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Abstract. In a load balancing network each processor has an initial
collection of unit-size jobs, tokens, and in each round, pairs of processors
connected by balancers split their load as evenly as possible. An excess
token (if any) is placed according to some predefined rule. As it turns
out, this rule crucially effects the performance of the network. In this
work we propose a model that studies this effect. We suggest a model
bridging the uniformly-random assignment rule, and the arbitrary one (in
the spirit of smoothed-analysis) by starting from an arbitrary assignment
of balancer directions, then flipping each assignment with probability α
independently. For a large class of balancing networks our result implies
that after O(log n) rounds the discrepancy is whp O((1/2 − α) log n +
log log n). This matches and generalizes the known bounds for α = 0 and
α = 1/2.

1 Introduction

In this work we are concerned with two topics whose name contains the word
“smooth”, but in totally different meaning. The first is balancing (smoothing)
networks, the second is smoothed analysis. Let us start by introducing these two
topics, and then introduce our contribution – interrelating the two.

1.1 Balancing (Smoothing) Networks

In the standard abstraction of smoothing (balancing) networks [2], processors
are modeled as the vertices of a graph and connection between them as edges.
Each process has an initial collection of unit-size jobs (which we call tokens).
Tokens are routed through the network by transmitting tokens along the edges
according to some local rule. The quality of such network is measured by the
maximum difference between the number of tokens at any two vertices (after the
balancing operations have ended).

The local scheme of communication we study is a balancer gate: the number
of tokens is split as evenly possible between the communicating vertices with the
excess token (if such remains) routed to the vertex towards which the balancer
points. More formally, the balancing network consists of n vertices v1, v2, . . . , vn,
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Fig. 1. The network CCC16

and m matchings (either perfect or not) M1, M2, . . . , Mm. We associate with
every matching edge a balancer gate (that is we think of the edges as directed
edges). At the beginning of the first iteration, xj tokens are placed in vertex
vj , and at every iteration r = 1, . . . , m, the vertices of the network perform a
balancing operation according to the matching Mr (that is, vertices vi and vj

interact if (vi, vj) ∈ Mr).
One motivation for considering smoothing networks comes from the server-

client world. Each token represents a client request for some service; the service
is provided by the servers residing at the vertices. Routing tokens through the
network must ensure that all servers receive approximately the same number of
tokens, no matter how unbalanced the initial number of tokens is (cf. [2]). More
generally, smoothing networks are attractive for multiprocessor coordination and
load balancing applications where low-contention is a requirement; these include
producers-consumers [10] and distributed numerical computations [3]. Together
with counting networks, smoothing networks have been studied quite extensively
since introduced in the seminal paper of [2].

[11, 12] initiated the study of the CCC network (cube-connected-cycles, see
Figure 1) as a smoothing network. For the special case of the CCC, sticking
to previous conventions, we adopt a “topographical” view of the network, thus
calling the vertices wires, and looking at the left-most side of the network as the
“input” and the right-most as the “output”. In the CCC, two wires at layer � are
connected by a balancer if the respective bit strings of the wires differ exactly in
bit �. In [15] it was observed that the CCC is isomorphic to the well-known block
network [2, 6]. Therefore, we refer to the CCC-network throughout this paper,
though many results in the area are actually stated for the block network. The
CCC is a canonical network in the sense that it has the smallest possible depth
of log n (smaller depth cannot ensure any discrepancy independent of the initial
one). Moreover, it has been used in more advanced constructions such as the
periodic (counting) network [2, 6].
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As it turns out, the initial setting of the balancers’ directions is crucial. Two
popular options are an arbitrary orientation or a uniformly random one. A max-
imal discrepancy of log n was established for the CCCn for an arbitrary initial
orientation [12]. For a random initial orientation of the CCCn, [11] show a dis-
crepancy of 2.36

√
log n for the CCCn (this holds whp1 over the random initial-

ization), which was improved by [15] to log log n + O(1) (and a matching lower
bound).

Results for more general networks have been derived in [16] for
arbitrary orientations. For expander graphs, they show an O(log n)-
discrepancy after O(log n)-rounds. This was recently strengthened
assuming the orientations are set randomly and in addition the match-
ings themselves are chosen randomly [9]. Specifically, for expander graphs
constant discrepancy can be achieved whp within O(log n (log log n)3) rounds.

