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a b s t r a c t

Wedefine a collection of language classes which are TxtEx-learnable (learnable in the limit
from positive data). The learners map any data input to an element of a fixed lattice, and
keep the least upper bound of all lattice elements thus obtained as the current hypothesis.
Each element of the lattice is a grammar for a language, and the learner climbs the lattice
searching for the right element. We call these classes in our collection lattice classes.

We provide several characterizations of lattice classes and their learners, which
suggests they are very natural. In particular, we show that any class of languages is a
lattice class iff it is TxtEx-learnable consistently, conservatively, set-drivenly, and strongly
monotonically.

We show several language classes previously discussed in the literature to be lattice
classes, including the locally k-testable classes, the piecewise k-testable classes, the k-
reversible languages and the pattern languages. We also show that lattice classes contain
three previously known collections of language classes: string extension language classes,
function-distinguishable language classes, and closed-set systems.

Finally, the lattice perspective helps analyze the learning of these classes. Illustrations
include query-learning results in dependence on the lattice structure, characterizations of
closure properties and the VC-dimension of lattice classes in terms of lattice properties.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The problem of generalizing from data to patterns is an important one in computer science, artificial intelligence,
linguistics, robotics, and many other fields. In particular, the problem is central to subfields of computer science such as
machine learning [35] and grammatical inference [13].

An insightful learning paradigm is Gold-style learning [20]. In Gold-style learning, a learner is given increasingly many
positive examples taken from a fixed, computably enumerable target language L ⊆ Σ∗ whereΣ∗ denotes the set of all finite-
length words over a finite alphabet Σ . After each example, the learner conjectures a hypothesis, or description of L.1 If, on
all enumerations of all and only the elements of L, the learner outputs in the limit a conjecture which correctly describes
L, then we say the learner TxtEx-learns L. If a learner can TxtEx-learn every language in a class of languages L, we say the
learner TxtEx-learns L. TxtEx-learning is also known as identification in the limit from positive data.

Gold [20] showed that no superfinite class of languages—i.e. any class with all finite languages and at least one infinite
language—is TxtEx-learnable. A significant consequence of this result was that no major class of formal languages, such as
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the regular languages, is TxtEx-learnable. However, Angluin [3] provided a characterization of TxtEx-learnable classes and
many interesting classes of languages are continually being discovered [2,4,22,38,54,9]. Lang et al. [34] provide a recent
overview of learning from positive data (readers can consult [28,13] for treatments of this and other learning paradigms).
Additionally, much research has also been devoted to studying general properties of large, natural groups of TxtEx-learnable
classes [53,33,46,16,27]. This article belongs to this last-mentioned research effort.

We present a collection of language classes, called Lattice Classes (LCs). The main contribution of this paper is to show the
following about LCs.

(i) LCs are TxtEx-learnable by learners with many desirable properties: the learners are incremental, consistent,
conservative, set-driven, and strongly monotonic (Theorem 2.9).

(ii) LCs have multiple characterizations (Theorems 4.6 and 4.7).
(iii) LCs generalize three other TxtEx-learnable collections of language classes (function-distinguishable classes [16], string

extension classes [23,25], and closed-set systems [12]).
(iv) LCs provide a unified, insightful learning-theoretic framework for the analysis of several important classes of languages,

including the locally k-testable classes, the piecewise k-testable classes, the k-reversible languages and the pattern
languages, and many others.

Note that the TxtEx-learnability of lattice classes follows straightforwardly from the lattice structure, as do many of the
desirable properties named in item (i) in the list above. We consider the simplicity and consequent generality of this
approach a strength of our analysis.

A related approach which uses lattices for learning from positive data can be found in [31,30] and related papers, where
the lattice structure of the hypothesis space is analyzed in the setting of approximate identification.

We define any LC in terms of a lattice V and a function f mapping strings to elements of V . We use lattices as defined
by Birkhoff, [8]; essentially, a lattice is a partially ordered set with additional properties (see Definition 2.1). Each element
v ∈ V corresponds to the set of all strings mapped to or below v by f . As we assume f and the lattice order of V to be
computable, any LC is uniformly decidable (see Theorem 4.5(i)).

We give learners for these classes which proceed by mapping strings to nodes and then climbing the lattice by only
keeping track of the least upper bound as the current hypothesis. We call any learners of this kind Lattice Learners (LLs).

Section 2makes Lattice Learning precise.We further analyze Lattice Learners and Lattice Classes in Section 4. In particular,
we give two insightful characterizations of LLs in Theorem 4.6, and three characterizations of LCs in Theorem 4.7. This
establishes the LCs as very naturally arising learnable language classes.

Sections 3 and 5 provide simple and more complex examples of lattice classes, respectively.
We address query learning [5] of Lattice Classes and special cases thereof in Section 6. We discuss complexity issues and

show that Lattice Classes can be learned in a particularly straightforward way from equivalence queries.
Finally, Section 7 considers the VC Dimension of a lattice classes; we give a characterization and a (weak) upper bound

on the VC Dimension of lattices with finite width. The VC-dimension plays an important role in PAC-learning.
Familiarity with lattice theory is useful to understand this paper, but not completely necessary. For introductions to

lattice theory, the reader is referred to the textbooks [8] (a classic) and [37] (available online).

2. Definitions and basic properties

Any unexplained complexity-theoretic notions are from [42]. All unexplained general computability-theoretic notions
are from [44].

