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Abstract. Stochastic local search algorithms can now successfully solve
MAXSAT problems with thousands of variables or more. A key to this
success is how effectively the search can navigate and escape plateau re-
gions. Furthermore, the solubility of a problem depends on the size and
exit density of plateaus, especially those closest to the optimal solution.
In this paper we model the plateau phenomenon as a percolation process
on hypercube graphs. We develop two models for estimating bounds on
the size of plateaus and prove that one is a lower bound and the other
an upper bound on the expected size of plateaus at a given level. The
models’ accuracy is demonstrated on controlled random hypercube land-
scapes. We apply the models to MAXSAT through analogy to hypercube
graphs and by introducing an approach to estimating, through sampling,
a key parameter of the models. Using this approach, we assess the accu-
racy of our bound estimations on uniform random and structured bench-
marks. Surprisingly, we find similar trends in accuracy across random
and structured problem instances. Less surprisingly, we find a high accu-
racy on smaller plateaus with systematic divergence as plateaus increase
in size.

1 Introduction

The success of stochastic local search algorithms on satisfiability problems is at-
tributed in part to their exploitation of equal or “sideways” moves in the search
neighborhood [I]. In many cases, this strategy results in an empirical improve-
ment in generated solutions [2] and a theoretical improvement in the approxi-
mation ratio on special cases [3]. Accepting equal moves can result in “plateau
behavior” of search [4]: potentially long epochs during which any discrete “gradi-
ent” information is absent, and search algorithms must either perform a random
walk on the plateau or attempt to search it systematically until an improving
move is found.
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The two characteristics that determine the hardness of escaping a plateau
are its ezit density: the number of strictly improving moves incident to plateau
solutions, and its size: the number of solutions belonging to the plateau. Since
the progress of a stochastic local search algorithm is ultimately connected to
how well it can escape plateaus, plateau characteristics are intimately related to
problem difficulty for local search [456].

Not all plateaus contain exits. In the worst case, the entire plateau must be
expanded before determining whether it is escapable or not. On a MAXSAT
problem with n variables and m clauses there must exist a set of equal value so-
lutions (not necessarily connected) that has cardinality € (3: ) This means that
plateaus tend to be intractable to enumerate on average. Methods to determine
plateau size need to be extremely efficient and not rely on enumeration.

In this paper we take a first step in predicting plateau characteristics for prob-
lem instances by focusing on plateau size. We develop methods for estimating
upper and lower bounds on the expected plateau size in MAXSAT problems.
Such bounds can benefit search algorithms in two ways: first by providing an es-
timate of how hard a problem instance is likely to be for stochastic local search,
and second by predicting when the expected size of a plateau is likely to be too
large to systematically search.

Under some simplifying assumptions on the distribution of equal valued so-
lutions in the search space, we construct a correspondence between plateaus in
MAXSAT problems and percolation clusters in hypercube graphs. We present
models for bounding the expected size of plateaus from above and below. Fur-
thermore, we introduce a method for estimating the probability that nearby
points belong to the same level set by locally sampling the region of a point.

We find that the trends in accuracy for prediction are surprisingly uniform
across random and structured problem sets. As we expected, the lower bound
diverges in a consistent manner with respect to plateau size due to an approxi-
mation term in the prediction expression.

1.1 Related Work

Hampson and Kibler [5] empirically investigated the plateau behavior of local
search on satisfiability problems. They discovered that many plateaus at high
evaluation levels were intractably large and restarting was more beneficial than
extensive plateau search in some cases. They found the exit density of plateaus
is inversely proportional to the number of variables, and conjectured that the ex-
pected time to search these plateaus would increase linearly in the problem size.
Most importantly, they found that the size of plateaus increased exponentially
in the number of variables.

Frank et al. [4] studied the properties of plateau regions across several classes
of MAXSAT problem. They used GSAT to locate solutions at the top evalua-
tion levels and performed breadth-first search to exhaustively expand the plateaus
to which each solution belonged. They collected statistics on the distribution of
plateaus with and without exits. They found that different problem classes may be
harder for local search because plateau characteristics differ across such classes.
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In a more general setting, Hoos and Stiitzle [7] extended the plateau concept
to general combinatorial search spaces and defined metrics for plateau character-
istics (e.g., width). They developed plateau connection graphs: directed acyclic
graphs that capture connectivity between plateau regions and associated tran-
sition probabilities.

