≤ Xt−1 · max

{
O

(
μ√

n

)
,μe−�(μ)

}
.

Thus, we get

E(φt+1 − φt | φt) ≤ 1

μ2

(
Xt−1 + X2

t−1 + max

{
O

(
μ√

n

)
,O

(
μ2

n

)
,μ2e−�(μ)

}

+ Xt−1 · max

{
O

(
μ√

n

)
,μe−�(μ)

}
− X2

t−1

)

≤ 1

μ2

(
max

{
O

(
μ√

n

)
,O

(
μ2

n

)
,μ2e−�(μ)

}

+ Xt−1

(
1 + max

{
O

(
μ√

n

)
,μe−�(μ)

}))
Xt−1≤μ≤ 1

μ2
μ

(
1 + max

{
O

(
μ√

n

)
,μe−�(μ)

})
≤ O

(
max

{
1

μ
,

1√
n

})
.
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Let P T describe the Markov process p2
t = φt starting at (1/2)2 and then progressing by φt+1 −φt for T iterations. Due to 

our bounds, we get

E(P T ) =
(

1

2

)2

+
T −1∑
t=0

E(φt+1 − φt | φt) ≤ 1

4
+ ζ T · max

{
1

μ
,

1√
n

}
,

for a sufficiently large constant ζ .
Using Markov’s inequality gives us, for k > 1,

Pr

(
P T ≥ k

(
1

4
+ ζ T · max

{
1

μ
,

1√
n

}))
≤ Pr

(
P T ≥ kE(P T )

) ≤ 1

k
.

We want that (5/6)2 ≥ k(1/4 + ζ T · max{1/μ, 1/
√

n}), since then Pr
(

P T ≥ (5/6)2
)

is upper-bounded by Pr
(

P T ≥ k(1/4 +
ζ T · max{1/μ, 1/

√
n})) ≤ 1/k, which we want to be less than 1/2 in order to apply a meaningful union bound over both 

cases at the end of this proof. Hence, assume k > 2. We get(
5

6

)2

≥ k

(
1

4
+ ζ T · max

{
1

μ
,

1√
n

})
⇔ T ≤

(
25

36k
− 1

4

)
min{μ,

√
n}

ζ
,

which is positive as long as k < 25/9. Thus, we can bound k ∈ (2, 25/9).
Therefore, if T ≤ γ · min{μ, 

√
n}, for a constant γ sufficiently small, then the probability of an arbitrary frequency 

exceeding 5/6 is at most a constant less than 1/2 (for k ∈ (2, 25/9)).

The probability of reaching 1/6. We now analyze how likely it is that pt hits 1/6 in a similar amount of time. For this case, 
we define a slightly different potential φ′

t+1 := (1 − Xt/μ)2 = 1 − 2Xt/μ + (Xt/μ)2, i.e., we mirror the process at 1/2 and 
then use the same potential as before.

Looking at the difference during one step, we see that

φ′
t+1 − φ′

t = 1 − 2
Xt

μ
+

(
Xt

μ

)2

− 1 + 2
Xt−1

μ
−

(
Xt−1

μ

)2

= 2

μ
(Xt−1 − Xt) + φt+1 − φt ,

where we only have to determine the expected value of Xt−1 − Xt , because we already analyzed φt+1 − φt before.
Considering just the 1st-class individuals, it holds that E(Xt ) = E(Xt−1), because we then have a martingale. But due to 

the elitist selection of UMDA, actually E(Xt) ≥ E(Xt−1) holds, because of the bias of the 2nd-class individuals, which prefer 
1s over 0s. Thus, E(Xt−1 − Xt | φ′

t) ≤ 0, and we get

E(φ′
t+1 − φ′

t | φ′
t) ≤ E(φt+1 − φt | φt) ,

which we already analyzed.
Hence, we can argue analogously as before and get, again, a probability of at most a constant less than 1/2 to reach 1/6

during at most γ · min{μ, 
√

n} iterations.
Taking a union bound over both cases finishes the proof. �
We now expand the case from a single frequency to all frequencies.

Lemma 10. During the first at least γ · min{μ, 
√

n} iterations of UMDA optimizing OneMax, for a sufficiently small constant γ , �(n)

frequencies stay in the interval [1/6, 5/6] with at least constant probability.

Proof. We look at T ≤ γ · min{μ, 
√

n} iterations. Thus, the probability for a single frequency to leave [1/6, 5/6] is at most 
a constant c < 1, according to Lemma 9. In expectation, there are at most cn frequencies outside of [1/6, 5/6], and due to 
Markov’s inequality, the probability that there are at least (1 + δ)cn such frequencies, for a constant δ > 0 with (1 + δ)c < 1, 
is at most 1/(1 + δ). This means that with at least constant probability, at least 

(
1 − c(1 + δ)

)
n = �(n) frequencies are still 

within [1/6, 5/6]. �
Note that the proof of Lemma 9 relies on Corollary 3, and the proof of Corollary 3 also relies on Lemma 9. Formally, this 

cyclic dependency can be solved by proving both propositions in conjunction via induction over the number of iterations 
up to γ · min{μ, 

√
n}, for a sufficiently small constant γ . For the base case, all frequencies are at 1/2 ∈ [1/6, 5/6], and both 

propositions hold. For the inductive step, assuming that t < γ · min{μ, 
√

n}, we already know that both propositions hold 
up to iteration t . Thus, the requirements for the proofs of Corollary 3 and Lemma 9 are fulfilled, and the proofs themselves 
pass.

We now prove an easy lower bound.
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Corollary 11. Consider UMDA optimizing OneMax with μ = �(
√

n log n). Its run time is then in �(n logn) in expectation and with 
at least constant probability.

Proof. Since we assume μ = �(
√

n log n), Lemma 10 yields that within at most γ · min{μ, 
√

n} = γ
√

n iterations, γ suffi-
ciently small, at least �(n) frequencies are at most 5/6 with probability �(1). Hence, assuming this to happen, the proba-
bility to sample the optimum is at most (5/6)�(n) ≤ e−�(n) , and, thus, the expected run time is in γ

√
nλ = �(n log n). �

3.3. Medium population sizes

In this section, we consider the remaining population sizes of μ = O(
√

n log n) (and μ = �(log n)), where we recall that 
λ = (1 + β)μ. Basically, we lower-bound the probability that a single frequency hits 1/n. To do so, we analyze the one-step 
change of the number of 1s at the frequency’s position and approximate it via a normal distribution. For this, we are going 
to use a general form of the central limit theorem (CLT), along with a bound on the approximation error.