The symbolN denotes the set of natural numbers, {0, 1, 2, . . .}.We letΣ be a countable alphabet (a non-empty countable
set;we allow for countably infinite alphabets), andΣ∗ denotes the set of all finitewords overΣ . A language is any set L ⊆ Σ∗.
For each k,Σk denotes the set of all words of length exactly k. We denote the empty word by ε, the length of word x by |x|,
and the reversal of a word x by reverse(x).

For any set A, |A| denotes the cardinality of A. For sets A, B, we let A \ B = {a ∈ A | a ∉ B}, and A be the complement of
A; with Pow(A) (Powfin(A)) we denote the set of all (finite) subsets of A.

The quantifier ∀
∞xmeans ‘‘for all but finitely many x’’, the quantifier ∃

∞xmeans ‘‘for infinitely many x’’.
A partition π of a set A is a collection of pairwise disjoint non-empty subsets of A whose union equals A. These subsets

are called blocks, and the block of partition π containing a ∈ A is denoted [a]π . A binary relation R over a set A is said to be an
equivalence relation iff it is reflexive, transitive, and symmetric. Now R naturally induces a partition over A: for all a ∈ A, the
set of all b such that aRb is called the equivalence class of a. Furthermore, the set of all these equivalence classes are the blocks
of a partition. For a function f , we let dom(f ) and range(f ) denote, respectively, the domain and range of f . We sometimes
denote a function f of n > 0 arguments x1, . . . , xn in lambda notation (as in Lisp) as λx1, . . . , xn f (x1, . . . , xn). For example,
with c ∈ N, λx c is the constant c function of one argument.

A functionψ is partial computable iff there is a deterministic Turingmachine computingψ .P andR denote, respectively,
the set of all partial computable and the set of all total computable functions N → N. We say that ψ is polytime iff ψ is
computable on some Turing machine in a number of steps polynomial in the length of the input. Whenever we consider
(partial) computable functions on objects like finite sequences, finite words, or finite sets, we assume those objects to be
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efficiently coded as natural numbers (so we can speak of the functions belonging to P and R). The size of any such finite
object is the size of its code number. If a function f is defined for x ∈ N we write f (x)↓, and we say that f converges on x.

We fix a computable function ϕ such that, for all p, x ∈ N, ϕ(p, x) = ϕp(x) is the output of the Turing-machine coded by
p when given x as input (and undefined, if the Turing-machine does not terminate or if p does not correspond to a Turing-
machine).

For all p,Wp denotes the computably enumerable (ce) set dom(ϕp).
Note that, for infinite alphabets, the size of words of length 1 is unbounded.
After these general definitions, wewill now turn to definitionsmore specific to this paper. First we introduce lattices and

Lattice Spaces and then show how we use them for learning.

2.1. Lattice spaces

Definition 2.1. Let V be a non-empty set and ⊑ a binary relation over V . The pair (V ,⊑) is a partially ordered set iff ⊑ is
anti-symmetric, reflexive and transitive. We use the symbols @, ⊒ and A as usual (to denote ‘‘properly below,’’ ‘‘above’’ and
‘‘properly above’’).

Let (V ,⊑) be a partially ordered set. For any set S ⊆ V , v ∈ V is called

• an upper bound of S iff ∀a ∈ S : a ⊑ v;
• a lower bound of S iff ∀a ∈ S : v ⊑ a;
• a maximum of S iff v is the upper bound of S and v ∈ S;
• a minimum of S iff v is the lower bound of S and v ∈ S;
• a least upper bound or supremum of S iff v is the minimum of the set of upper bounds of S;
• a greatest lower bound or infimum of S iff v is the maximum of the set of lower bounds of S;

Note that, for a given set, there is at most one supremum and at most one infimum. If V has a minimum element, we denote
it by ⊥V , a maximum element by ⊤V . (V ,⊑) is called

• an upper semi-lattice iff each two elements of V have a supremum;
• a lower semi-lattice iff each two elements of V have an infimum;
• a lattice iff each two elements of V have both a supremum and an infimum.

The supremum of two elements a, b ∈ V is denoted by a⊔b if it exists, and the infimum of two elements a, b ∈ V is denoted
by a⊓b, if it exists. For all sets D, we use


D to denote the supremum of D and

Ű

D to denote the infimum of D, if they exist.
Note that, in an upper (lower) semi-lattice, each non-empty finite set has a supremum (infimum), which equals the iterated
supremum (infimum) of its elements, as the binary supremum (infimum) is an associative and commutative operation. If V
has a minimum element, then, by convention,


∅ = ⊥V . Likewise, if V has a maximum element, we let

Ű

∅ = ⊤V .
For two partially ordered sets U, V , a function h : U → V is called an order embedding iff, for all a, b ∈ U , a ⊑U b ⇔

h(a) ⊑V h(b). An order isomorphism is a bijective order embedding.
Let V be a partially ordered set with a minimum element. An element a ∈ V is called an atom iff a ≠ ⊥V and the set

{b | ⊥V ⊑ b ⊑ a} equals the set {⊥V , a}. A lattice is called complete iff all sets of lattice elements (including infinite sets)
have a supremum and an infimum. A lattice is called boolean iff V has both a minimal element ⊥ and a maximal element ⊤

and for all a ∈ V , there exists a ∈ V such that a ⊓ a = ⊥ and a ⊔ a = ⊤.
A sequence (an)n∈N is called an infinitely ascending chain iff, for all i, ai @ ai+1. A subset U ⊆ V is called an anti-chain iff

no two elements of U are comparable.

Example 2.2. For each k ∈ N for example, (Pow(Σk),⊆) is a lattice. This lattice is the set of all finite sets, including the
empty set, that contain only words of length k, with inclusion as the order. We call this lattice VPow(Σk). Fig. 1 shows VPow(Σ2)
withΣ = {a, b}.