1.2 Smoothed Analysis

Let us now turn to the second meaning of “smoothed”. Smoothed analysis comes
to bridge between the random instance, which typically has a very specific “un-
realistic” structure, and the completely arbitrary instance, which in many cases
reflects just the worst case scenario, and thus over-pessimistic in general. In the
smoothed analysis paradigm, first an adversary generates an input instance, then
this instance is randomly perturbed.

The smoothed analysis paradigm was introduced by in 2001 [18] to help
explain why the simplex algorithm for linear programming works well in prac-
tice but not in (worst-case) theory. They considered instances formed by taking
an arbitrary constraint matrix and perturbing it by adding independent Gaus-
sian noise with variance ε to each entry. They showed that, in this case, the
shadow-vertex pivot rule succeeds in expected polynomial time. Independently,
[4] studied the issue of Hamiltonicity in a dense graph when random edges are
added. In the context of graph optimization problems we can also mention [8, 13],
in the context of k-SAT [5, 7], and in various other problems [1, 14, 17, 19].

In our setting we study the following question: what if the balancers were
not set completely adversarially but also not in a completely random fashion.
Besides the mathematical and analytical challenge that such a problem poses,
in real network applications one may not always assume that the random source
is unbiased, or in some cases one will not be able to quantitatively measure the
amount of randomness involved in the network generation. Still it is desirable
to have an estimate of the typical behavior of the network. Although we do not
claim that our smoothed-analysis model captures all possible behaviors, it does
give a rigorous and tight characterization of the tradeoff between the quality of
load balancing and the randomness involved in setting the balancers’ directions,
under rather natural probabilistic assumptions.

1 Writing whp we mean with probability tending to 1 as n goes to infinity.
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As far as we know, no smoothed analysis framework was suggested to a net-
working related problem. Formally, we suggest the following framework.

1.3 The Model

Our model is similar (and, as we will shortly explain, a generalization of) the
periodic balancing circuits studied in [16]. It will be helpful for the reader to bear
in mind the following legend: we use superscripts (in round brackets) to denote a
time stamp, and subscripts to denote an index. In subscripts, we use the vertices
of the graph as indices (thus assuming some ordering of the vertex set). For
example, A(i)

u,v stands for the (u, v)-entry in matrix A(i), which corresponds to
time/round i.

Let M (1), . . . , M (T ) be an arbitrary sequence of T (not necessarily perfect)
matchings. With each matching M (i) we associate a matrix P(i) with P(i)

uv = 1/2
if u and v are matched in M (i), P(i)

uu = 1 if u is not matched in M (i), and P(i)
uv = 0

otherwise.
In round i, every two vertices matched in M (i) perform a balancing operation.

That is, the sum of the number of tokens in both vertices is split evenly between
the two, with the remaining token (if exists) placed in the vertex pointed by the
matching edge.

Remark 1. In periodic balancing networks (see [16] for example) an or-
dered set of d (usually perfect) matchings is fixed. Every round of balancing is a
successive application of the d matchings. Our model is a (slight) generalization
of the latter.

Let us now turn to the smoothed-analysis part. Given a balancing network con-
sisting of a set T of directed matchings, an α-perturbation of the network is
a flip of direction for every edge with probability α independently of all other
edges.

Setting α = 0 gives the completely “adversarial model”, and α = 1/2 is the
complete random case.

Remark 2. For our results, it suffices to consider α ∈ [0, 1/2]. The case α � 1/2
can be reduced to the case α � 1/2 by flipping the initial orientation of all
balancers and taking 1 − α instead of α. It is easy to see that both distributions
are identical.

1.4 Our Contribution

For a load vector x, its discrepancy is defined to be maxu,v |xu −xv|. We use eu

to denote the unit vector whose all entries are 0 except the uth. For a matrix A,
λ(A) stands for the second largest eigenvalue of A (in absolute value). Unless
stated otherwise, ‖z‖ stands for the �2-norm of the vector z.