Lemma 12 (CLT with Lyapunov condition, Berry–Esseen inequality [22, p. 544]). Let X1, . . . , Xm be a sequence of independent random 
variables, each with finite expected value μi and variance σ 2

i . Define

s2
m :=

m∑
i=1

σ 2
i and Cm := 1

sm

m∑
i=1

(Xi − μi) .

If there exists a δ > 0 such that

lim
m→∞

1

s2+δ
m

m∑
i=1

E
(
|Xi − μi|2+δ

)
= 0

(assuming all the moments of order 2 + δ to be defined), then Cm converges in distribution to a standard normally distributed random 
variable.

Moreover, the approximation error is bounded as follows: for all x ∈R,

|Pr(Cm ≤ x) − �(x)|≤ C ·
∑m

i=1 E
(|Xi − μi |3

)
s3

m
,

where C is an absolute constant and �(x) denotes the cumulative distribution function of the standard normal distribution.

In order to make use of Lemma 12, we need to study the stochastic process on the Xt values (which, again, denotes the 
number of 1s of an arbitrary position) and determine the accumulated expectations and variances of every single one-step 
change. Using the notation from Lemma 5, we note that the Xt value in expectation changes very little from one step 
to the next since E(Z1,t) = Xt−1 and also E(Z2,t) is close to Xt−1. However, considerable variances are responsible for 
changes of the Xt value, and it turns out that the variances are heavily dependent on the current state. We get Var(Z1,t) =
Xt−1(1 − Xt−1/μ), i.e., if Xt−1 ≤ μ/2, then the 1st-class individuals are responsible for a typical deviation of 

√
Xt−1. This 

dependency of Var(Z1,t) on Xt−1 makes a direct application of Lemma 12 difficult.
In order to make the CLT applicable, we define a potential function that transforms Xt−1 such that the expected dif-

ference between two points in time is still close to 0, but the variance is independent of the state. This potential function 
is inspired by the approach used in [9] in order to analyze two very simple EDAs. Since the standard deviation of Z1,t is 
�(

√
Xt−1), we work with a potential function whose slope at point Xt−1 is �(1/

√
Xt−1), so that the dependency of the 

variance on the state cancels out.
We proceed with the formal definition. Let g denote the potential function, defined over {0, . . . , μ}. Our definition is 

simpler than the one from Sudholt and Witt [9], as we do not need g to be centrally symmetric around μ/2. We define

g(x) := √
μ

μ−1∑
j=x

1√
j + 1

.

We will often use the following bounds on the change of potential. For 0 ≤ y < x ≤ μ, we get

g(y) − g(x) = √
μ

x−1∑
j=y

1√
j + 1

≤ √
μ

x − y√
y + 1

, and (2)

g(y) − g(x) = √
μ

x−1∑
j=y

1√
j + 1

≥ √
μ

x − y√
x + 1

. (3)

Let 
t = g(Xt+1) − g(Xt).
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3.3.1. Bounding the expected change of potential
We start by bounding the expected value of 
t and see that also the transformed process moves very little in expectation 

(however, its variance will be large, as shown in the following subsection). Because of the Lyapunov condition, which we 
will address in Section 3.3.3, we do so in both directions.

Lemma 13. Let μ = O(
√

n log n). Then, for all t and all Xt ∈ {1, . . . , μ − 1},

E(
t | Xt)≥ −
(

e−�(μ) + O

(
Xt

μ
+ Xt√

n

))√
μ

Xt + 1
and

E(
t | Xt) ≤ 111

√
μ

Xt
.

Proof. We abbreviate Xt = x. Further, we always condition on x without denoting this explicitly.

The lower bound. First, we derive the lower bound. We have E(
t) = E
(

g(Xt+1)
) − g(x). Because g is convex we get by 

Jensen’s inequality that E
(

g(Xt+1)
)− g(x) ≥ g

(
E(Xt+1)

)− g(x) ≥ g
(
x + e−�(μ) + O(x/μ+ x/

√
n)

)− g(x), where we used that

E(Xt+1) ≤ x + e−�(μ) + O

(
x

μ
+ x√

n

)
,

which follows from Lemma 5 by studying the expected number of 1s contributed by the two classes of individuals.
Applying (2), gives us the desired result of

g

(
x + e−�(μ) + O

(
x

μ
+ x√

n

))
− g(x) ≥ −

(
e−�(μ) + O

(
x

μ
+ x√

n

))√
μ

x + 1
.

The upper bound. The upper bound will be shown by ignoring 2nd-class individuals, since they are biased toward increasing 
x and, therefore, decreasing 
t . Hence, we now assume that Xt+1 follows a binomial distribution with parameters μ and 
x/μ, i.e., E(Xt+1 − x) = 0. In a delicate analysis, we will estimate how much E(
t) is shifted away from 0 due to the 
nonlinearity of the potential function. We use the inequalities

g(i) ≤ g(x) +
√

μ(x − i)√
i + 1

for i < x, and

g(i) ≤ g(x) +
√

μ(x − i)√
i + 1

for i > x,

which are just rearrangements of (2) and (3), noting that x − i is negative in the second inequality.

E(
t) =
μ∑

i=0

(
g(i) − g(x)

)
Pr(Xt+1 = i)

≤
x−1∑
i=0

(
g(x) +

√
μ(x − i)√

i + 1
− g(x)

)
Pr(Xt+1 = i) +

μ∑
i=x+1

(
g(x) +

√
μ(x − i)√

i + 1
− g(x)

)
Pr(Xt+1 = i)

=
∞∑

i=0

(√
μ(x − i)√

i + 1
Pr(Xt+1 = i)

)
.

We now split the set of possible outcomes of i into intervals of length 
√

x. More precisely Ik := {�x − (k + 1)
√

x�, . . . , �x −
k
√

x�} for k ∈ N0. The points in these intervals are all less than or equal to x. To cover the outcomes above x when 
considering some i ∈ Ik , we consider the points i and 2x − i together, exploiting that they are mirrors of each other of 
distance x − i to x, more formally x − i = −(x − (2x − i)). Plugging in i and 2x − i for i ∈ Ik and summing over all k ≥ 0, we 
obtain

E(
t) ≤
∞∑

k=0

∑
i∈Ik

(√
μ(x − i)√

i + 1
Pr(Xt+1 = i) +

√
μ(i − x)√

2x − i + 1
Pr(Xt+1 = 2x − i)

)

≤
∞∑

k=0

∑
i∈Ik

( √
μ(x − i)√

x − (k + 1)
√

x + 1
Pr(Xt+1 = i) −

√
μ(x − i)√

x + (k + 1)
√

x + 1
Pr(Xt+1 = 2x − i)

)
,
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where the last inequality used that the choice i = x − (k + 1)
√

x maximizes both the positive and the negative term in the 
inner sum.