Now we are ready to introduce the central concepts of Lattice Spaces and Lattice Classes.

Definition 2.3. For an upper semi-lattice V and a function f : Σ∗
→ V such that f and ⊔ are (total) computable, (V , f ) is

called a Lattice Space (LS), iff, for each v ∈ V , there exists a finite D ⊆ range(f )with


D = v.2
We call two LS (V , f ) and (U, g) isomorphic iff there is an upper semi-lattice isomorphism α from V to U such that, for

all x ∈ Σ∗, α(f (x)) = g(x).
(V , f ) is called polytime iff f and suprema in V are polytime.

2 This definition might seem a little strange at first, and in general one could define lattice spaces without those restrictions. However, elements that are
not the finite suprema of elements from range(f ) are not directly useful for our purposes, and many of our theorems would have to be stated in terms of
the ‘‘stripped’’ sub semi-lattice one gets from restricting to all elements which are finite union of elements from range(f ). Thus, for notational purposes,
we only allow for ‘‘stripped’’ lattice spaces in the first place.



114 J. Heinz et al. / Theoretical Computer Science 457 (2012) 111–127

Fig. 1. The lattice VPow(Σ2) withΣ = {a, b}.

Example 2.4. Continuing Example 2.2, for fixed k, consider the function that maps words to the set of their k-factors —
any substring of length k of word w is a k-factor of w. In other words, for each k, let fack : Σ∗

→ VPow(Σk) be such that
x → {v ∈ Σk

| ∃u, w ∈ Σ∗
: x = uvw}. Then (VPow(Σk), fack) is an LS. To illustrate, fac2 maps word abb to node 9 in Fig. 1,

maps abbaa to node 15, and maps all words of length less than 2 to node 0.
Clearly, fac2 naturally defines an equivalence relation such that words are equivalent iff they have the same sets

of 2-factors. More generally, for any LS (V , f ), the function f defines an equivalence relation: ∀w, u ∈ Σ∗
: w ∼ u iff

f (w) = f (u). This equivalence relation naturally partitions all logically possible words into blocks, which are in one-to-one
correspondence with the nodes in V .

Definition 2.5. Let (V , f ) be an LS.

• A grammar is any v ∈ V .3

• The language of grammar v is Lf (v) = {w ∈ Σ∗
| f (w) ⊑ v}.

• The class of languages obtained by all possible grammars is

L(V ,f ) = {Lf (v) | v ∈ V }.

Note that we will always consider a fixed lattice associated with any given function f , so we can write Lf instead of L(V ,f )
without any ambiguity.

Any class of languages L such that there is an LS (V , f ) with L = Lf is called a Lattice-structured Class (LC).4 We use LC
to denote the set of all Lattice-structured Classes. Further, we omit the subscript f only if it is clear from context.

Example 2.6. Continuing the example begun in Fig. 1, what are the grammars and languages of (VPow(Σ2), fac2)? The
grammars are the nodes; i.e. the finite subsets, which represent the admissible 2-factors. For example, consider G = {aa, ab}
(node 5). The language of this grammar is all words which fac2 maps to a node less than or equal to the grammar in the
lattice structure. In other words, a wordw belongs to L(G) iff fac2 mapsw to node 5, 2, 1 or 0; i.e. iff the 2-factors ofw are a
subset of G. Consequently, L(G) contains all and only thosewordswhich do not contain any forbidden factors (those 2-factors
not in G, here ba and bb). We call the languages in this LS 2-factor languages.

More generally, the k-factor languages can also be described in terms of the partition fack induces over Σ∗. Although
each node v corresponds to one such block, the language of v includes exactly the set of all the words in this block and the
words in all blocks corresponding to nodes ordered below v. For example, while the block of the partition corresponding to
node 15 only includes words with all four 2-factors, the language of node 15 is the union of all the blocks; i.e.Σ∗.

In [25], String Extension Classes are defined, which are a special case of Lattice Classes: String Extension Classes are exactly
those Lattice Classes based on the lattice of all finite subsets of a finite set A with inclusion. Further, we get the special case
of closed-set systems [12] if we take all complete lattices.We give a connection of Lattice Classes to Function Distinguishable
Classes in Theorem 5.6.

3 Note that we assume our grammars to be finite with respect to a relevantmeasure, i.e., containing for example a finite number of admissible substrings,
or other rules.
4 In formal language theory, several descriptions may define the same language. Observe that for the language classes defined here this is not the case

– we have Lf (u) ≠ Lf (v) for any two elements u, v ∈ V with u ≠ v. See Theorem 4.1.
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2.2. Learning in the limit

In this sectionwe define the learning criterion learning in the limit from positive data following [20], which forms the basis
of our first analysis of our lattice learners.

By Seq we denote the set of finite sequences over Σ∗
∪ {#}, where # is a special symbol called ‘‘pause’’. We denote the

empty sequence by ∅. For a sequence σ ∈ Seq, we let len(σ ) denote the length σ , and, for all i < len(σ )we let σ(i) be the
i + 1-th element of σ . Concatenation on sequences is denoted by �. For all finite or infinite sequences σ overΣ∗

∪ {#} we
let content(σ ) = {x ∈ Σ∗

| ∃i < len(σ ) : σ(i) = x}.
Let L ⊆ Σ∗ and T : N → Σ∗

∪ {#}. T is called a text for L iff content(T ) = L. For any text T and any k, let T [k] denote the
sequence of the first k elements of T (in particular, T [0] is the empty sequence). With Txt(L) we denote the set of all texts
for a language L.

