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Abstract
We study the problem of counting the number of homomorphisms from an input graph G to a
fixed (quantum) graph H̄ in any finite field of prime order Zp. The subproblem with graph H

was introduced by Faben and Jerrum [ToC’15] and its complexity is still uncharacterised despite
active research, e.g. the very recent work of Focke, Goldberg, Roth, and Zivný [SODA’21]. Our
contribution is threefold.

First, we introduce the study of quantum graphs to the study of modular counting homomor-
phisms. We show that the complexity for a quantum graph H̄ collapses to the complexity criteria
found at dimension 1: graphs. Second, in order to prove cases of intractability we establish a
further reduction to the study of bipartite graphs. Lastly, we establish a dichotomy for all bipartite
pK3,3zteu, dominoq-free graphs by a thorough structural study incorporating both local and global
arguments. This result subsumes all results on bipartite graphs known for all prime moduli and
extends them significantly. Even for the subproblem with p “ 2 this establishes new results.
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1 Introduction

The study of graph homomorphisms represents one of the classic bodies of work in both
discrete mathematics and computer science but remains a very active research area. These
homomorphisms play a crucial role in the study of graph limits and networks [4, 19, 20, 47],
in the study of databases [11, 33, 39, 40], and in the study of spin-systems in statistical
physics [2, 5]. Formally, a graph-homomorphism from G to H is a map from V pGq to V pHq

that preserves edges. Many classic problems studied in computer science can be expressed
with graph homomorphisms. Examples range from the decision problem of determining the
chromatic number of a graph, through the problem of counting the number of independent
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sets, to the problem of counting the number of k-colourings using all k colours. The latter
can be expressed by a linear combination of the number of graph homomorphisms to a set of
non-isomorphic graphs.

Graph homomorphisms are a prime example of a very general class of problems that
frequently yields complexity dichotomies with structural characterisations, where the prop-
erties of a graph implying (in)tractibility are easily computable. However, the dichotomy
itself is hard to establish and by Ladner [37] not obvious to exist. Hell and Nešetřil studied
the decision problem HomsToH with fixed image graph H, that asks whether there exists
a homomorphism from an input graph G to H. In [35] they showed that the problem
HomsToH can be solved in polynomial time if H contains a loop or is bipartite; otherwise
it is NP-complete. Dyer and Greenhill introduced the counting problem #HomsToH with
fixed image graph H, that asks for the number of homomorphisms from an input graph G to
H. In their seminal work [16] they showed that #HomsToH can be solved in polynomial
time if the connected components of H are complete bipartite graphs or reflexive complete
graphs; otherwise it is # P-complete.

Lovász [38] observed that there are many graph parameters that can only be expressed
by a linear combination of computational problems #HomsToH for a set of at least two
graphs H P H. Examples are the class of vertex surjective homomorphisms and compactions
studied in this context by Focke, Goldberg, and Zivný [24]. Lovász [38] introduced the notion
of a quantum graph for a linear combination of finitely many graphs called its constituents.
We refer by the dimension of a quantum graph to its number of constituents and find the set
of graphs at dimension 1. With every increase of dimension, the set of graph parameters
expressible by #HomsToH increases as well. For a quantum graph H̄ the counting problem
#HomsToH̄ denotes then linear combination of problems #HomsToH for all constituents
H of H̄. Chen, Curticapean and Dell [12] studied the complexity of #HomsToH̄ and showed
that the complexity is inherited from the complexity of #HomsToH for all constituents H of
H̄, which is given by the criterion of Dyer and Greenhill. Motivated by this strong connection,
Chen et al. raised the question of whether techniques based on quantum graphs can advance
the state of the art of open problems regarding modular counting homomorphisms.

We study the complexity of the problem #pHomsToH̄ for any prime p and answer the
question of Chen et al. in the affirmative, where the problem #pHomsToH̄ asks for the value
of #HomsToH̄ in the finite field Zp. Our contribution is threefold. First, we obtain results
for the whole class of quantum graphs by showing that the complexity of #pHomsToH̄ is
inherited from the complexity #pHomsToH. Second, we reduce the study of #pHomsToH

to a study of bipartite graphs by establishing a reduction to a restricted homomorphism
problem. Finally, we employ a structural analysis on the set of pK3,3zteu, dominoq-free
graphs and establish a dichotomy for these.

