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Abstract. It is widely assumed that evolutionary algorithms for multi-objective
optimization problems should use certain mechanisms to achieve a good spread
over the Pareto front. In this paper, we examine such mechanisms from a theo-
retical point of view and analyze simple algorithms incorporating the concept of
fairness introduced by Laumanns et al. [7]. This mechanism tries to balance the
number of offspring of all individuals in the current population. We rigorously
analyze the runtime behavior of different fairness mechanisms and present show-
case examples to point out situations where the right mechanism can speed up the
optimization process significantly.

1 Introduction

Evolutionary algorithms evolve a set of solutions called the population during the opti-
mization process. In multi-objective optimization one usually does not search for a single
optimal solution but a set of solutions representing the possible trade-offs when deal-
ing with conflicting objective functions. Hence, multi-objective evolutionary algorithms
(MOEAs) seem to be in a natural way well suited for dealing with these problems.

Many MOEAs give priority to regions in the decision or objective space that have
been rarely explored. This leads to the use of fairness in evolutionary multi-objective
optimization. The idea behind using fairness is that the number of offspring generated
by individuals with certain properties should be balanced. Different mechanisms for
spreading the individuals in the population over the Pareto front have been proposed.
In NSGA-II [1] a uniform spread over the Pareto front should be achieved by using a
crowded comparison operator that gives individuals in less crowded regions a higher
priority. SPEA2 [10] uses a density estimator such that the fitness of an individual is
given by its objective vector and a density value which depends on the other individuals
in the population. The goal of the density estimator is also to give individuals in less
crowded regions a higher priority. Our aim is to get a theoretical understanding how
such fairness mechanisms influence the optimization process.

The theoretical understanding of the runtime behavior of MOEAs is far behind their
practical success. The first rigorous runtime analyses of such algorithms have been
carried out by Laumanns et al. [7] on some pseudo-Boolean functions. They have in-
vestigated a mutation-based MOEA called Simple Evolutionary Multi-objective Op-
timizer (SEMO) that searches locally by flipping in each mutation step a single bit.
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In addition, they have considered a MOEA called Fair Evolutionary Multi-objective
Optimizer (FEMO) and shown that this algorithm outperforms SEMO on a particular
pseudo-Boolean function called LOTZ (Leading Ones, Trailing Zeroes). Giel [5] has
investigated SEMO with a mutation operator that searches globally and called the al-
gorithm Global SEMO. Global SEMO has also been considered for some well-known
combinatorial optimization problems [3,8,9].

In this paper, we want to put forward the runtime analysis of MOEAs and consider
how the use of fairness can influence the runtime behavior. We investigate the concept
of fairness introduced by Laumanns et al. [7]. The implementation of this concept relies
on several counters, where each individual in the population corresponds to one of these
counters. The counters measure the number of offspring that the corresponding group
of individuals has created. Fairness means to balance these counters to achieve that all
groups have been granted the same chance to create a better individual. There are two
basic ideas to link individuals with counters. The first idea is that individuals with the
same decision vector share a counter and the second idea is that individuals with the
same objective vector share a counter. Our goal is to compare the runtime behavior of
these two variants.

The outline of this paper is as follows. A short introduction into multi-objective opti-
mization and the algorithms that are subject of our analyses are presented in Section 2.
The differences between the two variants of fairness are worked out in Sections 3 and 4.
Finally, we finish with some concluding remarks.

2 Algorithms

We start with some basic notations and definitions that will be used throughout the
paper. We denote the set of all Boolean values by B and the set of all real numbers by
R and investigate the maximization of functions f : B

n → R
m. We call f objective

function, B
n decision space, and R

m objective space. The elements of B
n are called

decision vectors and the elements of R
m objective vectors. We define that y weakly

dominates y′, denoted by y � y′, if and only if yi ≥ y′
i for all i ∈ {1, . . . , m},

and y dominates y′, denoted by y � y′, if and only if y � y′ and y �= y′, where
y = (y1, . . . , ym) ∈ R

m and y′ = (y′
1, . . . , y

′
m) ∈ R

m are two objective vectors.
The set Ff := {y ∈ f(Bn) | �y′ ∈ f(Bn) : y′ � y} is called the Pareto front of f

