
Fast Learning of Restricted Regular Expressions and DTDs

Dominik D. Freydenberger
∗

Institut für Informatik, Goethe-Universität
60054 Frankfurt a.M.

freydenberger@em.uni-frankfurt.de

Timo Kötzing
Max-Planck-Institute for Informatics

66123 Saarbrücken
koetzing@mpi-inf.mpg.de

ABSTRACT
We study the problem of generalizing from a finite sample
to a language taken from a predefined language class. The
two language classes we consider are subsets of the regular
languages and have significance in the specification of XML
documents (the classes corresponding to so called chain re-
gular expressions, Chares, and to single occurrence regular
expressions, Sores).

The previous literature gave a number of algorithms for
generalizing to Sores providing a trade off between quality
of the solution and speed. Furthermore, a fast but non-
optimal algorithm for generalizing to Chares is known.

For each of the two language classes we give an efficient
algorithm returning a minimal generalization from the given
finite sample to an element of the fixed language class; such
generalizations are called descriptive. In this sense, both our
algorithms are optimal.

Keywords
subregular language learning, single occurrence regular ex-
pression, chain regular expression, descriptive generaliza-
tion

1. INTRODUCTION
The present paper follows and refines an approach for

XML schema inference from positive examples that was in-
troduced by Bex et al. [3]. The basic problem setting is as
follows. Given a set of XML documents, generate a schema
that describes these documents, while being compact and
preferably human readable.

Bex et al. approach this problem by learning deterministic
regular expressions from positive examples; i. e., they con-
sider the following problem: Given a finite set S of positive
examples from an unknown target language L, find a deter-
ministic regular expression for L. These regular expressions

∗This work was done while this author was visiting the Max-
Planck-Institute for Informatics in Saarbrücken.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

can immediately be used as DTDs (Document Type Defini-
tions), and while XSDs (XML Schema Documents) require
additional effort, algorithms that infer regular expressions
can also be used as a component of XSD inference algo-
rithms (see [3, 4] for further explanations). In particular,
as argued in [3], the results in [11] show that XSD inference
requires deep insights into regular expression inference – as
Bex et al. put it, “one cannot hope to successfully infer XSDs
without good algorithms for inferring regular expressions”.

Using a classical technique from Gold [9], Bex et al. prove
in [2] that even the class of deterministic regular expressions
is too rich to be learnable from positive data. While, strictly
speaking, the learnability criterion of Gold-style learning as
defined in [9] (which is also called learning in the limit from
positive data or explanatory learning) is different from the
setting in [2, 3],1 its non-learnability results still provide
valuable insights into necessary restrictions.

In particular, Gold-style learning shows that, when learn-
ing from positive data, one has to balance the need for gen-
eralization (as in most cases, a regular expression that gen-
erates exactly the example is not considered a good hypoth-
esis) with the need to avoid overgeneralization.

While there are numerous papers on restrictions on the
class of regular languages that lead to learnability, apart
from a few exceptions (e. g. [6]), most of these restrictions
prior to [3] have been based on properties of automata. As
explained in [3], this is problematic, as even under those
restrictions, converting the inferred automaton to a regular
expression can lead to an exponential size increase.

In order to achieve learnability of concise deterministic
regular expression, Bex et al. propose single occurrence re-
gular expressions (short Sores), regular expressions where
each terminal letter (or element name) occurs at most once.
These Sores are deterministic by definition, and as an ad-
ditional benefit, this restriction ensures that the length of
the inferred expressions is at most linear in the number of
different terminal letters.

The corresponding Sore-inference algorithm RWR from [3]
works as follows. First, it constructs a so-called single occur-
rence automaton (short Soa, as introduced by Garćıa and
Vidal [8]). RWR then attempts to convert the Soa step by
step into a Sore. As the class of Sore-languages is a proper
subset of the class of Soa-languages, this conversion is not
always possible. In these cases, RWR attempts to repair the

1Gold-style learning uses a growing set of samples and re-
quires that the learner converges toward a correct hypothesis
in finite time, while this setting uses only a single finite set
for each inference instance.



Soa, and constructs a Sore that generates a generalization
of the language of the Soa. In order to generalize as lit-
tle as possible, [3] suggests different orderings on the set of
repair rules, as well as the variant RWR2` , which uses addi-
tional heuristics and can have an exponential running time.
Nonetheless, these variants may still infer Sores that are
not inclusion-minimal generalizations of the input sample
(within the class of all Sores).

In order to deal with insufficient data, Bex et al. proposed
a further restriction on Sores, the so-called chain regular ex-
pressions (short: Chares), and introduced the correspond-
ing inference algorithm CRX. Analogously to RWR, CRX may
infer Chares that are not inclusion-minimal generalizations.

The present paper focuses on inferring Sores and Chares
that are inclusion-minimal generalizations. This approach
to regular expression inference is based on a slightly differ-
ent angle than Gold-style learning, namely on the learning
paradigm of descriptive generalization that was introduced
by Freydenberger and Reidenbach [7].

While Gold-style learning assumes that an exact repre-
sentation of the target language is present in the hypothesis
space, and that the learner is provided with sufficient posi-
tive information to correctly recognize the target language,
descriptive generalization views the hypothesis space and
the space of target languages as distinct.

For a classD of language representation mechanisms (e. g.,
a class of automata, regular expressions, or grammars2), a
language representation δ ∈ D is called D-descriptive of a
sample S if L(δ) is an inclusion-minimal generalization of S,
i. e., S ⊆ L(δ) and there is no γ ∈ D with S ⊆ L(γ) ⊂ L(δ).

This concept allows us to define D-descriptive generaliza-
tion as a natural extension of Gold-style learning: Instead
of attempting to learn an exact representation of the tar-
get language L from a sample S, the learner has to infer
a representation δ ∈ D that is D-descriptive of L. In other
words, δ is a generalization of S that is as inclusion-minimal
as possible within D.

Descriptive generalization explicitly separates the hypoth-
esis space from the class of target languages, while still pro-
viding a natural quality criterion for generalization from pos-
itive examples. In the present paper, we consider the class
of Sores and the class of Chares as hypothesis spaces D,
and examine the problem of inferring D-descriptive general-
izations from finite samples.

We approach this problem by first computing a Soa-de-
scriptive Soa. As we shall see, this approach has the ad-
vantages that the descriptive Soa is uniquely defined, can
be computed efficiently, and its language is included in the
language of every descriptive Sore or Chare.

The main contribution of the present paper are two al-
gorithms, Soa2Sore and Soa2Chare, that can be used to
transform any given Soa into a Sore (resp. Chare) that is
Sore-descriptive (resp. Chare-descriptive) of the language
of that Soa. That is, given a sample S, these algorithms can
be used to compute a generalization of S that is inclusion-
minimal (or, in the terminology of [3], optimal) within the
class of Sores or Chares (respectively).

In addition to this, Soa2Chare and Soa2Sore are efficient:
Soa2Chare runs in time O(m) (compared to O(m + n3) for

2The canonical class D is the class of NE-patterns, where
descriptive patterns were introduced by Angluin [1] in the
context of exact learning from positive data. See [12] for a
survey on the influence of pattern languages in this area.

CRX), Soa2Sore in time O(nm) (compared to O(n5) for RWR),
where m is the number of edges and n the number of nodes
in the Soa.

The paper is structured as follows. Section 2 contains
some mathematical preliminaries, followed by some infor-
mative properties of the language classes considered. Sec-
tion 3 discusses CRX as well as RWR and its variants in the
context of descriptive regular expressions. In particular, we
show that for each of these algorithms, there are samples
over small alphabets where the algorithm does not compute
a descriptive Chare or Sore. Sections 4 and 5 contain the
algorithms Soa2Chare and Soa2Sore, respectively, as well as
proofs of their correctness and running time. Finally, Sec-
tion 6 concludes the paper. For space reasons, some of the
proofs were omitted.

