
List Homomorphism: Beyond the Known
Boundaries

Sriram Bhyravarapu1, Satyabrata Jana1, Fahad Panolan3, Saket Saurabh1,2,
and Shaily Verma1

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
2 University of Bergen, Norway

3 Indian Institute of Technology Hyderabad, Hyderabad, India
{sriramb, saket, shailyverma}@imsc.res.in
satyamtma@gmail.com, fahad@cse.iith.ac.in

Abstract. Given two graphs G and H, and a list L(u) ⊆ V (H) associ-
ated with each u ∈ V (G), a list homomorphism from G to H is a mapping
f : V (G) → V (H) such that (i) for all u ∈ V (G), f(u) ∈ L(u), and (ii)
for all u, v ∈ V (G), if uv ∈ E(G) then f(u)f(v) ∈ E(H). The List Ho-
momorphism problem asks whether there exists a list homomorphism
from G to H. Enright, Stewart and Tardos [SIAM J. Discret. Math.,
2014] showed that the List Homomorphism problem can be solved in

O(nk2−3k+4) time on graphs where every connected induced subgraph of
G admits “a multichain ordering” (see the introduction for the definition
of multichain ordering of a graph), that includes permutation graphs, bi-
convex graphs, and interval graphs, where n = |V (G)| and k = |V (H)|.
We prove that List Homomorphism parameterized by k even when G is
a bipartite permutation graph is W[1]-hard. In fact, our reduction implies
that it is not solvable in time no(k), unless the Exponential Time Hy-
pothesis (ETH) fails. We complement this result with a matching upper
bound and another positive result.
1. There is a O(n8k+3) time algorithm for List Homomorphism on

bipartite graphs that admit a multichain ordering that includes the
class of bipartite permutation graphs and biconvex graphs.

2. For bipartite graph G that admits a multichain ordering, List Ho-
momorphism is fixed parameter tractable when parameterized by k
and the number of layers in the multichain ordering of G.

In addition, we study a variant of List Homomorphism called List
Locally Surjective Homomorphism. We prove that List Locally
Surjective Homomorphism parameterized by the number of vertices
in H is W[1]-hard, even when G is a chordal graph and H is a split graph.

Keywords: List Homomorphism · FPT · W[1]-hardness· bipartite per-
mutation graphs · chordal graphs.

1 Introduction

Given a graph G, a proper coloring is an assignment of colors to the vertices of
G such that adjacent vertices are assigned different colors. Given a graph G and

2 S. Bhyravarapu, S. Jana, F. Panolan, S. Saurabh, and S. Verma

an integer k, the k-Coloring problem asks if there exists a proper coloring of G
using k colors. The k-Coloring problem is known to be NP-complete even when
k = 3 [17]. It is a very well-studied problem due to its practical applications.
Many variants of coloring have been studied. In 1970’s Vizing [27] and Erdös et
al. [11] independently, introduced List k-Coloring which is a generalization
of k-Coloring. Given a graph G and a list of admissible colors L(v) ⊆ [k]
for each vertex v in V (G), the List k-Coloring problem asks whether there
exists a proper coloring of G where each vertex is assigned a color from its list.
Here, [k] = {1, 2, . . . , k}. List k-Coloring has found practical applications in
wireless networks, for example in frequency assignment problem [18,28].

Given two graphs G and H, a graph homomorphism from G to H is a map-
ping f : V (G) → V (H) such that if uv ∈ E(G), then f(u)f(v) ∈ E(H). Given
two graphs G and H, and a list L(v) ⊆ V (H) for each v ∈ V (G), a list homo-
morphism from G to H is a graph homomorphism f from G to H such that
f(v) ∈ L(v) for each vertex v in V (G). Given an instance (G,H,L), the List
Homomorphism problem (LHom for short) asks whether there exists a list ho-
momorphism from G to H. Observe that List k-Coloring is a special case of
List Homomorphism where H is a simple complete graph on k vertices.

List k-Coloring is NP-complete for k ≥ 3 as it is an extension of k-
coloring problem. The problem remains NP-complete even for planar bipartite
graphs [22]. On the positive side, for a fixed k, the problem is known to be
polynomial time solvable on co-graphs [20], P5-free graphs [19] and partial t-
trees [20]. Considering the List Homomorphism problem, given a fixed integer
k = |V (H)|, polynomial time algorithms are available for graphs of bounded tree-
width [8], interval graphs, permutation graphs [10] and convex bipartite graphs
[7]. Recently List Homomorphism on graphs with bounded tree-width has been
studied in [23]. The list homomorphism has also been studied as list H-coloring
in the literature and is a well studied problem [9,5,4,24]. Feder et al. [12,13,14]
gave classifications of the complexity of LHom based on the restrictions on graph
H. Recently, LHom has been studied for signed graphs [1,21,2].

Enright, Stewart and Tardos [10] showed that the List Homomorphism prob-

lem can be solved in O(nk2−3k+4) time on bipartite permutation graphs, interval
graphs and biconvex graphs, where n = |V (G)| and k = |V (H)|. It is natural to
ask whether the running time can be improved or can we obtain a FPT algorithm
when parameterized by k. Towards that we prove the following results.

Theorem 1. LHom can be solved in time O(n4k+3) on bipartite permutation
graphs.

Theorem 2. LHom can be solved in O(n8k+3) time on biconvex graphs.

Theorem 3. List k-Coloring parameterized by k is W[1]-hard on bipartite
permutation graphs. Furthermore, there is no f(k)no(k)-time algorithm for List
k-Coloring, for any computable function f unless ETH fails.

Since List k-Coloring is a particular case of LHom, similar hardness re-
sults hold for LHom. However, we design fixed-parameter tractable (FPT) algo-

List Homomorphism: Beyond the Known Boundaries 3

rithms when parameterized by |V (H)| and the diameter of the input graph G,
where diameter of a graph is the maximum distance between any pair of vertices.

Theorem 4. LHom is FPT on bipartite permutation graphs and biconvex graphs
graphs, when parameterized by |V (H)| and the diameter of the input graph G.

We also a study a variant of LHom called List Locally Surjective Ho-
momorphism. Given two graphs G and H, and a list L(v) ⊆ V (H) for each
v ∈ V (G), a list locally surjective homomorphism from G to H is a list homo-
morphism f : V (G) → V (H) that is surjective in the neighborhood of each
vertex in G. In other words, if f(v) = v′, then for every vertex u′ ∈ NH(v′),
there is a vertex u ∈ NG(v), such that f(u) = u′. That is, for each connected
component C of H if one vertex in C is “used” by the homomorphism, then all
the vertices are used. Given as an input (G,H,L), the List Locally Surjec-
tive Homomorphism problem (LLSHom for short) asks whether there exists
a list locally surjective homomorphism from G to H. We prove the following
result about LLSHom.

Theorem 5 (⋆4). Given an instance (G,H,L) such that G is a chordal graph,
and H is a split graph, it is W[1]-hard to decide whether there is a list locally
surjective homomorphism from G to H, when parameterized by |H|.

