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Abstract— For the minimum vertex cover problem, a wide
range of solvers has been proposed over the years. Most classical
exact approaches are encountering run time issues on mas-
sive graphs that are considered nowadays. A straightforward
alternative approach is then to use heuristics, which make
assumptions about the structure of the studied graphs. These
assumptions are typically hard-coded and are hoped to work
well for a wide range of networks—which is in conflict with
the nature of broad benchmark sets.

With this article, we contribute in two ways. First, we
identify a component in an existing solver that influences its
performance depending on the class of graphs, and we then
customize instances of this solver for different classes of graphs.
Second, we create the first algorithm portfolio for the minimum
vertex cover to further improve the performance of a single
integrated approach to the minimum vertex cover problem.

I. INTRODUCTION

Randomized search heuristics and local search algorithms
are commonly used for difficult optimization problems,
where no efficient exact algorithms are available. As our
testbed in this research we use the classical MINIMUM
VERTEX COVER problem, which is the problem of finding a
minimal subset of vertices of the input graph such that every
edge in this graph is incident to at least one node in this sub-
set. The problem is NP-complete and only algorithms with
exponential worst case running time are known. In fact, under
the assumption of the Exponential Time Hypothesis [21]
there cannot be any algorithm solving it with subexponential
worst case running time.

Depending on the network structure, some exact solvers
for MINIMUM VERTEX COVER can perform very efficiently
on sparse real-world networks [2], but the problem remains
theoretically hard in the worst-case and practically hard for
other common benchmark instances. We therefore only focus
on local search approaches and try to achieve a best possible
approximation in a fixed time budget.

Popular local search approaches for tackling MVC include
PLS [29], NuMVC [13], TwMVC [11], COVER [31] and
FastVC [9]. The two currently most popular solvers are
NuMVC and FastVC (see Section II). We compare them
on 123 test instances (see Appendix) from the Network
Repository Benchmark Suite [32] and allow a time limit
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of 1000 seconds for each instance and solver. The straight-
forward quality measure of a vertex cover solver is then
the sum of the sizes of the discovered vertex covers of all
test instances. In this measure, as expected, the more recent
FastVC algorithm improves upon NUMVC by finding in
total vertex covers with 3,966 fewer nodes on the test set.1

Our aim is to find a new variant of FastVC that performs
even better. In this research, we determine a set of FastVC
variants that are tuned using automatic algorithm config-
uration [19], namely the configurators PARAMILS [19],
ROAR [18], and SMAC [18]. Most new variants outperform
the classical FastVC on classes of instances. Depending
on the chosen parameter set, we find vertex covers that
are in total up to 4306 nodes smaller than the ones found
by NuMVC (see Section III). Compared to NuMVC, our
variants are therefore about 9% better than the original
FastVC on the test set.

In a second step in this article, we study which FastVC
variant performs best for which classes of networks. For
graph classes with joint features like social or web graphs,
we observe that even smaller vertex covers can be found
within the same time limit. For different network classes we
propose different FastVC variants.

After developing these specialized solvers for specific
network families, we build an algorithm selector [30] which
decides on the used variant depending on 14 instance features
for a given instance (see Section IV). We observe that the
portfolio again further improves upon the single variants and
discuss limitations.

II. PRELIMINARIES

Minimum Vertex Cover Problem: Finding a MINIMUM
VERTEX COVER of a graph is a classical NP-hard problem.
Given an unweighted, undirected graph G = (V,E), a vertex
cover is defined as a subset of the vertices S ⊆ V , such that
every edge of G has an endpoint in S, i.e., for all edges
{u, v} ∈ E, u ∈ S or v ∈ S. The decision problem k-vertex
cover decides whether a vertex cover of size k exists. We
consider the optimization variant to find a vertex cover of
minimum size.

Applications arise in numerous areas such as network
security, scheduling and VLSI design [17]. The vertex cover
problem is also closely related to the problem of finding a
maximum clique. This has a range of applications in bioin-
formatics and biology, such as identifying related protein

1Here: not on all 123 instances, but on the 112 instances on which
NUMVC produces an output in the alloted time.
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sequences [1] and for finding genetic polymorphism in the
human genome [24].

Numerous algorithms have been proposed for solving the
vertex cover problem. As the target of our investigations, we
choose FASTVC [9], [10] over the popular NUMVC [12] as
a solver for the minimum vertex cover problem as it works
better for massive graphs. FASTVC is based on two low-
complexity heuristics, one for initial construction of a vertex
cover, and one for choosing the vertex to be removed in each
exchanging step, which involves random draws from a set of
candidates.

Minimum Vertex Cover Solver: For our experimental
investigations, we select all 86 instances used by Cai [9]
and Friedrich et al. [16]. Furthermore, we add 37 instances
to further reduce noise in our experiments and provide
statistically more stable results. In the combined instance
set the number of vertices ranges from about 400 to over 6
million, and the number of edges ranges from about 1000 to
over 56 million. All 123 instances are available online [32].