and the set Pf := f−1(Ff ) = {x ∈ B
n | �x′ ∈ B

n : f(x′) � f(x)} the Pareto set of f .
The elements of Ff and Pf are called Pareto optimal. The set {(x, f(x)) | x ∈ Pf}
constitutes the canonical solution of an optimization problem of the considered kind.
In the literature a set {(x, f(x)) | x ∈ X} with X ⊆ Pf is also considered as a
valid solution if f(X) = Ff . This means that it is sufficient to determine for all Pareto
optimal objective vectors y ∈ Ff at least one decision vector x ∈ B

n with f(x) = y.
Laumanns et al. [7] argue that it can be beneficial when all individuals in the pop-

ulation have created roughly the same number of offspring and therefore introduced
the algorithm FEMO. This algorithm works with a local mutation operator and uses a
counter for each individual in the population to measure the number of offspring the
corresponding individual has created. We investigate generalized variants of FEMO.
Our algorithms apply a global mutation operator and additionally accept individuals
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with the same objective vector as an individual in the population. The use of a global
mutation operator seems more appropriate as the ability to flip two or more bits in a sin-
gle mutation step is essential to escape from a local optimum. The relaxed acceptance
rule also tends to improve the optimization, since it allows the exploration of plateaus,
i. e., regions in the decision space whose decision vectors are mapped to the same ob-
jective vector. We distinguish two kinds of fairness depending on whether the fairness
is ensured in the decision or objective space. The following algorithm uses fairness in
the decision space.

Algorithm 1. Global FEMOds

1. Choose x ∈ B
n uniformly at random.

2. Set c(x) := 0.

3. Set P := {x}.

4. Repeat
– Choose x ∈ {y ∈ P | c(z) ≥ c(y) for all z ∈ P} uniformly at random.

– Set c(x) := c(x) + 1.

– Create an offspring x′ by flipping each bit of x with probability 1/n.

– If there is no y ∈ P with f(y) � f(x′) then
• If x′ /∈ P then set c(x′) := 0.

• Set P := (P \ {y ∈ P | f(x′) � f(y)}) ∪ {x′}.

Note, that resetting a counter to 0 depends on the individuals in the current popula-
tion. This implies that the algorithm forgets about counter values for decision vectors
that have been seen during the optimization process but are not part of the current pop-
ulation. This phenomenon is of relevance if a decision vector re-enters the population
which has been replaced in the meantime by another decision vector which is mapped
to the same objective vector. However, we think that this is a natural way of implement-
ing this idea of fairness as EAs are usually limited to the knowledge of the individuals
that are contained in the current population. Note, that Global FEMOds coincides with
Global SEMO [3,9], when the counter values do not influence the search process, i. e.,
c(x) = 0 holds for each search point at each time step.

The goal in multi-objective optimization is to find the Pareto front. Thus the question
arises whether it might be more beneficial to associate each counter with an objective
vector rather than a decision vector, since the latter approach emphasizes the exploration
of the objective space. The following algorithm implements fairness in the objective
space.

Algorithm 2. Global FEMOos

1. Choose x ∈ B
n uniformly at random.

2. Set c(f(x)) := 0.

3. Set P := {x}.

4. Repeat
– Choose x ∈ {y ∈ P | c(f(z)) ≥ c(f(y)) for all z ∈ P} uniformly at random.

– Set c(f(x)) := c(f(x)) + 1.



674 T. Friedrich, C. Horoba, and F. Neumann

– Create an offspring x′ by flipping each bit of x with probability 1/n.

– If there is no y ∈ P with f(y) � f(x′) then
• If f(x′) /∈ f(P ) then set c(f(x′)) := 0.

• Set P := (P \ {y ∈ P | f(x′) � f(y)}) ∪ {x′}.

For our theoretical investigations carried out in the following sections, we count the
number of iterations until a desired goal has been achieved. Since we are interested in
the discovery of all Pareto optimal objective vectors, we count the number of iterations
until an individual for each objective vector of Ff has been included into the population
and call it the optimization time of the algorithm. The expectation of this value is called
the expected optimization time.