Other Related Works. In 1999, Feder et al. [15] studied List M-Partition
problem. The input to the problem is a graph G = (V,E) and a m×m matrix
M with entries M(i, j) ∈ {0, 1, ∗}. The goal is to check whether there exists
a partition of V (G) into m parts (called M -partition) such that for distinct
vertices x and y of G placed in parts i and j respectively, we have that (i) if
M(i, j) = 0, then xy /∈ E(G), (ii) if M(i, j) = 1, then xy ∈ E(G), and (iii) if
M(i, j) = ∗, then xy may or may not be an edge of G. By considering H as a
graph on m vertices and M as a matrix obtained from the adjacency matrix of
H by replacing each 1 with ∗, each homomorphism corresponds to a M -partition
of G. Thus List M-Partition generalizes List k-Coloring and LHom.

Valadkhan [25,26] gave polynomial time algorithms for List M-Partition
for various graph classes. They gave O(m2n4m+2) time algorithms for interval
and permutation graphs, O(m2n8m+2) time algorithms for interval bigraphs,
interval containment bigraphs, and circular-arc graphs, O(m2n4mt+2) time al-
gorithm for comparability graphs with bounded clique-covering number t. The
algorithm on interval graphs is an improvement over the algorithm by Enright,
Stewart and Tardos [10]. Feder et al. [16] showed that List M-Partition can
be solved in O(tt+1 · n) time on graphs of treewidth at most t.

Our Methods. In this paper, we study LHom on sub-classes of bipartite graphs
by exploiting their structural properties. In particular, the sub-classes of bipar-
tite graphs studied in this paper admit a “multichain” ordering (see Definition
3 in Preliminaries). Some of the graph classes that admit a multichain ordering

4 Due to paucity of space the proofs of results marked with ⋆ are omitted here.

4 S. Bhyravarapu, S. Jana, F. Panolan, S. Saurabh, and S. Verma

include interval graphs, permutation graphs, bipartite permutation graphs, bi-
convex graphs, etc [10]. Towards proving Theorems 1 and 2, we prove that there
is a list homomorphism such that if we know the labels of O(k) vertices in a
layer, in polynomial time we can extend that to a list homomorphism.

In Section 3, we present a O(n8k+3) time algorithm for LHom on bipartite
graphs that admit a multichain ordering (Theorem 6). It is known that biconvex
graphs and bipartite permutation graphs admit a multichain ordering. Hence
Theorem 2 follows from Theorem 6. Since there are additional properties for
bipartite permutation graphs, we provide an improved algorithm to bipartite
permutation graphs that runs in O(n4k+3) time (Theorem 1). These are im-
provements over the results from [10].

In Section 4, we show that List k-Coloring is W[1]-hard on bipartite per-
mutation graphs (Theorem 3). We prove this result by giving a parameter pre-
serving reduction from the Multi-colored Independent Set problem.

2 Preliminaries

Let f : D → R be a function from a set D to a set R. For a subset A ⊆ D, we
use f |A : A → R to denote the restriction of f to A. We will also use the words
labelings and mappings for functions. A partial labeling on a set D is a function
on a strict subset of D.

Let G = (V,E) be a graph. We also use V (G) and E(G) to denote the
vertex set and the edge set of the graph G, respectively. For a vertex v ∈ V (G),
the number of vertices adjacent with v is called the degree of v in G and it is
denoted by degG(v) (or simply deg(v) if the graph G is clear from the context).
The set of all the vertices adjacent with v is called as the neighborhood of v
and it is denoted by NG(v) (or simply N(v)). The distance between two vertices
u, v ∈ V (G) is the length of a shortest path between u and v in G. Let X and
Y be two disjoint subsets of V (G), then E(X,Y) denotes the set of edges with
one endpoint in X and the other is in Y . A graph G is called a split graph if the
vertices of G can be partitioned into two sets C and I such that G[C] is a clique
and G[I] is an independent set. A graph is a permutation graph if there is some
pair P1, P2 of permutations of the vertex set such that there is an edge between
vertices x and y if and only if x precedes y in one of {P1, P2}, while y precedes
x in the other. A graph is a bipartite permutation graph if it is both bipartite
and a permutation graph.

Let (G,H,L) be an instance for List Homomorphism, where V (H) =
{1, 2, . . . , k}. First notice that if G is not connected, then (G,H,L) is a yes-
instance if and only if for all connected components C of G, (C,H,L|V (C)) is
a yes-instance. Thus, throughout the paper, we assume that for an instance
(G,H,L) of List Homomorphism, G is connected.

Definition 1 (Chain Graph [10]). A bipartite graph G = (A ⊎ B,E) is a
chain graph if and only if for any two vertices u, v ∈ A, either N(u) ⊆ N(v) or
N(v) ⊆ N(u). It follows that, for any two vertices u, v ∈ B, either N(u) ⊆ N(v)
or N(v) ⊆ N(u).

List Homomorphism: Beyond the Known Boundaries 5

Definition 2. For a graph G and a vertex subset U , we say that an ordering
σ of U is increasing in G, if for any x <σ y, NG(x) ⊆ NG(y). We say that an
ordering σ′ of U is decreasing in G, if for any x <σ′ y, NG(y) ⊆ NG(x).

For a chain graph G = (A ⊎ B,E), there is an ordering σ of A which is
increasing in G and there is an ordering σ′ of B which is decreasing in G. For
a vertex u ∈ A, a vertex v ∈ N(u) is called a private neighbor of u if for any
vertex w such that w <σ u, v is not a neighbor of w. In fact, for a chain graph
G = (A⊎B,E), any ordering of A that is non-decreasing in its degrees increases
in G. Also, any ordering of B that is non-increasing in its degrees decreases in G.

Definition 3 (Multichain ordering). For a connected graph G, the distance
layers of G from a vertex v0 is a sequence L0, L1, . . . , Lr where L0 = {v0}, Li

is the set of vertices that are at distance i from v0 for each i ∈ [r], and r is the
largest integer such that Lr ̸= ∅. These layers form a multichain ordering of G
if for every two consecutive layers Li and Li+1, the edges connecting these two
layers form a chain graph. That is, the graph (Li ∪Li+1, E(Li, Li+1)) is a chain
graph. We say that G admits a multichain ordering if there is a vertex v0 such
that the distance layers of G from v0 forms a multichain ordering.

It is known that all connected permutation graphs and connected interval
graphs have multichain orderings [10]. Let G be a graph and let L0, L1, . . . , Lr

be a multichain ordering of G. Then, for any i ∈ [r], let Gi be the bipartite graph
with vertex set Li−1∪Li and edge set E(Li−1, Li). Then, we know that for each
i ∈ [r], Gi is a chain graph. Thus, for each i ∈ [r−1], there are two orderings σi,1

and σi,2 of Li such that σi,1 is decreasing in Gi and σi,2 is increasing in Gi+1.
The following result implies that for connected bipartite permutation graphs
there is a multichain ordering where for each layer Li, σi,1 is same as σi,2.