2. PRELIMINARIES
Let ∅ denote the empty set, let ε denote the empty word.

With |x|, we denote the length of x if x is a word, or the
number of elements in x if x is a set. We use ⊆ (and ⊂) to
denote the inclusion (respectively proper inclusion) of sets.
The difference of two sets A,B is denoted by A \ B and
defined as {a ∈ A | a /∈ B}. A word v is a factor of a
word x ∈ Σ∗ if there exist u,w ∈ Σ∗ such that x = uvw.
A 2-gram is a factor of length 2. Let alph(w) denote the
set of all letters occurring in a word w, and extend this to
languages by defining alph(L) :=

⋃
w∈L alph(L).

2.1 Introducing SORE, CHARE, SOA
This section introduces the classes of regular expressions

and automata that are used in the present paper. We mostly
follow the notations introduced in [3]. In particular, we use
the following variant of regular expressions.

Definition 1. Let Σ be a finite alphabet (the set of ter-
minal letters, also called element names). Every letter a ∈ Σ
is a regular expression, as are ε and ∅, and L(x) = {x}
for x ∈ Σ ∪ {ε}, while L(∅) = ∅. If α is a regular ex-
pression, then α+ and α? are regular expressions, where
L(α+) = (L(α))+ and L(α?) = L(α) ∪ {ε}. Furthermore,
if α and β are regular expressions, then α |β and α · β are
also regular expressions, with L(α |β) = L(α) ∪ L(β) and
L(α · β) = {uv | u ∈ L(α), v ∈ L(β)}.
For sake of convenience, we sometimes omit the concate-
nation operator (i. e., we write αβ instead of α · β), and
add or omit parentheses. For a regular expression α, we
use alph(α) to denote the set of terminal letters that occur
in α. We call two regular expressions α, β alphabet-disjoint
if alph(α) ∩ alph(β) = ∅. Two regular expressions α and
β are equivalent if L(α) = L(β). For any set A ⊆ Σ, we
use the notation ALT (A) to denote the regular expression
ALT (A) := (a1 | · · · | an), with ALT (∅) = ε (ALT stands
for alternation). In a strict sense, this definition requires
an ordering on the letters to be sound, but for the purpose
of this paper, this is of no concern, and we assume that
ALT (A) = ALT (B) if A = B.

The full class of regular expressions is too strong both for
DTDs (which allow only deterministic regular expressions)
and for learning from positive data (which requires language
classes that are sufficiently sparse, cf. [9]). As proven in [2],
even the class of deterministic regular expressions is still too
large to be learnable from positive data. Hence, [3] proposes
the following subclasses of deterministic regular expressions.



Definition 2 (Sore/Chare). A single occurrence re-
gular expression (or Sore) is a regular expression in which
each terminal letter occurs (at most) once.

A chain regular expression (or Chare) is a Sore of the
form f1 · . . . · fn (n ≥ 0), where each fi is a chain fac-
tor, i. e., a Sore of the form (a1 | · · · | ak), (a1 | · · · | ak)?,
(a1 | · · · | ak)+, or (a1 | · · · | ak)+?, where k ≥ 1, and each
aj is a terminal letter.

In other words, a Chare consists of a concatenation of
alphabet-disjoint chain factors. We illustrate these defini-
tions with a few short examples.

Example 3. Consider the regular expressions given as
α = (a)?(b | c)+, β = (ab)+, and γ = abaa. Here, α is
a Chare (and, hence, also a Sore), as it consists of two
alphabet-disjoint chain-factors.

On the other hand, β is a Sore (every letter occurs only
once), but not a Chare (as it is not composed of chain-
factors). One can easily prove that L(β) is not a Chare
language: Assume there exists a Chare β′ with L(β′) =
L(β). By definition, β′ must contain a and b. if a and b are
not in the same chain-factor of β′, then at least one of the
2-grams ab or ba cannot occur in any word of L(β′). But if
a and b are in the same chain-factor of β′, the same line of
reasoning implies that this chain-factor must be followed by
+ or +?. Therefore, there are words in L(β′) that contain
the 2-grams aa or bb, which contradicts L(β′) = L(β).

Finally, γ is not a Sore (and therefore not a Chare),
and one can prove that L(γ) is not a Sore-language (this
is best proven using techniques that shall be introduced right
after this example, hence we defer the proof of this claim to
Remark 7 further down in this section).

While the focus of this paper is on learning regular expres-
sions, most of our technical reasoning uses the following class
of automata.

Definition 4 (Soa). Let Σ be a finite alphabet, and
let snk, src be distinct symbols that do not occur in Σ. A
single occurrence automaton (short: SOA) over Σ is a finite
directed graph A = (V,E) such that

(1) {src, snk} ∈ V , and V ⊆ Σ ∪ {src, snk},
(2) src has only outgoing edges, snk has only incoming

edges, and every v ∈ V lies on a path from src to snk.

We call alph(A) := V \{src, snk} the set of terminal letters
in A. We define the relation →A on V by →A:= E, and use
→+
A and →∗A to denote the transitive and reflexive-transitive

hull of →A. The language L(A) that is accepted by A is the
set of all words w = a1 · · · an (n ≥ 0) such that src →A

a1 →A · · · →A an →A snk.

As usual, a strongly connected component of a Soa A is
a non-empty and inclusion-maximal set C of vertices of A
such that for all a, b ∈ C, a →∗A b and b →∗A a holds. A
strongly connected looped component of a Soa A is a non-
empty and inclusion-maximal set C of vertices of A such
that for all a, b ∈ C, a →+

A b and b →+
A a holds. In other

words, every strongly connected looped component contains
exactly those vertices that are mutually reachable. Thus, a
strongly connected component may be a singleton, while a
singleton strongly connected looped component must have a
self-loop.

By definition, all strongly connected looped components
of a Soa are disjoint, and src and snk cannot be part of any
strongly connected looped component.

Although their definition is somewhat different, it is easy
to see that Soas are a subclass of DFAs. In particular, a Soa
can be understood as a DFA where for each a ∈ Σ, there
exists a characteristic state qa such that δ(q, a) ∈ {qa, qtrap}
for all states q ∈ Q (where qtrap is a trap state). This is
illustrated by the following example.

Example 5. In the picture below, we have a Soa on the
left side, and the corresponding DFA to the right side.

a b

c

a

a

b

b
c

c

c

Both automata generate the same language as the regular
expression α = ((ac+?b)((ac+?b) | (c+b))+?)?. Note that
α is not a Sore. In fact, L(α) is not a Sore-language,
but proving this using only techniques that have been intro-
duced at this point requires considerable effort. (The most
straightforward way to prove this is to use techniques that
are introduced in Section 5: Apply the algorithm Soa2Sore

to the Soa, which returns the Sore (ab?c+?)+?, which is
not equivalent to α. By Theorem 25, this means that L(α)
is not a Sore language.)

In this paper, we frequently use Soas to approximate lan-
guages. For this, we rely on the following definition.

Definition 6. For every w ∈ Σ∗, let first(w) and last(w)
denote the first resp. last letter of w, and let gram2(w) be the
set of all 2-grams in w. We extend these functions on words
to functions on languages by defining first(L) := {first(w) |
w ∈ L}, last(L) := {last(w) | w ∈ L}, and gram2(L) :=⋃
w∈L gram2(w).
For every language L ⊆ Σ∗, we define the Soa-approxi-

mation of L, SOA(L), by SOA(L) := (VL, EL), where VL :=
alph(L) ∪ {src, snk}, and EL contains the edges

• (src, a) for every a ∈ first(L),

• (a, snk) for every a ∈ last(L),

• (a, b) for all a, b ∈ Σ with ab ∈ gram2(L),

• (src, snk) if ε ∈ L.

Using this terminology, the approach for Soa-learning pre-
sented in [8] can be summarized as follows. Given a finite
set S, compute SOA(S). In [3], the resulting algorithm is
called 2T-INF. Furthermore, as computing SOA(L) is only
as hard as computing first(L), last(L), and gram2(L), note
that SOA(L) can be constructed for language from classes
that are larger than the classes of finite or regular languages,
e. g., for context-free languages.