3 Advantages of Fairness in the Decision Space

The goal of the next two sections is to point out the differences that the use of different
fairness mechanisms might have. Therefore we examine situations where the runtime
behavior of the two variants differs significantly. To ease the notation in the following
sections we will refer to the number of 0- and
1-bits in a decision vector x ∈ B

n as |x|0 and
|x|1, respectively. We start with the examina-
tion of a situation, where Global FEMOds is ef-
ficient while Global FEMOos is inefficient, and
therefore investigate the bi-objective function PL
(PLateau) [4]. The function is similar to the well-
known single-objective function SPC (Short Path
with Constant values) [6]. PL is illustrated in the
right figure and defined as follows:

PL(x) :=

⎧
⎪⎨

⎪⎩

(|x|0, 1) x /∈ {1i0n−i | 1 ≤ i ≤ n},
(n + 1, 0) x ∈ {1i0n−i | 1 ≤ i < n},
(n + 2, 0) x = 1n.

The function features the following properties. The decision space is partitioned into
a short path SP := {1i0n−i | 1 ≤ i ≤ n} and its complement B

n \ SP. The second
objective of the function ensures that decision vectors from one of the mentioned sets
are comparable while decision vectors from different sets are incomparable. The Pareto
front of PL is FPL = {(n, 1), (n+2, 0)} and the Pareto set of PL is PPL = {0n, 1n}. The
set SP\{1n} constitutes a plateau, since all decision vectors are mapped to the objective
vector (n + 1, 0), while B

n \ SP features a richer structure. Since PL(x) � PL(x′) for
x, x′ ∈ B

n \ SP iff |x|0 > |x′|0, the algorithms are directed to the Pareto optimal
decision vector 0n. This function has already been considered by Friedrich et al. [4]
who have shown that Global SEMO is inefficient on PL. The next theorem shows that
Global FEMOos is also not efficient on this function.

Theorem 1. The optimization time of Global FEMOos on PL is lower bounded by
2Ω(n1/4) with probability 1 − 2−Ω(n1/3).
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Proof. We show that the decision vector 1n is not created with probability 1−2−Ω(n1/3)

within a phase of 2Ω(n1/4) steps. The initial individual x ∈ B
n does not belong to SP

with probability 1 − |SP|/2n = 1 − 2−Ω(n), as it is chosen uniformly at random. In
addition, |x|1 ≤ 2n/3 holds with probability 1− 2−Ω(n) using Chernoff bounds. In the
remainder of the proof we consider a typical run consisting of phases of length n3/2.

Claim. Within the first n3/2 steps with probability 1 − 2−Ω(n1/3), the population P
never contains 1n and at one time the population P = {0n, 10n−1} is reached.

Proof. The probability that a mutation flips at least i bits is upper bounded by

(
n

i

)

·
(

1
n

)i

≤
(en

i

)i

·
(

1
n

)i

=
(e

i

)i

.

Therefore the probability that a mutation flips at least n1/3 bits is upper bounded by
(e/n1/3)n1/3

= 2−Ω(n1/3 log n). This implies that none of the first n3/2 mutations flips
more than n1/3 bits with probability 1 − 2−Ω(n1/3 log n).

The probability to create and accept an offspring x′ with more 1-bits than its parent
is at most 1/n, since x is required to be in SP. Hence, the expected number of such
steps is upper bounded by n1/2. Due to Chernoff bounds this happens at most 2n1/2

times with probability 1− 2−Ω(n1/2). Hence, the number of 1-bits increases by at most
2n1/2 · n1/3 = o(n) which implies that the decision vector 1n has not been found.

As at most 1
2 ·n3/2 mutation trials are allocated to c((n+1, 0)), the individuals from

B
n \ SP are chosen at least 1

2 ·n3/2 times for mutation. We consider the first 1
4 ·n3/2 of

these mutation steps and show that the search point 0n is included into the population.
The probability that an offspring x′ of an individual x ∈ B

n \ SP contains less 1-bits
than x and does not belong to SP is lower bounded by (|x|1 − 1)/en if |x|1 ≥ 2 and
1/en if |x|1 = 1. Therefore the decision vector 0n is found after an expected number of

en +
n−1∑

i=2

en

i − 1
≤ en + en(ln(n − 2) + 1) ≤ en(ln n + 2)

individuals from B
n \ SP have been chosen for mutation. Using Markov’s inequality

the probability to discover the decision vector 0n within 2en(lnn + 2) steps is at least
1/2. Dividing 1

4 · n3/2 steps into n3/2/(8en(lnn + 2)) = Ω(n1/3) phases of length

2en(lnn + 2) the decision vector 0n is reached with probability at least 1− 2−Ω(n1/3).
The remaining 1

4 · n3/2 of these mutation steps affect 0n. Therefore the search point

10n−1 is included into the population with probability 1 − 2−Ω(n1/2) using similar
arguments.