Proposition 1 ([3]). A connected graph G = (V,E) is a bipartite permutation
graph if and only if the vertex set V (G) can be partitioned into independent sets
V0, V1, . . . , Vq such that the following holds.

1. Any two vertices in non-consecutive sets are non-adjacent.
2. Any two consecutive sets Vi−1 and Vi, induce a chain graph denoted by Gi.
3. For each j ∈ {0, . . . , q}, there is an ordering σj of Vj with the following

properties. For each i ∈ {1, 2, . . . , q−1}, σi is decreasing in Gi and increasing
in Gi+1. Moreover, σ0 is increasing in G1 and σq is decreasing in Gq.

4. |V0| = 1 and V0, V1, . . . , Vq is the distance layers of G from the vertex in V0.

Observation 1 Let G be a connected bipartite graph that admits a multichain
ordering V0, . . . , Vq. Then for each i ∈ {0, 1, . . . , q}, Vi is an independent set.

3 XP algorithms: Proofs of Theorems 1 and 2

In this section, we give an O(n8k+3) time algorithm for List Homomorphism on
bipartite graphs that admit a multichain ordering. We first discuss an algorithm

6 S. Bhyravarapu, S. Jana, F. Panolan, S. Saurabh, and S. Verma

for LHom on bipartite permutation graphs that runs in O(n4k+3) time (Theo-
rem 1). We then extend this algorithm to bipartite graphs admitting a multichain
ordering that includes biconvex graphs. Thereby, settling Theorem 2.

We first prove the following lemma, which is crucial to our algorithm.

Lemma 1. Let (G,H,L) be an instance of List Homomorphism, where G is
a connected bipartite permutation graph. Let V0, . . . , Vq be a sequence of inde-
pendent sets such that the properties mentioned in Proposition 1 hold. For each
i ∈ {0, . . . , q}, σi is the ordering of Vi and for each j ∈ [q], Gj is the graph
G[Vj−1 ∪ Vj] mentioned in Proposition 1. If there exists a list homomorphism
from G to H, then there exists a list homomorphism f from G to H such that
for any i ∈ {0, 1, . . . , q}, and any w ∈ Vi, at least one of the following is true.

1. w is the first vertex or the last vertex in σi that is assigned the label f(w).
2. f(w) is the least integer in L(w) such that there exist x, y ∈ Vi with x <σi

w <σi
y and f(x) = f(y) = f(w).

Proof. Let f be a list homomorphism such that maximum number of vertices
satisfy the stated properties (1) or (2). If all the vertices satisfy the stated prop-
erties, then f is our desired list homomorphism. Otherwise, let w be a vertex such
that it does not satisfy (1) and (2). Let w ∈ Vi for some i ∈ {0, 1, . . . , q}. Since w
does not satisfy (1), we know that there exist v, x ∈ Vi such that v <σi w <σi x
and f(v) = f(w) = f(x). Since w does not satisfy (2), there exists an integer
c ∈ L(w) and two vertices x′, y′ ∈ Vi such that c < f(w), x′ ≤σi

w ≤σi
y′ and

f(x′) = f(y′) = c. Without loss of generality, let c be the least integer with
the above property. Now consider the following function f ′ : V (G) → V (H). For
each z ̸= w, f ′(z) = f(z) and f ′(w) = c.

Now we claim that f ′ is a list homomorphism from G to H and the number
of vertices in G that satisfies (1) or (2) with respect to f ′ is strictly more than
the number of vertices in G that satisfies (1) or (2) with respect to f , which
leads to a contradiction.

Claim. f ′ is a list homomorphism from G to H.

Proof. Since f is a list homomorphism and c = f ′(w) ∈ L(w), we have that
for any vertex u ∈ V (G), f ′(u) ∈ L(u). Recall that, N(w) ∩ Vi = ∅ and all the
neighbors of w are in Vi−1 ∪Vi+1. Since x

′ ≤σi w ≤σi y
′, we have N(w) ⊆ N(x′)

in Gi and N(w) ⊆ N(y′) in Gi+1. Thus, any neighbor w′ of w is adjacent to
either x′ or y′. This implies that f(w′)f ′(w) is an edge in H. For any edge
zz′ ∈ E(G) with w /∈ {z, z′}, f ′(z)f ′(z′) = f(z)f(z′) and hence f ′(z)f ′(z′) is an
edge in H. Thus, we have proved that f ′ is a list homomorphism. ⊓⊔

Claim. The number of vertices in G that satisfies (1) or (2) with respect to f ′

is strictly more than the number of vertices in G that satisfies (1) or (2) with
respect to f .

Proof. Notice that w does not satisfy (1) and (2) with respect to f , but it satisfies
(2) with respect to f ′.

List Homomorphism: Beyond the Known Boundaries 7

Now we want to prove that for other vertices if they were satisfying (1) or
(2) in f , then they so do in f ′. Let x be the first vertex and y be the last vertex
in σi such that f ′(x) = f ′(y) = f ′(w). Since w satisfies (2) with respect to f ′,
we have that x <σi w <σi y. Let x1 be the first vertex and y1 be the last vertex
in σi such that f(x1) = f(y1) = f(w). Since w does not satisfy (1) with respect
to f , we have that x1 <σi

w <σi
y1.

Let u be a vertex in G such that u ̸= w and u satisfies (1) or (2) with
respect to f . We prove that u satisfies (1) or (2) with respect to f ′ also. If
f ′(u) /∈ {f(w), f ′(w)} or u /∈ Vi, then clearly u satisfies (1) or (2) with respect
to f ′. So we assume that u ∈ Vi and f ′(u) ∈ {f(w), f ′(w)}

Case 1: f ′(u) = f(w), and u satisfies (1) with respect to f . Then u is the
first vertex or the last vertex that is assigned a label f(u) by f . Since w is the
only vertex such that f ′(w) ̸= f(w) and f ′(u) = f(w), u is the first vertex or
the last vertex that is assigned a label f ′(u) = f(u) by f ′.

Case 2: f ′(u) = f(w), and u satisfies (2) with respect to f . Then, f(u)
(which is equal to f(w) and f ′(u)) is the least integer in L(u) such that there
exist x1, y1 ∈ Vi with x1 <σi

u <σi
y1 and f(x1) = f(y1) = f(u) = f(w).

Thus, by the definition of x1 and y1, we have that x1 <σi
u <σi

y1 and f(x1) =
f(y1) = f(u). This implies that u and w appears between x1 and y1 in the
ordering σi. We consider the case x1 <σi

u <σi
w <σi

y1, and we omit the case
x1 <σi w <σi u <σi y1 as the arguments are symmetric. If f ′(w) /∈ L(u), then u
satisfies (2) with respect to f ′. Now, if f ′(w) ∈ L(u), then there will not be any
vertex z <σi

u such that f(z) = f ′(w). Otherwise, we get f(z) = f ′(w) = f(y),
f ′(w) ∈ L(u), and z <σi

u <σi
y, and it contradicts the assumption that f(u)

is the least integer satisfying property (2) for u with respect to f . This implies
that u satisfies (2) with respect to f ′.