The instances vary widely in their origin. For example, we
are including 14 collaboration networks (ca-*, from various
sources such as Citeseer and also Hollywood productions),
14 web graphs (web-*, showing the state of various subsets
of the internet at particular points in time), five infrastructure
networks (inf-*), six interaction networks (ia-*, e.g. about
email exchange), 21 general social networks (soc-*, e.g.,
Delicious, LastFM, Youtube), and 44 subnets of Facebook
(socfb-*, mostly from different American universities).

Many solvers work in the way that they create a first
cover, and then repeatedly attempt to drop a vertex from it,
which in return might require the addition of other vertices.
A lot of work on local search has focused on criteria for
filtering the set of candidate vertices and on the function
for comparing elements. Once this is done, simply the best
candidate is selected. If the approach aims to select the very
best of the candidates, then this is not feasible for the massive
graphs that we consider due to the computational complexity
involved.

One of the central contributions of FASTVC is its cost-
effective heuristic Best from Multiple Selections (BMS) for
picking a good-enough candidate. For a set S, the BMS
heuristic works as follows [9]: Choose k elements randomly
with replacement from the set S, and then return the best one
(w.r.t. some comparison function f), where k is a parameter.

In the original article, k was set to 50 to strike a balance
between the time complexity and the quality of the selected
vertex. As a consequence of this choice, the probability that
the BMS heuristic chooses a vertex whose so-called loss
value is not greater than 90% vertices in the current vertex
cover is greater than 1 − 0.950 > 0.9948. This means that
the BMS heuristic returns a vertex of very good quality
with a very high probability—we omit further details on the
heuristic as these are outside the scope of this article.

III. PARAMETER TUNING

Although, k = 50 is justified by this theoretical insight,
so far a study is missing whether the empirical performance

of FASTVC can be improved by using a different value of
k. Since manual tuning of parameters is often an error-prone
and tedious task, we can use algorithm configuration proce-
dures, such as PARAMILS [19], GGA [4], [3], ROAR [18],
SMAC [18] or IRACE [27], to automatically determine a
well-performing parameter setting of k. Here, we used the
algorithm configuration (AC) methods PARAMILS, ROAR
and SMAC. ROAR is a random search, PARAMILS is based
on local search in the space of possible parameter settings
and SMAC uses Bayesian optimization [8] as a global
optimization strategy. All three methods use an aggressive
racing strategy [19] to discard poor configurations early with
performance evaluations on only few instances.

In our setting, all three AC methods optimize FASTVC’s
internal parameter k in the range k ∈ [0, 100] using 1, 000
evaluations per tuning and a time budget of 1, 000 seconds
per iteration. For the sake of efficient experiments, we evalu-
ated FASTVC with all 101 settings of k on all instances with
9 different random seeds and used the median-performance
across the random seeds of this pre-evaluated grid in the AC
experiments. The 123 instances are split into a training and
test set; using 61 training instances for optimizing k and 62
test instances to verify that an optimized k generalizes well
to new instances. To ensure that all instances classes are
represented in both instance sets, we use stratified sampling
with strati being instance classes.

To determine well-performing settings of k, we used two
strategies:

1) Configuration on all 61 training instances;
2) Configuration on each of the instance classes.
Based on this setup, the best-performing k across all

training instances is set to 20, see Table I. In comparison
to the original default value 50 of k, FASTVC with k = 20
covers 332 nodes less on the training instances. However,
the same setting covers only 8 more nodes on the test
instances. This is to be expected, since all AC systems have
the assumption that the used instance set is homogeneous
(i.e., there is one well-performing parameter setting for the
entire set), but here, we use a very heterogeneous instance
set from different class. The heterogeneity is a particularly
significant issue here because of the aggressive racing that
can reject a parameter setting already if it performs poorly
on a single instance which can be non-representative for the
entire instance set here.

Looking at the instance subsets with respect to the classes,
the AC systems find better settings of k on all of them except
on class (ia-*) with respect to the training instances. For sc-
*, tech-*, soc-*, socfb-*, the performance improvement also
generalizes well to the test instances. In contrast, the perfor-
mance on inf-* considerably suffers from the optimized k.
Similarly, the performance does not improve on web-*, bio-*
and ca-* on the test instances, on which different values of
k have no impact on the performance of FASTVC. Although
the instances in training and instances stem from the same
class, FASTVC shows a substantially different behavior on
instances from the same class; hence, even not all of the
subsets seem to be not perfectly homogeneous.
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Best k on Training Training Performance Test Performance
PARAMILS ROAR SMAC PARAMILS ROAR SMAC PARAMILS ROAR SMAC

ALL 33 23 20 234 309 332 52 −49 8
inf 17 2 2 15 342 342 −210 −2043 −2043
ia 50 50 50 0 0 0 0 0 0
web 17 5 5 227 410 410 0 0 0
bio 17 10 4 2 2 2 0 0 0
sc 17 8 8 99 397 397 19 92 92
tech 0 2 2 160 216 216 233 219 219
soc 17 3 3 9 33 33 100 401 401
ca 83 13 13 7 12 12 0 0 0
socfb 33 26 26 11 11 11 13 12 12

TABLE I: Comparing FASTVC with parameter k optimized on by different algorithm configuration systems on different
instance subsets. The performance is the number of nodes saved (=fewer covered) compared to the default setting of k = 50.
ALL refers to all 61 training instances (for Training Performance) and to all 62 test instances (for Test Performance)
respectively.

