
The Complexity of Growing a Graph

George B. Mertzios1?[0000−0001−7182−585X], Othon
Michail2[0000−0002−6234−3960], George Skretas2,3[0000−0003−2514−8004], Paul G.

Spirakis2,4??[0000−0001−5396−3749], and Michail Theofilatos2[0000−0002−3699−0179]

1 Department of Computer Science, Durham University, UK
george.mertzios@durham.ac.uk

2 Department of Computer Science, University of Liverpool, UK
{othon.michail,p.spirakis,michail.theofilatos}@liverpool.ac.uk

3 Hasso Plattner Institute, University of Potsdam, Germany
georgios.skretas@hpi.de

4 Computer Engineering & Informatics Department, University of Patras, Greece

Abstract. We study a new algorithmic process of graph growth. The
process starts from a single initial vertex u0 and operates in discrete time-
steps, called slots. In every slot t ≥ 1, the process updates the current
graph instance to generate the next graph instance Gt. The process first
sets Gt = Gt−1. Then, for every u ∈ V (Gt−1), it adds at most one
new vertex u′ to V (Gt) and adds the edge uu′ to E(Gt) alongside any
subset of the edges {vu′ | v ∈ V (Gt−1) is at distance at most d − 1
from u in Gt−1}, for some integer d ≥ 1 fixed in advance. The process
completes slot t after removing any (possibly empty) subset of edges from
E(Gt). Removed edges are called excess edges. Gt is the graph grown by
the process after t slots. The goal of this paper is to investigate the
algorithmic and structural properties of this process of graph growth.
Graph Growth Problem: Given a graph family F , we are asked to
design a centralized algorithm that on any input target graph G ∈ F ,
will output such a process growing G, called a growth schedule for G.
Additionally, the algorithm should try to minimize the total number of
slots k and of excess edges ` used by the process.
We show that the most interesting case is when d = 2 and that there is
a natural trade-off between k and `. We begin by investigating growth
schedules of ` = 0 excess edges. On the positive side, we provide polyno-
mial-time algorithms that decide whether a graph has growth schedules
of k = logn or k = n − 1 slots. Along the way, interesting connections
to cop-win graphs are being revealed. On the negative side, we establish
strong hardness results for the problem of determining the minimum
number of slots required to grow a graph with zero excess edges. In
particular, we show that the problem (i) is NP-complete and (ii) for any

ε > 0, cannot be approximated within n
1
3
−ε, unless P = NP. We then

move our focus to the other extreme of the (k, `)-spectrum, to investigate
growth schedules of (poly)logarithmic slots. We show that trees can be
grown in a polylogarithmic number of slots using linearly many excess

? George B. Mertzios was supported by the EPSRC grant EP/P020372/1.
?? Paul G. Spirakis was supported by the EPSRC grant EP/P02002X/1.



2 G.B. Mertzios et al.

edges, while planar graphs can be grown in a logarithmic number of slots
using O(n logn) excess edges. We also give lower bounds on the number
of excess edges, when the number of slots is fixed to logn.

Keywords: Temporal graph · cop-win graph · graph process · polynomial-
time algorithm · lower bound · NP-complete · hardness result

1 Introduction

1.1 Motivation

Growth processes are found in a variety of networked systems. In nature, crys-
tals grow from an initial nucleation or from a “seed” crystal and a process
known as embryogenesis develops sophisticated multicellular organisms, by hav-
ing the genetic code control tissue growth [11, 28]. In human-made systems,
sensor networks are being deployed incrementally to monitor a given geographic
area [12, 19], social-network groups expand by connecting with new individu-
als [13], DNA self-assembly automatically grows molecular shapes and patterns
starting from a seed assembly [14, 31, 34], and high churn or mobility can cause
substantial changes in the size and structure of computer networks [4,6]. Graph-
growth processes are central in some theories of relativistic physics. For example,
in dynamical schemes of causal set theory, causets develop from an initial empti-
ness via a tree-like birth process, represented by dynamic Hasse diagrams [9,30].

Though diverse in nature, all these are examples of systems sharing the notion
of an underlying graph-growth process. In some, like crystal formation, tissue
growth, and sensor deployment, the implicit graph representation is bounded-
degree and embedded in Euclidean geometry. In others, like social-networks and
causal set theory, the underlying graph might be free from strong geometric
constraints but still be subject to other structural properties, as is the special
structure of causal relationships between events in casual set theory.

Inspired by such systems, we study a high-level, graph-theoretic abstraction
of network-growth processes. We do not impose any strong a priori constraints,
like geometry, on the graph structure and restrict our attention to centralized
algorithmic control of the graph dynamics. We do include, however, some weak
conditions on the permissible dynamics, necessary for non-triviality of the model
and in order to capture realistic abstract dynamics. One such condition is “lo-
cality”, according to which a newly introduced vertex u′ in the neighborhood of
a vertex u, can only be connected to vertices within a reasonable distance d− 1
from u. At the same time, we are interested in growth processes that are “effi-
cient”, under meaningful abstract measures of efficiency. We consider two such
measures, to be formally defined later, the time to grow a given target graph
and the number of auxiliary connections, called excess edges, employed to assist
the growth process. For example, in cellular growth, a useful notion of time is
the number of times all existing cells have divided and is usually polylogarith-
mic in the size of the target tissue or organism. In social networks, it is quite
typical that new connections can only be revealed to an individual u′ through its



The Complexity of Growing a Graph 3

connection to another individual u who is already a member of a group. Later,
u′ can drop its connection to u but still maintain some of its connections to
u’s group. The dropped connection uu′ can be viewed as an excess edge, whose
creation and removal has an associated cost, but was nevertheless necessary for
the formation of the eventual neighborhood of u′.