Theorem 1 Let G be some balancing network with matchings M (1), . . . , M (T ).
For any two time stamps t1, t2 satisfying t1 < t2 � T , and any input vector with
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initial discrepancy K, the discrepancy at time step t2 in α-perturbed G is whp
at most

(t2 − t1) + 3
(

1
2 − α

)
t1 + Λ1 + Λ2,

where

Λ1 = max
w∈V

4

√

log n
∑t1

i=1

∑
[u:v]∈M(i)

(
(eu − ev)

(∏t2
j=i+1 P(i)

)
ew

)2

,

Λ2 = λ
(∏t2

i=1 P(i)
)√

n K.

Before we proceed let us motivate the result stated in Theorem 1. There are
two factors that effect the discrepancy: the fact that tokens are indivisible (and
therefore the balancing operation may not be “perfect”, plus the direction of the
balancer – which wire gets the extra token), and how many balancing rounds are
there. On the one hand, the more rounds there are the more balancing operations
are carried, and the smoother the output is. On the other hand, the longer the
process runs, its susceptibility to rounding errors and arbitrary placement of
excess tokens increases. This is however only a seemingly tension, as indeed the
more rounds there are, the smoother the output is. Nevertheless, in the analysis
(at least as we carry it), this tension plays part. Specifically, optimizing over
these two contesting tendencies is reflected in the choice of t1 and t2. Λ2 is the
contribution resulting from the number of balancing rounds being bounded, and
Λ1, along with the first two terms, account for the indivisibly of the tokens. In
the cases that will interest us, t1, t2 will be chosen so that Λ1, Λ2 will be low-order
terms compared to the first two terms.

Our Theorem 1 also implies the following results:

• For the aforementioned periodic setting Theorem 1 implies the following:
after O (log(Kn)/ν) rounds (ν = (1 − λ(P))−1), P is the matrix of one
period, K the initial discrepancy) the discrepancy is whp at most

O
(

d log(Kn)
ν

·
(

1
2
− α

)
+

d log log n

ν

)
.

Setting α = 0 (and assuming K is polynomial in n) we get the result of
[16], and for α = 1/2 we get the result of [9]. (The restriction on K being
polynomial can be lifted but at the price of more cumbersome expressions
in Theorem 1. Arguably, the interesting cases are anyway when the total
number of tokens, and in particular K, is polynomial). Complete details in
the full version.

• For the CCCn, after log n rounds the discrepancy is whp at most

3
(

1
2 − α

)
log n + log log n + O(1).

Let us now turn to the lower bound.
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Theorem 2 Consider a CCCn with the all-up orientation of the balancers and
assume that the number of tokens at each wire is uniformly distributed over
{0, 1, . . . , n−1} (independently at each wire). The discrepancy of the α-perturbed
network is whp at least

max{(1
2 − α) log n − 2 log log n, (1 + o(1))(log log n)/2}.

Theorem 2 is proven in Section 2, preceding the proof of Theorem 1 (Section
3), serving as a good introduction to the more complicated proof of Theorem 1.
Two more points to note regarding the lower bound:

• For α = 0, our lower bound matches the experimental findings of [11], which
examined CCC224 , all balancers pointing up, and the input is a random num-
ber between 1 and 100, 000. Their observed average discrepancy was roughly
(log n)/2.

• The input distribution that we use for the lower bound is arguably more
natural than the tailored and somewhat artificial ones used in previous lower
bound proofs [12, 15].

Finally, we state a somewhat more technical result that we obtain, which lies
in the heart of the proof of the lower bound and sheds light on the mechanics
of the CCC in the average case input. In what follows, for a balancer b, we let
Odd(b) be an indicator function which is 1 if b had an excess token. By Bi we
denote the set of balancers that effect wire i (that is, there is a simple path in
the network going from an input wire, through such a balancer, and ending up
at wire i).

Lemma 3. Consider a CCCn network with any fixed orientation of the bal-
ancers. Assume a uniformly distributed input over {0, 1, . . . , n − 1}. Every bal-
ancer b in layer �, 1 � � � log n, satisfies the following properties:

• Pr [Odd(b) = 1] = 1/2, and
• for every i, {Odd(b) | b ∈ Bi} is a set of independent random variables.