The line of research on modular counting homomorphisms was initiated with the study
of the parity of #HomsToH by Faben and Jerrum [21]. Despite the clear picture on the
non-modular version #HomsToH the modulus implies additional cases of tractibility as
structures in H implying intractibility for #HomsToH get “cancelled” when counting in
a finite field Zp. Faben and Jerrum [21] showed that automorphisms of order p capture a
subset of these “cancellations” and reduced the study to a structural analysis of parameter
graphs H that do not enjoy such automorphisms. These graphs are called order p reduced. In
particular, for p “ 2 they conjectured that automorphisms of order 2 capture all cancellations
and that #2HomsToH for an order 2 reduced graph enjoys the same complexity criterion
as the non-modular version #HomsToH given by Dyer and Greenhill. Despite a growing
line of research by Göbel, Goldberg, and Richerby [26, 27] and the very recent work of Focke,
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Table 1 History of the study of #pHomsToH on bipartite graphs H. (Note that the complexity
study can be restricted to bipartite graphs by the bipartization result of this paper.) Crosses denote
that the result incorporates the dichotomy for the graphclass, a p denotes that the result holds for
all primes. Parenthesis denote that the result is not intrinsic but given by additional argumentation.

Mod Trees Cactus Square- K4-minor- pK3,3zteu, dominoq-
free free free

Faben and Jerrum [21] 2 ˆ̂̂

Göbel et al. [26] 2 ˆ̂̂ ˆ̂̂

Göbel et al. [27] 2 ˆ̂̂ ˆ̂̂

Focke et al. [23] 2 ˆ̂̂ ˆ̂̂ (ˆ̂̂) ˆ̂̂

Göbel et al. [28] p ˆ̂̂

Kazeminia and Bulatov [36] p ˆ̂̂ ˆ̂̂

This paper p ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

Goldberg, Roth, and Zivný [23] the conjecture remains open. The body of work is dominated
by a study of structures as the modulus commands incorporating not only the local but also
global properties of the graph H.

The research on #pHomsToH for arbitrary primes p was already suggested by Faben
and Jerrum [21] as they showed that their results concerning automorphisms of order p

apply for any prime p. However, Valiant [48] showed the existence of computational counting
problems that enjoy a change of complexity with respect to different moduli. Therefore, a
uniform complexity criterion for #pHomsToH would emphasize the special role of graph
homomorphisms even more. The study of #pHomsToH was finally initiated by Göbel,
Lagodzinski, and Seidel [28] and followed by Kazeminia and Bulatov [36]. In light of the richer
structure due to the higher moduli far less is known about the complexity of #pHomsToH

compared to #2HomsToH. Even though Faben and Jerrum [21] as well as Göbel et al. [28]
considered an extension of the conjecture to all prime moduli and the results so far suggest
it, no one has gone that far yet. We illustrate the individual contributions and the state of
the art in Table 1.

1.1 Contribution
We establish a plethora of technical results, which we believe to be a major asset to future
works on the complexity of #pHomsToH and may be of independent interest to different
lines of research. The main contributions are given in the following and discussed in more
depth in the subsequent subsection.

Quantum Homomorphisms

We introduce the study of quantum graphs to the study of #pHomsToH. For any quantum
graph H̄ we find that #pHomsToH̄ is equivalent to #pHomsToH̄ 1, where H̄ 1 is a quantum
graph whose constituents are order p reduced with coefficients in Z˚

p “ Zpzt0u. We call
these constituents the p-constituents of H̄ 1. Focusing on these “reduced” quantum graphs we
obtain the following inheritance theorem.

▶ Theorem 1.1. Let p be a prime and H̄ “
ř

HPH αH H be a quantum graph with p-
constituents H “ tH1, . . . , Hru that are order p reduced pairwise non-isomorphic graphs and
a set of associated constants tαHuHPH that are in Z˚

p . Then,
if there exists a graph H P H such that #pHomsToH is #p P-hard, then #pHomsToH̄

is #p P-hard;
if, for all H P H, #pHomsToH is solvable in polynomial time, then #pHomsToH̄ is
also solvable in polynomial time.

ICALP 2021
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This shows that the complexity of #pHomsToH̄ collapses to the complexity of #pHomsToH.
Even though the set of graph parameters expressible by #HomsToH̄ is arbitrarily larger
compared to the parameters expressible by #HomsToH, the complexity behaviour is
captured at dimension r “ 1, i.e. graphs.

In the same spirit, we show that the reduction technique applied to show Theorem 1.1
yields a universal technique that can be applied to obtain so-called pinning in classes of
graph-homomorphisms closed under the composition. This technique is helpful for our
study as we also obtain pinning for the restricted class of homomorphisms introduced in the
following.

Bipartization

We restrict the study of #pHomsToH to the study of bipartite graphs by a restricted class of
homomorphisms. For two bipartite graphs G “ pLG, RG, EGq and H “ pLH , RH , EHq with
fixed bipartition we say that a homomorphism from G to H preserves the order of the bipar-
tition if the homomorphism maps LG to LH and RG to RH . The problem #pBipHomsToH

with fixed bipartite graph H then asks for the number of these homomorphisms to H. It
allows us to restrict the study of #pHomsToH to the study of bipartite graphs by the
following theorem.