Smyth [§] examined plateau characteristics for uniform random 3-SAT in-
stances. He found that solutions on lower level sets tended to cluster together
in one common large plateau where solutions on better level sets belonged to
many smaller plateaus. He also studied the internal structure of plateau regions,
finding that the graphs had very low branching factors and diameter greater
than or equal to the number of variables.

Plateaus emerge in the presence of neutrality: the existence of neighboring
states with equal evaluation. Reidys and Stadler [9] studied the nature of neu-
trality and developed an additive random model on which neutrality can be
expressed as a random variable. They derived a probability mass function for
the length of neutral walks: monotonic random paths of equal valued states
which we will employ in this paper. Reidys and Stadler extended work originally
done on RNA landscapes [10] where neutral networks, induced subgraphs of a
landscape, are studied using the theory of random graphs.

2 Size Prediction

A combinatorial search problem is defined as a set X of candidate solutions and
an objective function f : X — R that assigns some value to each element of
X. The solution set X for satisfiability problems is the set of true/false assign-
ments to n variables which can be characterized as the set of strings {0,1}™. For
MAXSAT, the objective function f counts the number of satisfied clauses given
by a particular solution x.

A local search algorithm defines some computationally tractable neighborhood
function N : X — 2% and, starting from an independently generated initial
candidate solution, walks along the graph induced by the neighborhood function.
That is, if x € X is the current candidate solution, in each iteration a new
element y € N(x) is selected to become the new candidate solution according to
a pivot rule. The behavior of local search can be characterized as a biased walk
on the neighborhood graph G(X, F) induced by N, that is, (z,y) € E < y €
N(x).

For MAXSAT problems, the seemingly most natural neighborhood N maps
solutions to their set of Hamming neighbors: solutions that differ in exactly one
variable. Thus G(X, F) is isomorphic to a hypercube graph of order n. Since we
are concerned only with the MAXSAT domain in this paper, we hereafter work
only with this graph. The Hamming distance between two solutions x and y is
denoted as d(x,y) and represents the minimal distance between x and y on the
hypercube.

Let L C X be a maximal set of solutions such that Vo € L, f(z) = £. We
refer to L as the level set at level £. A neutral path A'(z,y) in G is a sequence
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of distinct solutions (x = x1, 2, ..., 2 = y) such that, for alli € {1,...,k—1},
the following conditions hold.

1. Tiy1 € N(‘TZ)
2. f(xi) = f(@it1)

A plateau is a mazimal set P such that for all x,y € P, 3 N(x,y). Thus a
plateau is simply a connected component of the subgraph of the neighborhood
graph G induced by a level set, and the set of all plateaus form a partition of G.
The size of a plateau P is defined as its cardinality |P|. Note that our definition
allows for |P| = 1. In other words, the set of all plateaus partition the search
space X, and a vertex with no equal neighbors is a degenerate plateau. This
definition is analogous to that in other studies, e.g., [AI7/]].

2.1 Estimating a Lower Bound: Hamming Path Set

We define a neutral Hamming path N3;(z,y) in G between two solutions z
and y is a particular case of a neutral path N (z,y) = (z = x1,...,7x = y)
with the added monotonicity constraint that d(z,x;4+1) = d(x,2;) + 1 for all
ied{l,....,k—1}

Let x be an arbitrary solution in a plateau P. We define the Hamming path
set H, associated with = as

H, ={y € P:3 Nu(z,y)}

Clearly, H, C P and thus |H,| < |P].

On a particular problem instance, we can consider H, taken over all randomly
selected x € X. We can thus characterize |H,| as a random variable. Denote as
E[|H,|] its expected value. By linearity of expectation we have

E[|H, U (P\ Hy)|] = E[|P]]
E[|H.[] <E[ P[]

In practice, the magnitude of the difference between the left hand and right hand
side of the above relation will ultimately depend on our choice of z € P.

