Maximizing Submodular Functions
under Matroid Constraints
by Multi-objective Evolutionary Algorithms

Tobias Friedrich! and Frank Neumann?

! Friedrich-Schiller-Universitit Jena, 07743 Jena, Germany
2 Optimisation and Logistics, School of Computer Science,
The University of Adelaide, Adelaide, SA 5005, Australia

Abstract. Many combinatorial optimization problems have underlying
goal functions that are submodular. The classical goal is to find a good so-
lution for a given submodular function f under a given set of constraints.
In this paper, we investigate the runtime of a multi-objective evolution-
ary algorithm called GSEMO until it has obtained a good approximation
for submodular functions. For the case of monotone submodular func-
tions and uniform cardinality constraints we show that GSEMO achieves
a (1 — 1/e)-approximation in expected time O(n? (logn + k)), where k
is the value of the given constraint. For the case of non-monotone sub-
modular functions with k£ matroid intersection constraints, we show that
GSEMO achieves a 1/(k + 2+ 1/k + ¢)-approximation in expected time
O(nF 3 log(n)/¢).

1 Introduction

Evolutionary algorithms can efficiently find the minima of convex functions.
While this is known and well studied in the continuous domain, it is not obvious
how an equivalent statement for discrete optimization looks like. Let us recall
that a differentiable fitness function f: R — R is called convex if its deriva-
tive ¢ f(z) is non-decreasing in z. The bitstring analogue of this is a fitness
function f: {0,1}" — R whose discrete derivative 0;f(z) = f(x + ;) — f(x)
is non-decreasing in = for all 1 < ¢ < n with e; being the i-th unit vector. A
discrete function satisfying the aforementioned condition is called submodular.
Submodularity is the counterpart of convexity in discrete settings [25].

For understanding the properties of continuous optimizers it is central to
study their performance for minimizing convex functions. This has been done
in detail for continuous evolutionary algorithms [2, 17]. On the other hand, it is
rather surprising that there appears to be not a single published study regarding
the performance of discrete evolutionary algorithms for optimizing submodular
functions. We want to fill this gap and present several approximation results for
simple evolutionary algorithms and submodular functions.

Analogous to the situation for convex functions, there is a significant differ-
ence between minimization and maximization of submodular functions. Submod-
ular functions can be minimized with a (non-trivial) combinatorial algorithm in
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polynomial time [19]. On the other hand, submodular function mazimization is
NP-hard as it generalizes many NP-hard combinatorial optimization problems,
like maximum cut [10, 15], maximum directed cut [16], maximum facility loca-
tion [1, 7], and several restricted satisfiability problems [10, 18]. As evolutionary
algorithms are especially useful for hard problems, we focus on the maximization
of submodular functions.

More formally, we consider the optimization problem max{f(S): S € T},
where X is an arbitrary ground set, f: 2¥ — R is a fitness function, and Z C 2%
a collection of independent sets describing the feasible region of the problem. As
usual, we assume value oracle access to the fitness function; i.e., for a given
set S, an algorithm can query an oracle to find its value f(5). We also always
assume that the fitness function is normalized, i.e., f(#) = 0, and non-negative,
ie., f(A) >0 for all A C X. We will study the following variants of f and Z:

e Submodular functions: A function f is submodular iff f(AUB)+ f(ANB) <
f(A)+ f(B) for all A,B C X.

e Monotone functions: A function is monotone iff f(A) < f(B) for all A C B.

e Matroid: A matroid is a pair (X,Z) composed of a ground set X and a non-
empty collection Z of subsets of X satisfying (1) If A € Z and B C A then
BeZand (2)If A,B €T and |A| > |B| then B4z € T for some z € A\ B.
The sets in Z are called independent, the rank of a matroid is the size of any
maximal independent set.

o Uniform matroid: A uniform matroid (X,Z) of rank k£ € IN contains all
subsets of size at most k, i.e., T ={A C X: |A] < k}.

e Partition matroid: A partition matroid is a matroid formed from a direct
sum of uniform matroids, i.e., if the universe X is partitioned into k& parts
X1,..., Xk, then in a partition matroid a set is independent if it contains at
most one element from each part.

o Intersection of k matroids: Given k matroids My = (X,7y) , M—(X,Z2), ...,
My, = (X, Z),) on the same ground set X, the intersection of these matroids is
the matroid (X,Z) withZ ={AC X | A€ 7;,1 <i < k}. A simple example
for k = 2 is the family of matchings in a bipartite graph; or in general the
family of hypergraph matchings in a k-partite hypergraph.