Last but not least, we observe that the setting of k sub-
stantially differs between the different subsets (with a trend
to smaller values than the default of k = 50) and choosing
the best k for each subset would cover 739 more nodes than
FASTVC with k = 50. This supports our observation that
our instances are heterogeneous and k should be selected on
a per-class or per-instance base.

Figure 1 shows an excerpt of our results on the testing
set. The box-plots represent the distribution of results ob-
served by different algorithms and algorithm configurations.
NUMVC (green) is typically the worst-performing algo-
rithm. FASTVC50 (original, black) performs better, however,
it is usually outperformed on socfb-* by FASTVC26 (tuned
on socfb-*). FASTVC20 (best overall in training, red) per-
forms better than FASTVC20 on the large soc-* instances.

Note that NUMVC could not generate a solution on 11 of
the 123 instances. In these cases, we set the solution quality
to the number of vertices in the graph.

IV. INSTANCE ANALYSIS AND ALGORITHM PORTFOLIOS

Overall, we notice that an optimized k for an instance
class typically improves the performance of FASTVC sub-
stantially. A well-known method to exploit this is algorithm
selection [30]. The idea of algorithm selection is that given
instance, an algorithm selector selects a well-performing
algorithm from a (often small, finite) set of algorithms, the
so-called algorithm portfolio.

In the following, we study whether we can also apply
algorithm selection to FASTVC to improve its performance
further than with algorithm configuration only. Based on the
results of algorithm on the training instances, we constructed
a portfolio of settings of k, i.e., k ∈ {2, 3, 4, 5, 8, 13, 26, 50},
which we treat as an algorithm and try to predict which
setting of k should be used for a new given instance.
Additionally, we also add NUMVC to our portfolio as a
possible algorithm to be selected.

Since algorithm selection is often implemented using
machine learning [34], [23], we need two preparation steps:
(i) instance features [28] to characterize instances numeri-
cally and (ii) performance data of each algorithm on each
training instance. Luckily, we already have the latter from

our algorithm configuration experiments, and we need only
to define some instance features for vertex cover instances.

A. Instance Features

Large networks come in many different flavors. Over the
last decades, many ways have been devised to characterize
different aspects of classes of networks. Examples are aspects
of spatial networks [5], community structure in complex
networks [25], and dynamics in small-world graphs [35]).

We use the following subset of 14 features as all feature
values are available online [32]:

• V : number of nodes;
• E: number of edges;
• ρ: density, being the ratio of the number of edges to the

number of possible edges ρ = 2E
V (V−1) ;

• dmin: maximum vertex degree, where the degree of node
v is defined to be the number of nodes that are adjacent
to v;

• davg: average vertex degree;
• dmax: maximum vertex degree;
• r: assortativity coefficient, which is the Pearson correla-

tion coefficient of degree between pairs of linked nodes,
r > 0 indicates a correlation between nodes of similar
degree and r < 0 indicates relationships between nodes
of different degree;

• T : number of triangles formed by three edges (3-
cliques);

• Tavg: average triangles formed by an edge;
• Tmax: maximum triangles formed by an edge;
• κ: global clustering coefficient is the ratio of triangles

to the number of connected triplets of vertices, giving
an indication of the clustering in the whole network;

• κavg: average local clustering coefficient, given by the
proportion of links between the vertices within its
neighborhood divided by the number of links that could
possibly exist between them;

• K: maximum i-core number, where an i-core of a graph
is a maximal induced subgraph and each vertex has
degree at least i;

• ωlb: lower bound on the size of the maximum clique.
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bio-dmela ca-coauthors-dblp ca-dblp-2012 ca-hollywood-2009 ca-IMDB ia-email-EU

inf-roadNet-PA inf-openflights sc-nasasrb sc-pkustk13 sc-shipsec1 soc-BlogCatalog soc-buzznet

soc-digg soc-epinions socfb-B-anon socfb-CMU socfb-Indiana socfb-OR socfb-Stanford3

socfb-UCLA socfb-UCSB37 socfb-UIllinois socfb-American75 socfb-Auburn71 socfb-BC17

socfb-Cornell5 socfb-Michigan23 socfb-MU78 socfb-Temple83 socfb-UNC28 soc-wiki-Talk-dir

soc-flixster soc-gowalla soc-pokec soc-twitter-follows tech-as-skitter tech-p2p-gnutella

tech-routers-rf web-BerkStan web-google web-it-2004 web-spam web-webbase-2001 web-Stanford

1

Fig. 1: Qualitative comparison across the testing set. The axes are omitted to facilitate the qualitative analysis; distributions
further left (smaller) are better. For each instances, we show from top to bottom the performance of NUMVC (green),
FASTVC50 (original, black), FASTVC26 (tuned on socfb-*), and FASTVC20 (best overall in training, red). Shown are the
results of nine independent runs of 1000s each. Omitted are instances where all algorithms always produced the same results.

We list all feature values in the appendix at the end of this
article.