Case 3: f ′(u) = f ′(w) and u satisfies (1) with respect to f . Suppose
u is the first vertex in σi that is assigned a label f(u) by f . We claim that
u <σi

w. For the sake of contradiction, let w <σi
u. We know that x <σi

w and
f(x) = f ′(w) = f ′(u). This contradicts the assumption that u is the first vertex
in σi that is assigned a label f(u) by f . Since u <σi w, u is the first vertex in σi

that is assigned a label f ′(u) (which is equal to f(u)) by f ′ and hence u satisfies
(1) with respect to f ′. The case when u is the last vertex in σi that is assigned
a label f(u) by f , is symmetric in arguments and hence is omitted.

Case 4: f ′(u) = f ′(w) and u satisfies (2) with respect to f . Since u satisfies
(2) with respect to f , and f ′(u) = f ′(w), we have that x <σi u <σi y because
x is the first vertex and y is the last vertex in σi which are assigned the label
f(u) = f ′(u) by f . This implies that u satisfies (2) with respect to f ′.

Thus, all the vertices which satisfy (1) or (2) with respect to f also satisfy (1)
or (2) with respect to f ′. The vertex w does not satisfy (1) or (2) with respect to
f , but satisfies (2) with respect to f ′. This completes the proof of the claim. ⊓⊔

This completes the proof of the lemma. ⊓⊔

8 S. Bhyravarapu, S. Jana, F. Panolan, S. Saurabh, and S. Verma

Proof (Proof of Theorem 1). Let (G,H,L) be an instance of LHom where
G = (V,E) is a bipartite permutation graph and V (H) = {1, 2, . . . , k}. By
Proposition 1, there exists a partition of V into V0, V1, . . . , Vq satisfying prop-
erties (1)-(4). Because of property (4), such a partition can be constructed in
polynomial time.

We now discuss the overall idea of the algorithm. In each set Vi, i ∈ {0, 1, . . . , q},
for each label j ∈ [k], we guess whether the label j is assigned to 0, 1 or at least
2 vertices in Vi. For the latter case, when at least two vertices are assigned the
label j, we guess two vertices with label j and extend the labeling to other ver-
tices. Depending on the guess for the label j, we guess the first vertex and the
last vertex (the first and the last vertices are the same when there is exactly
one vertex assigned the label j) in σi that are assigned the label j, in a list ho-
momorphism from G to H. Using the partial labeling obtained from each guess,
we obtain a full labeling of Vi maintaining the property of list homomorphism
using Lemma 1. That is, for each vertex that is not assigned a label, we choose a
label satisfying property (2) of Lemma 1. Then we construct a directed graph G′

using the labelings obtained at each Vi and solve the directed s-t path problem
on G′ to decide if a list homomorphism exists from G to H.

Now we explain the algorithm in detail. We process the vertices of G in the
order V0, V1, . . . , Vq. From (3) of Definition 1, there exists an ordering σi of Vi

that is decreasing in Gi and increasing in Gi+1. At each Vi, 0 ≤ i ≤ q, for each
label j ∈ [k], we guess the first and the last vertices in σi that are assigned the
label j. That is, we guess a partial labeling ĉ of Vi such that at most 2k vertices
are assigned labels. Then we extend ĉ to a full labeling c : Vi → {1, 2, . . . , k}.
For each vertex u labeled under ĉ, we set c(u) = ĉ(u). For each of the remaining
vertices, we use Lemma 1 to assign a label. We say a labeling c of Vi is feasible if
there exists a partial labeling ĉ of Vi that can be extended to c using Lemma 1.
Let Ci denote the set of all feasible labelings of Vi. Hence |Ci| ≤ n2k.

We now construct an auxiliary directed graph G′ with V (G′) = {s, t} ∪C0 ∪
C1∪· · ·∪Cq, where Ci contains a vertex corresponding to every feasible labeling
of Vi, 0 ≤ i ≤ q. We add edges between vertices of two consecutive sets Ci

and Ci+1, for each 0 ≤ i ≤ q − 1, in the following manner. We add a directed
edge from c ∈ Ci to c′ ∈ Ci+1 if the labeling c ∪ c′ is a list homomorphism
from G[Vi ∪ Vi+1] to H, where c and c′ are feasible labelings of Vi and Vi+1,
respectively. We add directed edges from s to all vertices in C0. Similarly, we
add directed edges from all vertices in Cq to t. If we find a s− t path in G′, then
such a path indicates the existence of list homomorphism from G to H.

Next, we show that there exists a list homomorphism from G to H if and
only if there is a directed path from s to t in G′. If there exists a directed path
from s to t in G′, say P , then the number of vertices in P is q + 3. Moreover,
|P ∩ Ci| = 1, for each 0 ≤ i ≤ q. This is due to the fact that there are edges
only between consecutive sets Ci and Ci+1 and the directed edges are from
vertices in Ci to Ci+1. In addition, the edge from c ∈ Ci to c′ ∈ Ci+1 indicates
the existence of list homomorphism from G[Vi ∪ Vi+1] to H, where c and c′ are
feasible labelings of Vi and Vi+1 respectively. Let ci be the vertex at distance i+1

List Homomorphism: Beyond the Known Boundaries 9

from s in P . The vertex ci represents a feasible labeling of Vi. Thus the feasible
labelings c1, . . . , cq assigned to V0, V1, . . . , Vq, respectively, together obtain a list
homomorphism from G to H.

For the forward direction, let f be a list homomorphism from G to H such
that f satisfies the properties mentioned in Lemma 1. Then, there exists a vertex
ci ∈ V (G′) that captures the labeling of Vi with respect to the labeling f , for
each 0 ≤ i ≤ q. Since f is a list homomorphism, there exists an edge from ci to
ci+1, for all 0 ≤ i ≤ q − 1. This leads to a directed path from s to t.

Next, we do the runtime analysis. Because of the property (4) in Proposi-
tion 1, the partition V0, . . . , Vq can be computed in O(n3) time. In our process,
for each Vi, i ∈ {0, . . . , q}, we guess whether a label is assigned to none of the
vertices, one vertex, or more than one vertex in Vi. Since the number of labels
is k, the above guessing takes O(3k) time. Then, we guess at most 2k vertices
from each Vi that are “critical” (the first and the last vertices assigned a label in
Vi) for the labeling resulting in O(3kn2k) partial labelings. We extend a partial
labeling to a full labeling by assigning a label to an unlabelled vertex using (2) of
Lemma 1, which takes O(n2) time. The number of edges between a pair of layers
in G′ is O(32kn4k). Since there are q pairs of layers in G′, the total number of
edges is O(q32kn4k). Since q ≤ n, and checking if an edge corresponds to a valid
list homomorphism takes O(n2) time, we need O(32kn4k+3) time to complete
the construction of G′. The final step of the algorithm is to find a directed s− t
path in G′ which can be done in O(9kn4k+3) time. Thus, the overall running
time is O(9kn4k+3). ⊓⊔

The above algorithm can be extended when the input graph is a bipartite
graph that admits a multichain ordering property. Theorem 2 is a corollary of
Theorem 6.