Maximizing submodular functions is not only NP-hard, but also NP-hard to
approximate. We therefore also have to formalize the notion of an approximation
algorithm. We say an algorithm achieves an a-approximation if for all instances
of the considered maximization problem, the output returned by the algorithm
is at least a times the optimal value.

Our results. Optimizing single objective optimization problems by multi-
objective approaches such as the global simple evolutionary multiobjective opti-
mizer (GSEMO) has already been shown to be beneficial for many combinatorial
optimization problems [11, 21, 28]. We study GSEMO and prove the following
statements.

e Based on the seminal work of Nemhauser, Wolsey, and Fisher [26], we show
that GSEMO achieves in polynomial time a 1 —1/e-approximation for maxi-
mizing monotone submodular functions under a uniform matroid constraint.
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This approximation factor is optimal in the general setting [27], and it is
optimal even for the special case of Max-k-cover, unless P = NP [9].

e Based on the more recent work of Lee, Mirrokni, Nagarajan, and Sviridenko
[23], we show that GSEMO achieves in polynomial time a 1/(k+2+1/k+¢)-
approximation for maximizing submodular functions over k matroid con-
straints. Note that this result even holds for non-monotone functions.

Outline. The paper is organized as follows. In Section 2, we describe the setting
for submodular functions and introduce the algorithm that is subject to our
investigations. We analyze the algorithm on monotone submodular functions
with a uniform constraint in Section 3 and consider the case of non-monotane
submodular functions under matroid constraints in Section 4. Finally, we finish
with a discussion on open problems in Section 5.

2 Preliminaries

Optimization of submodular functions and matroids have received a lot of atten-
tion in the classical (non-evolutionary) optimization community. For a detailed
exposition, we refer to the textbooks of Schrijver [30] and Korte and Vygen [20].

Submodular Functions. When optimizing a submodular function f: 2X —
R, we will often consider the incremental value of adding a single element. For
this, we denote by Fa(i) = f(A+1i) — f(A) the marginal value of ¢ with respect
to A. Nemhauser et al. [26, Proposition 2.1] give seven equivalent definitions for
submodular functions. Additionally to the definition stated in the introduction
we will also use that a function f is submodular iff F;(A) > F;(B) for all A C
BC Xandie X\ B.

Many common pseudo-Boolean and combinatorial fitness functions are sub-
modular. As we are not aware of any general results for the optimization of
submodular function by evolutionary algorithms, we list a few examples of well-
known submodular functions:

e Linear functions: All linear functions f: 2¥ — R with f(A) = >, , w; for
some weights w: X — R are submodular. If w; > 0 for all ¢ € X, then f is
also monotone.

o Cut: Given a graph G = (V, E) with nonnegative edge weights w: E — Rxo.
Let §(S) be the set of all edges that contain both a vertex in S and V'\ S.
The cut function w(§(S)) is submodular but not monotone.

e Coverage: Let the ground set be X = {1,2,...,n}. Given a universe U with
n subsets A; C U for i € X, and a non-negative weight function w: U —
R>o. The coverage function f: 2% — R with f(S) = [|J;cq 4i| and the
weighted coverage function f’ with f/(S) = w(J,cq 4i) = ZUGUies A, w(u)
are monotone submodular.

o Rank of a matroid: The rank function r(A) = max{|S|: SC A,S €Z} ofa
matroid (X,7) is monotone submodular.
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e Hypervolume Indicator: Given a set of points in R? in the objective space
of a multi-objective optimization problem, measure the volume of the space
dominated by these points relative to some fixed reference point. The hy-
pervolume is a well-known quality measure in evolutionary multi-objective
optimization and is known to be monotone submodular [31].