The present study is also motivated by recent work on dynamic graph and
network models [1–3,7, 8, 10,15–18,20,21,21,23–27,32,35].

1.2 Our Approach

We study the following centralized graph-growth process. The process, start-
ing from a single initial vertex u0 and applying vertex-generation and edge-
modification operations, grows a given target graph G. It operates in discrete
time-steps, called slots. In every slot, it generates at most one new vertex u′

for each existing vertex u and connects it to u. Then, for each new vertex u′, it
connects u′ to any (possibly empty) subset of the vertices within a “local” radius
around u, described by a distance parameter d, essentially representing that ra-
dius plus 1, i.e., as measured from u′. Finally, it removes any (possibly empty)
subset of edges whose removal does not disconnect the graph, before moving on
to the next slot. These edge-modification operations are essentially capturing,
at a high level, the local dynamics present in most of the applications discussed
previously. In these applications, new entities typically join a local neighborhood
or a group of other entities, which then allows them to easily connect to any of
the local entities. Moreover, in most of these systems, existing connections can
be easily dropped by a local decision of the two endpoints of that connection.
The rest of this paper exclusively focuses on d = 2. It is not hard to observe
that, without additional considerations, any target graph can be grown by the
following straightforward process. In every slot t, the process generates a new
vertex ut which it connects to u0 and to all neighbors of u0. The graph grown
by this process by the end of slot t, is the clique Kt+1, thus, any Kn is grown
by it within n − 1 slots. As a consequence, any target graph G on n vertices
can be grown by extending the above process to first grow Kn and then delete
all edges in E(Kn) \ E(G), at the end of the last slot. Such a clique growth
process maximizes both complexity parameters that are to be minimized by the
developed processes. One is the time to grow a target graph G, to be defined as
the number of slots used by the process to grow G, and the other is the total
number of deleted edges during the process, called excess edges. The above pro-
cess always uses n− 1 slots and may delete up to Θ(n2) edges for sparse graphs,
such as a path graph or a planar graph.

There is an improvement of the clique process, which connects every new
vertex ut to u0 and to exactly those neighbors v of u0 for which vut is an edge
of the target graph G. At the end, the process deletes those edges incident to
u0 that do not correspond to edges in G, in order to obtain G. If u0 is chosen
to represent the maximum degree, ∆(G), vertex of G, then it is not hard to
see that this process uses n− 1−∆(G) excess edges, while the number of slots
remains n − 1 as in the clique process. However, we shall show that there are



4 G.B. Mertzios et al.

(poly)logarithmic-time processes using close to linear excess edges for some of
those graphs. In general, processes considered efficient in this work will be those
using (poly)logarithmic slots and linear (or close to linear) excess edges.

The goal of this paper is to investigate the algorithmic and structural prop-
erties of such processes of graph growth, with the main focus being on studying
the following problem, which we call the Graph Growth Problem. In this prob-
lem, a centralized algorithm is provided with a target graph G, usually from a
graph family F , and non-negative integers k and ` as its input. The goal is for
the algorithm to compute, in the form of a growth schedule for G, such a process
growing G with at most k slots and using at most ` excess edges, if one exists.
All algorithms we consider are polynomial-time.5

For an illustration of the discussion so far, consider the graph family Fstar =
{G | G is a star on n = 2δ vertices} and assume that edges are activated within
local distance d = 2. We describe a simple algorithm returning a time-optimal
and linear excess-edges growth process, for any target graph G ∈ Fstar given as
input. To keep this exposition simple, we do not give k and ` as input-parameters
to the algorithm. The process computed by the algorithm, shall always start
from G0 = ({u0}, ∅). In every slot t = 1, 2, . . . , δ and every vertex u ∈ V (Gt) the
process generates a new vertex u′, which it connects to u. If t > 1 and u 6= u0, it
then activates the edge u0u

′, which is at distance 2, and removes the edge uu′. It
is easy to see that by the end of slot t, the graph grown by this process is a star on
2t vertices centered at u0, see Figure 1. Thus, the process grows the target star
graph G within δ = log n slots. By observing that 2t/2− 1 edges are removed in
every slot t, it follows that a total of

∑
1≤t≤logn 2t−1−1 <

∑
1≤t≤logn 2t = O(n)

excess edges are used by the process. Note that this algorithm can be easily
designed to compute and return the above growth schedule for any G ∈ Fstar in
time polynomial in the size |〈G〉| of any reasonable representation of G.

Note that there is a natural trade-off between the number of slots and the
number of excess edges that are required to grow a target graph. That is, if we
aim to minimize the number of slots (resp. of excess edges) then the number
of excess edges (resp. slots) increases. To gain some insight into this trade-off,
consider the example of a path graph G on n vertices u0, u1, ..., un−1, where n is
even for simplicity. If we are not allowed to activate any excess edges, then the
only way to growG is to always extend the current path from its endpoints, which
implies that a schedule that grows G must have at least n

2 slots. Conversely, if
the growth schedule has to finish after log n slots, then G can only be grown by
activating Ω(n) excess edges.

In this paper, we mainly focus on this trade-off between the number of slots
and the number of excess edges.

5 Note that this reference to time is about the running time of an algorithm computing
a growth schedule. But the length of the growth schedule is another representation
of time: the time required by the respective growth process to grow a graph. To
distinguish between the two notions of time, we will almost exclusively use the term
number of slots to refer to the length of the growth schedule and time to refer to
the running time of an algorithm generating the schedule.