We take special care of intervals where x − (k + 1)
√

x ≤ x/2 (i.e., k ≥ √
x/2 − 1) and handle them directly. The maximum 

increase in potential is observed when Xt+1 = 0 and equals

√
μ

x−1∑
j=0

1√
j + 1

≤ √
μ

⎛⎝1 +
x∫

1

1√
z

dz

⎞⎠
= √

μ(1 + 2
√

x − 2
√

1) ≤ √
4μx .

By Chernoff bounds, the probability of Xt+1 ≤ x/2 is at most e−x/24. Hence, the intervals of index at least kmax := √
x/2 − 1

contribute only a term of S∗ := √
4μxe−x/24 ≤ 100

√
μ/x to E(
t).2

For smaller k, we argue more precisely. Since√
x + (k + 1)

√
x + 1√

x − (k + 1)
√

x + 1
= 1 +

√
x + (k + 1)

√
x + 1 −

√
x − (k + 1)

√
x + 1√

x − (k + 1)
√

x + 1

≤ 1 +
2(k+1)

√
x

2
√

x−(k+1)
√

x+1√
x − (k + 1)

√
x + 1

= 1 + (k + 1)
√

x

x − (k + 1)
√

x + 1

(where the last inequality follows from a − b ≤ (a2 − b2)/2b for a ≥ b > 0), we have

E(
t) ≤
kmax∑
k=0

∑
i∈Ik

( √
μ(x − i)√

x + (k + 1)
√

x + 1

(
1 + (k + 1)

√
x

x − (k + 1)
√

x + 1

)
Pr(Xt+1 = i)

−
√

μ(x − i)√
x + (k + 1)

√
x + 1

Pr(Xt+1 = 2x − i)

)
+ S∗ . (4)

We now look more closely into the inner sum and work with the abbreviation

E∗
k :=

∑
i∈Ik

(
(x − i) · Pr(Xt+1 = i) − (x − i)Pr(Xt+1 = 2x − i)

)
.

Coming back to (4), this enables us to estimate the inner sum for arbitrary k:

∑
i∈Ik

( √
μ(x − i)√

x + (k + 1)
√

x + 1

(
1 + (k + 1)

√
x

x − (k + 1)
√

x + 1

)
Pr(Xt+1 = i) −

√
μ(x − i)√

x + (k + 1)
√

x + 1
Pr(Xt+1 = 2x − i)

)

= E∗
k ·

√
μ√

x + (k + 1)
√

x + 1
+

∑
i∈Ik

√
μ(x − i)√

x + (k + 1)
√

x + 1

(k + 1)
√

x

x − (k + 1)
√

x + 1
Pr(Xt+1 = i)

≤ E∗
k
√

μ√
x + (k + 1)

√
x + 1

+
∑
i∈Ik

√
μ(x − i)(k + 1)

x − (k + 1)
√

x + 1
Pr(Xt+1 = i) ,

where the last inequality estimated 
√

x/
√

x + (k + 1)
√

x + 1 ≤ 1. Since k ≤ kmax, i.e., (k + 1)
√

x ≤ √
x/2, the last bound is 

easily bounded from above by

E∗
k
√

μ√
x + (k + 1)

√
x + 1

+
∑
i∈Ik

√
μ(x − i)(k + 1)

x
2

Pr(Xt+1 = i) .

We proceed by bounding the sum over Ik , noting that we have Pr(Xt+1 ∈ Ik) ≤ Pr(Xt+1 ≤ x − k
√

x) ≤ e−k2/3 by Chernoff 
bounds. Hence, since x − i ≤ (k + 1)

√
x for i ∈ Ik , we get∑

i∈Ik

√
μ(x − i)(k + 1)

x
2

≤ 2
√

μ

x

∑
i∈Ik

(k + 1)
√

x Pr(Xt+1 = i)

2 The inequality 2xe−x/24 ≤ 100/
√

x for x ≥ 1 can be checked using elementary calculus.
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≤ 2
√

μ(k + 1)√
x

∑
i∈Ik

Pr(Xt+1 = i)

≤ 2
√

μ(k + 1)e− k2
3√

x
.

Altogether, we have obtained from (4) the simpler inequality

E(
t) ≤
kmax∑
k=0

⎛⎝ E∗
k
√

μ√
x + (k + 1)

√
x + 1

+ 2
√

μ(k + 1)e− k2
3√

x

⎞⎠ + S∗, (5)

which we will bound further. The idea is to exploit that∑
k≥0

E∗
k = 0 , (6)

which is a consequence of E(Xt+1) = x since

0 = E(Xt+1) − x

=
∑
k≥0

∑
i∈Ik

(
(i − x) · Pr(Xt+1 = i) + ((2x − i) − x)Pr(Xt+1 = 2x − i)

)
=

∑
k≥0

E∗
k .

Using similar calculations as above, we manipulate the sum∑
k≥0

E∗
k
√

μ√
x + (k + 1)

√
x + 1

,

stemming from the upper bound (5), and recognize that it equals

∑
k≥0

E∗
k
√

μ√
x + √

x + 1
·
(

1 +
√

x + √
x + 1 − √

x + (k + 1)
√

x + 1√
x + (k + 1)

√
x + 1

)

≤
∑
k≥0

E∗
k <0

E∗
k
√

μ√
x + √

x + 1

(
1 − k

√
x

2
√

x + (k + 1)
√

x + 1
√

x + √
x + 1

)
+

∑
k≥0

E∗
k ≥0

E∗
k
√

μ√
x + √

x + 1
· 1 ,

where we again used a − b ≤ (a2 − b2)/2b for a ≥ b > 0.
Similarly as above, we get, using Chernoff bounds,

E∗
k ≥

x+(k+1)
√

x∑
i=x+k

√
x

(x − i)Pr(Xt+1 = i) ≥ −2(k + 1)e− k2
3
√

x .

Combining this with (6), we arrive at the inequality∑
k≥0

E∗
k
√

μ√
x + (k + 1)

√
x + 1

≤
∑
k≥0

E∗
k <0

E∗
k
√

μ√
x + √

x + 1

(
− k

√
x

2
√

x + (k + 1)
√

x + 1
√

x + √
x + 1

)

≤
∑
k≥0

2(k + 1)e− k2
3
√

x
√

μ√
x + √

x + 1
· k

√
x

2
√

x + (k + 1)
√

x + 1
√

x + √
x + 1

,

which is at most 
∑

k≥0

(
k(k + 1)e−k2/3√μ

)
/
√

x.
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Substituting this into (5), we finally obtain

E(
t) ≤
∑
k≥0

⎛⎝2(k + 1)e− k2
3
√

μ√
x

+ k(k + 1)e− k2
3
√

μ√
x

⎞⎠ + S∗

≤ 11
√

μ√
x

+ 100
√

μ√
x

= 111
√

μ√
x

,

where the bound 
∑∞

k=0(2(k + 1) + k(k + 1))e−k2/3 ≤ 11 was obtained numerically. This finally proves the upper bound on 
E(
t). �
3.3.2. Lower bound on the variance of the potential change

Before we analyze the variance of 
t , we introduce a lemma that we are going to use.