Matroids. We defined the most important matroids already in the intro-
duction. Matroid theory provides a framework in which many problems from
combinatorial optimization can be studied from a unified perspective. Matroids
are a special class of so-called independence systems that are given by a finite
set X and a family of subsets Z C X such that Z is closed under subsets. Being
a matroid is considered to be the property of an independence system which
makes greedy algorithms work well. Within evolutionary computation, matroid
constraints have been studied only for linear functions [29].

Fitness function. We assume a finite ground set X = {z1,22,...,2,} and
identify each subset S C X with a bitstring = € {0,1}" such that the i-th bit
of zis 1 iff #; € S. Let f: {0,1}" — R>¢ be the given (normalized and non-
negative) submodular function and F' C {0,1}™ be the set of feasible solutions.
Note, that f is defined on every element of {0,1}". We set z(z) = f(x) iff x € F
and z(z) = —1 iff z € F and consider the multi-objective problem

g(x) := (2(2), [zlo),

where |z|op = D21, (1 — 2;) denotes the number of 0-bits in the given bitstring
z. We write g(x) > g(y) iff ((z(z) = 2(y)) A (|20 = [ylo)) holds. If g(z) = g(y)
holds, we say that y is dominated by x. The solution y is strictly dominated by
solution z iff g(z) > ¢g(y) and g(x) # g(y).

Algorithms. The theoretical runtime analysis of evolutionary algorithms of-
ten considers randomized local search (RLS) and the (1 + 1) evolutionary al-
gorithm (EA). The multi-objective counterpart of RLS and (141) EA are the
simple evolutionary multi-objective optimizer (SEMO) [22] and global SEMO
(GSEMO) [12]. Both algorithms have been studied in detail, see [6, 8, 11-13].
We consider the GSEMO given in Algorithm 1.

In the end, we focus on the solution z* = argmax,cp z(x) and study the
quality of this solution. We study the expected number of iterations (of the repeat
loop) of GSEMO until z* is an a-approximation of an optimal solution OPT, i.e.
f(x*)/OPT > « holds. Here o denotes the investigated approximation ratio for
the considered problem. We call the expected number of iterations to reach an
a-approximation, the expected (run)time to achieve an a-approximation.

3 Monotone Submodular Functions with a Uniform
Constraint

In this section, we investigate submodular functions with one uniform constraint.
In the case of one uniform constraint of size k, a solution x € X is feasible if it
has at most k elements. Hence, we have F = {z |z € X A |z|; < k}.
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Algorithm 1. GSEMO Algorithm

1 choose z € {0,1}" uniformly at random

2 determine g(z)

3 P« {z}

4 repeat

5 choose z € P uniformly at random

6 create =’ by flipping each bit z; of z with probability 1/n

7 determine g(x’)

8 if 2’ is not strictly dominated by any other search point in P then
9 include z’ into P

10 delete all other solutions z € P with g(z) < g(z') from P

11 until stop

Theorem 1. The expected time until GSEMO has obtained a (1 — })-
approzimation for a monotone submodular function f under a uniform constraint

of size k is O(n? (logn + k)).

Proof. We first study the expected time until GSEMO has produced the solu-
tion 0™ for the first time. This solution is Pareto optimal and will therefore stay
in the population after it has been produced for the first time. Furthermore, the
population size is upper bounded by n + 1 as it contains for each i, 0 < i <n at
most one solution having exactly ¢ 1-bits. The solution 0" is feasible and has the
maximum number of 0-bits. This implies that the population will not include
any infeasible solution to the submodular function f after having included 0™.
For this step, we consider in each iteration the individual y that has the
minimum number of 1-bit among all individuals in the population and denote
¢ = |y|1 the number of 1-bits in this individual. Note, that ¢ can not increase
during the run of the algorithm. For 1 < ¢ < n a solution 3’ with |y'|; =€ —1is
produced with probability at least £/(en?) as 3’ can be produced by selecting y
for mutation and flipping one of the ¢ 1-bits. The expected waiting time to
include the solution 0™ for the first time into the population is therefore upper