▶ Theorem 1.2. For any prime p and any graph H, there exists a bipartite graph H 1 such
that

if #pBipHomsToH 1 is #p P-hard then #pHomsToH is #p P-hard;
if #pBipHomsToH 1 is solvable in polynomial time then #pHomsToH is solvable in
polynomial time.

This implies that a dichotomy for #pBipHomsToH 1 yields a dichotomy for #pHomsToH.
As we will later show, the graph H 1 is a collection of complete bipartite graphs if and only if
H satisfies the Dyer and Greenhill criterion. An additional feature of Theorem 1.2 is that it
allows for the graph H to contain loops whereas the bipartite graph H’ is always loop-less by
definition. So far no study of #pHomsToH allowed for loops. The structural implications
of a bipartite graph H are also heavily exploited in the following analysis.

Hardness in Bipartite pK3,3zteu, dominoq-Free Graphs

In the longest and most technically involved part of the paper we study bipartite graphs H

not satisfying the Dyer and Greenhill criterion with the goal of finding enough structural
information to establish hardness of #pBipHomsToH. We find that it suffices to study
bipartite graphs in the class denoted G˚p

bip consisting of bipartite graphs without automor-
phisms of order p, that preserve the order of the bipartition. To this end, we conduct a
rigorous structural analysis of the class of bipartite graphs that contain no induced subgraph
isomorphic to K3,3zteu or domino (see Figure 1 for an illustration). Our insights on the
structure of bipartite graphs allow us to establish the following theorem.

▶ Theorem 1.3. Let p be a prime and H P G˚p
bip be a pK3,3zteu, dominoq-free graph.

If there exists a connected component of H that is not a complete bipartite graph, then
#pBipHomsToH is #p P-hard.

In many cases, a domino as induced subgraph yields a pair of vertices x, y where x

dominates y. The class of bipartite domination-free K3,3zteu-free graphs is one of the focal
points of the seminal work by Feder and Vardi [22]. They showed that the class of graph
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Figure 1 From left to right: K3,3zteu; domino; Example of a bipartite pK3,3zteu, dominoq-free
and asymmetric graph containing locally and globally K4 as a minor.

We are thus reduced to showing injectivity of 8 when H is a complete
graph on nodes [1, 2, ..., n] where (say) nodes 1 through m are looped.
Putting *=8(w) and

Z := :
n

i=1

wi

we have

Z=\wi

*i +
1�r

=\wj

*j +
1�r

+wj

for every i, j with 1�i�m< j�n. Since each of these expressions for Z is
strictly increasing in its corresponding variable wi or wj , we must have
w<w$ or w>w$ (say, the former) if w and w$ are distinct vectors with
8(w)=8(w$)=*.

But this cannot be, since if i minimizes w$i �wi then z$i �zi�w$i �wi hence
8(w$) i<8(w) i . Thus the first part of the proof is complete.

For the second, we begin by providing the seven minimal fertile graphs,
illustrated in Fig. 6. Each of them has three or four nodes, with node set,
edges, and loops as follows:

the stick: [a, b, c, d]; [a, b], [b, c], [c, d]; no loops

the pipe: [a, b, c]; [a, b], [b, c]; loop at a
the wrench: [a, b, c]; [a, b], [b, c]; loops at a and b
the wand: [a, b, c]; [a, b], [b, c]; loops at a and c
the hinge: [a, b, c]; [a, b], [b, c]; loops at a, b and c
the key: [a, b, c, d]; [a, b], [a, c], [b, c], [c, d]; no loops

the gun: [a, b, c, d]; [a, b], [a, c], [b, c], [c, d]; loop at c.

The following observation will be used twice.

FIG. 6. The seven minimal fertile graphs.

248 BRIGHTWELL AND WINKLER

Figure 2 Depiction of the seven minimal fertile graphs as given in Brightwell and Winkler [5,
Fig. 6].

retract problems – a notion equivalent to a partially labelled graph homomorphism – to
the class of bipartite domination-free K3,3zteu-free graphs contains as much computational
power as the whole class of constraint satisfaction problems (CSP’s), i.e. every CSP is
polynomially equivalent to a partially labelled graph homomorphism problem, where the
image is a bipartite domination-free K3,3zteu-free graph.