The Complexity of Growing a Graph 5

u0

u1

u2

u3

u4u5

u6

u7

t = 3

(a)

u0

u1

u2

u3

u4u5

u6

u7

t = 4

u′1

u′2

u′3
u′4

u′5

u′6

u′7

u′0

(b)

u0

u1

u2

u3

u4u5

u6

u7

t = 4

u′1

u′2

u′3
u′4

u′5

u′6

u′7
u′0

(c)

u0

u1

u3

u5

u7
u9

u11

u13

t = 4

u2

u4

u6

u8

u10

u12

u14

u15

(d)

Fig. 1: The operations of the star graph process in slot t = 4. (a) A star of size
23 grown by the end of slot 3. (b) For every ui, a vertex u′i is generated by
the process and is connected to ui. (c) New vertices u′i are connected to u0. (d)
Edges between peripheral-vertices are being removed to obtain the star of size
24 grown by the end of slot 4. Here, we also rename the vertices for clarity.

1.3 Contribution

Section 2 presents the model and problem statement and gives two basic sub-
processes that are recurrent in our growth processes.

In Section 3, we study the zero-excess growth schedule problem, where the
goal is to decide whether a graph G has a growth schedule of k slots and ` = 0
excess edges. We define the candidate elimination ordering of a graph G as an
ordering v1, v2, . . . , vn of V (G) so that for every vertex vi, there is some vj ,
where j < i such that N [vi] ⊆ N [vj ] in the subgraph induced by vi, . . . , vn, for
1 ≤ i ≤ n. We show that a graph has a growth schedule of k = n − 1 slots
and ` = 0 excess edges if and only if it is has a candidate elimination ordering.
Our main positive result is a polynomial-time algorithm that computes whether
a graph has a growth schedule of k = log n slots and ` = 0 excess edges. If it
does, the algorithm also outputs such a growth schedule. On the negative side,
we give two strong hardness results. We first show that the decision version of
the zero-excess growth schedule problem is NP-complete. Then, we prove that,
for every ε > 0, there is no polynomial-time algorithm which computes a n

1
3−ε-

approximate zero-excess growth schedule, unless P = NP.
In Section 4, we study growth schedules of (poly)logarithmic slots. We pro-

vide two polynomial-time algorithms. One outputs, for any tree graph, a growth
schedule of O(log2 n) slots and only O(n) excess edges, and the other outputs,
for any planar graph, a growth schedule of O(log n) slots and O(n log n) excess
edges.

2 Preliminaries

2.1 Model and Problem Statement

A growing graph is modeled as an undirected dynamic graph Gt = (Vt, Et),
where t = 1, 2, . . . , k is a discrete time-step, called slot. The dynamics of Gt
are determined by a centralized growth process (also called growth schedule) σ,



6 G.B. Mertzios et al.

defined as follows. The process always starts from the initial graph instance
G0 = ({u0}, ∅), containing a single initial vertex u0, called the initiator. In every
slot t, the process updates the current graph instance Gt−1 to generate the next,
Gt, according to the following vertex and edge update rules. The process first
sets Gt = Gt−1. Then, for every u ∈ Vt−1, it adds at most one new vertex u′

to Vt (vertex generation operation) and adds to Et the edge uu′ alongside any
subset of the edges {vu′ | v ∈ Vt−1 is at distance at most d− 1 from u in Gt−1},
for some integer edge-activation distance d ≥ 1 fixed in advance (edge activation
operation). Throughout the rest of the paper, d = 2 is always assumed. We call
u′ the vertex generated by the process for vertex u in slot t. We also say that

u is the parent of u′ and that u′ is the child of u at slot t and write u
t→ u′.

The process completes slot t after deleting any (possibly empty) subset of edges
from Et (edge deletion operation). We also denote by V +

t , E+
t , and E−t the set

of vertices generated, edges activated, and edges deleted in slot t, respectively.
Then, Gt = (Vt, Et) is also given by Vt = Vt−1∪V +

t and Et = (Et−1∪E+
t )\E−t .

Deleted edges are called excess edges and we restrict attention to excess edges
whose deletion does not disconnect Gt. We call Gt the graph grown by process σ
after t slots and call the final instance, Gk, the target graph grown by σ. We also
say that σ is a growth schedule for Gk that grows Gk in k slots using ` excess
edges, where `=

∑k
t=1 |E

−
t |, i.e., ` is equal to the total number of deleted edges.

This brings us to the main problem studied in this paper:

Graph Growth Problem: Given a target graph G and non-negative integers
k and `, compute a growth schedule for G of at most k slots and at most ` excess
edges, if one exists.

The target graph G, which is part of the input, will often be drawn from a
given graph family F , e.g., the family of planar graphs. Throughout, n denotes
the number of vertices of the target graph G. In this paper, computation is
always to be performed by a centralized polynomial-time algorithm.

Let w be a vertex generated in a slot t, for 1 ≤ t ≤ k. The birth path of vertex
w is the unique sequence Bw = (u0, ui1 , . . . , uip−1

, uip = w) of vertices, where

ip = t and uij−1

ij→ uij , for every j = 1, 2, . . . , p. That is, Bw is the sequence
of vertex generations that led to the generation of vertex w. Furthermore, the
progeny of a vertex u is the set Pu of descendants of u, i.e., Pu contains those
vertices v for which u ∈ Bv holds.