Theorem 6 (⋆). List Homomorphism can be solved in O(n8k+3) time on
bipartite graphs that admit a multichain ordering property.

4 Hardness: Proof of Theorem 3

In this section, we prove Theorem 3. To prove that, we use a specific type of
chain graph. Let G = (A,B,E) be a bipartite graph with |A| = r and |B| = s
such that (x1, x2, . . . , xr) and (y1, y2, . . . , ys) be the chain orderings of A and
B, respectively. That is (x1, x2, . . . , xr) is increasing in G and (y1, y2, . . . , ys) is
decreasing in G. We call G, an incremental chain graph if E(G) = {xiyj : 1 ≤
i ≤ r, 1 ≤ j ≤ i, j ≤ s}.

Towards proving the hardness, we give a polynomial-time parameter preserv-
ing reduction from the Multicolored Independent Set (McIS for short)
problem to List k-Coloring. In McIS, the input is a graph G, a positive inte-
ger k, and a partition (X1, . . . , Xk) of V (G). The goal is to check if there exists
a k-sized independent set S ⊆ V (G) such that for all i ∈ [k], |S ∩ Xi| = 1.
The problem is known to be W[1]-hard [6]. In fact it is known that McIS can
not be solved in time no(k) unless the Exponential Time Hypothesis fails. Let

10 S. Bhyravarapu, S. Jana, F. Panolan, S. Saurabh, and S. Verma

(G, k, (X1, . . . , Xk)) be an instance of McIS such that m be the number of edges
in G and Xi be an independent set with cardinality n, for each i ∈ [k] (without
loss of generality we can assume this).

For our reduction, we require that m is a multiple of 2 and 3. Suppose m is
not a multiple of 6. In this case, we can modify our instance (G, k) to (G′, k+1)
such that the number of edges in G′ is a multiple of 6. Let m = b mod 6 where
b ∈ {1, 2, . . . 5}. We add one new set of vertices Xk+1 of size n, and add b number
of edges between some vertex ofXk+1 to b vertices inXk. Additionally, we update
the parameter k to k + 1. Observe that G′ has a multicolored independent set
of size k + 1 if and only if G has a multicolored independent set of size k. Thus
without loss of generality, we can assume that m is a multiple of 6 for the given
instance (G, k, (X1, X2, . . . , Xk)).

First of all, we fix an arbitrary ordering of the vertices in Xi, for each i ∈ [k].
Let σ(V (G)) be a vertex ordering of G such that the vertices of X1 appear in
the above mentioned fixed order in σ(V (G)) and then the vertices of X2 and so
on. Let E(G) = {e1, e2, . . . , em} be the set of edges in G. From this we construct
an instance (G′, k′) of List k-Coloring.

Construction of a block. First we explain a construction of a block and later
we explain how to construct G′ from the blocks.

1. Let X ′
i = Xi ∪ {xi} where xi is a new element. We take one copy of each

part X ′
i of G and we call the union of these copies, a layer. We mention that

later we add two or three more vertices to each layer. We take 2m copies of
a layer, say Dj = (Xj1 ∪Xj2 ∪ · · · ∪Xjk), for j ∈ [2m]. We call this union
of 2m layers, a block. For each Dj , we define an order σj on the vertices in
Dj as follows. In the order σ(V (G)) insert xi just before the first vertex of
Xi for all i ∈ [k].

2. For each edge eℓ, we add three new vertices in D2ℓ−1 and two new ver-
tices in D2ℓ. Towards explaining this, let us fix an edge eℓ = uv ∈ E(G)
such that u ∈ Xi and v ∈ Xj for some i, j ∈ [k], where i < j. Let
u2ℓ−1 ∈ X(2ℓ−1)i and v2ℓ−1 ∈ X(2ℓ−1)j be the copies of the vertices u and
v in layer D2ℓ−1, respectively. We add two new vertices α(eℓ) and β(eℓ)
just before the vertices u2ℓ−1 and v2ℓ−1 in σ2ℓ−1, respectively. Similarly, we
add two new vertices α′(eℓ) and β′(eℓ) just before the vertices u2ℓ and v2ℓ

in σ2ℓ, respectively. Also, we add one new vertex γ(eℓ) at the end of the
ordering σ2ℓ−1 in layer D2ℓ−1 and this vertex we call an edge vertex. Let
Q = {α(eℓ), α′(eℓ), β(eℓ), β

′(eℓ), γ(eℓ) : ℓ ∈ [m]}. So, notice that now a
layer Dj is a union of Xj1 ∪Xj2 ∪ · · · ∪Xjk and two or three vertices from
Q. This completes the description of the vertex set of a block B.

Moreover, we use σ2ℓ−1 and σ2ℓ to represent the order of vertices in D2ℓ−1

and D2ℓ, respectively, (including the new vertices) that is naturally derived
from the old σ2ℓ−1 and σ2ℓ as per the explanation of the new vertices added.

3. Next we explain the edges of G′. For each i ∈ {1, 3, . . . , 2m − 1}, we add
edges between Di and Di+1 such that the graph induced on Di ∪Di+1 is an
incremental chain graph. Observe that except the edge vertex, every vertex in

List Homomorphism: Beyond the Known Boundaries 11

Di has a private neighbor in Di+1 now and the edge vertex in Di is adjacent
with every vertex in Di+1. In the next step, we will add more edges.

4. For each ℓ ∈ [m], we add the following edges betweenD2ℓ−1 andD2ℓ. Let eℓ =
uv. We make α(eℓ) adjacent to u2ℓ and β(eℓ) adjacent to v2ℓ. Additionally,
we add an edge between the vertex α′(eℓ) and the vertex that appears just
before the vertex α(eℓ) in the ordering σ2ℓ−1 of layerD2ℓ−1. Similarly, we add
an edge between the vertex β′(eℓ) and the vertex that appears just before
the vertex β(eℓ) in the ordering σ2ℓ−1 of layer D2ℓ−1. See Figure 1 for an
illustration.