It is easy to see from the definition that L(SOA(L)) ⊇ L
holds for every language L (in fact, we shall see in Proposi-
tion 14 that L(SOA(L)) is always the least general approx-
imation of L that is possible with Soa). This inclusion can
be proper as follows.



Remark 7. Note that even for finite languages L, the
equality L(SOA(L)) = L is not necessary; e. g., consider
L = {abaa} (from Example 3). Then SOA(L) contains an
edge from src to a, from a to b, from b to a, from a to
itself, and from a to snk. Hence, aa ∈ L(SOA(L)), while
aa /∈ L. This also proves that L is not a Soa-language
(and, as claimed in Example 3, not a Sore-language.)

As Example 5 illustrates, there are Soa-languages that are
not Sore-languages. On the other hand, we have that every
Sore-language is a Soa-language (in other words, the Soa-
approximation of a Sore-language is exact).

Lemma 8 ([3], proof of Proposition 9). Given any
Sore α, we have L(SOA(L(α)) = L(α).

It is easy to see that SOA(L(α)) can be derived from every
Sore α (in fact, even every regular expression α) by deriving
the sets of first letters, last letters, and 2-grams in L(α) from
the expression α (we already did this in Remark 7).

Lemma 8 allows us to define SOA(α) as a notational short-
hand for SOA(L(α)). Similarly, we use →α to denote the
relation →SOA(α).

More importantly, we shall use Lemma 8 to develop a
handy syntactic characterization of the inclusion for Sores
(and Chares), which is based on the inclusion of Soas. We
say that a Soa A covers a Soa B if A is a supergraph of
B – in other words, alph(A) ⊇ alph(B) holds, and a →B b
implies a →A b for all a, b ∈ alph(B). This definition leads
to the following characterization of Soa-inclusion.

Lemma 9 ([8], Theorem 3.1). For every pair A,B of
Soas, L(A) ⊆ L(B) holds if and only if A is covered by B.

Although Lemma 9 is stated in [8] without proof (the au-
thors just cite Garćıa’s PhD thesis), it is easily proven con-
sidering the definition of SOA(L).

Combining Lemma 9 with Lemma 8, we are able to char-
acterize inclusion of Sores as follows.

Lemma 10. For every pair α, β of Sores, L(α) ⊆ L(β)
holds if and only if SOA(α) is covered by SOA(β).

This obviously implies that two Sores (or Chares) are
equivalent if their corresponding Soas are equivalent. More
importantly, Lemma 10 provides a simple syntactic and
characteristic criterion for inclusion. While the algorithms
in Sections 4 and 5 do not check for inclusion, their correct-
ness proofs make heavy use of the fact that Sore-inclusion
depends on the presence of edges in the corresponding Soa.

Before we introduce the other central definition of this
paper in Section 2.2, we discuss some concepts which will
be useful, although not quite as significant.

One can verify with little effort that the classes of Soa-,
Sore-, or Chare-languages are not closed under many of
the operations that are commonly studied in formal lan-
guage theory (e. g., concatenation, union, complementation,
intersection with regular languages, morphism, inverse mor-
phism). One of the few operations under which each of these
classes is closed, and which we shall use, is projection.

Let Σ be an alphabet. A projection from Σ to T ⊆ Σ is a
morphism πT : Σ∗ → T ∗ that is defined by πT (x) := x for
all x ∈ T , and πT (x) := ε for all x ∈ Σ\T . We extended this
to languages canonically, i. e., πT (L) := {πT (w) | w ∈ L}.

Lemma 11. The classes of Sore-, Chare-, and Soa-
languages are closed under projection.

The proof was omitted for space reasons.
The main approach in the present paper (as well as in

[3]) is converting Soas into Sores or Chares. During this
process, it is occasionally convenient to work with a model
that can be viewed as an intermediary step between a Soa
and a regular expression.

Definition 12. A generalized single occurrence automa-
ton (or generalized Soa) is a finite graph A = (V,E) such
that

(1) {src, snk} ⊆ V , and all vertices in V \ {src, snk} are
pairwise alphabet-disjoint Sore; and

(2) the edge relation E is such that src has only outgoing
edges; snk has only incoming edges, and every v ∈ V
lies on a path from src to snk.

The relations→A, →∗A, →+
A on V are defined analogously to

(non-generalized) Soa. We extend alph to generalized Soas
by defining alph(A) :=

⋃
v∈V \{src,snk} alph(v).

The language L(A) is defined to be the set of all w ∈
alph(A)∗ for which there exist a n ≥ 0, nodes v1, . . . , vn ∈
V \ {src, snk}, and words w1, . . . , wn ∈ alph(A)∗ such that
src →A v1 →A · · · →A vn →A snk, w = w1 · · ·wn, and
wi ∈ L(vi) holds for every 1 ≤ i ≤ n.

Note that generalized Soas accept the same class of lan-
guages as Soas.

2.2 Descriptivity
This section introduces the notion of descriptive expres-

sions and automata, which is one of the central aspects of
the present paper.

Definition 13. Let D be a class of regular expressions
or finite automata over some alphabet Σ. A δ ∈ D is called
D-descriptive of a non-empty language S ⊆ Σ∗ if L(δ) ⊇ S,
and there is no γ ∈ D such that L(δ) ⊃ L(γ) ⊇ S.

In other words, an expression or automation that is D-
descriptive of a language S generates a language that is a
generalization of S that is ⊆-minimal within languages de-
scribed by elements of D.

If the class D is clear from the context, we simply write
descriptive instead of D-descriptive. As stated in [8] (us-
ing quite different terminology), for every finite language S,
SOA(S) is Soa-descriptive of S. This extends to infinite
languages as well; for Sores and Chares, we can also prove
the existence of descriptive regular expressions:

Proposition 14. Let Σ be a finite alphabet. For every
language L ⊆ Σ∗, SOA(L) is Soa-descriptive of L, and there
exist a Sore-descriptive Sore δs and a Chare-descriptive
Chare δc.

The proof was omitted for space reasons.
In particular, this means that the algorithm 2T-INF

from [3] that was mentioned in the previous section can be
used to compute Soa-descriptive Soas for finite sample sets.
Moreover, this shows that constructing a descriptive Soa for
an arbitrary language L is as merely as hard as computing
the sets first(L), last(L), and gram2(L).

As we shall see, computing descriptive Sores or Chares
is less straightforward. First, note that the first part of the
proof of Proposition 14 implies the following observation:



Class num of languages max num descriptive for sample max num edges to add for descr

Chare n! 22n ≤ c(n) ≤ n! 23n ≥ n! Θ(n2)

Sore n! 23n−r logn ≤ s(n) ≤ n! 27n ≥ 2n Θ(n2)

Soa 2n
2+O(n) 1 ×

Table 1: A summary of the numbers presented in Proposition 16. For each of the classes of languages
generated by Chares, Sores, and Soas, the table lists the number of different languages in the class, the
maximum number of descriptive expressions or automata for a given sample S ⊂ Σ∗, and the maximum
number of edges that need to be added to SOA(S) in order to obtain a Soa that corresponds to a descriptive
Chare or Sore. In all cases, n denotes the size of Σ.

Corollary 15. Let Σ be a finite alphabet, and let L ⊆
Σ∗. For every Sore (or Chare) δ that is Sore-descriptive
(resp. Chare-descriptive) of L, L(δ) ⊇ L(SOA(L)) holds.

Hence, if some Sore (or Chare) is descriptive of a language
L, it must be descriptive of L(SOA(L)) as well. This allows
us to compute descriptive Sores and Chares not from a
sample L, but from its Soa-approximation SOA(L).