Lemma 14 ([23, Lemma 6]). Let X ∼ Bin(μ, r/μ) with r ∈ [1, μ], let � = min{r, μ − r}, and let ζ > 0 be an arbitrary constant. Then 
Pr

(
X ≥ E(X) + ζ

√
�
) = �(1). Note that if r ≤ μ/2, we get Pr

(
X ≥ E(X) + ζ

√
E(X)

) = �(1).

In [23], the lemma is only stated for ζ = 1. However, introducing the constant factor does not change the lemmas’s proof 
at all.

With Lemma 14 in place, we now lower-bound the variance of 
t . Note that the following lemma only applies up to 
Xt ≤ (5/6)μ, which will be guaranteed in its application.

Lemma 15. Let μ = ω(1) and μ = O(
√

n log n). Then, for all t and Xt ∈ {1, . . . , (5/6)μ},

Var(
t | Xt) = �(μ) .

Proof. Again, we abbreviate Xt = x and always condition on x without denoting so. Let E∗ := −(
1 + γ (x/

√
n+1)

) ·√
μ/(x + 1) be a lower bound on E(
t) from Lemma 13, where we pessimistically estimated e−�(μ) ≤ 1, x/μ ≤ 1 because 

x ≤ μ, and where γ is a sufficiently large constant that captures the implicit constant in the O-notation. We estimate

Var(
t) = E
((


t − E(
t)
)2

)
≥ E

((

t − E(
t)

)2 ·1{
t < E∗}
)

≥ E
(
(
t − E∗)2 ·1{
t < E∗}) .

Note that we can ignore 2nd-class individuals, as they would only increase Xt+1 even further, leading to a greater difference 
of 
t and E∗ .

We derive a sufficient condition for 
t < E∗ . For this, we introduce the constant ζ and claim that g(x + ζ
√

x) ≤ g(x) + E∗
if ζ is sufficiently large. This claim is equivalent to g(x) − g(x + ζ

√
x) ≥ −E∗ .

We lower-bound the left-hand side as follows, assuming that ζ is sufficiently large and using Inequality (3):

g(x) − g(x + ζ
√

x) ≥ √
μ · ζ

√
x√

x + ζ
√

x + 1

≥ √
μ · ζ

√
x√

2ζ x

=
√

μζ

2
,

and we want this to be at least −E∗ .
The inequality 

√
μζ/2 ≥ −E∗ is equivalent to√

ζ

2
· √x + 1 − 1 ≥ γ

(
x√
n

+ 1

)
.

We prove this inequality by lower-bounding the left-hand side as follows if ζ is sufficiently large:√
ζ · √x + 1 − 1 ≥

√
ζ x

.

2 2



JID:TCS AID:11627 /FLA Doctopic: Theory of natural computing [m3G; v1.238; Prn:8/06/2018; 8:39] P.16 (1-23)

16 M.S. Krejca, C. Witt / Theoretical Computer Science ••• (••••) •••–•••
It is now evident that 
√

ζ x/2 ≥ γ (x/
√

n + 1) ⇔ √
ζ/2 ≥ γ (

√
x/n + 1/

√
x) holds (for x �= 0) if ζ is sufficiently large, i.e., if 

ζ ≥ (4γ )2, because x ≤ μ and we assume μ = O(
√

n log n), thus, 
√

x/n + 1/
√

x ≤ 1 + o(1). For x = 0, the inequality trivially 
holds.

Using the inequality derived above, we get:


t < E∗ ⇔ g(Xt+1) − g(x) < E∗ ⇔ g(Xt+1) < g(x) + E∗

⇐ g(Xt+1) < g(x + ζ
√

x) ⇔ Xt+1 > x + ζ
√

x ,

where we used the definition of g and that it is a decreasing function.
We proceed by estimating the expected value. First, we see that, assuming Xt+1 > x + ζ

√
x,


t − E∗ = g(Xt+1) − (
g(x) + E∗)

≤ g(Xt+1) − g(x + ζ
√

x)

= −√
μ

Xt+1−1∑
j=x+ζ

√
x

1√
j + 1

,

by using the same bounds as before. Note that we derive an upper bound of 
t − E∗ , because we only consider 
t < E∗ , 
i.e., 
t − E∗ < 0. Thus, its square gets minimized for an upper bound.

Since Xt+1 > x + ζ
√

x implies 
t < E∗ , we get

E
((


t − E∗)2 ·1{
t < E∗}
)

≥ E
((


t − E∗)2 ·1{Xt+1 > x + ζ
√

x}
)

≥ E
((

g(Xt+1) − g(x + ζ
√

x)
) ·1{Xt+1 > x + ζ

√
x}

)2

=
⎛⎝ μ∑

i=0

(−√
μ)

i−1∑
j=x+ζ

√
x

1√
j + 1

·1{i > x + ζ
√

x}Pr(Xt+1 = i)

⎞⎠2

= μ

⎛⎝ μ∑
i=x+ζ

√
x+1

i−1∑
j=x+ζ

√
x

1√
j + 1

Pr(Xt+1 = i)

⎞⎠2

,

where the second inequality is due to Jensen’s inequality.
We now derive a lower bound for the inner sum. Using Inequality (3), we get

i−1∑
j=x+ζ

√
x

1√
j + 1

≥ i − x − ζ
√

x√
i

.

Substituting this back into the expectation gives us

μ

⎛⎝ μ∑
i=x+ζ

√
x+1

i−1∑
j=x+ζ

√
x

1√
j + 1

Pr(Xt+1 = i)

⎞⎠2

≥ μ

⎛⎝ μ∑
i=x+ζ

√
x+1

i − x − ζ
√

x√
i

Pr(Xt+1 = i)

⎞⎠2

≥ μ

⎛⎝ μ∑
i=x+2ζ

√
x+1

i − x − ζ
√

x√
i

Pr(Xt+1 = i)

⎞⎠2

,

where we narrowed the range for i. In this new range, (i − x − ζ
√

x)/
√

i is monotonically increasing with respect to i and 
hence minimal for i = x + 2ζ

√
x + 1:

x + 2ζ
√

x + 1 − x − ζ
√

x√
x + 2ζ

√
x + 1

= ζ
√

x + 1√
x + 2ζ

√
x + 1

≥ ζ
√

x + 1√
3ζ x

=
√

ζ

3
+ 1√

3ζ x

= �(1) .
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Hence, we finally have

Var(
) ≥ �(μ)

⎛⎝ μ∑
i=x+2ζ

√
x+1

Pr(Xt+1 = i)

⎞⎠2

≥ �(μ)Pr(Xt+1 ≥ x + 2ζ
√

x + 1)2 ≥ �(μ) .