2.2 Basic Subprocesses

We start by presenting simple algorithms for two basic growth processes that are
recurrent both in our positive and negative results. One is the process of growing
any path graph and the other is that of growing any star graph. Both returned
growth schedules use a number of slots which is logarithmic and a number of
excess edges which is linear in the size of the target graph. Logarithmic being a
trivial lower bound on the number of slots required to grow graphs of n vertices,
both schedules are optimal w.r.t. their number of slots.



The Complexity of Growing a Graph 7

Path algorithm: Let u0 always be the “left” endpoint of the path graph being
grown. For any target path graph G on n vertices, the algorithm computes a
growth schedule for G as follows. For every slot 1 ≤ t ≤ dlog ne and every vertex
ui ∈ Vt−1, for 0 ≤ i ≤ 2t−1 − 1, it generates a new vertex u′i and connects it to
ui. Then, for all 0 ≤ i ≤ 2t−1 − 2, it connects u′i to ui+1 and deletes the edge
uiui+1. Finally, it renames the vertices u0, u1, . . . , u2t−1 from left to right, before
moving on to the next slot.

Lemma 1. For any path graph G on n vertices, the path algorithm computes
in polynomial time a growth schedule σ for G of dlog ne slots and O(n) excess
edges.

Star algorithm: The description of the algorithm can be found in Section 1.2.

Lemma 2. For any star graph G on n vertices, the star algorithm computes
in polynomial time a growth schedule σ for G of dlog ne slots and O(n) excess
edges.

3 Growth Schedules of Zero Excess Edges

In this section, we study which target graphs G can be grown using ` = 0 excess
edges for d = 2. We begin by providing an algorithm that decides whether a
graph G can be grown by any schedule σ. We build on to that, by providing an
algorithm that computes a schedule of k = log n slots for a target graph G, if
one exists. We finish with our main technical result showing that computing the
smallest schedule for a graph G is NP-complete and any approximation of the
shortest schedule cannot be within a factor of n

1
3−ε of the optimal solution, for

any ε > 0, unless P = NP . First, we check whether a graph G has a growth
schedule of ` = 0 excess edges. Observe that a graph G has a growth schedule if
and only if it has a schedule of k = n− 1 slots.

Definition 1. Let G = (V,E) be any graph. A vertex v ∈ V can be the last
generated vertex in a growth schedule σ of ` = 0 for G if there exists a vertex
w ∈ V \ {v} such that N [v] ⊆ N [w]. In this case, v is called a candidate vertex
and w is called the candidate parent of v. Furthermore, the set of candidate
vertices in G is denoted by SG = {v ∈ V : N [v] ⊆ N [w] for some w ∈ V \ {v}}.

Definition 2. A candidate elimination ordering of a graph G is an ordering
v1, v2, . . . , vn of V (G) such that vi is a candidate vertex in the subgraph induced
by vi, . . . , vn, for 1 ≤ i ≤ n.

Lemma 3. A graph G has a growth schedule of n − 1 slots and ` = 0 excess
edges if and only if G has a candidate elimination ordering.

The following algorithm can decide whether a graph has a candidate elimi-
nation ordering, and therefore, whether it can be grown with a schedule of n− 1
slots and ` = 0 excess edges. The algorithm computes the slots of the schedule
in reverse order.



8 G.B. Mertzios et al.

Candidate elimination ordering algorithm: Given the graph G = (V,E),
the algorithm finds all candidate vertices and deletes an arbitrary candidate
vertex and its incident edges. The deleted vertex is added in the last empty slot
of the schedule σ. The algorithm repeats the above process until there is only a
single vertex left. If that is the case, the algorithm produces a growth schedule.
If the algorithm cannot find any candidate vertex for removal, it decides that
the graph cannot be grown.

Theorem 1. The candidate elimination ordering algorithm is a polynomial-
time algorithm that, for any graph G, decides whether G has a growth schedule
of n−1 slots and ` = 0 excess edges, and it outputs such a schedule if one exists.

The notion of candidate elimination orderings turns out to coincide with the
notion of cop-win orderings, discovered in the past in graph theory for a class of
graphs, called cop-win graphs [5,22,29]. In particular, it is not hard to show that
a graph has a candidate elimination ordering if and only if it is a cop-win graph.
This implies that our candidate elimination ordering algorithm is probably
equivalent to some folklore algorithms in the literature of cop-win graphs.

Our next goal is to decide whether a graph G = (V,E) on n vertices has
a growth schedule σ of log n slots and ` = 0 excess edges. The fast growth

algorithm computes the slots of the growth schedule in reverse order.

Fast growth algorithm: The algorithm finds set SG of candidate vertices in
G. It then tries to find a subset L ⊆ SG of candidates that satisfies all of the
following: 1. |L| = n/2. 2. L is an independent set. 3. There is a perfect matching
between the candidate vertices in L and their candidate parents in G. Any set L
that satisfies the above constraints is called valid. The algorithm finds such a set
by creating a 2-SAT formula φ whose solution is a valid set L. If the algorithm
finds such a set L, it adds the vertices in L to the last slot of the schedule. It
then removes the vertices in L from graph G along with their incident edges.
The above process is then repeated to find the next slots. If at any point, graph
G has a single vertex, the algorithm terminates and outputs the schedule. If at
any point, the algorithm cannot find a valid set L, it outputs “no”.

Theorem 2. For any graph G on 2δ vertices, the fast growth algorithm com-
putes in polynomial time a growth schedule σ for G of log n slots and ` = 0
excess edges, if one exists.