Furthermore, if L(SOA(L)) is not a Sore-language (or
not a Chare-language), a Soa for some Sore descriptive of
L can be obtained in principle from SOA(L) by adding new
edges. As only a finite number of edges need to be added,
and Soa-inclusion can be decided easily (cf. Lemma 9), the
main question is whether this can be done efficiently. But
as it can be necessary to add a substantial number of new
edges in order to turn a Soa into a Soa that corresponds
to a descriptive expression (see Proposition 16 just below),
a brute force approach is probably not advisable.

The next proposition lists these and other numbers about
counting and descriptive Sores and Chares. These results
are summarized in Table 1. Recall that regular expressions
are called equivalent if they accept the same language.

Proposition 16. Let n be the number of alphabet sym-
bols. We have the following, for some constant r.

(1) The number of pairwise non-equivalent Chares is c(n)
with n! 22n ≤ c(n) ≤ n! 23n.

(2) The number of pairwise non-equivalent Sores is s(n)
with n! 23n−r logn ≤ s(n) ≤ n! 27n.3

(3) There is a sample S ⊆ Σ∗ such that S has 2n pairwise
non-equivalent descriptive Sores.

(4) There is a sample S ⊆ Σ∗ such that S has n! pairwise
non-equivalent descriptive Chares.

(5) There is a Soa with Θ(n) edges such that a descrip-
tive Sore with a minimal number of edges in the cor-
responding Soa has Θ(n2) edges.

(6) There is a Soa with Θ(n) edges such that a descriptive
Chare with a minimal number of edges in the corre-
sponding Soa has Θ(n2) edges.

The proof was omitted for space reasons.
In particular, note that Proposition 16 also demonstrates

that a given sample can have numerous different descrip-
tive Sores (or Chares). Note that the number of different
Chare- and Sore-languages can be better approximated

3Note that [2, Proof of Theorem 3.1] gives that any Sore-
language has a Sore of length at most 10n− 4, which gives
a bound of 2O(n logn).

using more advanced tools from combinatorics. Finally, if
we are only interested in the number of different such lan-
guage modulo renaming of the terminal letters, then the
same bounds without the factor n! hold.

3. DESCRIPTIVITY VS. CRX AND RWR
Proposition 16 demonstrates that the number of non-equi-

valent descriptive Sores (or Chares) for a sample can be ex-
ponential in the size of the alphabet. Therefore, the present
paper only examines the question how a single descriptive
Sore (or Chare) can be found for a sample, instead of look-
ing for an enumeration of all these expressions.

As explained in Section 2.2 (in particular, Corollary 15),
descriptive Chares and Sores can be obtained from the de-
scriptive Soa, and moreover, for every language L and every
Sore α, L(α) ⊇ L(SOA(L)) must hold. This observation
motivates our inference approach for Sores and Chares:
Given a sample S, first compute the Soa-descriptive single-
occurrence automaton SOA(S), using 2T-INF. As explained
in [8], this can be done in time O(ln), where l :=

∑
s∈S |s|,

and n := | alph(S)|.
Using the algorithm Soa2Chare (Section 4) or Soa2Sore

(Section 5), SOA(S) is then turned into a descriptive Chare
or Sore (respectively). Before we discuss these algorithms
and the respective proofs in detail, we observe that the algo-
rithms CRX and RWR and its variants from [3] do not always
compute descriptive Chares or Sores.

For the Chare-algorithm CRX, this is quite easy to see:
As pointed out in [3] (as a remark after Theorem 35), on
the sample S = {abc, ade, abe}, the algorithm CRX returns
the Chare a?b?c?d?e?, while δ := a(b | d)(c | e) is a better
approximation of S. (In fact, we shall be able to see that
δ is not only better, but Chare-descriptive. This can be
verified by observing that δ is the output of Soa2Chare on
SOA(S), and referring to Theorem 19 further down.)

The proofs for the non-descriptivity of the Sore-algorithm
RWR and its variants require more effort, and can be found
in the following section.

3.1 RWR-Variants and Descriptivity
In this section we give theorems regarding properties of

RWR-variants (we refer the reader to [3] for details on all
variants). In particular, we show that every variant fails to
find a descriptive Sore on some input.

In [3, Algorithm 3] an Algorithm RWR (“Rewrite with Re-
pairs”) was given to turn a given Soa (derived in the canoni-
cal way from and input sample) into a generalizing Sore, by
rewriting the Soa step by step. This algorithm was proven
in [3] to turn any Soa in an equivalent Sore, if existent;
if, at some point in the run of RWR, no rewrite rules are ap-



plicable, the algorithm will make a generalization step by
applying a “repair rule”. The four “repair rules” of RWR are
as follows, given the current Soa A. For simplicity, we give a
modification of the rules, where less edges are added. How-
ever, for the cases we use in this section, these rules are
equivalent to the original set.

Repair r | s If there are two nodes r and s of A which
share a successor or a predecessor, add edges to A to
make all successors of r or s successors of both r and
s; similarly with the predecessors.

Repair r · s? If there are two nodes r and s of A such
that r is the only predecessor of s, add edges to A to
make all successors of r or s (except s) successors of
both r and s.

Repair r? · s If there are two nodes r and s of A such
that s is the only successor of r, add edges to A to
make all predecessors of r or s (except r) predecessors
of both r and s.

Repair r? · s? Let r and s be nodes of A such that s is
a successor of r; add edges to A to make all successors
of r or s successors of both r and s; similarly with the
predecessors. Furthermore, for all predecessors u of r
and all successors v of s, add an edge from u to v.

The authors of [3] prove that RWR (with the original repair
rules) always terminates in O(n5) steps (where n = |Σ|) and
gives a Sore which generalizes the input Soa. They also
suggest that these rules are checked for applicability in the
given order, but admit that different situations might call
for different rules (in particular, they note that the outcome
of RWR is not alway descriptive).

Next, we formally show that RWR does not always return
a descriptive Sore.

Theorem 17. For Σ a finite alphabet with |Σ| ≥ 3 and
all orderings of the repair rules of RWR, there is a (finite)
set of samples S ⊆ Σ∗ such that RWR on S produces a Sore
which is not Sore-descriptive.

Proof. Let a, b, c ∈ Σ be three different symbols from Σ.
First, consider the sample {aba, ab}. The corresponding

Soa does not allow rewrite rules and requires repair; be-
low this Soa is depicted, along with two possible repairs,
corresponding to the two possible repairs “Repair a | b” and
“Repair a? · b?”.

a

b

a | b

a? · b?

a

b

a

b

The Soas resulting from the two repairs accept (a | b)+ and
(a | b)∗, respectively, which is not descriptive of {aba, ab}, as
witnessed by δ1 := (a(b?))+ (a Sore which accepts the given
sample aba and ab, but not, for example, b, which is accepted
by any of the Soas derived from repair rules above).

Second, consider the sample S = {ab, ac, acac}. The cor-
responding Soa A is depicted as follows.

a

b

c

A descriptive Sore for S is δ2 := (a(b | c))+, which we prove
as follows. In comparison to A, the Soa that corresponds to
δ2 adds only a single edge, the edge from a to b. So the only
possibility for a Sore-language L(γ) with L(A) ⊆ L(γ) ⊂
L(δ2) is L(A) itself. However, L(A) is not a Sore-language,
which can be seen, just as in Proposition 16, by applying
either the Sore-construction algorithm RWR from [3] or our
algorithm Soa2Sore from Section 5 (which both compute a
Sore equivalent to a given Soa, if existent) and observing
a strict generalization. Hence, δ2 is Sore-descriptive of S.
(We note without proof that (ac?)+b? is another Sore that
is descriptive of S. Necessarily, its language is incomparable
to L(δ2).)

An application of “Repair a · b?” on A and then, after
rewriting, of “Repair [ab?] · c?” gives the following.

a

b

c

[ab?] · c
ab?

c

This Soa corresponds to the Sore (ab?c?)+, and its lan-
guage is a strict superset of L(δ2) (for example abc is ac-
cepted by the former and not the latter).

Deceiving the rule“Repair r?·s” is symmetric to deceiving
“Repair r · s?”.