For this paper, a learner is any total computable function h : Seq → N. We assume the outputs of h to be mapped by a
function λx L(x) to a language. Whenever no concrete function λx L(x) is given, we assume the general-purpose mapping
λx Wx.

A learner h is said to TxtEx-learn a language Lwith respect to λx L(x) iff, for each text T for L, there is k ∈ N such that

(i) L(h(T [k])) = L; and
(ii) for all k′

≥ k, h(T [k′
]) = h(T [k]).

For the minimum such k, we then say that h on T has converged after k steps, and denote this by Conv(h, T ) = k.
We denote the set of all languages TxtEx-learned by a learner h with TxtEx(h). We say that a class of languages L is

TxtEx-learned (possibly with certain properties) iff there is a learner h (obeying those properties) which TxtEx-learns every
language in L. Furthermore, we say that h learns a class of languages using a uniformly decidable hypothesis space iff there
is a total function returning 1 on all and only the x such that x ∈ L(p).

The following learner properties have been studied in the literature.

Definition 2.7. Let a learner h : Seq → N be given. We call h

• iterative [17,52], iff there is a function hit
: N ×Σ∗

→ N such that ∀σ ∈ Seq, w ∈ Σ∗
: hit(h(σ ), w) = h(σ � w);

• polytime iterative, iff there is such a polytime function hit ;
• set-driven [51,28], iff there is a function hset

: Powfin(Σ
∗) → N such that ∀σ ∈ Seq : hset(content(σ )) = h(σ );

• globally consistent [6], iff ∀σ ∈ Seq : content(σ ) ⊆ L(h(σ ));
• locally conservative [3], iff ∀σ ∈ Seq, x ∈ Σ∗

: h(σ ) ≠ h(σ � x) ⇒ x ∉ L(h(σ ));
• strongly monotone [26], iff ∀σ ∈ Seq, x ∈ Σ∗

: L(h(σ )) ⊆ L(h(σ � x));
• prudent [39], iff ∀σ ∈ Seq : L(h(σ )) ∈ TxtEx(h);
• optimal [20], iff, for all learners h′ with TxtEx(h) ⊆ TxtEx(h′),

∃L ∈ TxtEx(h), T ∈ Txt(L) : Conv(h′, T ) < Conv(h, T )
⇒

∃L ∈ TxtEx(h), T ∈ Txt(L) : Conv(h, T ) < Conv(h′, T ).

Informally, iterative learners are those whose next hypothesis only depends on the current data point and the previous
hypothesis, and polytime iterative learners are iterative learners who can compute the next hypothesis from the previous
one and current data point in polynomial time. Set-driven learners are ones which are insensitive to the order in which the
data points are presented. Globally-consistent learners are ones whose current hypothesis always includes all data points
observed so far, whereas locally-conservative learners are ones which only change a hypothesis h if the current data point is
not consistent with h. Learners are strongly-monotone provided languages of subsequent hypotheses are always supersets
of prior ones. A Prudent learner φ only ever considers hypotheses which correspond to languages belonging to the class
learnable by φ. A learner φ is optimal if there is no other learner for the class which converges more quickly on every
language in the class. Note that this notion of optimality is a notion of pareto optimality, i.e., improvement in one place
would necessarily imply a worsening elsewhere.

2.3. Learning with lattices

For any LS (V , f ), we define a learner φf such that

∀σ : φf (σ ) =


x∈content(σ )

f (x).

Essentially, this learner maps each data point to the lattice with f and calculates the greatest lower bound. We call φf a
Lattice Learner (LL).
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Table 1
Illustrating a Lattice Learner. Fields labeled ‘‘Node’’ refer to Fig. 1.

i t(i) t[i] fac2(t(i)) Node φfac2 (t[i]) Node

0 ab ⟨ab⟩ {ab} 2 {ab} 2
1 abb ⟨ab, abb⟩ {ab, bb} 9 {ab, bb} 9
2 aba ⟨ab, abb, aba⟩ {ab, ba} 7 {ab, bb, ba} 14
3 bba ⟨ab, abb, aba, bba⟩ {ba, bb} 10 {ab, bb, ba} 14
. . .

Example 2.8. Table 1 illustrates lattice learning of the language L which forbids the 2-factor aa with φfac2 . In other words
L = {w ∈ Σ∗

| aa is not a 2-factor ofw}. This language belongs to the lattice-structured class Lfac2 . The learner first
observes ab, which fac2 maps to {ab}, which corresponds to node 2 in Fig. 1. Upon observing theword abb,φfac2 hypothesizes
grammar G = {ab, bb}, node 9 in Fig. 1. The learner automatically infers that other words belong to the target language. For
example, words with the same set of 2-factors belong to the target language, such as abbb. Furthermore, words for which
the set of 2-factors is a subset of G also belong to the target language, such as bb (since node 4 is ordered below node 9). The
learner next observes aba, which fac2 maps to grammar {ab, ba}, node 7. By definition, the learner’s hypothesis becomes
the least upper bound of nodes 7 and 9, which is {ab, ba, bb}, node 14, and the learner can infer that all words in all blocks
associated with all nodes less than or equal to this one belong to the language. Consequently it infers that words like bba
(node 10) are in the language as well. Therefore, when i = 3 and the learner observes bba, the learner’s hypothesis does not
change. Assuming all the words are drawn from L, it follows that the learner has converged to the target language on the
text given in this example at i = 2.