For lack of space, the proof of this lemma, as well as other technical details that
are missing throughout the paper, can be found in the full version of the paper.
Let us just remark that the lemma holding under such strict conditions is rather
surprising. First, it is valid regardless of the given orientation. Secondly, and
somewhat counter-intuitively, the Odd’s of the balancers that effect the same
output wire are independent.

2 Lower Bound - Proof of Theorem 2

The proof outline is the following. Given an input vector x (uniformly distributed
over the range {0, . . . , n − 1}), we shall calculate the expected divergence from
the average load μ = ‖x‖1/n. The expectation is taken over both the smoothing
operation and the input. After establishing the “right” order of divergence (in
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expectation) we shall prove a concentration result. One of the main keys to
estimating the expectation is Lemma 3 saying that if the input is uniformly
distributed as above, then for every balancer b, Pr [Odd(b) = 1] = 1/2 (the
probability is taken only over the input).

Before proceeding with the proof, let us introduce some further notation. Let
y1 be the number of tokens exiting on the top output wire of the network. For
any balancer b, Ψ(b) is an indicator random variable which takes the value −1/2
if the balancer b was perturbed, and 1/2 otherwise. B(�) is the set of balancers
in layer �, and b � y1 stands for “there is a path of consecutive layers from
balancer b to the output of wire 1”.

Using the “standard” backward (recursive) unfolding (see also [11, 15] for a
concrete derivation for the CCCn) we obtain that,

y1 = μ +
log n∑

�=1

2− log +�
∑

b∈B(�)∧b�y1

Odd(b) · Ψ(b).

The latter already implies that the discrepancy of the entire network is at least

y1 − μ =
log n∑

�=1

2− log n+�
∑

b∈�

Odd(b) · Ψ(b),

because there is at least one wire whose output has at most μ tokens (a further
improvement of a factor of 2 will be obtained by considering additionally the
bottom output wire and prove that on this wire only a small number of tokens
exit). Write y1 − μ =

∑log n
�=1 S�, defining for each layer 1 � � � log n,

S� := 2− log n+�
∑

b∈B�∧b�y1

Odd(b) · Ψ(b). (1)

2.1 Proof of (1
2

− α) log n − 2 log log n

We now turn to bounding the expected value of S�. Using the following facts: (a)
the Odd(b) and Ψ(b) are independent (b) Lemma 3 which gives E [Odd(b)] = 1/2
(c) the simple fact that E [Ψ(b)] = 1

2 − α (d) the fact that in layer � there are
2log n−� balancers which affect output wire 1 (this is simply by the structure of
the CCCn), we get

E [S�] = 2− log n+�
∑

b∈B�∧b�y1

1
2 · (1 − 2α)

= 2− log n+� · 2log n−� · 1
2 · ( 1

2 − α
)

= 1
2

(
1
2 − α

)
.

This in turn gives that

E [y1 − μ] = E

[
log n∑

�=1

S�

]

= 1
2

(
1
2 − α

)
log n.
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Our next goal is to claim that typically the discrepancy behaves like the ex-
pectation; in other words, a concentration result. Specifically, we apply Hoeffd-
ings bound to each layer S� separately. It is applicable as the random variables
2− log n+� · Odd(b) · Ψ(b) are independent for balancers within the same layer
(such balancers concern disjoint sets of input wires, and the input was chosen
independently for each wire). For the bound to be useful we need the range of
values for the random variables to be small. Thus, in the probabilistic argument,
we shall be concerned only with the first log n− log log n layers (the last log log n
layers we shall bound deterministically). We use the following Hoeffding bound:

Lemma 4 (Hoeffdings Bound). Let Z1, Z2, . . . , Zn be a sequence of indepen-
dent random variables with Zi ∈ [ai, bi] for each i. Then for any number ε � 0,

Pr [|∑n
i=1 Zi − E [

∑n
i=1 Zi]| � ε] � 2 · exp

(
− 2ε2

∑n
i=1(bi − ai)2

)
.

We plug in,

Zb = 2− log n+�·Odd(b)·Ψ(b), ε = 2(�−log n+log log n)/2, (bi−ai)2 =
(
2�−log n

)2
,

and the sum is over 2log n−� balancers in layer �. Therefore,

Pr
[
|S� − E [S�]| � 2(�−log n+log log n)/2

]
� 2 exp

(
−2 2�−logn+log log n

2�−log n

)
� n−1.