In [3], Bex et al. also propose a variant of RWR that is
called RWR2` , which uses a natural number ` as a branching
parameter. The algorithm explores the (recursive) outcomes
of the best ` candidates for a repair rule, choosing the ones
that lead to a minimal number of words of length at most
2n (= 2|Σ|) in the language accepted by the resulting Sore.

Theorem 18. For all ` > 0 there is a finite alphabet Σ
with |Σ| = 3` and a finite set of samples S ⊆ Σ∗ such that
RWR2` on S produces a Sore which is not Sore-descriptive.

Proof. We first assume ` = 1; consider again the sample
{ab, ac, acac} with the following corresponding Soa.

a

b

c

The three applicable repair rules are b | c, a · b? and a · c?
(plus some rules of the type“r?·s?”, which explode the num-
ber of accepted words). This leads to the following Soas.



RegEx α |L(α)≤6| exp growth basis recurrence base cases n ∈ {1, 2, 3}
(ab | ac)+ 14

√
2 ≈ 1.41 2fα(n− 2) 0, 2, 0

(abc | ac)+ 7 ≤ 1.33 fα(n− 2) + fα(n− 3) 0, 1, 1

(a | ac)+b? 51 (1 +
√

5)/2 ≈ 1.62 fα(n− 1) + fα(n− 2) 1, 3, 5

Table 2: Properties of the languages discussed in the proof of Theorem 18. For each regular expression α,
fα(n) denotes the number of words in L(α) of length n; given in the table are the number of words of length
at most 6 accepted by α, the constant c such that fα grows roughly as cn, the recurrence relation for the
(fα(n))n∈N, as well as fα(n) for n ∈ {1, 2, 3}.

a

b

c

a

b

c

a

b

c

Table 2 gives an overview of the properties of these three
Soas.

Thus, we see that second possibility accepts a minimal
number of words of length at most 6 (= 2|Σ|), which means
that only this option will be explored, the first and the third
will be discarded. After rewriting by RWR, this results in the
following Soa.

ab?

c

The minimal repair for this results in (ab?c?)+, which is
not descriptive as witnessed by (a(b | c))+ as in the proof of
Theorem 17.

For ` > 1, we use ` independent copies of the sample used
for ` = 1 (i.e., using different alphabet symbols). Thus, RWR2`
will fail on at least one of these copies.

4. DESCRIPTIVE CHARES
In this section, we give the first main algorithm of this

paper, Soa2Chare, which efficiently computes descriptive
Chares for given Soas.

4.1 The CHARE algorithm
The algorithm Soa2Chare uses a number of subroutines,

which are written with a dot-notation similar to some mod-
ern object oriented programming languages. For example
“A.contract(U, `)” denotes the application of the subroutine
“contract” to the Soa A with parameters U and `. For a
given Soa A, we let A.src and A.snk denote the source and
the sink of A, respectively. The following subroutines are
used in Soa2Chare.

• “contract” on Soa A takes a subset U of vertices of
A and a label `. The procedure modifies A such that
all vertices of U are contracted to a single vertex and
labeled ` (edges are moved accordingly).

• “constructLevelOrder” on Soa A = (V,E) assumes
that A is acyclic and assigns a level number to ev-
ery vertex v ∈ V , where the level number of a node
v ∈ V is defined to be the length of the longest path
from A.src to v. Hence, A.src is on level number 0,
and for every other node v, the level number is one
more than the highest level number of the immediate
successors of v.

• “isSkipLevel” on Soa A and a level number i returns
true if level i is a skip level. A level i is a skip level
if there exist a nodes u, v ∈ V with (respective) level
numbers ju < i and jv > i such that u →A v. In
other words, one can skip level i by transitioning from
u to v.

Algorithm 1: Soa2Chare

1 Input: SOA A = (V,E);
2 while A has a cycle do
3 Let U be a strongly connected looped

component of A;

4 A.contract(U,ALT (U)+);

5 A.constructLevelOrder();
6 result ← ε;
7 for i = 1 to (level number of A.snk)− 1 do
8 B ← all vertices with level number i and +;

9 C ← all vertices with level number i and no +;
10 foreach α ∈ B do
11 if A.isSkipLevel(i) or |B|+|C|>1 then

result← result · α?;
12 else result← result · α;

13 if |C| > 0 then
14 if A.isSkipLevel(i) or |B|>0 then
15 result← result ·ALT (C)?;
16 else result← result ·ALT (C);

17 return result;

Note that the use of “contract” can turn the Soa into a gen-
eralized Soa. Intuitively speaking, the algorithm Soa2Chare

works as follows:

(1) Replace each strongly connected looped component
A ⊆ V with a vertex that is labeled with the regular
expression ALT (A)+. This turns A into a (possibly
generalized) Soa that is a DAG.

(2) Every node in the DAG is assigned a level number.

(3) Every level is turned into one or more chain-factors. If
a level contains more than one non-letter node, or if a
level is a skip level, ? is appended to every chain-factor
on that level.

The following theorem states that Soa2Chare can be used
to compute Chare-descriptive Chares in a highly efficient
manner.

Theorem 19. For any given Soa A, Soa2Chare finds a
Chare that is Chare-descriptive of L(A) in time O(m),
where m is the number of transitions of A.



Before we discuss the proof of Theorem 19 in Section 4.2,
we illustrate the behavior of Soa2Chare with an Example.

Example 20. Let S = {abaf, abef, ccdf}. The corre-
sponding Soa, SOA(S), is depicted as follows.

a

b

c d

e f

First, Soa2Chare removes all cycles by contracting strongly
connected looped components. This leads to the following
generalized Soa.

(a | b)+ e

d(c)+

f

Apart from the levels for A.src and A.snk, this generalized
Soa has three levels: The first level with the nodes (a | b)+
and (c)+, the second level with the nodes d and e, and the
third level with the node f . As there is an edge between
(a | b)+ and f , the second level is a skip level. Thus, the
levels lead to the respective Chares (a | b)+?(c)+?, (e | d)?,
and f , which are concatenated to (a | b)+?(c)+?(e | d)?f . By
Theorem 19, this Chare is Chare-descriptive of S.

4.2 Proof of Theorem 19
Proof. We first prove termination and running time, fol-
lowed by the proof of correctness. Note that in this Section,
for simplicities sake and in contrast to Section 5, we do not
distinguish between a node its label.

Termination and running time.
Termination is obvious, as the two loops (in lines 2 and 7)

are executed only a bounded number of times.
Let n denote the number of vertices and m denote the

number of edges in the input Soa. In the while-loop in
line 2, the input Soa is transformed into an acyclic gener-
alized Soa. Using Tarjan’s algorithm (cf. [5]), this part can
be realized in time O(m+ n).

Computing the level order and annotating, for each level,
whether that level is a skip level, can also be done in time
O(m+ n), analogously to a topological sorting.

Finally, each node in the generalized Soa is turned into a
chain factor. This takes time O(n). Hence, the individual
steps sum up to a time of O(m+n), which results in a total
time of O(m), as n ≤ m holds by definition.

Correctness.
First, it is quite easy to see that Soa2Chare computes a

Chare. Note that, in order to prove that this Chare is
descriptive of the sample S, we do not need to argue about
every Chare γ with L(γ) ⊇ S, but only about those with
L(Soa2Chare(SOA(S))) ⊇ L(γ) ⊇ S.

This allows us to use Lemma 10 from two directions: On
the one hand, every edge (and hence, every path) that is
present in SOA(S) must be present in SOA(γ), on the other
hand, SOA(γ) must not contain any edges that do not occur
in SOA(δ).

Before we consider the main part of the proof, we first de-
velop some technical tools that deal with strongly connected
looped components.

Lemma 21. Let α be a Chare. A set A ⊆ alph(α) is
a strongly connected looped component in SOA(α) if and
only if α contains a chain factor of the form ALT (A)+ or
ALT (A)+?.

The proof was omitted for space reasons.
As Soa2Chare turns every strongly connected looped com-

ponent A into a chain factor ALT (A), we observe that
Soa2Chare does not change these components.