Notice the learner φf makes inferences in three ways. First, for each word w observed, the learner can generalize
automatically to all words in the block associatedwith the grammar f (w). Second, for eachwordw observed, the learner can
generalize to all words in all blocks corresponding to grammars ordered below f (w). Third, for two wordsw and v, learners
can generalize to the block of words corresponding to f (w) ⊔ f (v) (and by the second method, all blocks corresponding to
nodes below f (w) ⊔ f (v)). It is the third method by which the learner climbs the lattice structure.

Lattice Learners have all of the desirable properties presented in Definition 2.7.

Theorem 2.9. Let (V , f ) be an LS. Then φf TxtEx-learns Lf

(i) iteratively;
(ii) if (V , f ) is a polytime LS, polytime iteratively;
(iii) set-drivenly;
(iv) globally consistently;
(v) locally conservatively;
(vi) strongly monotonically;
(vii) prudently; and
(viii) optimally.

Proof. Regarding TxtEx-learnability: Let L ∈ Lf and let v ∈ V be such that L(v) = L. Let T be a text for L. As (V , f ) is an
LS, let D ⊆ Σ∗ such that v =


x∈D f (x). Thus, D ⊆ L = content(T ). Let k be such that D ⊆ content(T [k]). Then, obviously,

∀k′
≥ k : φf (T [k′

]) = v. Regarding the different items of the list, we have:

(i) We let φit
f ∈ P be such that

∀v, x : φit
f (v, x) =


v, if x = #;

v ⊔ f (x), otherwise. (1)

(ii) Clearly, φit
f from (i) is polytime, if (V , f ) is a polytime LS.

(iii) Let φset
∈ P be such that ∀D : φset(D) =


x∈D f (x).

(iv) Let σ be a sequence in Σ∗, let v = φf (σ ) and x ∈ content(σ ). Then f (x) ⊑


y∈content(σ ) f (y) = φf (σ ) = v. Thus,
x ∈ L(v).

(v) Let σ ∈ Seq and x ∈ Σ∗ with φf (σ ) ≠ φf (σ � x). Thus, φf (σ ) ≠ φf (σ ) ⊔ f (x), in particular, f (x) ⋢ φf (σ ). Therefore,
x ∉ L(φf (σ )).

(vi) Let σ ∈ Seq and x ∈ Σ∗. Clearly, φf (σ ) ⊑ φf (σ � x). Thus,

Lf (φf (σ )) = {w ∈ Σ∗
| f (w) ⊑ φf (σ )}

⊆ {w ∈ Σ∗
| f (w) ⊑ φf (σ � x)}

= Lf (φf (σ � x)).
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(vii) Prudence is clear, as, for all σ ∈ Seq and x ∈ Lf (φf (σ )), we have f (x) ⊑ φf (σ ). Hence, for all texts T for Lf (φf (σ )), φf
on T will converge to φf (σ ).

(viii) Optimality follows from consistency, conservativeness and prudence, as stated in [39, Proposition 8.2.2A]. �

3. Simple examples of lattice classes

In this section, we show that four major classes in the subregular hierarchies—the Locally k-Testable, Piecewise k-
Testable, and their Strict counterparts [36,47,43]—are sets of lattice classes. These examples are chosen for their cognitive
and linguistic interest [45,24].

We already came across the example of k-factor languages (Example 2.6 and its LS (VPow(Σk), fack). A class of languages
that makes use of the same lattice VPow(Σk) with a function other than fack is the class of k-subsequence languages. A string
v = a1 . . . ak is a subsequence of string w (v ⊑ssq w) iff there exist u0 . . . uk ∈ Σ∗ such that w = u0a1u1 . . . akuk. Then, for
each k, let ssqk : Σ∗

→ VPow(Σk) such that x → {v ∈ Σk
| v ⊑ssq x}. Then (VPow(Σk), ssqk) is an LS. In the same way that

k-factor languages forbid certain factors, k-subsequence languages forbid certain subsequences.

Example 3.1. The language corresponding to {aa, ab, ba} (node 11 in Fig. 1) isΣ∗/Σ∗bΣ∗bΣ∗; i.e. all words which do not
contain the subsequence bb. It follows that the lattice learner for this class converges to this pattern after observing words
aa, ab, ba (since it has seen all the allowable 2-long subsequences).

The (VPow(Σk), ssqk) and (VPow(Σk), fack) Lattice Spaces show that an LS (V , f ) separates the structure of the class V from
its semantics (which is given by f ) since the k-factor languages and the k-subsequence languages have the same lattice
structure but differ only with respect to the function f .

The k-subsequence language classes are very closely related to the Locally k-Piecewise Languages in the Strict Sense
(Strictly k-Piecewise, k-SP) [43]. Rogers et al. show that one characterization of the class of all languages that are k-SP
(for some k) is that they are precisely the class of all languages closed under a subsequence. Although very similar, the
k-subsequence languages are not exactly the k-SP class. To illustrate, let Σ = {a, b, c} and consider the k-subsequence
language L defined by the permissible subsequences {aa, ab, ba} (so all other 2-subsequences are forbidden). Since ssqk(c) =

∅ it must belong to L. Both L and L/{c} are closed under a subsequence but only L is a k-subsequence language.
Nonetheless, the k-SP languages are a lattice class. Let ssq≤k map words to all their subsequences of length less than or

equal to k. Let VkSP = {ssq≤k(w) | w ∈ Σ∗
}. VkSP under inclusion is a lattice and (VkSP, ssq≤k) is a lattice space. Furthermore,

the class of languages given by this lattice space is exactly k-SP.
The Piecewise k-Testable (k-PT) languages [47] are the minimal collection of languages which includes the languages

obtained by closing the k-SP languages under boolean operations [43]. Equivalently, this is the class of languages where two
words with the same set of k-subsequences either both belong to the language or both do not [21]. Let VkPT be the lattice
whose nodes are the powerset of the set of nonempty nodes in Vssq≤k and let inclusion be the partial order (so the atoms
of the lattice are the nonempty nodes themselves). Let fkPT(w) return a singleton set whose sole element is ssq≤k(w). Then
(VkPT, fkPT) is the lattice space which accepts the k-PT languages.