The last inequality used Lemma 14 to lower-bound the probability. The lemma can be used immediately for x ≤ μ/2. 
Otherwise, we still have x ≤ (5/6)μ by assumption. Then Lemma 14 gives us a bound on Pr(Xt+1 ≥ x + ζ

√
μ − x), which 

only changes everything by a constant factor, since it holds that 
√

x/
√

μ − x ≤ √
(5μ/6)/(μ/6) = O(1). �

3.3.3. Establishing the Lyapunov condition
To establish the Lyapunov condition w.r.t. the sequence 
t , it is by Lemma 12 crucial to bound the individual variances 

and the (2 + δ)-th central absolute moment. The variances have already been studied in Lemma 15. Using δ = 1, we are left 
with the analysis of the third central moment. This is dealt with in the following lemma.

Lemma 16. If μ = ω(1) and μ = O(
√

n log n), then

E
(|
t − E(
t)|3 | Xt

) = O(μ3/2) .

Proof. We bound E
(|
t − E(
t)|3 | Xt

)
by

E
((|
t | + |E(
t)|

)3
∣∣∣ Xt

)
,

aiming at reusing the bounds on E(
t | Xt) we know from Lemma 13.
To treat the binomial expression raised to the third power, we use the simple bound

(a + b)3 = a3 + 3ab2 + 3a2b + b3 ≤ 4a3 + 4b3

for a, b ≥ 0.
Thus,

E
(|
t − E(
t)|3 | Xt

) ≤ 4E(|
t |3 | Xt) + 4 |E(
t | Xt)|3 ,

and we already have the bounds −O(
√

μ) ≤ E(
t | Xt) = O(
√

μ), which follow from Lemma 13 for all Xt ∈ {1, . . . , μ − 1}
and x = O(

√
n log n).

The main task left is to bound E(|
t |3 | Xt). We claim that E(|
t |3 | Xt) = O
(
μ3/2

)
. To show this, we assume an arbitrary 

Xt value. To bound the third moment, we analyze the distribution of g(Xt+1) − g(Xt). We recall from Lemma 5 that Xt+1
(i.e., the new value before applying the potential function) is given by the sum of two distributions, both of which are 
binomial or almost binomial; more precisely, Xt+1 = Z1,t+1 + Z(C∗), where Z1,t+1 is the number of 1s sampled through 
1st-class individuals in iteration t + 1, C∗ is the number of 2nd-class individuals, and Z(C∗) is the number of 1s sampled 
by them. We note, using Lemmas 4 and 5, that Z(C∗) ≺ C∗ ≺ Bin(λ, c/

√
n) + Z̃ , for some constant c > 0, and Z̃ takes some 

value from 1, . . . , λ only with probability at most e−�(μ) . Moreover, Z1,t+1 ∼ Bin(μ − C∗, Xt/μ).
To overestimate |
t | = |g(Xt+1) − g(Xt)|, we observe that

|g(Xt+1) − g(Xt)| =
∣∣g

(
Z1,t+1 + Z(C∗)

) − g(Xt)
∣∣ ·1{Z1,t+1 + Z(C∗) < Xt}

+ ∣∣g
(

Z1,t+1 + Z(C∗)
) − g(Xt)

∣∣ ·1{Z1,t+1 + Z(C∗) ≥ Xt} .

Hence, to bound |
t |, it is enough to take the maximum of the two values

• �1 :=
∣∣∣g

(
Bin

(
μ, Xt

μ

)) − g(Xt)

∣∣∣ and

• �2 :=
∣∣∣g

(
Bin

(
μ, Xt

μ

) + Bin
(
λ, c√

n

) + Z̃
)

− g(Xt)

∣∣∣
and analyze it. The first expression covers the case that Z1,t+1 + Z(C∗) < Xt . Then, we transform C∗ random variables 
whose success probability is greater than Xt/μ (since 2nd-class individuals are biased toward 1s) into variables with success 
probability exactly Xt/μ, which increases the probability of Z1,t+1 + Z(C∗) being less than Xt . On the other hand, if Z1,t+1 +
Z(C∗) ≥ Xt , we get an even larger value by including C∗ additional experiments.

Bounding �1. We claim that E(|�1|3 | Xt) = O(μ3/2). To show this, we proceed similarly as in computing the first moment 
of 
t and define intervals of length 

√
x, where x := Xt (hereinafter, we implicitly condition on this outcome). More precisely 
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Ik := {�x − (k + 1)
√

x�, . . . , �x −k
√

x�} for k ∈Z, i.e., also negative indices are allowed, leading to intervals lying above x. We 
get

E(|�1|3 | x) ≤
∞∑

k=0

∑
i∈Ik∪I−k

( √
μ(|i − x|)

x − (k + 1)
√

x

)3

Pr(|�1| = |i|)

≤
∞∑

k=0

(√
μ(k + 1)

√
x

x − (k + 1)
√

x

)3

Pr(|�1| ≥ k
√

x) ,

by applying (2) to bound g(x) − g(y) for y < x. Note that for k ≤ √
x, we have by Chernoff bounds that Pr(Xt+1 ∈ Ik) ≤

Pr(Xt+1 ≤ x −k
√

x) ≤ e−k2/3 and Pr(Xt+1 ∈ I−k) ≤ Pr(Xt+1 ≥ x +k
√

x) ≤ e−k2/4. Moreover, Pr(Xt+1 ≤ x/2) ≤ e−x/24. Using the 
standard form of Chernoff bounds, we also bound the probability Pr

(
Xt+1 ≥ (1 + j/2)x

) ≤ (
e j/2/(1 + j/2)1+ j/2

)x ≤ e− jx/10

for j ≥ 1.
Using these different estimates while distinguishing between k ≤ √

x/2 − 1 and k ≥ √
x/2, we get for x ≥ 1 that

E(|�1|3 | x) ≤
√

x
2 −1∑
k=0

(√
μ(k + 1)

√
x

x
2

)3

2e− k2
4 + (

g(0) − g(x)
)3

Pr
(

Xt+1 ≤ x

2

)

+
∞∑
j=1

(
g(x) − g

(
x
(

1 + j

2

)))3

Pr
(

Xt+1 ≥ x + j
x

2

)

≤ O
(
μ

3
2

)
+ (x

√
μ)3e− x

24 +
∞∑
j=1

(
j

x

2

√
μ

)3
e− j x

10

= O
(
μ

3
2

)
,

where we use the trivial bound g(x) − g(y) ≤ √
μ |x − y| and pessimistically assume Xt+1 = 0 in the case Xt+1 ≤ x/2.