We now consider an additional phase of length n3/2. Within this phase a search point
with more than n/2 1-bits is not included into the population using previous arguments.
Additionally, a situation is reached where c(n, 1) = c(n + 1, 0) holds. From this point
of time the two individuals with objective vectors (n, 1) and (n + 1, 0) are alternately
selected for mutation. We consider the situation when c(n, 1) = c(n +1, 0) for the first
time and show the following invariant to complete the proof.



676 T. Friedrich, C. Horoba, and F. Neumann

Claim. Assume that 0n ∈ P and maxx∈P |x|1 ≤ (n/2). Consider a non-empty phase

of at most n3/2 steps. Then with probability 1−2−Ω(n1/3), the population never contains
1n and at one time a population P with 0n ∈ P and maxx∈P |x|1 ≤ (n/2) is reached.

Proof. The search point 0n will not be removed from the population once it has been
included. From the proof of the previous claim, we already known that the decision
vector 1n is not obtained within a phase of n3/2 steps with probability 1 − 2−Ω(n1/3).
The decision vector 0n is selected at least 1

2 · n3/2 − 1 times for mutation within the
considered phase. With probability at least 1/(en) such a mutation produces the search
point 10n−1. Hence, within the considered phase of length n3/2 this holds with proba-
bility 1 − 2−Ω(n1/3). Having produced the search point 10n−1, it replaces the previous
search point of SP in the population. Hence, the assumption of the claim is fulfilled
again.

Considering the invariant at most 2n1/4
times, Global FEMOos does not create the de-

cision vector 1n with probability 1 − 2−Ω(n1/3). This proves Theorem 1 as all failure
probabilities are bounded by 1 − 2−Ω(n1/3).

We will see that Global FEMOds performs much better on PL than its counterpart Global
FEMOos. The main reason for this is that after a while the Pareto optimal decision vector
0n is prevented from generating additional offspring that can stop the random walk on
the plateau.

Theorem 2. The expected optimization time of Global FEMOds on PL is O(n3 log n).

Proof. Before showing that Global FEMOds quickly creates the decision vectors 0n

and 1n we summarize some results concerning PL. On one hand, the decision vector
0n is created with probability at least 1/2 if at least γn logn individuals not from SP
are chosen for mutation, where γ > 0 is a constant (see proof of Theorem 1). On the
other hand, the decision vector 1n is created with probability at least 1/2 if at least
δn3 individuals from SP are chosen for mutation and all offspring of individuals not
contained in SP do not belong to SP, where δ > 0 is an appropriate constant (see [6]).

We show that the expected time until one decision vectors of {0n, 1n} is introduced
into the population is O(n3 log n). We observe a phase of length

� := (2γ log n + 1) · (δn3 + γn logn) = O(n3 log n)

and distinguish two cases. If at least γn logn individuals not from SP are chosen for
mutation, the probability to find the decision vector 0n is lower bounded by 1/2 accord-
ing to the first statement. The probability that an offspring of an individual not from
SP belongs to SP is upper bounded by 1/n. Therefore otherwise at most 2γ log n off-
spring of individuals not from SP belong to SP with probability at least 1/2 according
to Markov’s inequality. Assuming that this has happened and applying the pigeonhole
principle we can be sure that the phase contains a sub-phase of length

δn3 + γn log n,
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where no offspring of individuals not contained in SP belong to SP. The mentioned sub-
phase fulfills the second statement, since at least δn3 individuals from SP are selected
for mutation. Hence, the decision vector 1n is created with probability at least 1/4.
Since the probability to create the decision vector 0n or 1n in a phase of length � is
lower bounded by 1/4, an expected number of at most 4� = O(n3 log n) steps suffices.

We now consider the situation where the decision vector 0n has been found and the
decision vector 1n is still missing. Observe a phase of length

�′ := (2e ln(2δn3) + 1) · (δn3 + en ln(2δn3)) = O(n3 log n).