Consider the graphs studied in the work of Brightwell and Winkler [5] shown in Figure 2.
The set of graph homomorphisms to these graphs played a key role in their study of spin
systems in statistical physics. Prior results incorporate only two out of the seven minimal
fertile graphs: “the stick” and “the key”. Following the line of argumentation, our results
incorporate the previous and three additional minimal fertile graphs. The only missing ones
are “the hinge” and “the gun” as the construction used for bipartization yields graphs that are
not domino-free. In fact, the class of bipartite pK3,3zteu, dominoq-free graphs captures all
the classes of bipartite graphs studied in previous works on #2HomsToH and #pHomsToH

except for the recent work by Focke et al. [23] on K4-minor-free graphs. Clearly, every biclique
with at least 3 vertices in each part contains a K4 as minor, as is the case with K3,3zteu. A
domino is K4-minor-free. Hence, our result given by a local property is orthogonal to the
result of Focke et al. [23] given by a global property. An example is depicted in Figure 1.

1.2 Technical Overview
We are going to explain our results and argumentative routes in more detail. Due to their
length, details are omitted but can be found in the full version.

ICALP 2021
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In this work, hardness for modular counting problems is indicated by reducing from
problems that are #p P-hard. The class #p P contains functions of the form “f mod p2,
where f P # P. Notably, for the case p “ 2 the whole polynomial hierarchy reduces to
problems in #2 P by Toda [46].

We briefly discuss the insights by Faben and Jerrum [21]. For a pair of graphs G, H we
denote by HompG Ñ Hq the set of homomorphisms from G to H. By hompG Ñ Hq we
denote the cardinality |HompG Ñ Hq| and, for a modulus p, by homppG Ñ Hq we denote
hompG Ñ Hq pmod pq. The computational problem #HomsToH with parameter H then
asks to compute hompG Ñ Hq for an input G. Similarly, #pHomsToH asks to compute
homppG Ñ Hq. A central point in the study of #pHomsToH is the (non)-existence of
automorphisms of order p, where for p “ 2 these automorphisms are called involutions. Given
an automorphism ϱ of order p acting as a derangement on the subset V 1 Ď V pHq, Faben
and Jerrum [21] showed that the number of homomorphisms σ from any input graph G

to H is equivalent to 0 in Zp if the image of σ intersects V 1. They deduced that, for the
subgraph Hϱ of H induced by the fixpoints V pHqzV 1, there exists a parsimonious reduction
from #pHomsToHϱ to #pHomsToH. Iteratively applying this reduction, one ends up
with a subgraph H˚p of H that admits no automorphism of order p called the order p

reduced form of H. This subgraph is also unique up to ismomorphism and thus well defined
by [21, Theorem 3.7]. The study of #pHomsToH focusses on graphs H that do not admit
automorphisms of order p, which are called order p reduced.

1.2.1 Quantum Homomorphisms
It has been observed by Borgs, Chayes, Kahn, and Lovász [3] that the study of linear
combinations of homomorphisms provides great insights especially on the comparability of
pairs of graphs, for instance if one is a subgraph of the other. Lovász [38] introduced the
term quantum graph, denoted H̄, for a linear combination of finitely many graphs and calls
the set of pairwise non-isomorphic graphs H with coefficient αH ‰ 0 in H̄ its constituents:

H̄ “
ÿ

HPH
αH H.

A computational problem on H̄ translates into the linear combination of computational
problems on entities H in H with coefficient αH . By Lovász [38] every graph parameter has –
if any – a unique expression by a linear combination of finitely many graph homomorphisms
up to isomorphisms.

We establish a polynomial time reduction from #pHomsToH to #pHomsToH̄, for
any quantum graph H̄ and any constituent H in H̄. Such a polynomial time reduction is
commonly referred to as a pinning-reduction because it enables us to consider the subproblem
where a partially mapping is already fixed. One of the main problems of reduction algorithms
on modular counting problems is the loss of control of summations in a finite field because we
cannot infer from a number of non-zero summands that the sum is non-zero. For instance, let
p “ 2 and H̄ be the quantum graph consisting of the two graphs H1 and H2 with coefficients
αH1 “ αH2 “ 1, where H1 is an asymmetric tree and H2 is the disjoint union of a copy
of H1 and an isolated vertex. Let G be a connected graph and input for #HomsToH̄,
then we obtain hompG Ñ H2q “ hompG Ñ H1q ` hompG Ñ K1q. Consequently, when
computing hompG Ñ H1q ` hompG Ñ H2q in Z2 the term referring to H1 vanishes and
this amounts to computing hompG Ñ K1q, which is polynomial time solvable. However,
Theorem 1.1 yields that #2HomsToH̄ is #2 P-hard. The reason is that the split into
hompG Ñ H1q ` hompG Ñ K1q only works if G is connected and by utilizing disconnected
graphs the additional vertex in H2 yields enough information to distinguish between H1 and
H2. Therefore, we can extract homppG Ñ H1q from homppG Ñ H̄q.
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In finite fields, reduction algorithms usually rely heavily on multiplication. We find that
the beautiful insight on specific matrices defined on families F of simple graphs provided
by Borgs, Chayes, Kahn, and Lovász [3, Lemma 4.2] is able to lift us above this hurdle. In
order to adapt this result we first extend it to allow for graphs that contain loops. Then, we
translate the result to counting in a finite field of prime order. A straightforward application
of the modulo operator is not sufficient as the graphs in F might contain a number of
automorphisms that is a multiple of p. We restrict to order p reduced graphs and argue why
this allows for an application of the modulo operator. In this way, we show the following.