Under a simplifying assumption which we will make in the following section,
we will find that the probability that a solution belongs to H, depends only on
its distance from x. Denote as

hy(r) = Pr{y € H,} for any y : d(z,y) = r

the probability that a solution y at distance r from x belongs to H,. On the
hypercube of order n, there are (:f) solutions at distance r from an arbitrary
vertex. Thus we derive the expected size of the Hamming path set (and therefore
our lower bound on plateau size) as

el =3 (7)ot 1)

r=0
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Fig. 1. Partitioning of a hypercube into Sp and S;

We develop an estimate of h,(r) (and so E[|H,|]) using a percolation approach.
Let C,, be a hypercube graph of order n. Each vertex in C,, corresponds to
a string {0,1}"™. Let = (000...0) and y = (111...1). We refer to x and y
as the corner vertices. A vertex is active if it belongs to the same level set
as x. We define the concentration as the probability p that a vertex is on the
same level set as =, and thus active. We assume this probability is constant and
independent across all vertices. In other words, p depends only on the level set
under consideration. Note that z is a fized active vertex since it trivially belongs
to its own level set. We say the cube percolates from y to x if there is a monotonic
path (y = x1,x9,...,z; = x) such that all z; are active.

Let ¢(n,p) denote the probability that C,, percolates with concentration p
from y to the fixed active vertex z.

Proposition 1. For some real number 0 < g(n) <1

c(n,p) =p- (2-c(n—1,p) —c(n —1,p)*) + g(n)

Proof. We partition the vertices C,, into two disjoint sets Sy and S;. Sy consists
of the vertices represented by the strings (0 % *...%). Sy consists of the vertices
represented by the strings (1 % *...x%).

Note that Sy and S; form hypercubes (see Figure [I]). Each subcube shares
one of its corner vertices with C,,. In the case of Sy, one of its corner vertices is
x, while the opposite corner is a vertex w = (0,1, 1,...,1). In the case of Sy, one
of its corner vertices is y and the opposite corner is a vertex z = (1,0,0,...,0).

All percolating paths from y to & must pass from Sy to Sy exactly once and
cannot pass back from Sy to S7 (since at each step of the path, the number of
ones in the bitstring must decrease by exactly one).

We refer to paths that pass from S; to Sy through edges (y,w) or (z,x) as
external crossing paths. We refer to the remaining paths as internal crossing
paths. Let FE., be the event that at least one external crossing path perco-
lates from y to x. Let E;, be the event that at least one internal crossing path
percolates.
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If y is inactive, then C,, does not percolate from y to x. Now suppose y is
active. The probability that Sy percolates from w to the fixed active vertex x is
¢(n —1,p). Now we consider S;. Note that = ¢ Sy, but y takes the role of the
fixed active vertex (since we have assumed it is active). The probability of S;
percolating from z to y is ¢(n — 1, p).

Percolation is direction invariant. Thus if S; percolates from z to y, there is a
percolating external crossing path from y to x through the edge (z, x), and thus
C), percolates. Similarly, if Sy percolates from w to z, since we have assumed y
is active there is a percolating external crossing path from y to x through the
edge (y,w). Thus if either Sy or S; percolate, then C;,, must percolate. These
events are not mutually exclusive, so the probability that there is a percolating
external crossing path through either subcube is 2 - c¢(n — 1,p) — c¢(n — 1,p)%.
We multiply this expression by p, the probability that y is active, to obtain the
probability that C,, percolates via an external crossing path.

Pr(Ee:v) =D (2'6(71—]_7]))—0(77,—1,]?)2) (2)
Now consider the internal crossing paths. Clearly we have,

where 0 < g(n) <1 is a real number that depends on n. The probability that C,,
percolates can be expressed as Pr(E,,) 4+ Pr(E;,) — Pr(Ee, N E;y). Substituting
Equations (@) and (8] gives the result. O

We thus ignore the internal crossing paths and bound the percolation probability.

Corollary 1. Since 0 < g(n) <1, ¢(n,p) >p-(2-c¢(n—1,p) —c(n —1,p)?)
We define é(n, p) as the lower bound on ¢(n,p):

¢(1,p) =p
The above result allows us to place a lower bound on E[H,].