5. Next we explain the edges between Di and Di+1, where i ∈ {2, 4, . . . , 2m}.
Recall that Q = {α(eℓ), α′(eℓ), β(eℓ), β

′(eℓ), γ(eℓ) : ℓ ∈ [m]}. Let us fix an
i ∈ {2, 4, . . . , 2m}. We add edges between Di and Di+1 such that the graph
induced on (Di ∪Di+1) \Q with bipartition Di \Q and Di+1 \Q forms an
incremental chain graph with respect to the orderings σi and σi+1 restricted
on Di \ Q and Di+1 \ Q, respectively. Let ℓ and ℓ′ be the integers such
that 2ℓ = i and 2ℓ′ − 1 = i + 1. Notice that ℓ′ = ℓ + 1. Also, notice that
α′(eℓ), β

′(eℓ) ∈ Di and α(eℓ′), β(eℓ′) ∈ Di+1. Add the minimum number of
edges on α′(eℓ), β

′(eℓ), α(eℓ′) and β(eℓ′), between Di and Di+1 such that it
forms a chain graph with respect to orders σi and σi+1. For example, let
w be the endpoint of the edge eℓ in graph G with minimum index in the
ordering σ of graph G′. Let wi and wi+1 be the copies of w in Di and Di+1,
respectively. Note that wi be the vertex that appears just before α′(eℓ).
Then, add edges between α′(eℓ) and all the vertices that appear before wi+1

in σi+1. We also add an edge between α′(eℓ) and wi+1. Similarly, let z be the
vertex that appears just after the minimum index endpoint of the edge eℓ′

in the ordering σ of graph G. Let zi+1 be the copy of vertex z in layer Di+1

and appears just after α(eℓ′). Then add edges between α(eℓ′) and vertices
that appear after zi in σi. We also add an edge between α(eℓ′) and zi. The
cases of β′(eℓ) and β(eℓ′) are symmetric. This completes the description of
the edge set of the block B.

6. We denote the first vertex and the last vertex of any set Xij in layer Di as
first(Xij) and last(Xij), respectively. Notice that first(Xij) is the copy of
xj in Xi,j and it will not corresponds to a vertex in V (G). Next, we define a
list function L : V (B) → [3k]∪{c1, c2, c3, c4, ĉ1, ĉ2, ĉ3, ĉ4}. For each i ∈ [2m],
j ∈ [k], and v ∈ Xij

If i = 1 mod 3, then L(v) =


{3j − 2} if v = first(Xij)

{3j − 1} if v = last(Xij)

{3j − 2, 3j − 1} if first(Xij) < v < last(Xij)

If i = 2 mod 3, then L(v) =


{3j} if v = first(Xij)

{3j − 2} if v = last(Xij)

{3j − 2, 3j} if first(Xij) < v < last(Xij)

12 S. Bhyravarapu, S. Jana, F. Panolan, S. Saurabh, and S. Verma

If i = 0 mod 3, then L(v) =


{3j − 1} if v = first(Xij)

{3j} if v = last(Xij)

{3j − 1, 3j} if first(Xij) < v < last(Xij)

7. For each ℓ ∈ [m], we explain the lists of α(eℓ), α
′(eℓ), β(eℓ), β

′(eℓ), and γ(eℓ)
as follows. Towards that let us fix ℓ ∈ [m]. Let eℓ = uv, where u ∈ Xi and
v ∈ Xj for some 1 ≤ i < j ≤ k. If ℓ is an odd number, then

L(α(eℓ)) = L(first(X(2ℓ−1)i) ∪ {c1}
L(α′(eℓ)) = L(first(X(2ℓ−1)i)) ∪ {c1, c3}
L(β(eℓ)) = L(first(X(2ℓ−1)j) ∪ {c2}
L(β′(eℓ)) = L(first(X(2ℓ−1)j) ∪ {c2, c4}
L(γ(eℓ)) = {c3, c4}

If ℓ is a even number, then replace each cr with ĉr in the above equations,
where r ∈ {1, 2, 3, 4}.

Construction of G′. We take (nk + 1) copies of a block with the same list
function, say B1, B2, . . . , Bnk+1. For any two consecutive blocks Bi and Bi+1,
where i ∈ [nk], we add edges between the last layer of Bi and the first layer of
Bi+1 according to item (5) in the construction of a block. Observe that the color
lists of the vertices of the last layer of Bi and the first layer of Bi+1 are compatible
as the number of layers in each block is a multiple of m, which is a multiple of 3
and by the definition of list function. This completes the construction of graph G′

with a list function L : V (G′) → C, where C = [3k] ∪ {c1, c2, c3, c4, ĉ1, ĉ2, ĉ3, ĉ4}.
It is easy to verify that the obtained graph G′ is a bipartite permutation

graph as the layers of each block partition the vertex set of G′ and the edges
connecting any two consecutive layers induce a chain graph. Moreover, every
vertex v in G′ has a list L(v) ⊆ C.

Note that for every layer Di, the first vertex and the last vertex in each part
Xij has exactly one color in its list, say c and c′, respectively such that c ̸= c′,
where i ∈ [2m], j ∈ [k] and c, c′ ∈ C. All the other vertices in the same part Xij

contain c and c′ in their lists. It follows that in any list coloring, the first vertex
in Xij gets the color c and the last vertex in Xij gets the color c′ and all the
other vertices get the color either c or c′. Note that there exists a vertex w ∈ Xij

such that w is the first vertex in the ordering of Xij which gets the color c′, we
call such a vertex switch. Moreover, a switch corresponds to a vertex in V (G).
Observe that each Xij (i ∈ [2m], j ∈ [k]) contains at least one switch because
of the list assignment of the vertices of Xij . Additionally, each Xij contains at
most one switch by the definition of a switch. Therefore, in each layer Di there
are k switches, exactly one in each part Xij , where i ∈ [2m] and j ∈ [k]. We call
a block B, a consistent block if for any pair of layers Di and Di′ and for any
j ∈ [k], the switches in Xij and Xi′j corresponds to the same vertex in G (i.e.,
these switches are copies of “a vertex” in V (G)).

List Homomorphism: Beyond the Known Boundaries 13

X11

X12

X1k

X21

X22

X2k

X(2m)1

D1 D2 D2m

D2`−1 D2`

X(2`−1)i

X(2`)i

u2`−1 u2`

v2`−1 v2`

α(e`) α′(e`)

β(e`) β′(e`)

γ(e`)

One Block

X31

X32

X3k

D3

X(2m)2

X(2m)k

X(2`−1)j

X(2`)j

Fig. 1. A block on 2m layers in G′ is illustrated on the left side of the figure, where
each Di represents a layer. The vertices and edges (apart from the edges of induced
incremental chain graph) between two consecutive layers D2ℓ−1 and D2ℓ are illustrated
on the right side of the figure (the last two layers), where the green and red colored
vertices are the newly added vertices corresponding to the edge eℓ = uv in G.

Correctness proof. Next, we show that G has a multicolored independent set
of size k if and only if G′ has a list k′-coloring, where k′ = 3k + 8.

Lemma 2. If G has a multicolored independent set of size k, then G′ has a list
k′-coloring, where k′ = 3k + 8.

Proof. Let I = {y1, y2, . . . , yk} be an independent set in G such that yi ∈ Xi.
Our goal is to construct a list coloring ϕ : V (G′) → C. First, in each layer, we
color the first and the last vertex of each set Xij with the (only) color present in
their lists. Next, we color all other vertices (except the vertices from Q) in every
layer Di (i ∈ [2m]) of each block such that the block gets consistent; that is, in
every layer Di of each block, switches corresponds to same vertices. Here, they
correspond to the copies of y1, . . . , yk. That is, for any vertex yj ∈ I and layer
Di, we make the vertex corresponding to yj a switch. That means we color any
vertex (except the vertices in Q) that appears before the vertex corresponding
to yj in the set Xij with the color given to the first vertex of Xij (which is a
copy of xj) and color all the other vertices (except the vertices in Q) in Xij with
the color given to the last vertex of the set Xij , for i ∈ [2m] and j ∈ [k].