We will now show that the problem of computing the minimum number of
slots required for a graph G to be grown is NP-complete, and that it cannot be
approximated within a n

1
3−ε factor for any ε > 0, unless P = NP.

Definition 3. Given any graph G and a natural number κ, find a growth sched-
ule of κ slots and ` = 0 excess edges. We call this problem zero-excess growth
schedule.

Theorem 3. The decision version of the zero-excess graph growth problem is
NP-complete.



The Complexity of Growing a Graph 9

Theorem 4. Let ε > 0. If there exists a polynomial-time algorithm, which, for
every graph G, computes a n

1
3−ε-approximate growth schedule (i.e., a growth

schedule with at most n
1
3−εκ(G) slots), then P = NP.

Proof. The reduction is from the minimum coloring problem. Given an arbitrary
graph G = (V,E) with n vertices, we construct in polynomial time a graph
G′ = (V ′, E′) with N = 4n3 vertices, as follows: We create 2n2 isomorphic
copies of G, which are denoted by GA1 , G

A
2 , . . . , G

A
n2 and GB1 , G

B
2 , . . . , G

B
n2 , and

we also add n2 clique graphs, each of size 2n, denoted by C1, C2, . . . , Cn2 . We
define V ′ = V (GA1 )∪ . . .∪V (GAn2)∪V (GB1 )∪ . . .∪V (GBn2)∪V (C1)∪ . . .∪V (Cn2).
Initially we add to the set E′ the edges of all graphs GA1 , . . . , G

A
n2 , GB1 , . . . , G

B
n2 ,

and C1, . . . , Cn2 . For every i = 1, 2, . . . , n2 − 1 we add to E′ all edges between
V (GAi ) ∪ V (GBi ) and V (GAi+1) ∪ V (GBi+1). For every i = 1, . . . , n2, we add to
E′ all edges between V (Ci) and V (GAi ) ∪ V (GBi ). Furthermore, for every i =
2, . . . , n2, we add to E′ all edges between V (Ci) and V (GAi−1) ∪ V (GBi−1). For
every i = 1, . . . , n2 − 1, we add to E′ all edges between V (Ci) and V (Ci+1). For
every i = 1, 2, . . . , n2 and for every u ∈ V (GBi ), we add to E′ the edge uu′, where
u′ ∈ V (GAi ) is the image of u in the isomorphism mapping between GAi and GBi .
To complete the construction, we pick an arbitrary vertex ai from each Ci. We
add edges among the vertices a1, . . . , an2 such that the resulting induced graph
G′[a1, . . . , an2 ] is a graph on n2 vertices which can be grown by a path schedule
within dlog n2e slots and with zero excess edges (see Lemma 16). This completes
the construction of G′. Clearly, G′ can be constructed in time polynomial in n.

Now we will prove that there exists a growth schedule σ′ of G′ of length at
most n2χ(G) + 4n− 2 + d2 log ne. The schedule will be described inversely, that
is, we will describe the vertices generated in each slot starting from the last slot
of σ′ and finishing with the first slot. First note that every u ∈ V (GAn2)∪V (GBn2)
is a candidate vertex in G′ Indeed, for every w ∈ V (Cn2), we have that N [u] ⊆
V (GAn2)∪V (GBn2)∪V (GAn2−1)∪V (GAn2−1)∪V (Cn2) ⊆ N [w]. To provide the desired
growth schedule σ′, we assume that a minimum coloring of the input graph G
(with χ(G) colors) is known. In the last χ(G) slots, σ′ generates all vertices in
V (GAn2)∪V (GBn2), as follows. At each of these slots, one of the χ(G) color classes
of the minimum coloring cOPT of GAn2 is generated on sufficiently many vertices
among the first n vertices of the clique Cn2 . Simultaneously, a different color
class of the minimum coloring cOPT of GBn2 is generated on sufficiently many
vertices among the last n vertices of the clique Cn2 .

Similarly, for every i = 1, . . . , n2 − 1, once the vertices of V (GAi+1) ∪ . . . ∪
V (GAn2) ∪ V (GBi+1) ∪ . . . ∪ V (GBn2) have been added to the last (n2 − i)χ(G)
slots of σ′, the vertices of V (GAi ) ∪ V (GBi ) are generated in σ′ in χ(G) more
slots. This is possible because every vertex u ∈ V (GAi ) ∪ V (GBi ) is a candidate
vertex after the vertices of V (GAi+1) ∪ . . . ∪ V (GAn2) ∪ V (GBi+1) ∪ . . . ∪ V (GBn2)
have been added to slots. Indeed, for every w ∈ V (Ci), we have that N [u] ⊆
6 From Lemma 1 it follows that the path on n2 vertices can be constructed in dlogn2e

slots using O(n2) excess edges. If we put all these O(n2) excess edges back to the
path of n2 vertices, we obtain a new graph on n2 vertices with O(n2) edges. This
graph is the induced subgraph G′[a1, . . . , an2 ] of G′ on the vertices a1, . . . , an2 .



10 G.B. Mertzios et al.

V (GAi ) ∪ V (GBi ) ∪ V (GAi−1) ∪ V (GAi−1) ∪ V (Ci) ⊆ N [w]. That is, in total, all
vertices of V (GA1 ) ∪ . . . ∪ V (GAn2) ∪ V (GB1 ) ∪ . . . ∪ V (GBn2) are generated in the
last n2χ(G) slots.