Corollary 22. Let Σ be an alphabet. For every finite
and nonempty set S ⊆ Σ∗, and every set A ⊆ alph(S), the
following holds. A is a strongly connected looped component
in SOA(S) if and only if A is a strongly connected looped
component in SOA(Soa2Chare(SOA(S)).

Finally, according to Lemma 10, this immediately leads to
the following observation:

Corollary 23. Let S ⊆ Σ∗ be a finite set, and let
δ := Soa2Chare(Soa(S)). For every Chare γ with L(δ) ⊇
L(γ) ⊇ S, SOA(γ) must contain exactly the same strongly
connected looped components as SOA(S) and SOA(δ).

We now posses all the tools we need to execute the main
element of the proof of correctness of Soa2Chare.

Lemma 24. Let Σ be an alphabet, let S ⊆ Σ∗ be a
nonempty set, and let δ := Soa2Chare(SOA(S)). Then
L(δ) = L(γ) holds for every Chare γ with L(δ) ⊇ L(γ) ⊇
S.

The proof was omitted for space reasons.
Lemma 24 implies that there is no Chare γ such that

L(Soa2Chare(SOA(S))) ⊃ L(γ) ⊇ S. As we have, by defi-
nition, L(Soa2Chare(SOA(S))) ⊇ S, we get that the result
of Soa2Chare on SOA(S) is Chare-descriptive of S, which
concludes the proof of correctness.

5. DESCRIPTIVE SORES
In this section, we give the second main algorithm of

this paper, which efficiently computes descriptive Sores for
given Soas.

5.1 SORE Algorithm
As in Section 4, we use dot-notation to denote the appli-

cation of subroutines. As in Section 4, for a given Soa A,
we let A.src and A.snk denote the source and the sink of A,
respectively.

• “contract” on Soa A takes a subset U of vertices of A
and a label `. The procedure modifies A such that all
vertices of U are contracted to a single vertex and la-
beled ` (edges are moved accordingly). The procedure
returns the newly created vertex.

• “extract” on Soa A takes as argument a set of vertices
U (of A); it does not modify A, but returns a new
Soa with copies of all vertices of U as well as two new
vertices for source and sink; all edges between vertices
of U are copied, all vertices in U having an incoming



edge (in A) from outside of U have now an incoming
edge from the new source, and all vertices in U having
an outgoing edge (in A) to outside of U have now an
outgoing edge to the new sink.

• “first” returns all vertices v such that the only prede-
cessor of v is the source.

• “addEpsilon”on Soa A adds a new vertex labeled ε; all
outgoing edges from the source to vertices that have
more than one predecessor (vertices, that are not in
the first-set) are redirected via this new vertex.

• “exclusive” on Soa A on argument v (a vertex of A)
returns the set of all vertices u such that, on any path
from the source to the sink that visits u, v is necessarily
visited previously. Intuitively, the exclusive set of a
vertex v is the set of all vertices exclusively reachable
from v, not from any other vertex incomparable to v.

• Finally, the most difficult subroutine is called “bend”
and is used to prepare the treatment of strongly con-
nected looped components of the input Soa A. First,
it computes the set W of all vertices reachable from
the source without passing through (or ending with)
vertices which are predecessors of the sink. Then it
redirects (bends) all transitions directed from an el-
ement outside of W to a successor of the source to
point to the sink instead. With other words, we redi-
rect all transitions from an element c to an element
a ∈ A.succ(A.src) to now transition to A.snk iff for
all words u such that uc is a path in A, we have that
uc contains an element b ∈ A.pred(A.snk). In particu-
lar, all elements of A.pred(A.snk) do not transition to
elements from A.succ(A.snk). See Example 26 for an
illustration.

Furthermore, we use the following three subroutines for
the creation of labels.

• “plus” on label ` returns (`)+.

• “concatenate” on labels ` and `′ returns ` · `′.
• “or” on labels ` and `′ returns ` | `′.

The algorithm Soa2Sore is given in Algorithm 2. On a
more intuitive level, the algorithm performs the following
phases.

(1) Recurse on all strongly connected looped components;
replace each with a vertex, labeled with the result of
the recursion.

(2) After the Soa is a directed acyclic graph (DAG), focus
on the set F of all vertices which can be reached from
the source directly, but not via other vertices; make
sure that there are no vertices which can be reached
directly and via other vertices (if necessary, add an
auxiliary node labeled ε).

(3) Recurse on the sets of vertices exclusively reachable
from a vertex in F and contract these sets to vertices
labeled with the result of the recursion.

(4) Combine vertices of F with“or,” recurse again on what
is exclusively reachable from this new vertex.

(5) Once only one item is left in F , split it off and recurse
on the remainder.

Algorithm 2: Soa2Sore

1 Input: Soa A = (V,E);
2 Output: Sore minimally generalizing L(A);
3 if |V | = 2 then return ε;
4 else if A has a cycle then
5 Let U be a strongly connected looped

component of A;
6 B0 ← A. extract(U). bend();
7 A. contract(U,plus(Soa2Sore(B0)));

8 else if A.succ(A.src) 6= A.first() then
9 A. addEpsilon();

10 else if |A.first()| = 1 then
11 Let v be the only successor of src;
12 U ← V \ {A.src, v, A.snk};
13 `← v.label();
14 `′ ← Soa2Sore(A. extract(U));
15 return concatenate(`, `′);

16 else if ∃v ∈ A.first(): A. exclusive(v) 6= {v} then
17 Let v be such that A. exclusive(v) 6= {v};
18 U ← A. exclusive(v);
19 A. contract(U, Soa2Sore(A. extract(U)));

20 else
21 Let u, v ∈ A.first() with u 6= v

s.t. A. reach(u) ∩A. reach(v) is ⊆-maximal;
22 A. contract({u, v}, or(u. label(), v. label()));

23 return Soa2Sore(A);

Note that the algorithm introduces ? by way of construct-
ing “or ε.” This can be cleaned up by postprocessing the
resulting Sore.

The following theorem states the correctness and the run-
ning time of the algorithm.

Theorem 25. The algorithm Soa2Sore, given a Soa A
as input, finds a descriptive Sore for L(A) in time O(nm),
where n is the number of alphabet symbols used in A, and m
is the number of transitions in A. Furthermore, this algo-
rithm produces a Sore such that the corresponding Soa has
the same strongly connected components as the input Soa,
and the same set of successors of the source.

Before we get to the proof of Theorem 25, we give two
examples of Soa2Sore. The first example illustrates how
strongly connected looped components are treated. The sec-
ond illustrates the use of “exclusive”.

Example 26. Consider the following Soa.

a

b

c

d

The labeled vertices of this Soa consist of a single strongly
connected looped component, an application of “bend” com-
putes the set W = {a, b}, which leads to the following Soa.

a

b

c

d



After resolving the strongly connected looped component con-
taining a and b (all other are not “looped”) and contract, we
get the following.

(ab)+ c

d

We can split off the first node twice now (as line 10 applies
twice), recursing finally on the remaining Soa as follows.

d

addEpsilon

ε

d

This results in d | ε, or, equivalently, d?. Going back through
the recursions, we get

((ab)+cd?)+.

Example 27. Consider now the following Soa.

a b

c

For this Soa, line 16 applies and recurses on the upper arc;
after contraction, this gives

ab

c

which results in (ab) | c as desired (no generalizations were
made).

5.2 Proof of Theorem 25
In this section we are concerned with proving Theorem 25.

We start with a lemma which is used in its proof.

Lemma 28. There is a function f on Sores such that,
for each Sore α, L(f(α)+) = L(α+) \ {ε} and, for all a ∈
α.succ(α.src) and c ∈ α.pred(α.snk) we have c 6→f(α) a.

The proof was omitted for space reasons.
We are now ready to prove Theorem 25.

Proof. Let a Soa A be given. We proceed by first reasoning
about termination and running time. After that, we will
inductively show correctness, by assuming all recursive calls
to be correct.