▶ Corollary 1.4. Let k ě 1 and let F “ tF1, . . . , Fku be a finite family of non-isomorphic
order p reduced graphs closed under surjective homomorphic image, that contain no multi-edge.
Then the matrix

Mhom “ rhomppFi Ñ Fjq sk
i,j“1

is nonsingular.

The strength of this result for our purposes is twofold. First, it allows us to show
Theorem 1.1 in a concise manner. Given a quantum graph F̄ with set of p-constituents
F “ pF1, . . . , Frq closed under surjective homomorphic image, we obtain by Corollary 1.4
that any system of linear equations of the form x̄ Mhom “ v̄ has a unique solution in the field
Zp. Therefore, for any vector v̄ with entries pviqiPrks there exists a unique linear combination
of entities in F with coefficients αF that yield the vector v̄. In fact, we observe that this
corresponds to a quantum graph F̄ 1 with homppF̄ 1 Ñ Fiq “ vi that implements the vector v̄.
In particular, there exists a quantum graph F̄ 1 implementing the i-th standard vector allowing
us to “pick” the i-th entry of F , i.e. homppF̄ 1 Ñ Fjq “ 1 if j “ i and homppF̄ 1 Ñ Fjq “ 0
otherwise. Given an input graph G for homppG Ñ F̄ q, we then construct a quantum graph
F̄ ˚ from G and F̄ 1 such that homppF̄ ˚ Ñ F̄ q “ homppG Ñ Fiq. The main problem for this
application is then that the set F of p-constituents might not be closed under surjective
homomorphic image. Given any quantum graph H̄ with set of p-constituents H, we need
to define a suitable family F that contains all the image graphs needed. We find that the
subgraphs of the maximal closure are sufficient for this purpose and obtain Theorem 1.1.

The second strength is the adaptability to subproblems of homomorphisms. The main
property needed is that the subset of homomorphisms has to be closed under composition,
i.e. the subset is actually a subgroup of the group of homomorphisms. Examples are vertex
surjective homomorphisms and compactions as studied by Focke et al. [24]. A homomorphism
σ P HompG Ñ Hq is vertex surjective if the image-set of σ is the whole set V pHq. The
homomorphism σ is a compaction if it is vertex surjective and every non-loop edge e is
in the image of σ. A closely related example is the problem of counting partially labelled
homomorphisms #PartLabHomsToH, that are homomorphisms from an input graph G to
H that have to respect a given mapping from a subset VG Ă V pGq to a subset VH Ă V pGq

and are also referred to as retractions (see e.g. Focke et al. [24]). The reduction from
#pPartLabHomsToH to #pHomsToH is a building stone of every paper in the study of
#pHomsToH and can be obtained in a swift manner due to the strength of Corollary 1.4.
A third example will be discussed in the next subsection.

1.2.2 Bipartization
Chen et al. [12] employed the tensor product H b K2 “ H 1 to reduce to #HomsToH from
#HomsToH 1, where H 1 is bipartite. The main problem when adapting this construction to
modular counting #pHomsToH is that for every graph G the number of homomorphisms
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hom2pG Ñ K2q is 0 and thus the tensor product with K2 annihilates seemingly any structure
that might imply hardness. Instead of branching the study of #pHomsToH into one studying
the modulus 2 and one studying the modulus of odd primes, we solve this issue in a uniform
way for all prime moduli.

The key insight towards this is that for an involution-free graph H the tensor product
H 1 “ H b K2 only yields involutions on H 1 that exchange the parts of the bipartition.
A very important example is the graph H consisting of a single edge with one loop, for
which it is known that #HomsToH is equivalent to counting the number of independent
sets. The graph H 1 “ H b K2 is then the path with 4 vertices (see Figure 2), that admits
only the reflection across the middle edge. It is known that #HomsToH 1 is equivalent to
counting the number of bipartite independent sets #BIS and also that #4HomsToH 1 is
#2 P-hard (see [28]) whereas #2HomsToH 1 is polynomial time solvable. In order to evade
the artificial involutions yielded by the tensor product with K2 we introduce the study on
the problem of counting homomorphisms between bipartite graphs that preserve the order of
the bipartition denoted #BipHomsToH. For example, if H is the path with 4 vertices then
#2BipHomsToH is equivalent to #4HomsToH.