Proposition 2. Let = be an arbitrary solution in X. Suppose that for each
element y € X, Pr{f(y) = f(x)} = p. Then hy(d(x,y)) = c(d(z,y),p).

Proof. This follows directly from the definition of ¢(n,p). Note that a vertex in
a Hamming path from y to x must lie in the subcube of order d(z,y) between
x and y. If a vertex in the subcube is on the same level set as x, it is considered
active. Since each vertex is active with probability p, a neutral Hamming path
is simply a percolating path in the subcube of order d(x,y). O

Thus, we have

|11, > Z (")etrp )
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If we know p for a particular level set, then we can bound the expected plateau
size. Note that our premise that the concentration parameter p is independent
across a given level set is a rather heavy simplifying assumption. In fact, we
would expect in practice that solutions have distinct correlations among them.
However, this assumption makes the analysis easier.

Finally, the elimination of the g(n) term in the approximation expression
will cause the lower bound to diverge as n — oo since the approximation loses
accuracy for each value of n. Thus, we expect the error to have superlinear
growth with n since g(n) is proportional to subcube size.

2.2 Estimating an Upper Bound: Bethe Lattice Approximation

We have characterized plateaus as connected clusters of active sites in the hyper-
cube graph. In this section we will use an exact result from percolation theory
to derive an upper limit on the expectation of plateau size for certain values
of p. The Bethe lattice (or Cayley tree) of coordination number n is defined as
a connected acyclic graph in which each vertex is connected to n neighboring
vertices.

For a given concentration p, the expected size of connected clusters of active
sites in the Bethe lattice will always be greater than or equal to the expected
size of clusters of active sites in the hypercube graph. This can be shown by a
simple counting argument. Since the Bethe lattice is acyclic, every site in the
cluster rooted at a site b has exactly one path of active vertices to b. Thus the
expected number of neighbors of a cluster site that extend the cluster a step
further from b is p- (n — 1). On the other hand, a vertex in the hypercube graph
that belongs to a cluster rooted at some vertex x will have at least one path of
active vertices to z since cycles are possible. The expected number of neighbors
that extend the cluster further is therefore less than or equal to p- (n — 1). Thus
the expected size of connected active clusters in the Bethe lattice for a particular
p is an upper bound on the expected plateau size in the hypercube graph.

The expected cluster size on the Bethe lattice has an exact solution. Let b be
an arbitrary active site in the lattice. Let T be the expected size of the clusters
rooted at each neighbor of b. By the symmetries of the lattice we have

T=p(1+(n-1T)

Solving for T" we have T' = | _ ( r —1)p and the expected cluster size at arbitrary b

isl+nT:
1+p

1—-(n—-1)p (6)

Since the Bethe lattice is an infinite system, its value as an approximation of the
finite hypercube becomes poorer as p gets larger. In fact, there is a singularity
in Equation (@) when p = nil. This corresponds to the critical point at which
an infinite cluster appears in the lattice and expected cluster size is no longer
well-defined. Thus the Bethe lattice approximation is only valid in the subcritical
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region: values of p strictly less than nil' A useful introduction to percolation
theory can be found in [I1].

2.3 Estimating Concentration: Neutral Walk Method

Except in synthetic cases, the concentration parameter p will not be known a
priori. Thus we must determine a method to estimate p. One approach might be
to simply sample points on the landscape until the proportion of solutions that
belong to a particular level set is accurately represented. However, this approach
is insufficient for the following reasons.

1. It may take exponential time to obtain an accurate estimate of the true
proportion for smaller level sets.

2. The actual concentration p is likely to be correlated with distance. For ex-
ample, in MAXSAT, solutions at Hamming distance one are more likely to
be on the same level set than solutions an arbitrary distance away.

To address these points, we develop a method that uses a neutral walk: a poly-
nomial time algorithm that locally samples around a solution. The concept of
a neutral walk was introduced by Schuster et al. [I2] to measure the extent of
plateaus (which they refer to as components of a neutral network) for RNA land-
scapes. A neutral walk is defined as a random walk of monotonically increasing
distance from a reference vertex such that all walk vertices have the same eval-
uation. On the hypercube, there can be at most n increasing steps, each with a
neighborhood size that is O(n) in the worst case. Thus the time to perform a
neutral walk is bounded above by n Y"1 ;i = O(n?).