Observe that all the colored vertices maintain the proper coloring property
by the chain ordering of each layer at this step. Also, every vertex gets color

14 S. Bhyravarapu, S. Jana, F. Panolan, S. Saurabh, and S. Verma

from its associated list. Thus, all the colored vertices maintain the list coloring
property. The only uncolored vertices are the vertices in Q and the last vertices
(called edge vertices, γ(eℓ) for all ℓ ∈ [m]) in each layer. Next, we explain how
to color those vertices.

Let eℓ = uv be an edge in G such that u ∈ Xi′ and v ∈ Xj′ , where i′, j′ ∈
[k] and i′ < j′. Recall that corresponding to edge eℓ, we have three vertices
α(eℓ),∈ X(2ℓ−1)i′ , β(eℓ) ∈ X(2ℓ−1)j′ , and γ(eℓ) in layer D2ℓ−1; and two vertices
α′(eℓ) ∈ X(2ℓ)i′ and β′(eℓ) ∈ X(2ℓ)j′ of layer D2ℓ. These are the only uncolored
vertices so far in layer D2ℓ−1 and D2ℓ of each block, for all ℓ ∈ [m]. Note that
according to our obtained (partial) list coloring, for any j ∈ [k] and i ∈ [2m],
the switch in Xij is yij (i.e., the copy of yj in the layer Di). Now, there are

three cases based on the position of the vertex u2ℓ−1 (or v2ℓ−1) with respect to
the switches y2ℓ−1

i′ , y2ℓ−1
j′ , y2ℓi′ , y

2ℓ
j′ in layers D2ℓ−1 and D2ℓ. First we explain the

colors of α(eℓ) and α′(eℓ). For this, we have three cases based the position of
u2ℓ−1 compared with y2ℓ−1

i′ .

Case 1: u2ℓ−1 <σ2ℓ−1
y2ℓ−1
i′ . In this case, we have α(eℓ) <σ2ℓ−1

u2ℓ−1 <σ2ℓ−1

y2ℓ−1
i′ and α′(eℓ) <σ2ℓ

u2ℓ <σ2ℓ
y2ℓi′ . Recall that the list of the vertex α(eℓ)

contains the color given to the first vertex x2ℓ−1
i′ of X(2ℓ−1)i′ . Moreover, in our

partial coloring, we colored u2ℓ−1 with the color of x2ℓ−1
i′ . We color α(eℓ) with

the color of xi′ . Notice that the neighbours of α(eℓ) in D2ℓ is a subset of the
neighbours of u2ℓ−1 in D2ℓ. Similarly, the neighbours of α(eℓ) in D2ℓ−2 is a
subset of the neighbours of x2ℓ−1

i′ in D2ℓ−2. So, as long as the colors on x2ℓ−1
i′

and u2ℓ−1 do not violate the proper coloring property, it holds on the vertex
α(eℓ). We color α′(eℓ) with the unique color c′1 in L(α′(eℓ)) ∩ {c1, ĉ1}. Notice
that this color is available only in the list of α(eℓ) in D2ℓ−1 and we colored that
vertex with a different color. Moreover, c′1 is not present in the list of any vertex
in the layer D2ℓ+1.

Case 2: y2ℓ−1
i′ <σ2ℓ−1

u2ℓ−1. In this case, we have y2ℓ−1
i′ <σ2ℓ−1

α(eℓ) <σ2ℓ−1

u2ℓ−1 and y2ℓi′ <σ2ℓ
α′(eℓ) <σ2ℓ

u2ℓ. Notice that y2ℓi′ and u2ℓ are colored with
the color q of last(X(2ℓ)i′) (which is same as the color of x2ℓ−1

i′). We color α′(eℓ)
with color q. Using arguments similar to that in the Case 1, one can argue that
as long as the colors on y2ℓi′ and u2ℓ do not violate the proper coloring property,
it holds on the vertex α′(eℓ). Now we color α(eℓ) with the unique color c′1 in
L(α(eℓ))∩ {c1, ĉ1}. Notice that this color is available only in the list of α′(eℓ) in
D2ℓ and we colored that vertex with a different color. Moreover, c′1 is not present
in the list of any vertex in the layer D2ℓ−2.

Case 3: u2ℓ−1 = y2ℓ−1
i′ . In this case, we have u2ℓ = y2ℓi′ and eℓ incident on yi′

in G. Note that in this case, the vertices α(eℓ) and α′(eℓ) appear just before
y2ℓ−1
i′ and y2ℓi′ , respectively. Recall that the lists of both the vertices α(eℓ) and
α′(eℓ) contain the color given to the first vertex xi′ of X(2ℓ−1)i′ . Observe that the

vertex u2ℓ is the switch in X(2ℓ)i′ and α(eℓ) is adjacent to u2ℓ. Since the vertex

u2ℓ is the switch, u2ℓ is colored with the color ϕ(last(X(2ℓ)i′)), which is same

as ϕ(x2ℓ−1
i′). Therefore, we cannot color the vertex α(eℓ) with the same color

ϕ(x2ℓ−1
i′). In this case, we color the vertex α(eℓ) with the unique color present in

List Homomorphism: Beyond the Known Boundaries 15

L(α(eℓ))∩{c1, ĉ1}. Also, we color the vertex α′(eℓ) with the unique color present
in L(α(eℓ))∩ {c3, ĉ3}. It is easy to argue that the obtained partial coloring does
not violate any constraint so far.

Similar to the Cases 1-3, we color the vertices β(eℓ) and β′(eℓ) based on one
of the cases. Lastly, we color the edge vertex γ(eℓ) from its list. Recall that if
ℓ is odd, L(γ(eℓ)) = {c3, c4} and if ℓ is even L(γ(eℓ)) = {ĉ3, ĉ4}. We consider
the case when ℓ is odd. The other case is symmetric in arguments and hence
omitted. Notice that L(γ(eℓ)) = {c3, c4}. Observe that we use a color from the
set {c3, c4} to color a vertex α′(eℓ) or β′(eℓ), only in the Case 3. In order to
(properly) color the vertex γ(eℓ) from its list, we need to prove that at most one
of the vertices α′(eℓ) and β′(eℓ) belong to Case 3 and use a color from the set
{c3, c4}. Therefore, we prove the following claim.

Claim. For eℓ = uv ∈ E(G), exactly one of the vertices α′(eℓ) or β
′(eℓ) use the

color from the set {c3, c4}.