The remaining vertices of V (C1)∪ . . .∪V (Cn2) are generated in σ′ in 4n−2+
dlog n2e additional slots. First, for every odd index i and for 2n− 1 consecutive
slots, for vertex ai of V (Ci) exactly one other vertex of V (Ci) is generated. This
is possible because for every vertex u ∈ V (Ci) \ ai, N [u] ⊆ V (Ci) ∪ V (Ci−1) ∪
V (Ci+1) ⊆ N [ai]. Then, for every even index i and for 2n−1 further consecutive
slots, for vertex ai of V (Ci) exactly one other vertex of V (Ci) is generated. That
is, after 4n− 2 slots only the induced subgraph of G′ on the vertices a1, . . . , an2

remains. The final dlog n2e slots of σ′ are the ones obtained by Lemma 1. To
sum up, G′ is grown by the growth schedule σ′ in k = n2χ(G)+4n−2+dlog n2e
slots, and thus κ(G′) ≤ n2χ(G) + 4n− 2 + d2 log ne (1).

Suppose that there exists a polynomial-time algorithm A which computes
an N

1
3−ε-approximate growth schedule σ′′ for graph G′ (which has N vertices),

i.e., a growth schedule of k ≤ N
1
3−εκ(G′) slots. Note that, for every slot of σ′′,

all different vertices of V (GAi ) (resp. V (GBi )) which are generated in this slot
are independent. For every i = 1, . . . , n2, denote by χAi (resp. χBi ) the number
of different slots of σ′′ in which at least one vertex of V (GAi ) (resp. V (GBi ))
appears. Let χ∗ = min{χAi , χBi : 1 ≤ i ≤ n2}. Then, there exists a coloring of G
with at most χ∗ colors (i.e., a partition of G into at most χ∗ independent sets).

Now we show that k ≥ 1
2n

2χ∗. Let i ∈ {2, . . . , n2 − 1} and let u ∈ V (GAi ) ∪
V (GBi ). Assume that u is generated at slot t in σ′′. Then, either all vertices
of V (GAi−1) ∪ V (GBi−1) or all vertices of V (GAi+1) ∪ V (GBi+1) are generated at a
later slot t′ ≥ t + 1 in σ′′. Indeed, it can be easily checked that, if otherwise
both a vertex x ∈ V (GAi−1) ∪ V (GBi−1) and a vertex y ∈ V (GAi+1) ∪ V (GBi+1)
are generated at a slot t′′ ≤ t in σ′′, then u cannot be a candidate vertex
at slot t, which is a contradiction to our assumption. That is, in order for a
vertex u ∈ V (GAi ) ∪ V (GBi ) to be generated at some slot t of σ′′, we must have
that i is either the currently smallest or largest index for which some vertices of
V (GAi )∪V (GBi ) have been generated until slot t. On the other hand, by definition
of χ∗, the growth schedule σ′′ needs at least χ∗ different slots to generate all
vertices of the set V (GAi )∪V (GBi ), for 1 ≤ i ≤ n2. Therefore, since at every slot,
σ′′ can potentially generate vertices of at most two indices i (the smallest and
the largest respectively), it needs to use at least 1

2n
2χ∗ slots to grow the whole

graph G′. Therefore k ≥ 1
2n

2χ∗ (2).
Recall that N = 4n3. It follows by Eq. (1) and Eq. (2) that

1

2
n2χ∗ ≤ k ≤ N 1

3−εκ(G′)

≤ N 1
3−ε(n2χ(G) + 4n− 2 + d2 log ne)

≤ 4n1−3ε(n2χ(G) + 6n)

and thus χ∗ ≤ 8n1−3εχ(G) + 48n−3ε. Note that, for sufficiently large n, we have

that 8n1−3εχ(G) + 48n−3ε ≤ n1−εχ(G). That is, given the N
1
3−ε-approximate

growth schedule produced by the polynomial-time algorithm A, we can compute



The Complexity of Growing a Graph 11

in polynomial time a coloring of G with χ∗ colors such that χ∗ ≤ n1−εχ(G).
This is a contradiction since for every ε > 0, there is no polynomial-time n1−ε-
approximation for minimum coloring, unless P = NP [36]. ut

4 Growth Schedules of (Poly)logarithmic Slots

In this section, we study graphs that have growth schedules of (poly)logarithmic
slots, for d = 2. As we have proven in the previous section, an integral factor
in computing a growth schedule for any graph G, is computing a k-coloring for
G. Since we consider polynomial-time algorithms, we have to restrict ourselves
to graphs where the k-coloring problem can be solved in polynomial time and,
additionally, we want small values of k since we want to produce fast growth
schedules. Therefore, we investigate tree, planar and k-degenerate graph families
since there are polynomial-time algorithms that solve the k-coloring problem for
graphs drawn from these families.

4.1 Trees

We now provide an algorithm that computes growth schedules for tree graphs.
Let G be the target tree graph. The algorithm applies a decomposition strategy
on G, where vertices and edges are removed in phases, until a single vertex is
left. We can then grow the target graph G by reversing its decomposition phases,
using the path and star schedules as subroutines.

Tree algorithm: Starting from a tree graph G, the algorithm keeps alternating
between two phases, a path-cut and a leaf-cut phase. Let G2i, G2i+1, for i ≥ 0,
be the graphs obtained after the execution of the first i pairs of phases and an
additional path-cut phase, respectively.