Termination and running time.
We refer to [5] for standard graph algorithms, such as

finding strongly connected (looped) components.
As the algorithm never introduces self-loops, it is easy to

see that the running time on a Soa A is at most the running
of A with all self-loops removed plus n. Thus, it suffices to
show that Soa2Sore has a running time of O(nm) on self-
loop free Soas.

We first bound the running time on acyclic Soas. We
topologically sort the vertices of A (this takes O(m) time).
We will now iteratively construct and annotation of all the
vertices ofG with subsets of A.first(), corresponding to what
vertices they are reachable from. We start by annotating
each vertex of G that corresponds to a vertex v ∈ A.first()
with {v} and all others with ∅ (in time O(n)). We now iter-
ate through all vertices u from first to last in the topological
sort of G and, for each successor w of u, we add to the
current annotation of w the annotation of u (assuming unit
time for this kind of set operations; overall, this will then
take O(m) time). This results in the desired annotation of
A, in a total of O(m) time.

Extracting the “exclusive” sets for all elements of A.first()
can now be done in O(m) time. From these annotations we
can also find a pair of vertices with ⊆-maximal reach-sets in
time O(m).

Any two additions of ε-nodes are balanced in between by
splitting off of a starting node, as given in line 10. As for
all other operations, the algorithm can make at most n con-
tractions; hence, there can be only O(n) recursive calls. This
results in an overall time of O(nm) for acyclic Soas.

We now turn to the general case. Finding strongly
connected looped components takes time O(m), using
well-known algorithms, for example Tarjan’s algorithm.
Soa2Sore first recurses on all strongly connected looped
components, and then on the directed acyclic graph obtained
by contracting all strongly connected looped components.
The “bend” operation on a strongly connected looped com-
ponent splits this component, as no vertex linked to the
sink can now reach any of the elements of the “first” set.
The running time is maximized when the recursions are as
unbalanced as possible; this happens, when each “bend” op-
eration splits off only one vertex, and the remaining Soa is
still strongly connected. This results in splitting off n times,
with a time of O(m) for finding strongly connected looped
components each time, plus the final work on acyclic Soas.

This shows that the overall running time is O(nm).

Correctness.
The statements about strongly connected components and

the successors of the source are straightforward. Further-
more, it is clear that the result is a Sore.

We show the following statement about Soa2Sore by in-
duction (by termination, we assume the induction hypothe-
sis to hold for all recursive calls). Let a generalized Soa A′

be given, let A be a copy of the structure of A′ where all la-
bels are replaced with single distinct symbols. Suppose that
the claim holds for all recursive calls that Soa2Sore makes
on A. Let δ = Soa2Sore(A) and let γ be a Sore such that
L(A) ⊆ L(γ) ⊆ L(δ).

We distinguish a number of different cases, depending
on which clause was used for Soa2Sore(A). We will show
L(δ) = L(γ) in each case.

Case 1: The clause in line 3 was used.
This case is trivial.

Case 2: The clause in line 4 was used.
Let U be as chosen in line 4. Let B0 = A. extract(U).bend();
let z be a symbol not in alph(A) and B1 = A. contract(U, z).

Let δ̂0 = Soa2Sore(B0) and let δ0 = δ̂0
+

. We let δ1 be
Soa2Sore(B1).



Let T be the syntax tree of γ. For each vertex x of T , we
call x plussed iff inserting a + in T at x does not change the
language accepted by T .

Claim 1. There is a plussed vertex x in T such that, for the
subtree γ0 rooted at x, we have alph(γ0) = alph(U). The
proof was omitted for space reasons.

Let f be as shown existent in Lemma 28, and let x be the
plussed vertex highest up in T such that alph(x) = U . Let
γ̂0 be the subtree of γ rooted at x; let γ1 be derived from
γ by substituting the subtree at x with a leaf labeled z if
ε 6∈ L(γ0) and (z | ε) otherwise. Let γ0 = f(γ̂0). Clearly, it
suffices to show that L(γ0) = L(δ0) and L(γ1) = L(δ1).

Claim 2. L(B1) ⊆ L(γ1) ⊆ L(δ1).
Proof of Claim 2. In order to avoid unnecessary case dis-
tinctions, we first introduce two new and distinct terminal
symbols . and /, where . is used as a word-start symbol, and
/ as a word-end symbol. To this end, we define γ′1 := .γ1/
(δ′1, δ′, and γ′ are defined analogously). In addition to this,
we define a Soa B′1 with L(B′1) = .L(B1)/ and a Soa B′

with L(B′) = .L(B)/. (This is easily done by inserting new
nodes label . or / between the source and its successors, or
the sink and its predecessors, respectively).

We first prove L(B′1) ⊆ L(γ′1) ⊆ L(δ′1). After this is
established, the claim follows by observing that projection
preserves inclusion.
L(B′1) ⊆ L(γ′1) : Let a, b ∈ alph(B′1) \ {z} and suppose

a→B′
1
b. We have a→B′ b, and, hence, a→γ′ b. From the

definition of γ′1 it is now easy to see that a→γ′1
b.

Let a ∈ alph(B′1)\{z} and suppose a→B′
1
z. Thus, there

is a b ∈ U such that a →B′ b, and, hence, a →γ′ b. From
the definition of γ′1 it is now easy to see that a→γ′1

z.

Let b ∈ alph(B′1) \ {z} and suppose z →B′
1
b. Thus, there

is an a ∈ U such that a →B′ b, and, hence, a →γ′ b. From
the definition of γ1 it is now easy to see that z →γ′1

b.

L(γ′1) ⊆ L(δ′1) : Let a, b ∈ alph(γ′1) \ {z} and suppose

a →γ′1
b. From the definition of γ′1 it is now easy to see

that a→γ′ b, and, hence, a→δ′ b. Thus, we get a→δ′1
b.

Let a ∈ alph(γ′1) \ {z} and suppose a→γ′1
z. Thus, there

is a b ∈ U such that a→γ′ b, and, hence, a→δ′ b. We have
now a→δ′1

z.

Let b ∈ alph(γ′1) \ {z} and suppose z →γ′1
b. Thus, there

is an a ∈ U such that a →γ′ b, and, hence, a →δ′ b. We
have now z →δ′1

b.

Hence, L(B′1) ⊆ L(γ′1) ⊆ L(δ′1), which is equivalent to
.L(B1)/ ⊆ .L(γ1)/ ⊆ .L(δ1)/. As inclusion is preserved
under projection, this implies πT (L(B′1)) ⊆ πT (L(γ′1)) ⊆
πT (L(δ′1)) which proves the claim (for T := Σ \ {., /}).

(for Claim 2)

Thanks to the claim we can now apply the induction hy-
pothesis to see that L(γ1) = L(δ1).

Similarly, we now show γ0 and δ0 to be equivalent by show-
ing L(B0) ⊆ L(γ0) ⊆ L(δ0). From the induction hypothesis
we know that B0.succ(B0.src) = δ0.succ(δ0.src); this shows
that γ0.succ(γ0.src) has to coincide with these sets.

Claim 3. We have that

B0.pred(B0.snk) ⊆ γ0.pred(γ0.snk) ⊆ δ0.pred(δ0.snk).

The proof was omitted for space reasons.

Lastly, we turn to pairs of elements from U .

Claim 4. On alph(U), →B0 is a subrelation of →γ0 , which
in turn is a subrelation of →δ0 .
Proof of Claim 4. This is straightforward, using the prop-
erties of f taken from Lemma 28. (for Claim 4)

This finishes showing L(B0) ⊆ L(γ0) ⊆ L(δ0); thus, using
the induction hypothesis, L(γ0) = L(δ0). This finishes the
reasoning for this case.

Case 3: The clause in line 8 was used.
This case is trivial from the induction hypothesis, as the
language is not changed by the addEpsilon() method.