Example 3.2. Consider the 2-PT languages and observe that fkPT (ab) = {{ϵ, a, b, ab}} and fkPT (ba) = {{ϵ, a, b, ba}}. So if the
lattice learner observes ab and then ba, the current grammar would be node {{ϵ, a, b, ab}, {ϵ, a, b, ba}} in V2PT.

Similarly, the k-factor languages are closely related to the Locally k-Testable in the Strict Sense (Strictly k-Local, k-SL)
languages [36]. k-SL classes make distinctions not just on the basis of substrings but instead on the basis of interior k-
factors, and the length k − 1 prefix and suffix. In order to establish that k-SL is a lattice space we need to establish that any
two Lattice Spaces can be ‘multiplied’ together to create a new lattice space.

Consider two lattice spaces, (V1, f1) and (V2, f2), which define classes L1 and L2, respectively. These determine a new
lattice space (V , f ) where V = V1 × V2 (and (v1, v2) ⊑ (v′

1, v
′

2) iff v1 ⊑1 v
′

1 and v2 ⊑2 v
′

2), and f = (f1, f2). It follows
straightforwardly that the language class L determined by (V , f ) is

L = {L1 ∩ L2 | L1 ∈ L1 and L2 ∈ L2}.

We write (V1, f1)× (V2, f2) = (V , f ). Note that × is associative (up to isomorphism).
This result is an interesting complement to [53], which shows that the finite unions of languages drawn from TxtEx-

learnable classes are also TxtEx-learnable. In contrast, the above establishes that the intersections of languages drawn from
lattice classes are also TxtEx-learnable. (Wright’s results are extended in [46,30].)

Returning to the k-SL languages, let the (left-edge) prefix of length k, the (right-edge) suffix of length k, and the interior
k-factors of a wordw be

Lk(w) = {u ∈ Σk
| ∃v ∈ Σ∗ such thatw = uv};

Rk(w) = {u ∈ Σk
| ∃v ∈ Σ∗ such thatw = vu};

Ik(w) = fack(w).

Then (VPowfin(Σk−1), Lk−1), (VPowfin(Σk−1), Rk−1), and (VPowfin(Σk), Ik) are all lattice spaces. The product of these lattice spaces
yields a lattice space which describes the k-SL class. We refer to this lattice space as (VkLRI, LRIk).
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Similar to the k-PT languages, the class of Locally k-Testable (k-LT) languages is theminimal collection of languageswhich
includes the languages obtained by closing the k-SL languages under boolean operations [36]. Similar to the Piecewise k-
Testable Languages, the lattice space for the Locally k-Testable Languages is (V , f ) = (Pow(VLRIk/∅), w → {LRIk(w)}, with
the lattice itself being ordered, as before, by inclusion.

In this section we established that four important subregular classes are all lattice classes (and thus learnable by lattice
learners). Along theway,we showedhow lattice classes can be combined to yield newones. This provides a certain flexibility
to learnmultiple patterns of different types that may be present in data. For example, if both local dependencies and certain
kinds of long-distance dependencies need to be learned in some domain, this can be accomplished with a Lattice Learner
invoking the function (fack, ssqk′), for example. Learners of these types resemble what cognitive scientists call modular
learning [19].

Many more examples like the ones mentioned here can be found in [25]. However, the lattice formulation developed
here is stronger than the results there. We turn to more complex examples in Section 5 which demonstrate the full power
of the present proposal. But first, we establish important properties of lattice learners.

4. Properties of lattice learning

In this section we give a number of interesting theorems pertaining to LCs and their learnability. Most importantly, we
characterize LLs (Theorem 4.6) and LCs (Theorem 4.7).

We start by observing an isomorphism between the hypothesis space and the class of learned languages. This gives a
very important intuition about what kind of structures are learnable as LCs.

Theorem 4.1. Let (V , f ) be an LS. Then (V ,⊑) and (Lf ,⊆) are order-isomorphic, with order-isomorphism Lf (·).

Proof. Clearly, Lf (·) is surjective. Regarding injectivity, let a, b ∈ V with Lf (a) = Lf (b). Let Da,Db ⊆ Σ∗ be finite sets such
that


x∈Da

f (x) = a and


x∈Db
f (x) = b. Clearly, Da,Db ⊆ Lf (a) = Lf (b). Therefore, for all x ∈ Da ∪ Db, f (x) ⊔ a = a and

f (x) ⊔ b = b, i.e., both a and b are upper bounds on the set E = {f (x) | x ∈ Da ∪ Db}. As both a and b are the least upper
bounds already on subsets of E, they both must be the least upper bound of E. The least upper bound of a set is unique, thus
a = b.

Let a, b ∈ V such that a ⊑ b. Then we have

Lf (a) = {x ∈ Σ∗
| f (x) ⊑ a} ⊆ {x ∈ Σ∗

| f (x) ⊑ b} = Lf (b). (2)

Let a, b ∈ V such that Lf (a) ⊆ Lf (b). Then we have

{x ∈ Σ∗
| f (x) ⊑ a} = Lf (a) ⊆ Lf (b) = {x ∈ Σ∗

| f (x) ⊑ b}. (3)

Let D ⊆ Σ∗ be a finite set such that


x∈D f (x) = a. Clearly, D ⊆ Lf (a), and, thus, D ⊆ Lf (b). Therefore, b is an upper bound
on {f (x) | x ∈ D}. As a is the least upper bound of this set, we get a ⊔ b = b; thus, a ⊑ b. �

This order isomorphism has the following important consequence. Given any set of languagesL learnable as an LC, there
is, up to isomorphism, only one LS to learn L with. We will use this fact occasionally when talking about an LC L without
explicitly defining the associated LS.