Bounding �2. With respect to �2, we observe that

�2 ≺
∣∣∣∣g

(
Bin

(
μ,

x

μ

))
− g(x)

∣∣∣∣ + O(μ)Pr( Z̃ �= 0) +
(

g(0) − g

(
Bin

(
λ,

c√
n

)))
by using g(x +a +b) − g(x) = (

g(x +a) − g(x)
)+(

g(x +a +b) − g(x +a)
)
, for arbitrary a, b ∈R, and pessimistically estimating 

the contribution of Z(C∗) to occur at point 0, where the potential function is steepest. Moreover, we pessimistically assume 
that the event Z̃ �= 0 leads to the maximum possible change of g-value, which is g(0) − g(μ) = O(μ). Hence,

E(|�2|3 | x) ≤ 4E

(∣∣∣∣g

(
Bin

(
μ,

x

μ

))
− g(x)

∣∣∣∣3
)

+ 4E

((
g(0) − g

(
Bin

(
λ,

c√
n

)))3
)

+ O(μ3) · Pr( Z̃ �= 0) . (7)

We recall that Pr( Z̃ �= 0) ≤ e−�(μ) , so that

O(μ3) · Pr( Z̃ �= 0) = O(μ3) · e−�(μ) = o(1) = O(μ3/2)

for μ = ω(1). Hence, the last term from Lemma 7 has already been bounded as desired, and we only have to show bounds 
on the first two terms of inequality (7).

We recognize that the first term of (7) is O(μ3/2) since, up to constant factors, it is the same as E(|�1|3 | Xt). Hence, we 
are left with the claim

E

((
g(0) − g

(
Bin

(
λ,

c√
n

)))3
)

= O
(
μ

3
2

)
.

In order to show this, we let Z ∼ Bin(λ, c/
√

n) and consider different definitions of the intervals Ik , k ≥ 0, that Z can fall 
into. The definition of intervals distinguishes two cases.

Case 1: λ ≥ √
n/(2ec). As the derivative of −g is at most √μ, it suffices to prove the stronger claim

√
μ · E

(
Bin

(
λ,

c√
)3

)
= O

(
μ

3
2

)
.

n
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We define I0 := [0, 2ecλ/
√

n] and Ik := [(1 +k)ecλ/
√

n, (2 +k)ecλ/
√

n] for k ≥ 1. Then (similar to the analysis of E(|�1|3 |
x)), we get

E

(
Bin

(
λ,

c√
n

)3
)

≤
(

2ecλ√
n

)3

+
∞∑

k=1

(
(2 + k)ecλ√

n

)3

Pr(Z ∈ Ik) .

We use the Chernoff bound Pr(X ≥ t) ≤ 2−t for t ≥ 2eE(X). This gives us Pr(Z ∈ Ik) ≤ e−(2+k)eλ/
√

n ≤ e−k/2 by our 
assumption on λ. We get

E

(
Bin

(
λ,

c√
n

)3
)

≤ O

(
λ3

n
3
2

)
+ O

(
λ3

n
3
2

) ∞∑
k=1

(2 + k)3e− k
2

= O

(
λ3

n
3
2

)
= O

(
μ3

n
3
2

)
,

hence √μ · E
(
Bin(λ, c/

√
n)3

) = O(μ7/2/n3/2). Since μ = O(
√

n log n) by assumption of the lemma, the bound is at most 
O
(
n1/4(log n)7/2

)
, and this is clearly O(μ3/2), since μ = �(

√
n) in this case.

Case 2: λ <
√

n/2e. Then Ik := [k, k + 1] for k ≥ 0. We note that E(Z) = O(1) since μ = O(λ) = O(
√

n). Hence, by Chernoff 
bounds for k > E(Z), Pr(Z ≥ k) = e−αk for some constant α > 0. We get

E
((

g(0) − g(Z)
)3

)
≤ (

√
μ)3 · E(Z 3) ≤ μ3/2 · E(Z)3 +

∞∑
k>E(Z)

(μk)32−αk .

Thus, using μ = O(
√

n),

E
((

g(0) − g(Z)
)3

)
≤ O

(
(
√

μ)3) + (
√

μ)3
∞∑

k=1

k32−αk

= O
(
μ

3
2

)
,

which completes the proof. �
Using Lemmas 15 and 16, we now establish the Lyapunov condition, assuming Xt ≤ (5/6)μ for all t ≥ 0. Using Lemma 12, 

we get for s2
t := ∑t−1

j=0 Var(
 j | X j) that

1

s3
t

t−1∑
j=0

E
(|
 j − E(
 j)|3 | X j

) = O

(
μ1.5t

μ1.5t1.5

)
= O

(
1√

t

)
,

which is o(1) for t = ω(1). The sum of the 
 j can then be approximated as stated in the following lemma.

Lemma 17. Let Yt := ∑t−1
j=0 
 j and t = ω(1). Then

Yt − E(Yt | X0)√∑t−1
j=0 Var(
 j | X j)

converges in distribution to N(0, 1). The absolute error of this approximation is O(1/
√

t).

3.3.4. Likelihood of a frequency getting very small
We will now apply Lemma 17 in order to prove how likely it is for a single frequency to either get close to 1/n or exceed 

5/6. For this, we will use the following estimates for �(x). More precise formulas exist, but they do not yield any benefit 
in our analysis.

Lemma 18 ([24, p. 175]). For any x > 0,(
1 − 1

3

)
1√ e− x2

2 ≤ 1 − �(x) ≤ 1 1√ e− x2
2 ,
x x 2π x 2π
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and for x < 0,(−1

x
− −1

x3

)
1√
2π

e− x2
2 ≤ �(x) ≤ −1

x

1√
2π

e− x2
2 .

Lemma 19. Consider a bit of UMDA on OneMax and let pt be its frequency in iteration t. We say that the process breaks a border at 
time t if min{pt , 1 − pt} ≤ 1/n. Given s < 0 and any starting state p0 ≤ 5/6, let Ts be the smallest t such that pt − p0 ≤ s holds or a 
border is broken.

Assume that �(n) other frequencies stay within [1/6, 5/6] until time Ts. Choosing 0 < α < 1, where 1/α = o(μ) and α =
O(

√
n/μ), and −1 < s < 0 constant, we then have for some constant κ > 0 that

Pr
(

Ts ≤ αs2μ or pt exceeds 5
6 before Ts

)
≥

(
(|s|α)

1
2

κ
− (|s|α)

3
2

κ3

)
1√
2π

e− κ2
2|s|α − O

(
1√
αμ

)
.