Path-cut phase: For each path subgraph P = (u1, u2, . . . , uν), for 2 < ν ≤ n,
of the current graph G2i, where u2, u3, ..., uν−1 have degree 2 and u1, uν have
degree 6= 2 in G2i, edge u1uν between the endpoints of P is activated and vertices
u2, u3, ...uν−1 are removed along with their incident edges. If a single vertex is
left, the algorithm terminates; otherwise, it proceeds to the leaf-cut phase.
Leaf-cut phase: Every leaf vertex of the current graph G2i+1 is removed along
with its incident edge. If a single vertex is left, the algorithm terminates; other-
wise, it proceeds to the path-cut phase.

Finally, the algorithm reverses the phases (by decreasing i) to output a
growth schedule for the tree G as follows. For each path-cut phase 2i, all path
subgraphs that were decomposed in phase i are regrown by using the path sched-
ule as a subprocess. These can be executed in parallel in O(log n) slots. The same
holds true for leaf-cut phases 2i + 1, where each can be reversed to regrow the
removed leaves by using star schedules in parallel in O(log n) slots. In the last
slot, the schedule deletes every excess edge. By proving that a total of O(log n)
phases are sufficient to decompose any tree G and that at most one excess edge
per vertex of G is activated, the next theorem follows.



12 G.B. Mertzios et al.

Theorem 5. For any tree graph G on n vertices, the tree algorithm computes
in polynomial time a growth schedule σ for G of O(log2 n) slots and O(n) excess
edges.

4.2 Planar Graphs

In this section, we provide an algorithm that computes a growth schedule for any
target planar graph G = (V,E). The algorithm first computes a 5-coloring of G
and partitions the vertices into color-sets Vi, 1 ≤ i ≤ 5. The color-sets are used
to compute the growth schedule for G. The schedule contains five sub-schedules,
each sub-schedule i generating all vertices in color-set Vi. In every sub-schedule
i, we use a modified version of the star schedule to generate set Vi.
Pre-processing: By using the algorithm of [33], the pre-processing step com-
putes a 5-coloring of the target planar graph G. This creates color-sets Vi ⊆ V ,
where 1 ≤ i ≤ 5, every color-set Vi containing all vertices of color i. W.l.o.g., we
can assume that |V1| ≥ |V2| ≥ |V3| ≥ |V4| ≥ |V5|. Note that every color-set Vi is
an independent set of G.

Planar algorithm: The algorithm picks an arbitrary vertex from V1 and makes
it the initiator u0 of all sub-schedules. Let Vi = {u1, u2, . . . , u|Vi|}. For every
sub-schedule i, 1 ≤ i ≤ 5, it uses the star schedule with u0 as the initiator,
to grow the vertices in Vi in an arbitrary sequence, with some additional edge
activations. In particular, upon generating vertex ux ∈ Vi, for all 1 ≤ x ≤ |Vi|:

1. Edge vux is activated if v ∈
⋃
j<i Vj and uyv ∈ E, for some uy ∈ Vi ∩ Pux

,
both hold (recall that Pux contains the descendants of ux).

2. Edge wux is activated if w ∈
⋃
j<i Vj and wux ∈ E both hold.

Once all vertices of Vi have been generated, the schedule moves on to generate
Vi+1. Once all vertices have been generated, the schedule deletes every edge
uv /∈ E. Note that every edge activated in the growth schedule is an excess edge
with the exception of edges satisfying (2). For an edge wux from (2) to satisfy the
edge-activation distance constraint it must hold that every vertex in the birth
path of ux has an edge with w. This holds true for the edges added in (2), due
to the edges added in (1).

The edges of the star schedule are used to quickly generate the vertices,
while the edges of (1) are used to enable the activation of the edges of (2).
By proving that the star schedule activate O(n) edges, (1) activates O(n log n)
edges, and by observing that the schedule contains star sub-schedules that have
5×O(log n) slots in total, the next theorem follows.

Theorem 6. For any planar graph G on n vertices, the planar algorithm com-
putes in polynomial time a growth schedule for G of O(log n) slots and O(n log n)
excess edges.

Definition 4. A k-degenerate graph G is an undirected graph in which every
subgraph has a vertex of degree at most k.



The Complexity of Growing a Graph 13

Corollary 1. The planar algorithm can be extended to compute, for any graph
G on n vertices and in polynomial time, a growth schedule of O((k1 + 1) log n)
slots, O(k2n log n) and excess edges, where (i) k1 = k2 is the degeneracy of graph
G, or (ii) k1 = ∆ is the maximum degree of graph G and k2 = |E|/n.



14 G.B. Mertzios et al.

References

1. Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev.
Temporal vertex cover with a sliding time window. Journal of Computer and
System Sciences, 107:108–123, 2020.

2. Dana Angluin, James Aspnes, Jiang Chen, Yinghua Wu, and Yitong Yin. Fast
construction of overlay networks. In Proceedings of the 17th ACM symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 145–154, 2005.

3. James Aspnes and Gauri Shah. Skip graphs. ACM Transactions on Algorithms,
3(4):37:1–37:25, 2007.

4. John Augustine, Gopal Pandurangan, Peter Robinson, and Eli Upfal. Towards
robust and efficient computation in dynamic peer-to-peer networks. In Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
551–569, 2012.

5. Hans-Jürgen Bandelt and Erich Prisner. Clique graphs and helly graphs. Journal
of Combinatorial Theory, Series B, 51(1):34–45, 1991.

6. Luca Becchetti, Andrea Clementi, Francesco Pasquale, Luca Trevisan, and Isabella
Ziccardi. Expansion and flooding in dynamic random networks with node churn. In
Proceedings of the 41st IEEE International Conference on Distributed Computing
Systems (ICDCS), pages 976–986, 2021.