B. Algorithm Selection

Using the instance features from Section IV-A and the
performance data from all relevant k from Section III on
the training instances, we train an algorithm selector, which
can predict with the help of machine learning models which
k to choose for given instance features of a new instance.
Here, we use the state-of-the-art AUTOFOLIO [26] which
implements a broad range of algorithm selection approaches
and uses algorithm configuration (here SMAC [18]) to de-
termine a well-performing one for the problem at hand. Our
first interesting observation is that the default configuration
of AUTOFOLIO (which is quite similar to the well-known

algorithm selector SATZILLA [37], [38]) only slightly im-
proves over selecting the best k on all training instances.
Only after allowing AUTOFOLIO a configuration budget of
1, 000 function evaluation (which needs roughly 10 minutes),
AUTOFOLIO optimizes its own parameter settings such that
it performs better than single k.2

Table II shows the comparison of the optimized FASTVC
on our training instances (k = 13), the best FASTVC on
our test instances (k = 26), the optimized AUTOFOLIO and
a theoretical optimal algorithm selector, called virtual best

2We use the most recent version of AUTOFOLIO available on https://
github.com/mlindauer/AutoFolio. For our vertex cover training
instances, this version chooses to use xgboot [14] instead of the default
random forest as classification model [7] and adds a principle component
analysis with at most 7 dimensions on top.
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Solver Diff. to FASTVC k = 50

FASTVC k = 13 (best on train) −122
FASTVC k = 26 (best on test) 2
AUTOFOLIO (all features) 352
AUTOFOLIO (cheap features, Sect. IV-D) 543
Virtual Best Solver 1568

TABLE II: On test instances, comparing algorithm selector
AUTOFOLIO, the theoretical best performing algorithm se-
lector (called virtual best solver) and the single best solver
from training and test instances. Performance measured by
the difference to the default parameter setting of FASTVC
50.

solver, i.e., always selecting the best performing solver for a
given instance. We compare the performance of our systems
to FASTVC with the previously proposed k = 50 to show
how much FASTVC can profit from using methods such as
algorithm configuration and algorithm selection.

The on training optimized FASTVC with k = 13 covers
122 nodes more than k = 50 on the test instances. This
shows that it is not an easy task to determine a single well-
performing k on the training instances that performs also
well on the test instances.3 A better choice would be k = 26
on the test instances, which also supports that the training
instances do not perfectly resemble the test instances. We
note that in practice, we can only make decisions on the
training instances and do not know the performance on test
instances. Therefore, studying FASTVC with k = 26 shows
only how valid our choice of k = 13 on the training instances
is.

Our algorithm selector AUTOFOLIO (when using all 14
instance features) performs substantially better than both
static choices of k by covering 352 nodes less than k =
50. A perfect algorithm selector could even cover more
nodes showing the importance of a per-instance selection
of k and that a single k across all instances is a sub-
optimal strategy. We believe that adding more instances to
the training instance set and using more informative feature
set can further improve the performance of our algorithm
selector.

C. Portfolio Contribution

For our algorithm selection experiments, we simply use all
relevant settings of k and also NUMVC to select a solver
from. Since the algorithm selector automatically learns which
solvers to select, it often does not hurt to add some more
solvers than necessary to the portfolio. However, with this
strategy, we still lack any insight about the importance of the
individual solvers. Therefore, we also study the portfolio in
two ways:

1) Sorting the solvers by the marginal contribution to the
performance of the virtual best solver; [39]

3In contrast to the results in Table I, we choose k = 13 based on
all training instances whereas the algorithm configuration systems make
decisions based on a subset of instances.

Solver Marg. Contr. Iter. Marg. Contr.

FASTVC k = 13 12 –
FASTVC k = 2 462 732
FASTVC k = 8 47 273
FASTVC k = 26 17 104
FASTVC k = 4 17 49
FASTVC k = 3 8 8
NUMVC 0 2

TABLE III: Marginal contribution to the virtual best solver
(Marg. Contr.) and marginal contribution by greedily adding
a solver one at a time (Iter. Marg. Contr.). Both in number
of nodes on training instances.

2) Iteratively, we greedily construct a portfolio of solvers
by adding the most contributing solver in each itera-
tion.

Fig. 2: Spearman rank coefficients in a heatmap (dark fields
correspond to large correlation).

Table III shows the corresponding results sorted by the
second criterion.

For the marginal contribution (Column ”Marg. Contr.”),
only FASTVC with k = 2 or k = 8 are important. However,
this does not necessarily imply that all other solvers are not
important. If two solvers are highly correlated, both solvers
would have a small marginal contribution, since removing
one solver would not decrease the performance of the virtual
best solver dramatically as long the other solver is still in the
portfolio. Figure 2 shows the correlation of all used solvers in
a heatmap. FASTVC with high values for k (26 and 50) and
NUMVC are substantially different from the other settings
with a small k. Surprisingly, FASTVC with k = 2 still
behaves differently than similar small values of k. Settings
of k between 4 and 8 lead to quite similar results.