bounded by Y, (eﬁz)_l = O(n?logn).
For the remainder of the proof, we follow the ideas of the proof for the greedy
algorithm in Nemhauser et al. [26]. We show that GSEMO produces in expected

time O(n%k) for each 0 < j < k a solution X; with

Fx) = (1 -(1- ;)) - f(Op), )

where f(OPT) denotes the value of a feasible optimal solution. Note, that a
solution is feasible iff it has at most k 1-bits. After having including the solution
0™ into the population this is true for j = 0. The proof is done by induction.
Assume that GSEMO has already obtained a solution fulfilling Equation 1 for
each j, 0 < j < i < k. We claim that choosing the solution € P with |z|; =i
for mutation and inserting the element corresponding to the largest possible
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increase of f increases the value of f by at least 6;11 > , - (f(OPT) — f(X;)).
Let ;41 be the increase in f that we obtain when choosing the solution = € P
with |z]; = ¢ for mutation and inserting the element corresponding to the largest
possible increase.

Due to monotonicity and submodularity, we have f(OpT) < f(X,; U OPT) <
f(X;)+kd;+1 which implies d;4+1 > ,16 -(f(OpT— f(X;)). This leads to f(X;+1) >

F(X3) + L (f(Orr) = £(X0) = (1= (1= 1)) - s(Opm).
For i = k, we get (1 — (1 — }1€)k> -f(OpT) > (1 — i) f(OPT). The probability

for such a step going from i to ¢ + 1 is lower bounded by eiz and hence the

expected time until a (1 — i)—approximation has been obtained is at most

k —1
Ot togm) + Y (1) =02 logn + ).
=0

Max-k-Cover. Let us demonstrate the applicability of Theorem 1 by two
examples. First, reconsider the maximum coverage problem introduced in Sec-
tion 2. Given a universe U with subsets A1, Ag, ..., A, C U, we want to maximize
a coverage function f(S) = |UJ,cg 4i| such that |S| < k. Theorem 1 immediately
implies:

Corollary 1. The ezpected time until the GSEMO has obtained a (1 — 1/e)-
approzimation for the Maz-k-Cover problem is O(n? (logn + k)). The achieved
approximation factor is optimal, unless P = NP [9].

Hypervolume indicator. As a second example, we consider a problem from
evolutionary multiobjective optimization. As discussed in Section 2, the hyper-
volume indicator is a monotone submodular function. The hypervolume subset
selection problem (HYP-SSP), where we are given n points in R? and want to
select a subset of size k with maximal hypervolume [4, 5, 14], therefore aims at
maximizing a monotone submodular function f: {0,1}"™ — R>( under a uniform
matroid constraint of rank k. Theorem 1 implies therefore:

Corollary 2. The expected time until the GSEMO has obtained a (1 — 1/e)-
approzimation for HYP-SSP is O(n? (logn + k)).

For dimensions d > 2 this is significantly faster than the best known exact
algorithm with runtime O(n¥) [3]. Note that HYP-SSP can be solved in time
O(n(k +1logn)) for d =2 [4, 5].

4 Non-monotone Submodular Functions under Matroid
Constraints

We now turn to submodular functions that are not necessarily monotone. The
constraints are given by k matroids. Given k arbitrary matroids M, ..., My
defined on a ground set X together with their independent systems I, ..., Ij.
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We consider the problem max{f(x) | x € F = ﬂ?:l
negative submodular function defined on the ground set X . Note that this setting
is much more general than the one investigated in the previous section.

For our analysis, we make use of the following lemma in [23].

Ij}, where f is a non-

Lemma 1. Let = be a solution such that no solution with fitness at least
(1 + ni) - f(x) can be achieved by deleting one element or by inserting k ele-

ments and deleting one element. Then x is a ( )—appmximation.

1
k+2+ } +e

Lemma 1 states that there is always the possibility to achieve a certain
progress if no good approximation has been obtained. We use this to show the
following results for GSEMO.