Proof. Throughout the analysis, we assume Xt ≤ (5/6)μ, since all considerations are stopped when the frequency exceeds 
5/6, i.e., when Xt ≥ (5/6)μ. By Lemma 13, we have E(
 j | X j) ≥ −√

μ/(X j + 1)
(
e−�(μ) + γ1(X j/

√
n + X j/μ)

)
for all j ≥ 0

and 1 ≤ X j ≤ μ − 1, where γ1 > 0 is a sufficiently large constant. Moreover, according to Lemma 15, Var(
 j | X j) ≥ cμ

for some constant c > 0. Since the Lyapunov condition has been established for Yt := ∑t−1
j=0 
 j in Lemma 17, we know 

that 
(
Yt − E(Yt | X0)

)
/st converges in distribution to N(0, 1) if t = ω(1). The lemma chooses t = αs2μ, which is ω(1) since 

α = ω(1/μ) by assumption.
For s2

t := ∑t−1
j=0 Var(
 j | X j), we obtain s2

t ≥ αs2cμ2. Hence, recalling that s < 0 is assumed, we get st ≥ √
αc |s|μ. The 

next task is to bound E(Yt). Using our bound on E(
 j | X j) and recalling that 0 ≤ Xt ≤ (5/6)μ and μ = ω(1), we have

E(
t | Xt) ≥ −
⎛⎜⎝e−�(μ)

√
μ

1
+ γ1

5
6μ√

5
6μ + 1

(√
μ√
n

+ 1√
μ

)⎞⎟⎠
≥ −

(
O(1) + γ2

μ√
n

)
,

for some constant γ2 > 0.
This implies E(Yt) ≥ −t

(
O(1) + γ2μ/

√
n
) = −αs2μ

(
O(1) + γ2μ/

√
n
)
. Therefore,

E(Yt)

st
≥ −

(αs2μ)
(
O(1) + γ2

μ√
n

)
√

αc |s|μ ≥ −γ3

√
1

cα
,

for some constant γ3 > 0 depending on α, using the assumptions |s| ≤ 1 along with both α ≤ 1 and α = O(
√

n/μ).
To bound Pr(Yt ≥ r) for arbitrary r, we note that

Yt ≥ r ⇐⇒ Yt

st
− E(Yt | X0)

st
≥ r

st
− E(Yt | X0)

st
,

and recall that the distribution of Yt/st − E(Yt | X0)/st converges to N(0, 1) with absolute error O(1/
√

t). Hence,

Pr(Yt ≥ r) ≥ 1 − �

(
r√

cα |s|μ + γ3

√
1

cα

)
− O

(
1√

t

)
(8)

for any r such that the argument of � is positive, where � denotes the cumulative distribution function of the standard 
normal distribution.

We focus on the event E∗ that Yt ≥ 2μ
√|s|, recalling that s < 0 and Xt ≥ X0 ⇔ Yt ≤ Y0. Note that E∗ means g(Xt) −

g(X0) ≥ 2μ
√|s|, and this implies an upper bound on the negative Xt − X0 as follows: function g is steepest at point 0, and 

from the definition for any y ≥ 1,

g(y) − g(0) ≤
y−1∑
j=0

√
μ

j + 1

≤ √
μ

⎛⎝1 +
y∫

1√
j

d j

⎞⎠

1
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= √
μ(1 + 2

√
y − 2

√
1)

≤ 2
√

yμ .

Thus, the event g(Xt) − g(X0) ≥ a for a > 0 is only possible if Xt ≤ X0 −a2/(4μ). In other words, event E∗ implies Xt − X0 ≤
sμ, which is equivalent to pt − p0 ≤ s. Hence, in order to complete the proof, we only need a lower bound on the probability 
of E∗ . Setting r := 2μ

√|s| in (8), we bound the argument of � according to

r√
cα |s|μ + γ3√

cα
≤ 2√

c |s|α + γ3√
cα

≤ γ4√
c |s|α ,

for some constant γ4 > 0, since |s| ≤ 1.
By Lemma 18,

1 − �

(
γ4√

c |s|α
)

≥
(√

c |s|α
γ4

− (
√

c |s|α)3

γ 3
4

)
1√
2π

e− γ 2
4

2csα

=: p(α, s) ,

which means that the frequency changes by s (which is negative) until iteration αs2μ with probability at least p(α, s) −
O(1/

√
t) = p(α, s) − O(1/

√
αμ), where the last term stems from the bound on the absolute error of the approximation by 

the Normal distribution. Choosing κ := γ4/
√

c in the statement of the lemma completes the proof. �
3.4. Proof of the lower bound

Finally, we put all previous lemmas together to prove our main theorem: Theorem 6.

Proof of Theorem 6. As outlined above, we distinguish between three regimes for λ. The case of small λ (λ < (1 −c1) log2 n) 
is covered by Theorem 8, noting that �(n log n) dominates the lower bound for the considered range of μ. The case of large 
λ (μ = �(

√
n log n)) is covered by Corollary 11. We are left with the medium case (μ = �(log n) and μ = o(

√
n log n)), 

which is the most challenging one to prove.
In the following, we consider a phase consisting of T := s2γ · min{μ, 

√
n} iterations, for the constant γ > 0 from 

Lemma 10; without loss of generality, γ < 1 is assumed. We conceptually split individuals (i.e., bit strings) of UMDA into 
two substrings of length n/2 each and apply Lemma 10 w.r.t. the first half of the bits. In the following, we condition on the 
event that �(n) frequencies from the first half are within the interval [1/6, 5/6] throughout the phase.

We show next that some frequencies from the second half are likely to walk down to the lower border. Let j be an 
arbitrary position from the second half. First, we apply Lemma 9. Hence, p j does not exceed 5/6 within the phase with 
probability �(1). In the following, we condition on this event.