Case 4: The clause in line 10 was used.
Let v be the only successor of A.src; let a = v. label().
Note that a is the only successor of γ.src. Let
U = alph(δ) \ {a}. As A does not have a strongly
connected looped component, neither does Soa(γ); thus,
we have L(γ) = a ·πU (L(γ)). Let γ′ equal γ with a replaced
by ε and δ′ = Soa2Sore(A. extract(U)). Then we have
L(A. extract(U)) ⊆ L(γ′) ⊆ L(δ′) and the claim follows by
induction.

Case 5: The clause in line 16 was used.
We now know that A is cycle free and, thus, δ′ does not
contain a “+”. Therefore, without loss of generality, γ does
not contain a “+” either.

Let v be as chosen in line 16 and a = v. label(). Let
U = A. exclusive(v).

Let B0 = A. extract(U); let z be a symbol not in alph(A)
and B1 = A. contract(U, z). Let δ0 = Soa2Sore(B0) and let
δ1 = Soa2Sore(B1). By the induction hypothesis, we have
that δ0. first() = {a}. Thus, any word in L(γ) ⊆ L(δ) that
contains an element of U has to start with an a.

Claim 5. There is a subtree γ0 of γ such that alph(γ0) = U .
The proof was omitted for space reasons.

Let γ0 be a subtree of γ such that alph(γ0) = U ; let γ1 be
derived from γ by substituting the γ0 with a leaf labeled z.
Note that ε 6∈ L(γ0) because of A.succ(A.snk) = A.first().

We now clearly get L(B0) ⊆ L(γ0) ⊆ L(δ0) and
L(B1) ⊆ L(γ1) ⊆ L(δ1). Thus, this case follows from the
induction hypothesis, similarly to Case 2.

Case 6: The clause in line 20 was used.
In this case we know that |A.first()| > 1, as no other case
applies. Furthermore, we will use without mention that A
is cycle free.

Let u, v as chosen in line 20. Let z be a symbol not
in alph(A). Let B = A. contract({u, v}, z). Let δ0 be
Soa2Sore(B).

Let a = u. label() and b = v. label(). From u, v ∈ δ.first()
we have that there is a subtree β of γ with “or” at the root
and a and b are in different child trees.

Claim 6. L(β) is a set of letters. The proof was omitted
for space reasons.

From the claim we get, without loss of generality, that
(a | b) is a subexpression of γ; thus, β = (a | b). Let γ0 be
derived from γ by substituting β with z. Clearly, we now
have L(B) ⊆ L(γ0) ⊆ L(δ0). From the induction hypothesis
we get L(γ0) = L(δ0); thus, L(γ) = L(δ).



6. CONCLUSIONS AND FURTHER WORK
This paper proposes a strategy for inferring descriptive

Sores and descriptive Chares: First, use 2T-INF to com-
pute a descriptive Soa, then use Soa2Sore or Soa2Chare to
turn this automaton into a Sore or a Chare.

In [3], Bex et al. state that their schema inference algo-
rithms “outperform existing algorithms in accuracy, concise-
ness, and speed”. Considering the results presented in Sec-
tions 3 to 5, the authors of the present paper feel confident to
suggest that their new strategies outperform the algorithms
from [3] at least with respect to both accuracy and speed.
An experimental evaluation of the algorithms is planned for
the near future. This will also give the opportunity to eval-
uate the quality of the results of the algorithms, for example
with respect to different conciseness measures or how well
they describe the target language.

We now discuss possible extensions, and possible direc-
tions for further work.

In order to overcome the problem that Sores and Chares
cannot count (beyond the trivial case of distinguishing be-
tween 0 and 1), Bex et al. [3] propose extending those models
with numerical predicates, which can be obtained by post-
processing. It is easy to see that this extension can also be
adapted to the approaches in the present paper.

If one is willing to fix a probability distribution on the
sample, the learning algorithms could be adapted to feature
a variant of stochastic finite learning (introduced by Ross-
manith and Zeugmann [13]). This could lead to inference
algorithms that do not need to process the whole input,
which might be interesting for very large datasets.

From the authors’ point of view, the following problem
is probably the most interesting: In [2], Bex et al. examine
the inference of k-occurence regular expressions (short k-
Ores); regular expressions where each terminal letter occurs
at most k times. (Hence, Sores are 1-Ores). Is it possible to
extend Soa2Sore to deterministic k-Ores for some k ≥ 2, or
Soa2Chare to the corresponding extension of Chares (where
letters are allowed to occur up to k times)?

It seems that one would need to develop not only a good
generalization of Soas, but also a “good” inclusion crite-
rion, preferably syntactic. This conjecture is based on the
following observation: While the results in the present pa-
per make no direct use of the results and techniques that
Freydenberger and Reidenbach [7] developed for descriptive
generalization of pattern languages, both papers rely heav-
ily on the fact that the inclusion problem for the respective
language classes has a syntactic criterion for inclusion.

The proofs on descriptive generalization of pattern lan-
guages in [7] rely on the fact that inclusion for terminal-free
E-pattern languages is characterized by the existence of a
morphism which maps the pattern that generates the su-
perlanguage to the pattern that generates the sublanguage.
This criterion is a versatile tool to prove the nonexistence
of a (pattern) language between the target language and
the language of a descriptive pattern. While the proofs of
the present paper cannot make any direct use of the proofs
from [7], the approaches are similar conceptually. In partic-
ular, the line of reasoning in which the correctness proofs
of Soa2Chare and Soa2Sore use the fact that the inclusion
problem for Sores (and Chares) is characterized by the
covering of the respective Soas is structurally similar to the
proofs for pattern languages.

Moreover, although deciding whether such a pattern mor-

phism exists is NP-complete, the techniques in [7] are not af-
fected by the computational hardness. Hence, the hardness
results on the decidability of the k-Ore-inclusion problem
presented by Martens et al. [10] do not exclude the existence
of such a criterion. This leaves room for hope that Soa2Sore
can be extended to k-Ores with k ≥ 2.

Acknowledgements
The authors wish to thank the anonymous referees for their
helpful remarks.

7. REFERENCES
[1] D. Angluin. Finding patterns common to a set of

strings. Journal of Computer and System Sciences,
21(1):46–62, 1980.

[2] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren.
Learning deterministic regular expressions for the
inference of schemas from XML data. ACM
Transactions on the Web, 4(4):14:1–14:32, 2010.

[3] G. J. Bex, F. Neven, T. Schwentick, and
S. Vansummeren. Inference of concise regular
expressions and DTDs. ACM Transactions on
Database Systems, 35(2):11:1–11:47, 2010.

[4] G. J. Bex, F. Neven, and S. Vansummeren. Inferring
XML schema definitions from XML data. In Proc.
VLDB 2007, pages 998–1009, 2007.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. McGraw Hill,
2nd edition, 2001.

[6] H. Fernau. Algorithms for learning regular expressions
from positive data. Information and Computation,
207(4):521–541, 2009.

[7] D. D. Freydenberger and D. Reidenbach. Inferring
descriptive generalisations of formal languages. In
Proc. COLT 2010, pages 194–206, 2010.

[8] P. Garćıa and E. Vidal. Inference of k-testable
languages in the strict sense and application to
syntactic pattern recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
12(9):920–925, 1990.

[9] E. M. Gold. Language identification in the limit.
Information and Control, 10(5):447–474, 1967.

[10] W. Martens, F. Neven, and T. Schwentick.
Complexity of decision problems for XML schemas
and chain regular expressions. SIAM Journal on
Computing, 39(4):1486–1530, 2009.

[11] W. Martens, F. Neven, T. Schwentick, and G. J. Bex.
Expressiveness and complexity of XML schema. ACM
Transactions on Database Systems, 31(3):770–813,
2006.

[12] Y. K. Ng and T. Shinohara. Developments from
enquiries into the learnability of the pattern languages
from positive data. Theoretical Computer Science,
397(1–3):150–165, 2008.

[13] P. Rossmanith and T. Zeugmann. Stochastic finite
learning of the pattern languages. Machine Learning,
44(1–2):67–91, 2001.