From Theorem 4.1 we immediately get the following corollary.

Corollary 4.2. Let (V , f ) and (U, g) be two LSes with Lf ⊆ Lg . Then there is an order embedding h : V → U.

Proof. Define h such that

∀v ∈ V : Lf (v) = Lg(h(v)). (4)

Such a function exists, as Lf ⊆ Lg . We have, for all a, b ∈ V ,

a ⊑V b ⇔ Lf (a) ⊆ Lf (b) ⇔ Lg(h(a)) ⊆ Lg(h(b)) ⇔ h(a) ⊑U h(b). � (5)

We give the following proposition as three observations

Proposition 4.3. We have the following.

(i) Let (V , f ) be an LS and U a semi-lattice. Let g : V → U be an order embedding. Then Lf = Lg◦f .5

(ii) Let h : Σ∗
→ Σ∗ and let (V , f ) be an LS. Then h(Lf ) = Lf iff, for all x, y ∈ Σ∗, f (x) ⊑ f (y) ⇔ f (h(x)) ⊑ f (h(y)).

(iii) Let h : Σ∗
→ Σ∗ and L an LC. Then h(L) is an LC.

5 Note that the semi-lattice associated with g ◦ f is the sub-ordering of V on range(g).
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Proof. (i) We have, for all v ∈ V (using the monotonicity of g for the second step),

Lf (v) = {x ∈ Σ∗
| f (x) ⊑ v} (6)

= {x ∈ Σ∗
| g(f (x)) ⊑ g(v)} (7)

= Lg◦f (g(v)). (8)

(ii) Regarding ‘‘⇐’’: From the assumptions we know, for all x, ywith f (x) = f (y), f (h(x)) = f (h(y)). Thus, there is g : V →

V such that ∀x ∈ Σ∗
: g(f (x)) = f (h(x)). From the assumptions, we get that g is order-embedding, and the result

follows from (i).
Regarding ‘‘⇒’’: Let x, y ∈ Σ∗. Suppose f (x) ⊑ f (y). Thus, for all L ∈ Lf , y ∈ L ⇒ x ∈ L. Hence, for all L ∈ h(Lf ) = Lf ,
h(y) ∈ L ⇒ h(x) ∈ L. Thus, f (h(x)) ⊑ f (h(y)). The opposite direction is analogous.

(iii) Let (V , f ) be such that Lf = L. LetW be all elements from range(f ◦ h), closed under (finite) suprema. Then (W , f ◦ h)
is an LC with Lf ◦h = h(L). �

After these first observations on the structure of LCs, we will now turn to properties of individual LCs. We start with a
lemma which provides useful formulas for later theorems.

Lemma 4.4. Let (V , f ) be an LS. We have the following.

(i) For all D ⊆ V such that


D exists,

v∈D L(v) ⊆ L(


D).

(ii) For all a ∈ V , L(a) = Σ∗ iff a = ⊤V .
(iii) If Lf is closed under (finite) union, then we have, for all a, b ∈ V , L(a) ∪ L(b) = L(a ⊔ b).
(iv) If Lf is closed under infinite union, then we have, for all D ⊆ V ,


D exists and


v∈V L(v) = L(


D).

(v) For all D ⊆ V such that
Ű

D exists,

v∈D L(v) = L(

Ű

D).

Proof. (i) LetD ⊆ V , let x ∈

v∈D L(v). Then there is a v ∈ D such that f (x) ⊑ v; thus, f (x) ⊑


D. Therefore, x ∈ L(


D).

(ii) Let a ∈ V be such that L(a) = Σ∗. Let v ∈ V be such that a ⊑ v, and let D ⊆ Σ∗ be finite such that


x∈D f (x) = v.
Then, as L(a) = Σ∗, for all x ∈ D, f (x) ⊑ a. Thus, v =


x∈D f (x) ⊑ a. This shows v = a, and, therefore, a = ⊤V . The

converse is trivial.
(iii) Let a, b ∈ V . Let L ∈ L be the supremum of L(a) and L(b)with respect to (L,⊆) (i.e., the smallest language containing

L(a) and L(b)). As L(a) ∪ L(b) ∈ L, we have L = L(a) ∪ L(b). By Theorem 4.1, (L,⊆) and (V ,⊑) are isomorphic with
order isomorphism L(·). Thus L(a ⊔ b) equals the supremum of L(a) and L(b) in (L,⊆), that is, L(a ⊔ b) = L(a) ∪ L(b).

(iv) LetD ⊆ V . Let L ∈ L be the supremumof all L(v) for v ∈ Dwith respect to (L,⊆) (i.e., the smallest language containing
all L(v)). As


v∈V L(v) ∈ L by closure under infinite union, we have L =


v∈V L(v). By Theorem 4.1, (L,⊆) and (V ,⊑)

are isomorphic with order isomorphism L(·). Thus L(

v∈D v) equals the supremum of all L(v), v ∈ D, in (L,⊆), that is,

v∈D L(v) = L(
Ű

D).
(v) Let D ⊆ V such that

Ű

D exists. We have, for all x ∈ Σ∗,

x ∈ L(
ę

D) ⇔ f (x) ⊑
ę

D ⇔ ∀v ∈ D : f (x) ⊑ v ⇔ x ∈


v∈D

L(v). �

Now we get to one of the main theorems of this section. This theorem makes two statements on the quality of the
hypothesis space of lattice learning and characterizes several closure properties of individual LCs in terms of their defining
LSs. For this, we need the following notions of lattice theory.