We then revisit bit j and apply Lemma 19 in order to show that, under this condition, the random walk on its fre-
quency p j achieves a negative displacement. Note that the event of not exceeding a certain positive displacement (more 
precisely, the displacement of 5/6 − 1/2 = 1/3) is positively correlated with the event of reaching a given negative displace-
ment (formally, the state of the conditioned stochastic process is always stochastically smaller than of the unconditioned 
process). We can therefore apply Lemma 19 for a negative displacement of s := −5/6 within T iterations. Note that the con-
dition of the lemma that demands �(n) frequencies to be within [1/6, 5/6] is satisfied by our assumption concerning the 
first half of the bits. Choosing α = T /(s2μ), we get 1/α = o(log n) (since μ = o(

√
n log n) and T = �(min{μ, 

√
n})), whereby 

we easily satisfy the assumption 1/α = o(μ). As T = O(
√

n) and s constant, we also satisfy the assumption α = O(
√

n/μ). 
Moreover, α ≤ γ < 1 by definition. Now, Lemma 19 states that the probability of the random walk on p j reaching a total 
displacement of −5/6 (or hitting the lower border before) within the phase of length T is at least(

(|s|α)
1
2

κ
− (|s|α)

3
2

κ3

)
1√
2π

e− κ2
2·|s|α − O

(
1√
αμ

)
. (9)

In order to bound the last expression from below, we distinguish between two cases. If μ ≤ √
n, then α = �(1) and (9) is 

at least

�(1) − O

(
1√
μ

)
= �(1) ,

since T = �(μ) = �(log n) = ω(1). If μ ≥ √
n, then we have T = �(

√
n). Since 1/α = o(log n), we estimate (9) from below 

by

�

(
1

o(
√

log n)
· e−o(ln n)

)
− O

(
log n

n1/4

)
≥ n−η ,
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for some η = η(n) = o(1). Combining this with the probability of not exceeding 5/6, the probability of p j hitting the lower 
border within T iterations is, in any case, �(n−η). Note that this argumentation applies to every of the last n/2 bits, and, 
as explained in Section 2.2, the bounds derived hold independently for all these bits. Hence by Chernoff bounds, with 
probability 1 − 2−�(n1−η) , the number of frequencies from the second half that hit the lower border within T iterations is 
�(n1−η).

A frequency that has hit the lower border 1/n somewhere in the phase may recover (i.e., reach a larger value) by the 
end of the phase. However, for each bit the probability of not recovering is at least(

1 − 1

n

)T λ

≥ e−o(log n) = n−η′

for some η′ = o(1), since we consider T = O(
√

n) iterations and λ = o(
√

n log n) samples per iteration. Again applying 
Chernoff bounds leaves �(n1−η−η′

) bits at the lower border at iteration T with probability 1 − 2−�(n1−η−η′
) .

Now, making use of Lemma 7 gives us the desired run time bound. �
4. Relaxing the condition on the population size

Theorem 6, which most of the paper was concerned with, assumed that λ = (1 + β)μ for some constant β > 0. We 
think that the lower bound of �(n log n) holds for all combinations of μ and λ. As a step toward a proof of this conjecture, 
we extend our lower bound toward all μ ≤ c log n for a sufficiently small constant c > 0. This includes the extreme case of 
μ = 1, for which no matching upper bound has been proved up to date.

Theorem 20. Let μ ≤ c log n for a sufficiently small constant c > 0, and let λ = nO(1) . Then the optimization time of UMDA on OneMax
is �(λ + n log n) with high probability and in expectation.

Proof. The lower bound λ follows since UMDA will sample the optimum in the first iteration only with a probability of 
2−�(n) . Thus, with high probability, all λ offspring from the first generation need to be evaluated. In the following, we 
assume λ = O(n log n) since otherwise nothing is left to show.

We now follow the ideas underlying the proof of Theorem 8 by showing that the best μ individuals from the initial 
generation are still close to uniform, resulting in many frequencies being set to their minimum 1/n. Note that the mentioned 
theorem considered all λ individuals from the initial generation, which are uniform on the search space. Here we focus on 
the best μ from the initial population, which violates the independence.

By Chernoff bounds, the probability that at least one of the λ initial individuals has 3n/4 or more 1s is at most 
λe−�(n) = e−�(n) . In the following, we condition on this not happening. Let us consider an arbitrary individual of the λ
initial individuals. Clearly, given that it has k 1s, the actual distribution of 1s is uniform over all permutations of k 1s. This 
still applies to the selected best μ individuals since OneMax is unbiased with respect to permutations, i.e., only depends 
on the number of 1s. Hence, we get the following property (∗): if we consider an arbitrary individual from the μ best, 
then every bit in it takes the value 1 with the same probability p∗ (not necessarily independently of the other bits). Since 
the expected number of 1s is bounded by 3n/4, we have p∗ ≤ 3/4; otherwise, the expected value would be larger, which 
we excluded. Pessimistically assuming that all λ individuals have 3n/4 1s, we obtain p∗ = 3/4 and have established the 
property (∗) independently for all individuals (also when arguing only about the best μ ones) but still not independently 
for all bits.

We now consider an arbitrary bit position i from one of the best μ individuals. If bit i takes the value 0, then the 3n/4
1s have to be taken at positions other than i and are uniformly distributed among these positions. Hence, any bit j �= i takes 
the value 1 with probability at most (3n/4)/(n − 1) and 0 with probability at least 1 − (3n/4)/(n − 1) = (n/4 − 1)/(n − 1). 
Altogether, independently of the outcome of i, bit j takes the value 0 with probability at least min{1/4, (n/4 − 1)/(n − 1)} =
(n/4 − 1)/(n − 1). We iterate this argument over an arbitrary set S∗ consisting of at most n/8 bits (e.g., the first n/8
positions). Hence, every of these bits takes the value 0 with probability at least

n
4 − n

8

n − n
8

= 1

7
,

independently of the other bits in S∗ . As this applies independently to all μ best individuals, each bit in S∗ is set to 0 in 
all μ best individuals with probability at least(

1

7

)μ

,

independently of the other bits in S∗ .
Thanks to the independence achieved by the estimations, we can now apply Chernoff bounds w.r.t. to the sum of the 

indicator random variables associated with the events “bit i is set to 0 in all μ best individuals” over all i ∈ S∗ . The 
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expected number of such bits is at least � := (n/8)(1/7)μ . If we choose μ ≤ c log n for a sufficiently small constant c > 0, 
we obtain, for a constant c′ > 0, that � ≥ nc′

/8. Moreover, the probability that fewer than nc′
/9 bits take the value 0 in all μ

best individuals is 2−�(n) then. We assume this to happen and note that the failure probability altogether is 2−�(n) . Now 
Lemma 7 yields the theorem. �
5. Conclusions

We have analyzed UMDA on OneMax and obtained the general bound �(λ +μ
√

n +n log n) on its expected run time for 
combinations of μ and λ where λ = O(μ) or μ ≤ c log n (for a sufficiently small constant c). This lower bound analysis is 
the first of its kind and contributes advanced techniques, including potential functions.

We note that our lower bound for UMDA is tight in many cases, as has been shown recently [8,10]. We also note that 
our main result assumes λ = O(μ). However, we do not think that larger λ can be beneficial; if λ = αμ, for α = ω(1), the 
progress due to 2nd-class individuals can be by a factor of at most α bigger; however, also the computational effort per 
generation would grow by this factor. Still, we have not presented a formal proof for all such cases.

Further run time analyses of UMDA or other EDAs for other classes of functions are an obvious subject for future research. 
In this respect, we hope that our technical contributions are useful and can be extended toward a more general lower bound 
technique at some point.
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