7. Kenneth A Berman. Vulnerability of scheduled networks and a generalization of
menger’s theorem. Networks: An International Journal, 28(3):125–134, 1996.

8. Béla Bollobás. Random graphs. Number 73 in Cambridge studies in advanced
mathematics. Cambridge University Press, 2nd edition, 2001.

9. Luca Bombelli, Joohan Lee, David Meyer, and Rafael D. Sorkin. Space-time as a
causal set. Physical Review Letters, 59(5):521, 1987.

10. Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.
Time-varying graphs and dynamic networks. International Journal of Parallel,
Emergent and Distributed Systems, 27(5):387–408, 2012.

11. Michelle M Chan, Zachary D Smith, Stefanie Grosswendt, Helene Kretzmer,
Thomas M Norman, Britt Adamson, Marco Jost, Jeffrey J Quinn, Dian Yang,
Matthew G Jones, et al. Molecular recording of mammalian embryogenesis. Na-
ture, 570(7759):77–82, 2019.

12. Ioannis Chatzigiannakis, Athanasios Kinalis, and Sotiris Nikoletseas. Adaptive
energy management for incremental deployment of heterogeneous wireless sensors.
Theory of Computing Systems, 42:42–72, 2008.

13. Mário Cordeiro, Rui P. Sarmento, Pavel Brazdil, and João Gama. Evolving net-
works and social network analysis methods and techniques. In Social Media and
Journalism, chapter 7. 2018.

14. David Doty. Theory of algorithmic self-assembly. Communications of the ACM,
55(12):78–88, 2012.

15. Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting
edges to restrict the size of an epidemic in temporal networks. Journal of Computer
and System Sciences, 119:60–77, 2021.

16. Seth Gilbert, Gopal Pandurangan, Peter Robinson, and Amitabh Trehan. Dcon-
structor: Efficient and robust network construction with polylogarithmic overhead.
In Proceedings of the 39th ACM Symposium on Principles of Distributed Comput-
ing (PODC), 2020.

17. Thorsten Götte, Kristian Hinnenthal, and Christian Scheideler. Faster construc-
tion of overlay networks. In Proceedings of the 26th International Colloquium on



The Complexity of Growing a Graph 15

Structural Information and Communication Complexity (SIROCCO), pages 262–
276. Springer, 2019.

18. Thorsten Götte, Kristian Hinnenthal, Christian Scheideler, and Julian Werthmann.
Time-optimal construction of overlay networks. In Proceedings of the 40th ACM
Symposium on Principles of Distributed Computing (PODC), pages 457–468, 2021.

19. Andrew Howard, Maja J. Matarić, and Gaurav S Sukhatme. An incremental self-
deployment algorithm for mobile sensor networks. Autonomous Robots, pages 113–
126, 2002.

20. David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference prob-
lems for temporal networks. Journal of Computer and System Sciences, 64(4):820–
842, 2002.

21. Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and
Andrew S. Tomkins. The web as a graph: Measurements, models, and method. In
Computing and Combinatorics, pages 1–17. Springer Berlin Heidelberg, 1999.

22. Min Chih Lin, Francisco J. Soulignac, and Jayme Luiz Szwarcfiter. Arboricity,
h-index, and dynamic algorithms. Theoretical Computer Science, 426:75–90, 2012.

23. George B. Mertzios, Othon Michail, and Paul G. Spirakis. Temporal network
optimization subject to connectivity constraints. Algorithmica, 81(4):1416–1449,
2019.

24. Othon Michail. An introduction to temporal graphs: An algorithmic perspective.
Internet Mathematics, 12(4):239–280, 2016.

25. Othon Michail, George Skretas, and Paul G. Spirakis. On the transformation
capability of feasible mechanisms for programmable matter. Journal of Computer
and System Sciences, 102:18–39, 2019.

26. Othon Michail, George Skretas, and Paul G. Spirakis. Distributed computation
and reconfiguration in actively dynamic networks. In Proceedings of the 39th ACM
Symposium on Principles of Distributed Computing (PODC), pages 448–457, 2020.

27. Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks.
Communications of the ACM, 61(2):72–72, 2018.

28. Hugo A. Méndez-Hernández, Maharshi Ledezma-Rodŕıguez, Randy N. Avilez-
Montalvo, Yary L. Juárez-Gómez, Analesa Skeete, Johny Avilez-Montalvo, Clelia
De-la Peña, and Vı́ctor M. Loyola-Vargas. Signaling overview of plant somatic
embryogenesis. Frontiers in Plant Science, 10, 2019.

29. Tim Poston. Fuzzy Geometry. PhD thesis, University of Warwick, 1971.
30. David Porter Rideout and Rafael D. Sorkin. Classical sequential growth dynamics

for causal sets. Physical Review D, 61(2):024002, 1999.
31. Paul WK. Rothemund. Folding DNA to create nanoscale shapes and patterns.

Nature, 440(7082):297–302, 2006.
32. Christian Scheideler and Alexander Setzer. On the complexity of local graph trans-

formations. In Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

33. Howard Williams. A linear algorithm for colouring planar graphs with five colours.
The Computer Journal, 28:78–81, 1985.

34. Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree,
and Peng Yin. Active self-assembly of algorithmic shapes and patterns in polylog-
arithmic time. In Proceedings of the 4th Conference on Innovations in Theoretical
Computer Science (ITCS), pages 353–354, 2013.

35. Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The
complexity of finding small separators in temporal graphs. Journal of Computer
and System Sciences, 107:72–92, 2020.



16 G.B. Mertzios et al.

36. David Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. Theory of Computing, 3:103–128, 2007.