If 0n is selected at most en ln(2δn3) times then the probability that at most 2e ln(2δn3)
offspring of 0n are from SP is lower bounded by 1/2 using Markov’s inequality. As-
suming that this has happened the phase contains a sub-phase of length

δn3 + en ln(2δn3)

in which at least δn3 individuals from SP are chosen for mutation and all offspring of
the individual 0n do not belong to SP. Hence, the probability that the missing decision
vector 1n is found or the counter value c(0n) exceeds en ln(2δn3) is lower bounded
by 1/4. One of the mentioned events occurs after an expected number of most 4�′ =
O(n3 log n) steps. If the individual 1n still has not been found we observe a phase of
length 2en2 +δn3. The probability to add a new individual from SP to the population is
lower bounded by 1/(en2) as at most 2 specific bits have to flip. This worst case occurs
if 0n is selected for mutation and 10n−1 is already contained in the population. Hence,
the probability that in the first 2en2 steps of the phase a new individual from SP with
an initial counter value of 0 is added to the population is lower bounded by 1/2 due to
Markov’s inequality. Assuming that this has happened the probability that the individual
0n is selected in the following δn3 steps can be upper bounded as follows. The probabil-
ity to reset the counter of the individual from SP is lower bounded by 1/en. The prob-
ability that this does not happen in en ln(2δn3) consecutive steps is upper bounded by

(

1 − 1
en

)en ln(2δn3)

≤ e− ln(2δn3) =
1

2δn3
.

The probability that this does not happen in a phase of length δn3 is upper bounded by
δn3 ·1/(2δn3) ≤ 1/2. We conclude that the counter value of the actual individual from
SP does not exceed en ln(2δn3) with probability at least 1/2 and therefore the individ-
ual 0n is not chosen for mutation. Assuming that this has happened the probability that
the decision vector 1n is found is lower bounded by 1/2. Hence, the decision vector 1n

is found in an expected number of 8 · (2en2 + δn3) = O(n3) steps.
We also have to examine the situation that the decision vector 1n has been found and

the decision vector 0n is still missing. We wait until the population contains an addi-
tional individual not contained in SP and the counter value c(1n) is at least as big as
the counter value of this individual. Afterwards we observe a phase of length 2γn logn.
We can be sure that at least γn logn steps are allocated to individuals not from SP as
c(1n) is never set to 0. Hence, after an expected number of O(n log n) additional steps
the decision vector 0n is added to the population.
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4 Advantages of Fairness in the Objective Space

In this section, we point out situations where the use of fairness in the objective space
favors over fairness in the decision space. We have already seen that the latter fairness
mechanism enables a random walk on a plateau of constant fitness where the former
fairness mechanism does not allow this kind of exploration. During the random walk
the counter of the individual on the plateau is set to 0 whenever a new individual on the
plateau is created. This can also be a drawback of fairness in the decision space as it
might prevent the algorithm from improvements that are harder to obtain than finding a
new individual on the plateau.

The function that is used to point out the mentioned behavior is similar to the function
PL that has been examined in Section 3. To ease the following definition we assume
n = 8m, m ∈ N, and define

SP1 := {1i0n−i | 1 ≤ i ≤ 3n/4 − 1}

and

SP2 := {13n/4+2i0n/4−2i | 0 ≤ i ≤ n/8}.

The function PLG (PLateau and Gaps) is il-
lustrated in the figure to the right and defined
as follows:

PLG(x) :=

⎧
⎪⎨

⎪⎩

(|x|0, 1) x /∈ SP1 ∪ SP2,

(n + 1, 1) x ∈ SP1,

(n + 2 + i, 0) x = 13n/4+2i0n/4−2i.

Note, that FPLG = {(n + 1, 1), (9n/8+ 2, 0)} and PPLG = SP1 ∪ {1n}. The short path
SP is divided into a plateau and a short path with little gaps that leads to the second
Pareto optimal objective vector (9n/8 + 2, 0).

The next theorem shows that Global FEMOos performs well on PLG.

Theorem 3. The expected optimization time of Global FEMOos on PLG is O(n3).

Proof. An individual of SP1 ∪ SP2 is added to the population after an expected number
of O(n log n) steps, since before the achievement of such a situation the population
contains one individual and the algorithm behaves like (1+1) EA on ONEMAX (see [2]).