▶ Lemma 1.5. Let p be a prime, let H be a graph, and let H 1 “ H b K2. Then,
#pBipHomsToH 1 reduces to #pHomsToH under parsimonious reduction.

We note that the graph H 1 “ H b K2 is a collection of complete bipartite graphs if and
only if H satisfies the Dyer and Greenhill criterion, for these graphs #pBipHomsToH 1 is
solvable in polynomial time.

The reduction from #pBipHomsToH has the downside that the machinery developed
over the course of multiple papers on #pHomsToH is not stated for the subgroup of
homomorphisms counted by #pBipHomsToH. We remedy this. First, by the strong
adaptability of Corollary 1.4 and the subsequent reduction algorithm we obtain pinning
for the problem #pBipHomsToH. Second, using automorphisms of order p that preserve
the order of the bipartition we reduce the bipartite graph H to a part-wise order p reduced
bipartite graph pHq

˚p. We deduce that the goal towards a dichotomy for #HomsToH is
captured by Theorem 1.2. The chain of reductions is displayed below.

#pBipPartLabHomsToH∗ #pBipHomsToH∗ #pBipHomsToH ′=P ≤pars

(H ′ = H ⊗K2)

≤pars #pHomsToH
(H∗ = (H ′)∗p)

We employ a gadgetry that establishes a reduction to #pBipHomsToH from a variant
of #BIS with weights on both types of vertices. Such a gadgetry yielding hardness is called a
p-hardness gadget. By an adaptation of the dichotomy for #BIS with weights on the vertices
in the independent set given in [28] this reduction establishes hardness when counting in Zp

if and only if none of the weights is equivalent to 0 in Zp. The problem of #BIS with weights
on the vertices in the independent set is established as terminal problem yielding hardness
in the study of #pHomsToH [28, 36] as the bigger modulus implies a richer structure
compared to the study of #2HomsToH that traditionally focusses on counting the number
of independent sets.

1.2.3 Hardness in Bipartite pK3,3zteu, dominoq-Free Graphs
A central argument in the work of Chen et al. [12] is that for a bipartite graph H and the
problem #HomsToH there exists a simple reduction from #HomsToB, where B is the ball
of radius 2 around a vertex v in H denoted B2pvq, i.e. vertices of distance at most 2 from v.
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v0 v1 v2 v3 v4

Figure 3 For p “ 3 the tree H contains no ball of radius 2 around any vertex with enough
structure to yield hardness even though #3HomsToH is #3 P-hard.

By an iterative application of this argument they establish a reduction from #HomsToP ,
where P is a generalization of the path with 4 vertices. Even though the reduction argument
can be made valid for #pHomsToH and #pBipHomsToH the restriction to a substructure
might destroy the properties that yield hardness already for trees H, a class of graphs for
which the dichotomy is proved (see [21, 28]). An example is depicted in Figure 3.

In a nutshell, the induced subgraphs of radius at most 2 can admit too many auto-
morphisms of order p. In Figure 3 we observe that the problem originates from too many
instances of complete bipartite graphs K1,b, where b ” 0 pmod 3q or b ” 1 pmod 3q. The way
to overcome this is to also consider the global structure. In the case displayed in Figure 3 the
number of walks of length 4 from v4 to a vertex v in the neighbourhood of v1 is 0 pmod 3q

if v “ v2 and 1 else. The goal is then to construct a reduction restricting the study to
B2pv0qztv2u, a graph that yields hardness. We do this in a general form by a second type of
gadgetry called pB, pq-gadget that reduces #pBipHomsToH from #pBipHomsToB.

As we have argued, one of the main obstacles for the study on #pHomsToH are complete
bipartite graphs. The graph K3,3zteu denotes the graph obtained from K3,3 by deleting an
edge, and the graph domino denotes the graph obtained from K3,3 by deleting two edges
without introducing a cut-vertex (see Figure 1). By the restriction to pK3,3zteu, dominoq-free
bipartite graphs we study exactly the case of a great many of complete bipartite induced
subgraphs. To this end, we observe that for every vertex v P H the induced subgraph
B2pvq splits into connected components obtained from deleting v. The split of B2pvq at v

corresponds to the set of these connected components, where every component contains a
copy of v. By the absence of induced subgraphs isomorphic to K3,3zteu or domino we deduce
that the blocks containing v in these components have to be complete bipartite.