If we build our portfolio of solvers iteratively (Column
”Iter. Marg. Contr” in Table III), we would first add the best
performing solver on the training instances (FASTVC with
k = 13) to the portfolio. Secondly, FASTVC with k = 2
improves the virtual best solver performance by 732 more
nodes and then we would add k = 8 to further improve by
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273 nodes. Afterwards, FASTVC with k = 26 and k = 4
further slightly improves the portfolio. All other settings of
k are subsequently not important anymore. So, only these
five solvers out of the 9 studied solvers would be necessary
to build a decent portfolio here.

D. Feature Importance

As the calculation of instance features forms an important
step in the application of algorithm portfolios, we review the
necessary calculation times. In the following, we analyze
which features are the most important ones for algorithm
selection and we investigate how subsets of features impact
portfolio performance.

To investigate which features are actually needed, we
compute for each of the 14 features the average Gini im-
portance [7] across all cost-sensitive random forests models,
that can predict for a pair of solvers which one will perform
better [38]. The results are shown in Figure 3, revealing that
there is not a single feature, but a set of about a dozen
features which together describe a network. It is therefore
hardly possible to manually come up with good strategies
to choose the appropriate heuristic depending on the graph
features.

Fig. 3: Average feature importance of the 14 features based
on Gini importance across all pair-wise random forest mod-
els. The error-bars indicate the 25th and 75th percentile.

As the calculation of instance features forms an important
step in the application of algorithm portfolios, we briefly
review the necessary calculation times in the following. Note
that we keep this analysis fairly theoretical as the feature
values were pre-computed and provided by an external
source.
V and E can be retrieved in constant time as these

are given in the header of the instance file. From these,
the density ρ can also be computed in constant time. The
maximum k-core number K can also be computed efficiently
using a linear time O(E) time algorithm [6]. In contrast to
these, several other features take quadratic time or worse in
the number of vertices or edges. For example, an efficient
algorithm to date for computing the number of triangles has a

complexity of O(V 2.376) [15]. With these, it is then possible
to compute the local and global clustering coefficients, and
other values.

As the previous portfolio investigations in Section IV-B
are done using all 14 features, we now repeat the algorithm
selection experiment using only the four features (K, V ,
ρ and E) that can be calculated efficiently. Surprisingly,
even though AUTOFOLIO has no access to features which
it believes to be important (dmax to r), the performance of
AUTOFOLIO even improved by 191 in comparison to the
full feature set, see Table II. From this experiment, we see
that the exploitation of four (almost) immediately available
instance features results in a portfolio performance that is
comparable to (and actually even better than) a significantly
more time-consuming one that requires the calculation of all
14 features.

V. CONCLUSIONS

We have studied the classical combinatorial optimization
problem MINIMUM VERTEX COVER. We were able to im-
prove the state-of-the-art local search solver FASTVC [9] on
a large set of common benchmark instances. The optimal
parameters of the solver depend on the kind of network
analyzed. We derived an algorithm portfolio that performs
better than any single variant. We also observed a high
heterogeneity among the subclasses of instances.

Future Work: There are different avenues for future
work on further improving algorithm portfolios for vertex
cover. For example, one could use automatic per-instance
algorithm configuration methods, such as ISAC [22] or
Hydra [36]. These methods automatically determine comple-
mentary portfolios of parameter settings and avoid the need
of expert knowledge to partition the instances. We simply
use in our experiments the instance classes to partition our
instances and tuned k on each class; however, the partition
based on the classes is not reflected in the instance feature
space, which makes it later harder for the algorithm selector
to learn a mapping from instance features to optimized pa-
rameter settings. Therefore, automatic methods could maybe
even find better instance partitions and hence improve the
performance of an algorithm selector on vertex cover.

A second interesting future avenue would be to develop
better instance features. So far, we used only static instance
features (such as counting the number of edges or vertices);
however, in some domains such as SAT, MIP or TSP, probing
features (i.e., running for a short amount of time a solver and
extract solving characteristics from it) are essential to predict
the performance of a parameter setting well [28], [20]. This
seems promising, and we have already explored such probing
features for minimum vertex cover and traveling salesperson
problem to learn a reactive restart strategies [33].
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APPENDIX: List of 123 instances used in this research and the corresponding feature values as downloaded from the Network Repository [32].