In turn, with probability at least 1− logn/n (take the union bound over at most
log n S� terms):

log n−log log n∑

�=1

S� � 1
2

(
1
2 − α

)
(log n − log log n) −

log n−log log n∑

�=1

2(�−log n+log log n)/2.

The second term is just a geometric series with quotient
√

2 , and therefore can
be bounded by 1

1−1/
√

2
< 4.

For the last log log n layers, we have that for every �, |S�| cannot exceed 1
2 , and

therefore their contribution, in absolute value is at most 1
2 log log n. Wrapping

it up, whp

y1 − μ =
log n∑

�=1

S� � 1
2

(
1
2 − α

)
(log n − log log n) − 4 − 1

2 log log n.

The same calculation implies that the number of tokens at the bottom-most
output wire deviates from μ in the same way (just in the opposite direction).

Hence, the discrepancy is whp lower bounded by (using the union bound over
the top and bottom wire, and not claiming independence)

y1 − yn �
(

1
2 − α

)
log n − 8 − (3

2 − α) log log n �
(

1
2 − α

)
log n − 2 log log n.
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2.2 Proof of (1 + o(1)) log log n/2

The proof here goes along similar lines to Section 2.1, only that now we choose
the set of balancers we apply it to more carefully. By the structure of the CCCn,
the last x layers form the parallel cascade of n/2x independent CCC subnetworks
each of which has 2x wires (by independent we mean that the set of balancers
is disjoint).

We call a subnetwork good if after an α-perturbation of the all-up initial
orientation, all the balancers were not flipped (that is, still point up).

The first observation that we make is that whp (for a suitable choice of x, to
be determined shortly) at least one subnetwork is good. Let us prove this fact.

The number of balancers effecting the top (or bottom) wire in one of the
subnetworks is

∑x
�=1 2� � 2x+1. In total, there are no more than 2 ·2x+1 effecting

both wires. The probability that none of these balancers was flipped is (using
our assumption α � 1/2) (1 − α)2

x+2 � 2−2x+2
. Choosing x = log log n − 1, this

probability is at least n−1/2; there are at least n/ logn such subnetworks, thus
the probability that none is good is at most

(
1 − n−1/2

)n/ log n

= o(1).

Fix one good subnetwork and let μ′ be the average load at the input to that
subnetwork. Repeating the arguments from Section 2.1 (with α = 0, log n re-
scaled to x = log log n − 4, and now using the second item in Lemma 3 which
guarantees that the probability of Odd(·) = 1 is still 1/2, for any orientation of
the balancers) gives that in the top output wire of the subnetwork there are whp
at least μ′ + (log log n)/4 −O(log log log n) tokens, while on the bottom output
wire there are whp at most μ′ − (log log n)/4 +O(log log log n) tokens. Using the
union bound, the discrepancy is whp at least their difference, that is at least
(log log n)/2 −O(log log log n).

3 Upper Bound - Proof of Theorem 1

We shall derive our bound by measuring the difference between the number of
tokens at any vertex and the average load (as we did in the proof of the lower
bound for the CCCn). Specifically we shall bound maxi |y(t)

i − μ|, y
(t)
i being the

number of tokens at vertex i at time t (we use y(t) = (yi)i∈V for the vector of
loads). There are two contributions to the divergence from μ (which we analyze
separately):

• The divergence of the idealized process from μ due to its finiteness.
• The divergence of the actual process from the idealized process due to indi-

visibility.

The idea to compare the actual process to an idealized one was suggested in
[16] and was analyzed using well-known convergence results of Markov chains.
Though we were inspired by the basic setup from [16] and the probabilistic
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analysis from [9], our setting differs in a crucial point: when dealing with the
case 0 < α < 1/2, we get a delicate mixture of the deterministic and the random
model. The random variables in our analysis are not symmetric anymore which
leads to additional technicalities.

Formally, let ξ(t) be the load vector of the idealized process at time t, then by
the triangle inequality (1 is the all-one vector)

‖y(t) − μ1‖∞ � ‖y(t) − ξ(t)‖∞ + ‖ξ(t) − μ1‖∞.