Proof. Suppose that both the vertices α′(eℓ) and β′(eℓ) use the color from the
set {c3, c4}. It follows that both the vertices α′(eℓ) and β′(eℓ) are colored by the
Case 3. It implies, the vertices u2ℓ−1 = y2ℓ−1

i′ and v2ℓ−1 = y2ℓ−1
j′ . Moreover, the

endpoints of the edge eℓ are yi′ and yj′ . This is a contradiction to the fact that
yi′ and yj′ belong to the independent set I. ⊓⊔

Thus, when ℓ is odd, we can color the edge vertex γ(eℓ) with an available
color from its list {c3, c4} that is not used to color the vertices in Q that are
corresponding to the edge eℓ. Also, notice that γ(eℓ) does not have any neigh-
bours in the layer D2ℓ−2. To argue that the given coloring does not violate any
edge constraints between two consecutive blocks, one can use the subset of the
arguments used in Cases 1-3 and the fact that the last layer of a block is an even
layer and m is a multiple of 3. Hence, we obtained a list k′-coloring of G′. ⊓⊔

Lemma 3 (⋆). If G′ has a list k′-coloring, then G has a multicolored indepen-
dent set of size k, where k′ = 3k + 8.

5 Conclusion

In this paper, we study LHom on bipartite graphs that admit a multichain or-
dering and give efficient algorithms. However, we could not extend the algorithm
to interval graphs because the graph induced by the vertices in a layer (in a mul-
tichain ordering) need not be an independent set. It is interesting to get faster
algorithms for LHom on interval graphs.

Acknowledgements:We would like to thank anonymous referees for their help-
ful comments. The first author acknowledges SERB-DST for supporting this
research via grant PDF/2021/003452.

16 S. Bhyravarapu, S. Jana, F. Panolan, S. Saurabh, and S. Verma

References

1. Jan Bok, Richard Brewster, Tomás Feder, Pavol Hell, and Nikola Jedličková. List
homomorphism problems for signed graphs. arXiv preprint arXiv:2005.05547,
2020.

2. Jan Bok, Richard Brewster, Tomás Feder, Pavol Hell, and Nikola Jedličková. List
Homomorphisms to Separable Signed Graphs. In Conference on Algorithms and
Discrete Applied Mathematics, pages 22–35. Springer, 2022.

3. Andreas Brandstädt and Vadim V. Lozin. On the linear structure and clique-width
of bipartite permutation graphs. Ars Comb., 67, 2003.

4. Hubie Chen, Bart M. P. Jansen, Karolina Okrasa, Astrid Pieterse, and Pawel
Rzazewski. Sparsification Lower Bounds for List H-Coloring. In Yixin Cao,
Siu-Wing Cheng, and Minming Li, editors, 31st International Symposium on Al-
gorithms and Computation, ISAAC 2020, December 14-18, 2020, volume 181 of
LIPIcs, pages 58:1–58:17, 2020.

5. Rajesh Chitnis, László Egri, and Dániel Marx. List h-coloring a graph by removing
few vertices. Algorithmica, 78(1):110–146, 2017.

6. Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized algorithms,
volume 5. Springer, 2015.

7. Josep Dı́az, Öznur Yaşar Diner, Maria Serna, and Oriol Serra. On list k-coloring
convex bipartite graphs. In Graphs and Combinatorial Optimization: from Theory
to Applications, pages 15–26. Springer, 2021.

8. Josep Dı́az, Maria J. Serna, and Dimitrios M. Thilikos. Counting h-colorings of
partial k-trees. Theor. Comput. Sci., 281(1-2):291–309, 2002.

9. László Egri, Andrei Krokhin, Benoit Larose, and Pascal Tesson. The complexity
of the list homomorphism problem for graphs. Theory of Computing Systems,
51(2):143–178, 2012.

10. Jessica A. Enright, Lorna Stewart, and Gábor Tardos. On List Coloring and List
Homomorphism of Permutation and Interval Graphs. SIAM J. Discret. Math.,
28(4):1675–1685, 2014.

11. Paul Erdös, Arthur L Rubin, and Herbert Taylor. Choosability in graphs. In Proc.
West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus
Numerantium, volume 26, pages 125–157, 1979.

12. Tomás Feder and Pavol Hell. List homomorphisms to reflexive graphs. Journal of
Combinatorial Theory, Series B, 72(2):236–250, 1998.

13. Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc
graphs. Combinatorica, 19(4):487–505, 1999.

14. Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of
list homomorphisms. Journal of Graph Theory, 42(1):61–80, 2003.

15. Tomás Feder, Pavol Hell, Sulamita Klein, and Rajeev Motwani. List Partitions.
SIAM J. Discret. Math., 16(3):449–478, 2003.

16. Tomás Feder, Pavol Hell, Sulamita Klein, Loana Tito Nogueira, and Fábio Protti.
List matrix partitions of chordal graphs. Theor. Comput. Sci., 349(1):52–66, 2005.

17. Michael R Garey, David S Johnson, and Larry Stockmeyer. Some simplified NP-
complete problems. In Proceedings of the sixth annual ACM symposium on Theory
of computing, pages 47–63, 1974.

18. N. Garg, M. Papatriantafilou, and P. Tsigas. Distributed list coloring: how to
dynamically allocate frequencies to mobile base stations. In Proceedings of SPDP
’96: 8th IEEE Symposium on Parallel and Distributed Processing, pages 18–25,
1996.

List Homomorphism: Beyond the Known Boundaries 17

19. Ch́ınh T Hoàng, Marcin Kamiński, Vadim Lozin, Joe Sawada, and Xiao Shu. Decid-
ing k-colorability of P5-free graphs in polynomial time. Algorithmica, 57(1):74–81,
2010.

20. Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Discrete
Applied Mathematics, 75(2):135–155, 1997.

21. Hyobin Kim and Mark Siggers. Towards a dichotomy for the switch list homomor-
phism problem for signed graphs. arXiv preprint arXiv:2104.07764, 2021.

22. Jan Kratochvil and Zsolt Tuza. Algorithmic complexity of list colorings. Discrete
Applied Mathematics, 50(3):297–302, 1994.

23. Karolina Okrasa, Marta Piecyk, and Pawel Rzazewski. Full complexity classifica-
tion of the list homomorphism problem for bounded-treewidth graphs. In 28th An-
nual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa,
Italy (Virtual Conference), pages 74:1–74:24, 2020.

24. Karolina Okrasa and Pawel Rzazewski. Complexity of the List Homomorphism
Problem in Hereditary Graph Classes. In Markus Bläser and Benjamin Monmege,
editors, 38th International Symposium on Theoretical Aspects of Computer Science,
STACS 2021, volume 187 of LIPIcs, pages 54:1–54:17, 2021.

25. Payam Valadkhan. List matrix partitions of special graphs. PhD thesis, Applied
Sciences: School of Computing Science, 2013.

26. Payam Valadkhan. List matrix partitions of graphs representing geometric config-
urations. Discret. Appl. Math., 260:237–243, 2019.

27. Vadim G Vizing. Vertex colorings with given colors. Diskret. Analiz, 29:3–10, 1976.
28. Wei Wang and Xin Liu. List-coloring based channel allocation for open-spectrum

wireless networks. In VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Con-
ference, 2005., volume 1, pages 690–694. Citeseer, 2005.

	List Homomorphism: Beyond the Known Boundaries