instance V E ρ dmax dmin davg r T Tavg Tmax κavg κ K ωlb
bio-dmela 7393 25569 0.000935753 190 1 6 -0.05 8697 1 225 0.01 0.01 12 7
bio-yeast 1458 1948 0.00183401 56 1 2 -0.21 618 0 18 0.07 0.05 6 6
ca-AstroPh 18772 198050 0.00112411 504 0 21 0.21 4054323 215 11269 0.63 0.32 57 28
ca-citeseer 227320 814134 0.0000315 1372 1 7 0.07 8139894 35 5398 0.68 0.46 87 69
ca-coauthors-dblp 540486 15245729 0.000104378 3299 1 56 0.51 1332285174 2464 284067 0.8 0.66 337 218
ca-CondMat 23133 93439 0.000349231 279 1 8 0.13 520083 22 1615 0.63 0.26 26 23
ca-CSphd 1882 1740 0.000983039 46 1 1 -0.2 24 0 4 0.01 0 3 3
ca-dblp-2010 226413 716460 0.000028 238 1 6 0.3 4793937 21 5947 0.64 0.38 75 59
ca-dblp-2012 317080 1049866 0.0000209 343 1 6 0.27 6673155 21 8345 0.63 0.31 114 102
ca-Erdos992 6100 7515 0.00040399 61 0 2 -0.44 4830 0 99 0.07 0.04 8 7
ca-GrQc 5242 14484 0.0010544 81 0 5 0.66 144780 27 1179 0.53 0.63 44 44
ca-HepPh 12008 118489 0.00164363 491 0 19 0.63 10075497 839 39633 0.61 0.66 239 239
ca-hollywood-2009 1069126 56306653 0.0000985 11467 1 105 0.35 14748661845 13795 3977656 0.77 0.31 2209 53
ca-IMDB 896305 3782456 9.41657E-06 1590 1 8 -0.05 13074 0 78 0 0 24 3
ca-MathSciNet 332689 820644 0.0000148 496 1 4 0.1 1730334 5 1564 0.41 0.14 25 25
ca-netscience 379 914 0.0127598 34 1 4 -0.08 2763 7 75 0.74 0.43 9 9
ia-email-EU 32430 54397 0.000103449 623 1 3 -0.38 146976 4 1615 0.11 0.03 23 11
ia-email-univ 1133 5451 0.00850021 71 1 9 0.08 16029 14 261 0.22 0.17 12 12
ia-enron-large 33696 180811 0.000318501 1383 1 10 -0.12 2175933 64 17744 0.51 0.09 44 17
ia-fb-messages 1266 6451 0.00805625 112 1 10 -0.08 7473 5 242 0.07 0.04 12 5
ia-reality 6809 7680 0.000331351 261 1 2 -0.68 1200 0 52 0.02 0 6 5
ia-wiki-Talk 92117 360767 0.000085 1220 1 7 -0.03 2509401 27 17699 0.06 0.05 59 10
inf-italy-osm 6686493 7013978 3.1376E-07 9 1 2 0.25 22230 0 5 0 0 4 3
inf-openflights 2939 30501 0.00706468 473 1 20 0.05 853241 290 14954 0.4 0.25 56 20
inf-power 4941 6594 0.000540303 19 1 2 0 1953 0 21 0.08 0.1 6 6
inf-roadNet-CA 1957027 2760388 0.00000144 12 1 2 0.12 361476 0 7 0.05 0.06 4 4
inf-roadNet-PA 1087562 1541514 0.00000261 9 1 2 0.12 201336 0 8 0.05 0.06 4 3
rec-amazon 91813 125704 0.0000298 5 1 2 0.19 103023 1 9 0.27 0.35 5 5
sc-ldoor 952203 20770807 0.0000458 76 0 43 -0.12 567147375 595 1135 0.61 0.57 35 21
sc-msdoor 415863 9378650 0.00010846 76 0 45 -0.12 260626518 626 1135 0.62 0.58 35 21
sc-nasasrb 54870 1311227 0.000871056 275 11 47 0.07 35155833 640 3649 0.56 0.55 36 24
sc-pkustk11 87804 2565054 0.000665431 131 17 58 0.28 79665120 907 3250 0.59 0.46 48 36
sc-pkustk13 94893 3260967 0.00072429 299 17 68 -0.04 135474234 1427 8506 0.65 0.5 42 36
sc-pwtk 217891 5653221 0.000238149 179 1 51 0.25 167944767 770 2342 0.58 0.58 36 25
sc-shipsec1 140385 1707759 0.000173308 67 2 24 0.59 18446736 131 989 0.39 0.39 25 24
sc-shipsec5 179104 2200076 0.00013717 75 1 24 0.56 23188062 129 1165 0.36 0.37 30 24
soc-BlogCatalog 88784 2093195 0.000531099 9444 1 47 -0.23 153580167 1729 804436 0.35 0.06 222 40
soc-brightkite 56739 212945 0.000132294 1134 1 7 0.01 1483224 26 11517 0.17 0.11 53 36
soc-buzznet 101163 2763066 0.000539986 64289 1 54 2.85 92759544 916 1099041 0.23 0.01 154 26
soc-delicious 536108 1365961 0.00000951 3216 1 5 -0.07 1463916 2 8009 0.03 0.01 34 21
soc-digg 770799 5907132 0.000019885 17643 1 15 -0.09 188132376 244 396575 0.09 0.05 237 45
soc-douban 154908 327162 0.0000273 287 1 4 -0.18 121836 0 394 0.02 0.01 16 11
soc-epinions 26588 100120 0.000283267 443 1 7 0.06 479100 18 5151 0.14 0.09 33 16
soc-flickr 513969 3190452 2.41551E-05 4369 1 12 0.16 176313864 343 524525 0.17 0.15 310 53
soc-flixster 2523386 7918801 0.00000249 1474 1 6 -0.32 23691366 9 15190 0.08 0.01 69 31
soc-FourSquare 639014 3214986 0.0000157 106218 1 10 -0.71 64953009 101 1996522 0.11 0 64 30
soc-gowalla 196591 950327 0.0000492 14730 1 9 -0.03 6819414 34 93817 0.24 0.02 52 29
soc-lastfm 1191805 4519330 0.00000636 5150 1 7 -0.14 11838621 9 38000 0.07 0.01 71 14
soc-livejournal 4033137 27933062 0.00000343 2651 1 13 0.27 250658109 62 79740 0.26 0.14 214 87
soc-LiveMocha 104103 2193083 0.000404728 2980 1 42 -0.15 10084953 96 36914 0.05 0.01 93 13
soc-pokec 1632803 22301964 0.0000167 14854 1 27 0 97672374 59 29290 0.11 0.05 48 29
soc-slashdot 70068 358647 0.000146105 2507 1 10 -0.07 1205643 17 13382 0.06 0.03 54 23
soc-twitter-follows 404719 713319 0.00000871 626 1 3 -0.88 88617 0 1687 0.01 0 29 6
soc-twitter-follows-mun 465017 835423 7.7268E-06 811 1 3 -0.87 135064 0 2926 0.02 0 31 6
soc-wiki-Talk-dir 2394385 5021409 1.75173E-06 100032 1 4 -0.29 53666618 22 359836 0.07 0 185 25
soc-youtube 495957 1936748 0.0000157 25409 1 7 -0.03 7331658 14 151081 0.11 0.01 50 16
soc-youtube-snap 1134890 2987624 0.00000464 28754 1 5 -0.04 9169158 8 180820 0.08 0.01 52 16