We first consider the situation where this individual belongs to SP1. After an ex-
pected number of O(n3) steps an individual of SP2 is introduced into the population
(see [6]). The probability to find a better individual of SP2 under the condition that
the individual of SP2 has been selected for mutation is lower bounded by (1/n)2(1 −
1/n)n−2 ≥ 1/(en2) as it suffices to flip its two leftmost 0-bits. Hence, in expectation
at most en2 attempts per non-optimal individual of SP2 are needed to improve it. The
counter of the Pareto optimal individual of SP1 is never reset. Hence, the individual of
SP2 is chosen at least once in two consecutive iterations. Therefore, an expected number
of at most 2·n/8·en2 = O(n3) steps is needed to obtain the missing decision vector 1n.
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In the case that the first individual of SP1 ∪SP2 belongs to SP2 an individual of B
n \

SP2 is created with probability at least 1/e in a mutation step as it suffices to flip a single
bit. Hence, after an expected number of e = O(1) steps the population contains besides
a solution of SP2 an additional solution of B

n \SP2. A decision vector of SP1 is reached
by allocating an expected number of O(n log n) mutation trials to the individuals of
B

n \ SP2. We already know that O(n3) mutation trials allocated to the individuals of
SP2 are enough to reach the decision vector 1n which completes the proof.

The next theorem states that Global FEMOds is inefficient on PLG. We will see that the
random walk on the plateau prevents the algorithm from following the short path to the
second Pareto optimal decision vector 1n.

Theorem 4. The optimization time of Global FEMOds on PLG is lower bounded by
2Ω(n1/2) with probability 1 − 2−Ω(n1/2).

Proof. For the initial individual x holds |x|1 > 5n/8 with probability e−Ω(n) due

to Chernoff bounds. One of the first 2n1/2
mutations flips more than n1/2 bits with

probability 2−Ω(n1/2 log n) (cf. proof of Theorem 1). We assume that these events have
not happened and show that 1n is not found within a phase of length 2n1/2

w. h. p.
We wait until the algorithm has generated for the first time an individual x ∈ SP2

with |x|1 ≥ 3n/4 + n1/2 − 1. As at most n1/2 bits flip per mutation, we can be sure
that |x|1 ≤ 3n/4 + 2n1/2 − 2 holds in the next step and that the population contains
an additional individual of SP1. The probability to generate a better individual of SP2

under the condition that the individual of SP2 has been selected for mutation is upper
bounded by 1/n2 since at least the two leftmost 0-bits of x have to be flipped. The
probability that n2 − 1 trials to find a better individual of SP2 fail is lower bounded by
(1 − 1/n2)n2−1 ≥ 1/e. As at most n1/2 bits flip per mutation, the algorithm is at least

n/4 − 2n1/2 + 2
n1/2

=
n1/2

4
− 2 +

2
n1/2

≥ n1/2

8
times in the above situation. Hence, the probability that there is an individual x∗ ∈ SP2

for which the first n2 − 1 trials to find a better individual of SP2 fail is at least

1 −
(

1 − 1
e

)n1/2/8

≥ 1 − 2−Ω(n1/2).

We upper bound the counter value of the individual of SP1 which shows that the
algorithm is not able to find an individual with more 1-bits than x∗. Note, that there is
at least one Hamming neighbor for the individual of SP1 that is mapped to the same
objective vector. Hence, the probability to reset the counter value of the individual of
P ∩ SP1 is lower bounded by 1/en. Therefore, the probability that the counter value of
an individual of SP1 reaches n2 is upper bounded by

(

1 − 1
en

)n2−1

=
(

1 − 1
en

)en·n/e

· en

en − 1
≤ e−n/e · en

en − 1
= 2−Ω(n).

As the probability that this happens in the observed phase is upper bounded by 2n1/2 ·
2−Ω(n) = 2−Ω(n), the statement of the theorem follows.
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5 Conclusions

Popular variants of MOEAs such as NSGA-II or SPEA2 use specific modules to explore
the Pareto front of a given problem by favoring solutions belonging to regions in the
decision or objective space that are rarely covered. With this paper, we have taken a
first step to understand such mechanisms by rigorous runtime analyses. We have shown
that there are simple plateau functions which cannot be optimized without fairness or
with fairness in the objective space, but with a MOEA which implements fairness in the
decision space (cf. Section 3). We also proved that for certain “perforated” plateaus the
impact of fairness can be the other way around (cf. Section 4).
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