The overall line of argumentations towards Theorem 1.3 is then the following. First, we
establish the dichotomy for all pK3,3zteu, dominoq-free bipartite graphs H of radius at most
2 by a combination of pB, pq- and p-hardness gadgets. This is done by a careful structural
study of the split of H at a central vertex v. An important first result is then that any
bipartite graph H in G˚p

bip that contains a vertex v where B2pvq falls into the hard cases of the
dichotomy, is itself such that #pBipHomsToH is #p P-hard. Second, we study graphs H of
radius larger than 2 in order to establish enough structural information of H allowing us to
construct either a p-hardness gadget for H or a pB, pq-gadget such that #pBipHomsToB

is #p P-hard. This second step is very long and technically involved because the class of
pK3,3zteu, dominoq-free graphs allows for many cases commanding us to explore the global
structure of H. Before we shed more light on how we proceed towards the second step, we
display the chain of reduction arguments below, where the intermediate steps for Hi refer to
H itself or an induced subgraph obtained by a pHi, pq-gadget.

#pBISκ`,κr

λ`,λr
#pBipHomsToHk #pBipHomsToH1 #pBipHomsToH≤P ≤P ≤P ≤P. . .
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Figure 4 For p “ 3 the left figure depicts an example of a generalized hardness path and the
right figure depicts an example of a p-mosaic path.

Informally, we split the study of bipartite pK3,3zteu, dominoq-free graphs of radius larger
than 2 into two broad cases: graphs with no pair of vertices that have a multiple of p common
neighbours, and graphs with such a pair of vertices. Focusing on the first case, if the graph H

contains a cycle of length at least 6 we argue that the cycle provides enough structure to show
hardness. Otherwise, the more restricted structure of H renders the graph “tree-like”. The
“leafs” of H are vertices v, such that the split of B2pvq at v contains at most one component
adjacent to a vertex not in B2pvq. We call such a vertex a dead end and traverse the graph
H along a path P starting at a dead end v. The path P is constructed such that it allows
us to establish hardness depending only on the local properties of its endvertices, we call
such a path P a generalized hardness path; an example is depicted in Figure 4. The first
broad case is then established by showing that H contains a generalized hardness path whose
endvertices are such that P yields hardness.

Turning towards the second broad case, we traverse the graph H again along a path P .
Contrary to the first case, we can encounter a pair of vertices with a multiple of p common
neighbours. For our purposes, it is important to evade such pairs of vertices. We argue that
by the property of H being in G˚p

bip we are always able to do so. This leads to a structure we
call p-mosaic path that, similar to a generalized hardness path, provides enough structural
information towards establishing hardness depending only on the local properties of its
endvertices. An example is shown in Figure 4. We find that if a p-mosaic path is a cycle
then this cycle satisfies the same properties we found to be sufficient to yield hardness in the
first broad case. Interestingly, we show that if the p-mosaic path does not yield hardness
the only remaining option for an endvertex of a p-mosaic path is to also be the endvertex
of a generalized hardness path. We conclude that H has to contain a concatenation of
generalized hardness paths and p-mosaic paths. Arguing by the finiteness of H we show that
this concatenation has to yield hardness.

1.2.4 Beyond pK3,3zteu, dominoq-Free Graphs
In light of our findings we conjecture that for a bipartite graph H in G˚p

bip the problem
#pBipHomsToH is #p P-hard if H is not a collection of complete bipartite graphs. This
conjecture then extends towards a conjecture on #pHomsToH and also incorporates the
conjecture of Faben and Jerrum.

▶ Conjecture 1.6. Let p be a prime and H a graph with order p reduced form H˚p. Then,
#pHomsToH is solvable in polynomial time if the connected components of H˚p are complete
bipartite or reflexive complete. Otherwise, #pHomsToH is #p P-complete.
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Figure 5 Illustration of a 5-Catherine wheel. Edges to encircled sets illustrate edges to every
vertex in the set. The smaller substructure in the sets R1, . . . , R5 is illustrated to the right, where
the vertices in the sets Ri are the more prominent ones at the bottom of the row.

We emphasize this conjecture by a study of the set of partially surjective homomorphisms
from a graph G to a graph H denoted PartSurjpG Ñ Hq. Partially surjective homomorphisms
have to be surjective on a set of distinguished vertices V dist Ď V pHq and a set of distinguished
edges Edist Ď EpHq. We deduce that it suffices to study graphs H without automorphisms
of order p acting bijectively on V dist and Edist. However, this reduction does not capture all
cancellations because the graph H might still admit too many general automorphisms.