Theorem 2. The expected time until the GSEMO has obtained a (k+2i 1+E>—
x

approximation for any (non necessarily) non-monotone submodular function un-
der k matroid constraints is O(1n*5logn).

Proof. Following previous investigations, GSEMO introduces the solution 0™ in
the population after an expected number of O(n?logn) steps. This solution is
Pareto optimal and will from that point on stay in the population. Furthermore,
0™ is a feasible solution and has the largest possible number of 0-bits. Hence,
from the time 0™ has been included in the population, the population will never
include infeasible solutions.

Selecting 0™ for mutation and inserting the element that leads to the largest
increase in the f-value produces a solution y with f(y) > OpT/n. The reason
for this is that the number of elements is limited by n and that f is submodular.
Having obtained a solution of fitness at least OPT/n, we focus in each iteration on
the individual having the largest f-value in P. Due to the selection mechanism of
GSEMO a solution with the maximal f-value will always stay in the population
and the value will not decrease during the run of the algorithm.

As long as the algorithm has not obtained a solution of the desired quality, it
can produce from its current solution = a feasible offspring y such that f(y) >
(14 %) - f(2). The expected waiting time for this event is O(n**1!) as at most
k + 1 specific bits have to be flipped.

Starting with a solution of quality at least OPT/n the number of such steps
in order to achieve an optimal solution is upper bounded by log; +5 O?;}n =

O(i n*log n) Hence, the expected time to achieve a (

is O(1n*5logn).

1 . .
k2t lte ) -approximation

As an example, let us consider again the NP-complete Maximum Cut prob-
lem, where for a given graph G = (V,E) with n vertices and nonnegative
edge weights w: E — Rx>o, we want to maximize the cut function §(S) over
all S C V as defined in Section 2. It is known that the greedy algorithm
achieves a 0.5-approximation while the best known algorithms achieve a 0.87856-
approximation [15]. Theorem 2 immediately implies the following.
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Corollary 3. The expected time until the GSEMO has obtained a 1/(4 + €)-
approzimation for the Mazximum Cut problem is (’)(in6 logn).

Note that this result is presumably not tight. We conjecture that a less general
analysis can show that GSEMO achieves a 1/2-approximation.

5 Discussion and Open Problems

Maximizing submodular functions under matroid constraints is a very general
optimization problem which contains many classical combinatorial optimization
problems like maximum cut [10, 15], maximum directed cut [16], maximum facil-
ity location [1, 7], and others. We presented a number of positive results for the
approximation behavior of the GSEMO algorithm in the framework. To the best
of our knowledge, this is the first paper on the analysis of evolutionary algorithms
optimizing submodular functions. The only result on the performance of evolu-
tionary algorithms under matroid constraints is by Reichel and Skutella [29].
They showed that a (1+1)-EA achieves in polynomial time a 1/k-approximation
for maximizing a linear function subject to & matroid constraints.

This paper gives a first set of results, but also leaves many questions open.
We briefly name a few:

e We only study the SEMO algorithm, but similar results might be possible
for population-based algorithms with appropriate diversity measures.

e Our runtime upper bounds might not be tight. It would be interesting to
show matching lower bounds, especially for comparing different algorithms
and function classes.

e The proven approximation guarantees for SEMO hold for very general prob-
lem classes. Much tighter results should be possible for specific problems like
Maximum Cut.

e For RLS and (1+1)-EA we conjecture an exponential runtime lower bound to
obtain the same approximation ratio for maximizing (monotone) submodular
function if the (1 + 1)-EA starts at a random (feasible) solution.

e Minimizing submodular functions is in general simpler than maximizing sub-
modular functions. However, it is not obvious what this implies for evolu-
tionary algorithms minimizing submodular functions.

e Our proofs strongly rely on the greedy-like behavior of SEMO. It might either
be possible (i) to prove a general relationship between SEMO and greedy
algorithms or (ii) to give an example where SEMO strictly outperforms a
greedy strategy.

e We assume value oracle access to the fitness function f. It might be worth
studying the black box complexity of submodular functions in the sense of
Lehre and Witt [24].
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