The probability mass function of neutral walk length £ was derived by Rei-
dys and Stadler [9]. We adopt a specialization for the hypercube. Let p be the
probability that a solution belongs to the same level set as the origin of the
walk. A vertex at distance r from the walk’s origin has n — r neighbors at dis-
tance r + 1. Thus the probability that a walk can be extended to distance r is
[T,_, [ — (1 — p)»~(=D]. The probability that the vertex at distance r termi-
nates the walk is (1 — p)™~". Hence, given concentration p, the probability that
a neutral walk is of length r can be written as

Pr{L=r}=(01-p)"" ﬁ [1 -1 _p)”*(ifl)]

i=1

We use this result to compute the expected neutral walk length as follows.
E,[L] = Z rPr{l =r} (7)
r=1

To estimate p for a level set L, we compute the empirical mean neutral walk
length £,, by performing a number of neutral walks from sampled points on L. If
we assume £, accurately estimates E,[£], then an estimate of the concentration
is simply the root of the monotonic function

]Ep [E] - Eu
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using Equation (@) parameterized by p. We use a numerical root finding algo-
rithm to solve for p, giving us the estimate.

3 Computational Experiments

We have proved that, given our assumptions, our models provide upper and
lower bounds. However, we do not know how well the models perform on actual
problems where the concentration is not known. We evaluate the accuracy of our
prediction bounds by exhaustively enumerating plateaus on a number of different
search landscapes and comparing the actual value with the predictions given by
Equations (Bl) and (@). To assess the accuracy and trends of the prediction we first
use synthetic landscapes on which concentration is known, and then both random
and structured MAXSAT landscapes on which we predict the concentration
using the neutral walk method. Because we need to fully enumerate the plateaus
for accuracy, we are limited to small problems in this analysis.

3.1 Concentration-Controlled Random Landscapes

To test the size prediction bounds given known concentrations, we evaluate pre-
dictions for random hypercube landscapes on which we explicitly control concen-
tration. In particular, given a hypercube landscape X, we assign each solution
an objective function value of 1 with probability p and a value of 0 with prob-
ability 1 — p. We sample solutions at random on the landscape. If the solution
is of value 1, we expand its plateau using breadth-first search. We also compute
its Hamming path set. We compare the actual cardinalities with the prediction
equation and the Bethe lattice approximation for concentrations that lie in the
subcritical region.

We generate 100 random landscapes controlling for concentration from
p = 0.01 to p = 0.4. On each landscape we calculate the Hamming path set
lower bound and the Bethe upper bound using the known value of p. We sample
100 random points from the level set at value 1 and perform breadth-first search
to exhaustively enumerate the plateaus. We also perform a depth-first search
from each plateau vertex back to the root to enumerate the Hamming path set.
We compare the average plateau and Hamming path set sizes with the prediction
bounds.

We report our prediction data in the form of correlation plots. There are three
types of data points. “Plateau/HP” is actual plateau size vs. Hamming path
prediction. “HP/HP” denotes actual Hamming path set size vs. Hamming path
prediction. “Plateau/Bethe” denotes actual plateau size vs. Bethe prediction. A
perfect prediction would lie on the diagonal line included in the plots. Data for
a 20 dimensional random landscape are plotted in Figure 2l The low number of
“plateau/Bethe” points are because the higher concentrations exceed the critical
value for the Bethe lattice.

To determine the accuracy of our concentration estimate, we run the above
experiments again and estimate p using the neutral walk method. Instead of using
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Fig. 2. Log-log plot of predictions on 20 dimensional random landscape
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Fig. 3. Actual p vs. estimated p (left). Mean squared error between actual and esti-
mated p vs samples/level set (right).

the known p value for the prediction bounds, we take 10 neutral walks from each
of the 100 sampled points and predict the concentration with the resulting walk
lengths. We compare the actual p values used to generate the landscape with
the values estimated by the neutral walk method. These data are plotted on the
left in Figure Bl We find a tight correlation between the predicted and actual
concentrations. To determine how much effort needs to be expended to estimate
p, we plot the mean squared error between known concentration and estimated
concentration with respect to samples per level set on the right in Figure[3l Both
plots were generated using data from the 20 dimensional random hypercube.
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The high accuracy of the p estimation with low sample size is encouraging be-
cause the time to predict the size of the plateau for a single solution (including
neutral walk sampling) is on the order of 200-5000 microseconds whereas mea-
suring the actual plateau can take several minutes or longer on the relatively
small problems we investigated.