instance V E ρ dmax dmin davg r T Tavg Tmax κavg κ K ωlb
socfb-A-anon 3097165 23667394 0.00000493 4915 1 15 -0.06 166819284 53 50241 0.1 0.05 75 9
socfb-American75 6386 217662 0.0106763 930 1 68 0.07 4400862 689 17432 0.24 0.16 57 9
socfb-Amherst41 2235 90954 0.0364327 467 1 81 0.06 2748795 1229 14640 0.31 0.23 64 10
socfb-Auburn71 18448 973918 0.00572371 5160 1 105 0 30329328 1644 198991 0.22 0.14 96 13
socfb-B-anon 2937612 20959854 0.00000486 4356 1 14 -0.11 155972349 53 36861 0.09 0.05 64 12
socfb-Baylor93 12803 679817 0.00829531 2109 1 106 0.08 20917197 1633 40865 0.21 0.16 97 11
socfb-BC17 11509 486967 0.00735347 1377 1 84 0.08 10548657 916 27761 0.21 0.14 70 12
socfb-Berkeley13 22900 852419 0.00325111 3434 1 74 0.01 16108779 703 69511 0.21 0.11 65 15
socfb-Bingham82 10004 362894 0.0072528 553 1 72 0.14 7163862 716 17652 0.22 0.16 58 10
socfb-BU10 19700 637528 0.00328563 1819 1 64 0.05 9227970 468 22496 0.19 0.12 51 12
socfb-Cal65 11247 351358 0.00555578 415 1 62 0.19 6361083 565 8243 0.23 0.16 64 19
socfb-CMU 6621 249959 0.0114056 840 1 75 0.12 6930159 1046 24065 0.28 0.19 70 15
socfb-Cornell5 18660 790777 0.00454239 3156 1 84 0.02 18337950 982 77234 0.22 0.14 85 13
socfb-Duke14 9885 506437 0.0103668 1887 1 102 0.07 15427674 1560 41982 0.25 0.17 86 9
socfb-FSU53 27737 1034802 0.0026902 2555 1 74 0.1 23575941 849 27950 0.22 0.15 82 24
socfb-Indiana 29732 1305757 0.00295433 1358 1 87 0.13 28173249 947 37292 0.2 0.14 77 11
socfb-Michigan23 30147 1176516 0.00258913 2031 1 78 0.12 24752640 821 43887 0.21 0.13 89 11
socfb-Mississippi66 10521 610911 0.0110391 1691 1 116 0.15 24761280 2353 60286 0.25 0.18 117 10
socfb-MIT 6402 251230 0.0122613 708 1 78 0.12 7111758 1110 27788 0.27 0.18 73 9
socfb-MU78 15436 649449 0.00545172 653 1 84 0.16 13945266 903 13592 0.21 0.15 71 11
socfb-NYU9 21679 715715 0.00304587 2315 1 66 0.01 10859937 500 39402 0.19 0.11 55 13
socfb-OR 63392 816885 0.000406564 1098 1 25 0.18 10504575 165 19467 0.22 0.15 53 10
socfb-Penn94 41536 1362220 0.0015792 4410 1 65 0 21623388 520 68097 0.21 0.1 63 17
socfb-Rutgers89 24580 784602 0.00259737 1642 1 63 0.08 13394787 544 21290 0.22 0.14 57 9
socfb-Stanford3 11586 568309 0.00846808 1172 1 98 0.1 17507610 1511 33177 0.24 0.16 92 10
socfb-Syracuse56 13653 543982 0.00583701 1340 1 79 0.06 13109538 960 18708 0.24 0.17 76 13
socfb-Temple83 13686 360795 0.00385274 1394 1 52 0.03 5592252 408 16993 0.21 0.13 62 10
socfb-Texas80 31560 1219650 0.00244909 1796 1 77 0.16 28868289 914 34619 0.22 0.15 79 12
socfb-Texas84 36364 1590651 0.00240588 6312 1 87 0 33535656 922 141050 0.19 0.1 82 9
socfb-UC33 16808 522147 0.00369672 1415 1 62 0.09 9670329 575 22686 0.23 0.15 59 15
socfb-UC61 13746 442174 0.00468061 687 1 64 0.2 10531566 766 22660 0.26 0.18 69 18
socfb-UCLA 20453 747604 0.00357445 1180 1 73 0.14 15339651 749 17534 0.21 0.14 66 9
socfb-UConn 17206 604867 0.00408654 1709 1 70 0.09 10252326 595 21515 0.2 0.13 66 9