Proposition 5. Let G be some balancing network with matchings
M (1), . . . , M (T ). Then,

• ‖ξ(t) − μ1‖∞ � Λ2,
• whp over the α-perturbation operation, ‖y(t) − ξ(t)‖∞ � (t2 − t1) +

3
(

1
2 − α

)
t1 + Λ1.

Theorem 1 then follows. The proof of the first item in Proposition 5 is a rather
standard spectral argument (details in the full version). Let us outline the proof
of the second item:

3.1 Proof of Proposition 5: Bounding ‖y(t) − ξ(t)‖∞

The proof of this part resembles in nature the proof of Theorem 2. Assuming
an ordering of G’s vertices, for a balancer b in round t, b = (u, v), u < v, we
set Φ

(t)
u,v = 1 if the initial direction (before the perturbation) is u → v and −1

otherwise (in the lower bound we considered the all-up orientation thus we had
no use of these random variables). As in Section 2, for a balancer b in round t,
the random variable Ψ

(t)
b is −1/2 if the balancer is perturbed and 1/2 otherwise.

Finally, recall that Odd(b) = 1 if there is an excess token, and 0 otherwise. Using
these notation we define a rounding vector ρ(t), which accounts for the rounding
errors in step t. Formally,

ρ(t)
u =

{
Odd(y(t−1)

u + y
(t−1)
v ) · Ψ (t)

u,v · Φ(t)
u,v if u and v are matched in M (t),

0 otherwise.

Now we can write the actual process as follows:

y(t) = y(0)P(t−1) + ρ(t). (2)

Let M
(t)
Even be the set of balancers at time t with no excess token, and M

(t)
Odd the

ones with. Also, let ei be the vector whose entries are 0 except the ith which is
1. We can rewrite ρ(t) as follows:

ρ(t) =
∑

(u,v)∈M
(t)
Odd

Ψ
(t)
u,v · Φ(t)

u,v · (ei − ej

)
.

Unfolding equation (2), similarly to [16], yields then

y(t) = y(0)P[1,t] +
t∑

i=1

ρ(i)P[i+1,t]. (3)
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Fig. 2. Discrepancy for various α-values of CCC230 with random input from [0, 230].
The dotted line describes the experimental results, the broken lines are our theoretical
lower and upper bounds.

Observe that y(0)P[1,t] is just ξ(t) (as ξ(0) = y(0)), and therefore

y(t) − ξ(t) =
∑t

i=1 e(i)P[i+1,t] =
∑t

i=1

∑
(u,v)∈M

(i)
Odd

Ψ
(i)
u,v ·Φ(i)

u,v · (eu − ev) ·P[i+1,t].

In turn,
(
y(t) − ξ(t)

)
v

=
∑t

i=1

∑
(u,w)∈M

(i)
Odd

Ψ
(i)
u,v · Φ(i)

u,v ·
(
P[i+1,t]

u,v − P[i+1,t]
w,v

)
. (4)

Our next task is to bound equation (4) to receive the desired term from Propo-
sition 5. We do that similar in spirit to the way we went around in Section 2.1.
We break this sum into its first t1 summands (whose expected sum we calculate
and to which we apply a large-deviation-bound). The remaining (t − t1) terms
are bounded deterministically. The remainder of the proof can be found in the
full version of this paper.

4 Experimental Result

We examined experimentally how well a CCC230 balances a random input from
[0, 230], for different α values between 0 and 1/2. Figure 2 presents the average
discrepancy over 100 runs, together with the following slightly better bounds on
the expected discrepancy Δ in the random-input case:

• Δ � (1
2 − α) · (log n − �log log n�) + �log log n� + 4,

• Δ � max{(1/2 − α) log n, 1/2 (1− 1
n ) (�log log n	 − 1)}.
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[14] Manthey, B., Rüdiger, R.: Smoothed analysis of binary search trees. Theoret.
Computer Sci. 378(3), 292–315 (2007)

[15] Mavronicolas, M., Sauerwald, T.: The impact of randomization in smoothing net-
works. In: 27th Annual ACM Principles of Distributed Computing (PODC 2008),
pp. 345–354 (2008)

[16] Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of Markov chains and the
analysis of iterative load balancing schemes. In: 39th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 1998), pp. 694–705 (1998)
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