3.2 MAXSAT Landscapes

To test how well the bounds transfer to actual problems, we perform experiments
on random and structured MAXSAT problems. On MAXSAT the objective func-
tion is the number of formula clauses satisfied. On uniform random problems,
most solutions belong to a small number of objective function values. This typ-
ically results in solutions of average value belonging to vast plateaus. Hampson
and Kibler [5] found that, due to their relatively high exit density, plateaus of
average value are easy for local search to escape, and thus local search is most
affected by plateaus of higher value. Therefore we follow the technique used by
Frank et al. [4] and Smyth [§] employing a stochastic local search algorithm
(WalkSat [I3]) to sample the highest value plateaus in the search space.

Plateau measurement time depends on the number of vertices on the plateau.
Thus large plateaus quickly become intractable to enumerate as they grow with
depth and problem size. Some level sets can have a small number of extremely
large plateaus which cannot be enumerated in a reasonable amount of time.
Rather than omitting these data points (which would bias the results to make
a lower bound appear tighter than it actually is) we only report the top three
level sets for two benchmark sets.
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Fig. 4. Estimated concentration with respect to level set on uf20-91 problems
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Fig. 5. Predictions for MAXSAT problems. Results on random uniform sets: 20 vari-
ables and 91 clauses uf20-91, and 50 variables and 218 clauses uf50-218 appear on
the top; results on structured problem instances are plotted on the bottom.

We use two uniform random benchmark distributions from SATLIB: uf20-91,
a 20 variable 91 clause set, and uf50-218, a 50 variable 218 clause set. We
select 100 random instances from each set and perform WalkSat to generate 100
solutions each on the top six levels (for uf20-91) and the top three levels (for
uf50-218). Note that all instances in these sets are satisfiable.

We estimate p for each level set by using the neutral walk method, taking 10
walks from each sampled solution. From each solution we exhaustively enumerate
its plateau and its Hamming path set and compare the actual sizes to the bounds
in Equations (@) and (6l). The results from uf20-91 are plotted in the top left
of Figure[Bl The results from uf50-218 are plotted in the top right of Figure Bl
Note the trends in accuracy when compared to each other and to the random
landscape (see Figure [2).

We report the estimated p values found by the neutral walk method on the 20
variable uniform random SAT problem in Figure[dl The estimated concentration
on each problem set of a particular size appears to decrease as a function of
evaluation. This reflects the empirical decrease in plateau size with respect to
level found originally by Hampson and Kibler [5] and later by Frank et al. [4]
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and Smyth [§]. We also see a marked increase in variance as level increases which
suggests plateau size becomes less uniform in better regions of the search space.

The random uniform problem instances show similar trends in accuracy. This
could be an artifact of the inherent statistical regularity of random problems.
To address this, we tested our predictions on structured problem instances. We
performed the above experiments on the top three levels of a set of six Ramsey
number problems from the MAXSAT 2007 problem competition. This problem
set is comprised of several different instances with differing numbers of variables
and clauses. The results are shown in Figure [{] on the bottom left. We also
performed the above experiments on the top 10 levels of a 27 variable spin glass
problem. This problem is unsatisfiable and the best solution by WalkSat was
found on level set 145 (out of 162). These results are shown on the bottom right
in Figure @l The sparsity of the bottom plots is due to the smaller cardinality
of the structured problem sets. The Ramsey numbers problems tended to have
the largest concentration values: their nonzero concentration ranged from 0.09
to 0.68. The other instances had nonzero concentration values ranging from 0.01
to 0.2 or less. The concentrations were also higher relative to the critical value
of nil on the structured instances, hence the paucity of data points from the
Bethe model on the corresponding plots.