socfb-UCSB37 14917 482215 0.00433448 810 1 64 0.18 9229971 618 16140 0.22 0.16 66 12
socfb-UCSD34 14948 443221 0.00396747 2165 1 59 0.03 7995471 534 25961 0.23 0.15 57 12
socfb-UF 35111 1465654 0.00237787 8246 1 83 -0.01 36440373 1037 159087 0.22 0.12 84 13
socfb-UGA50 24389 1174057 0.00394774 2926 1 96 0.09 30263433 1240 41323 0.21 0.14 87 12
socfb-UIllinois 30795 1264421 0.00266671 4632 1 82 0.03 28052775 910 66178 0.21 0.14 86 9
socfb-UNC28 18163 766800 0.00464901 3795 1 84 0 16275057 896 94190 0.2 0.12 83 11
socfb-USC35 17444 801853 0.00527057 4459 1 91 0.01 21485247 1231 106421 0.21 0.14 87 9
socfb-Vanderbilt48 8069 427832 0.0131437 2041 1 106 0.04 14224983 1762 60775 0.25 0.18 87 9
socfb-Virginia63 21325 698178 0.00307071 7206 1 65 -0.02 13453515 630 153243 0.22 0.11 71 9
socfb-WashU32 7755 367541 0.0122244 1794 1 94 0.04 10655649 1374 45503 0.26 0.17 78 9
socfb-Wisconsin87 23831 835946 0.00294403 3484 1 70 0 14586621 612 46791 0.21 0.12 61 12
tech-as-caida2007 26475 53381 0.000152321 2628 1 4 -0.19 109095 4 3813 0.21 0.01 23 16
tech-as-skitter 1694616 11094209 0.00000773 35455 1 13 -0.08 86309526 50 564609 0.26 0.01 112 55
tech-internet-as 40164 85123 0.000105539 3370 1 4 -0.18 189840 4 8513 0.21 0.01 24 16
tech-p2p-gnutella 62561 147878 0.0000756 95 1 4 -0.09 6072 0 17 0.01 0 7 4
tech-pgp 10680 24340 0.000426824 206 1 4 0.24 164934 15 2306 0.27 0.38 32 25
tech-RL-caida 190914 607610 0.0000333 1071 1 6 0.02 1364412 7 6044 0.16 0.06 33 17
tech-routers-rf 2113 6632 0.00297222 109 1 6 0.02 31212 14 588 0.25 0.23 16 16
tech-WHOIS 7476 56943 0.00203793 1079 1 15 -0.04 2347482 314 22271 0.49 0.31 89 49
web-arabic-2005 163598 1747269 0.000130568 1102 1 21 0.15 65011059 397 5884 0.65 0.95 102 102
web-BerkStan 685230 7600595 0.0000324 84290 1 22 -0.18 322306034 470 1004568 0.64 0.01 337 18
web-edu 3031 6474 0.00140985 104 1 4 -0.17 30174 9 523 0.56 0.27 30 16
web-google 1299 2773 0.00328924 59 1 4 -0.05 15204 11 189 0.35 0.53 18 18
web-google-dir 875713 5105039 1.33139E-05 6353 1 11 -0.05 69625427 79 48152 0.6 0.09 65 17
web-indochina-2004 11358 47606 0.000738119 199 1 8 0.12 630234 55 1475 0.71 0.57 50 35
web-it-2004 509338 7178413 0.000055341 469 1 28 0.99 1016652636 1996 93368 0.82 0.95 432 432
web-polblogs 643 2280 0.0110464 165 1 7 -0.22 9012 14 392 0.23 0.16 13 9
web-sk-2005 121422 334419 0.0000454 590 1 5 0.08 2980263 24 3481 0.23 0.47 82 53
web-spam 4767 37375 0.00329012 477 1 15 0 387051 81 6273 0.29 0.15 36 14
web-Stanford 281903 2312497 5.81987E-05 38626 1 16 -0.1 48741234 172 382002 0.59 0.01 87 17
web-uk-2005 129632 11744049 0.00139774 850 1 181 1 2513657160 19390 124251 0.99 1 500 500
web-webbase-2001 16062 25593 0.000198417 1679 1 3 -0.1 63345 3 1362 0.22 0.02 33 9
web-wikipedia2009 1864433 4507315 0.00000259 2624 1 4 0.05 6653808 3 12404 0.16 0.05 67 11
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