By our results on quantum graphs and an application of the inclusion-exclusion principle
we find that the dichotomy presented in Conjecture 1.6 extends to a dichotomy on the
whole class of partially surjective homomorphisms. Contrary to the non-modular version
established in [12], this dichotomy does not state a clear structural characterisation of
the hard instances due to the mentioned possibility of additional cancellations. For the
special cases in which the parameter graph H is order p reduced we amplify the dichotomy
such that it states clear structural characterisations. Two examples for this case are the
problems #pVertSurjHomsToH and #pCompToH of counting in Zp the number of
vertex surjective homomorphisms and compactions, respectively. We obtain the following
criteria analogous to the criteria in the non-modular setting given by Focke et al. [24].

▶ Corollary 1.7. Let p be a prime and H be a graph. The problem #pVertSurjHomsToH

is solvable in polynomial time if either H admits an automorphism of order p, or every
connected component of H is a complete bipartite graph or a reflexive complete graph.

The problem #pCompToH is solvable in polynomial time if either H admits an auto-
morphism of order p, or every connected component of H is an irreflexive star or a reflexive
complete graph of size at most two.

Assuming Conjecture 1.6 both problems are #p P-hard in every other case.

In order to prove Conjecture 1.6, we need to study bipartite graphs that contain K3,3zteu

or domino as an induced subgraph. The strong restrictions on the structure of the graphs
under study are a double-edged sword. On one hand, it is more plausible to find enough
structure that yields hardness. On the other hand, it is more difficult to pin the structural
analysis down to a handful of cases. Furthermore, the higher moduli imply even more
complexity of the structural analysis. We illustrate an especially difficult example in Figure 5.

We call such a graph as illustrated in Figure 5 a p-Catherine wheel. Even though these
graphs are 2-connected and of radius 2 their highly symmetric global structure together with
the lack of small structure in the sets Ri makes it difficult to identify sources for hardness.
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Here, the case displayed in Figure 5 where the sets Ri only yield a collection of trees and the
sum of degrees of the vertices in the sets is 0 pmod pq is especially difficult. We note that
such a graph cannot be part-wise order p reduced for p “ 2, 3, which highlights the gain of
complexity due to higher moduli.

1.3 Related Literature
Before we conclude the introduction, we mention related bodies of work. The study of
homomorphisms under the point of view of parameterized algorithms has been long established
(see Diaz, Serna, and Thilikos [18]) but enriched by the work of Amini, Fomin, and Saurabh [1]
and by Curticapean, Dell, and Marx [13], who also introduced linear combinations of graph
homomorphisms to the study and motivated subsequent works, for instance Roth and
Wellnitz [41].

The study of homomorphisms from the point of view of extremal combinatorics incorpo-
rates important conjectures like Sidorenko’s conjecture [43, 44], which states a universal lower
bound on the number of homomorphisms from a bipartite graph and, in a weaker version,
can be found in the work of Simonovits [45]. Until today the conjecture remains open but
still enjoys new contributions like the recent article by Shams, Ruozzi, and Csikvári [42].

This leads to the body of work studying approximation algorithms including the work
of Goldberg and Jerrum [30] on tree homomorphisms and the work of Galanis, Goldberg,
and Jerrum [25], who showed that approximating the number of homomorphisms to a fixed
graph H is #BIS-hard, a notorious complexity class in this body of work. These findings
yield an interesting connection to ours in the form of the reduction from (versions of) #BIS.

The body of studies concerning different versions of homomorphism problems is vast. It
contains dichotomies for the affiliated problem, where the pre-image is from a fixed class
of graphs, given by Dalmau and Jonsson [14] and Grohe [32]. Turning towards versions
of the problem with fixed image, Focke, Goldberg, and Zivný [24] gave a dichotomy for
surjective homomorphisms and compactions, and Dyer, Goldberg, and Paterson [15] gave a
dichotomy for directed homomorphisms if the target is acyclic. The line of research towards
the dichotomy for the generalization of #HomsToH allowing weights by Cai, Chen, and
Lu [9] incorporates works by Bulatov and Grohe [7] and Goldberg, Grohe, Jerrum, and
Thurley [29]. Recently, Govorov, Cai, and Dyer [31] extended this research body.

The connection of homomorphisms and CSP’s was already shown by Feder and Vardi [22].
Bulatov [6] showed that the problem of counting satisfying assignments to a CSP enjoys a
dichotomy theorem, a result on which Dyer and Richerby [17] shed more light. Furthermore,
a complete dichotomy for directed homomorphism can be found in the dichotomy on counting
weighted versions of CSP’s by Cai and Chen [8]. Guo, Huang, Lu, and Xia [34] gave a
dichotomy for the associated modular problem.

Finally, the recent work by Cai and Govorov [10] studied the power of expression of the
class of homomorphisms. By studying algebras of quantum graphs they provide a general
technique and showed, for instance, that the problem of counting perfect matchings cannot
be expressed by counting homomorphisms to a fixed graph H regardless of possible weights.
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