We see similar trends in accuracy with size across the random and structured
problems. Furthermore, the trend is again similar to what we found on the
hypercube graph model reported in Figure 2l

4 Impact on Algorithm Design

Accepting equal search moves can be beneficial or detrimental to a search algo-
rithm depending on the immediate properties of a plateau region. Small, easy
to escape plateaus offer little impediment to search while large, hard to escape
plateaus are vast regions that lack “gradient” information and may result in
search stagnation. A stochastic local search algorithm exhibits plateau behavior
when a significant number of consecutive steps all have the same evaluation. This
behavior signals that a plateau has been reached by the algorithm and certain
measures may need to be taken to either exploit or react to the encountered
plateau region.

Plateau moves can be beneficial to stochastic local search [1I3] because they
provide neutral moves that may eventually lead to improving states. Plateau be-
havior is thus not always problematic. Frank et al. [4] point out that stochastic
local search algorithms typically respond to plateau behavior by one or more of
the following strategies 1) doing nothing, 2) detecting plateaus, 3) performing
a short random walk, or 4) randomly restarting. The viability of each of these
tactics depends on the size of the plateau in question, along with its exit den-
sity. Hence, knowledge of the expectation of plateau size can be beneficial in
determining how an algorithm should react to plateau behavior.

For example, plateaus that are relatively small might easily be enumerated
with breadth-first search whereas moderately sized plateaus (depending on exit
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density) might be escaped by taking a small “jump,” e.g., flipping a number of
variables at random [I4]. On the other hand, a search that has reached a vast
plateau region may obtain better results, depending on the evaluation level, by
simply restarting. Even roughly identifying the size of moderate to large plateau
regions can be difficult.

On large plateaus, several researchers [4J5] have discussed the inherent trade-
off between continuing plateau search and changing the search strategy. In these
studies, empirical measurements of plateau size are gathered off-line for a rep-
resentative sample of a particular problem class and plateau characteristics are
generalized to the entire class. The bound estimates presented in this paper
allow rough plateau size approximations to be performed without much compu-
tational effort on-line. These estimates could be used in stochastic local search
algorithms for strategic adaptation during execution: potentially providing in-
formation that allows search to quickly determine which of the above options
(or other strategies) may be the best way to respond to plateau behavior.

We might also generalize their use to the prediction of algorithm performance.
According to the well-known no free lunch theorem [15], no single algorithm per-
forms consistently well across a set of problem instances. Indeed, specific algo-
rithm performance often depends strongly on salient problem instance features.
Portfolio-based approaches use different features to select among a set of algo-
rithms to be applied [16]. For instance, Xu et al. [I7] have recently introduced
the SATzilla portfolio for satisfiability problems. The approach requires learning
the relationship between a problem feature set and the likelihood of a particular
algorithm’s success in solving an instance with a given set of measurements. We
conjecture that plateau size can provide additional problem space information.
Hence the concentration and percolation estimates for MAXSAT presented in
this paper may be beneficial as a computationally cheap, if rough estimate of a
problem instance feature that may aid algorithm selection.

5 Conclusion

We have introduced methods for estimating bounds on plateau size for MAXSAT
problems. These bounds may support portfolio approaches to MAXSAT by in-
dicating problem difficulty for local search or principled adaptation for handling
large plateaus.

We found that the accuracy in our estimates showed surprisingly similar
trends across both random and structured problem instances. However, one in-
herent weakness with the approach is the large divergence in accuracy with
plateau size. In the case of Bethe approximation, this is an artifact of the insta-
bility as the critical concentration is approached, thus the bound is not useful
for larger values of p. For the Hamming path set, the bounds diverge as the
cumulative effect from ignoring the internal path term increases.

We are continuing to refine the bounds on hypercube percolation, which would
address divergence in accuracy. Furthermore, we would like to assess the influence
of the phase transition on concentration.



Estimating Bounds on Expected Plateau Size in MAXSAT Problems 45

The second important plateau characteristic is exit density, which we have not

addressed in this paper. Future work also includes estimating plateau exit density
and relating exit density and plateau size to problem difficulty and stochastic
local search behavior.
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