Let a lattice V be given. We say that V is ⊓-complete iff, for all (possibly infinite) sets A ⊆ V , A has an infimum. The
definition of ⊔-completeness is analogous. An element v ∈ V is called ⊔-irreducible iff, for all finite sets D, if


D = v then

v ∈ D.6 V is called distributive iff, for all u, v, w ∈ V , u ⊔ w = v ⊔ w and u ⊓ w = v ⊓ w imply that u = v.

Theorem 4.5. Let (V , f ) be an LS. We have the following.

(i) λv, x x ∈ L(v) is computable (i.e., (L(v))v∈V is uniformly decidable).
(ii) If (V , f ) is polytime, then λv, x x ∈ L(v) is computable in polynomial time (i.e., (L(v))v∈V is uniformly decidable in

polynomial time).
(iii) Lf is closed under intersection iff V is a lattice.
(iv) Lf is closed under infinite intersection iff V is a ⊓-complete lattice.
(v) Lf is closed under finite union iff the following holds. Each v ∈ range(f ) is ⊔-irreducible and, for all u, v, w ∈ V such that

w is incomparable with both u and v, and u ⊔ w = v ⊔ w, we have L(u) \ L(w) = L(v) \ L(w).
(vi) Lf is closed under infinite union iff Lf is closed under union, V is ⊔-complete and V does not have any infinitely ascending

chains.
(vii) Let V be a lattice and Lf be closed under finite union. Then V is distributive.7

6 This notion is especially interesting in the present context, since any x such that f (x) is⊔-irreducible intuitively provides information about the language
L(f (x)) that cannot be obtained from any number of elements u ∈ L(f (x))with f (u) ≠ v.
7 Note that there are LSs on distributive lattices V where all elements from range(f ) are ⊔-irreducible such that the associated LCs are not closed under

finite union. Consider the following set of regular languages {∅, L((a2)∗), L((b2)∗), L(a∗), L(b∗), L((a2)∗|(b2)∗),Σ∗
}. This set of languages is not closed

under union (for example, L(a∗
|(b2)∗) is missing), but the lattice structure is distributive and all elements from range(f ) are ⊔-irreducible.
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(viii) Suppose V is a lattice. Lf is closed under complements iff L is closed under union, V is boolean and ⊥V ∉ range(f ).
(ix) Let (V , f ) be an LS. Then Lf is closed under reversal iff, for all x, y ∈ Σ∗, f (x) ⊑ f (y) ⇔ f (reverse(x)) ⊑ f (reverse(y)).

Proof. (i) We have λv, x [x ∈ L(v)] = λv, x [φit
f (v, x) = v] by consistency and conservativeness of φf . Clearly,

λv, x [φit
f (v, x) = v] is computable.

(ii) Using Theorem 2.9(ii), analogous to the proof of (i) just above.
(iii) ‘‘⇒’’: Follows from the isomorphie given in Theorem 4.1. ‘‘⇐’’: Follows directly from Lemma 4.4(v).
(iv) Same as (iii).
(v) ‘‘⇒’’: Suppose L is closed under union. Let v ∈ range(f ). By way of contradiction, suppose v is not ⊔-irreducible;

thus, there are u, v, w ∈ V with u ≠ v ≠ w such that u ⊔ w = v. Let x ∈ Σ∗ is such that f (x) = v. Then x ∈ L(v) \

(L(u) ∪ L(w)), but we have L(u) ∪ L(w) =
Lemma 4.4(iii)

L(u ⊔ w) = L(v), a contradiction.

Now suppose there are u, v, w ∈ V such thatw is incomparable with both u and v and u⊔w = v ⊔w. Suppose, by
way of contradiction, L(u) \ L(w) ≠ L(v) \ L(w). Without loss of generality, suppose (L(u) \ L(w)) \ (L(v) \ L(w)) ≠ ∅.
Let x ∈ L(u) \ (L(v) ∪ L(w)). We have f (x) ⊑ u ⊔ w = v ⊔ w. Thus, x ∈ L(v ⊔ w) =

4.4(iii)
L(v) ∪ L(w), a contradiction.

‘‘⇐’’: Let u, w ∈ V . We show L(u) ∪ L(w) = L(u ⊔ w). Suppose, by way of contradiction, there exists x ∈

L(u ⊔ w) \ (L(u) ∪ L(w)). Thus, u andw are incomparable. As x ∉ L(u), f (x) ⋢ u, similarly forw.
First, suppose f (x) is comparable with both u and v. Thus, f (x) is an upper bound to both u and w; hence,

f (x) = u ⊔ w. This contradicts f (x) ∈ range(f ) being ⊔-irreducible.
Second, suppose f (x) is not comparable with one of u and w (without loss of generality, not comparable with w).

Let v be such that

v =


f (x) if u ⊔ w = f (x) ⊔ w;

f (x) ⊔ u, otherwise.

Then, as f (x) ⊑ u ⊔ w, u ⊔ w = v ⊔ w. Furthermore, w is incomparable with both u and v. Thus, we get L(u) \

L(w) = L(v) \ L(w), but the right set contains x, while the left does not, a contradiction.
(vi) ‘‘⇒’’: Trivially,Lf is closed under finite union.⊔-completenes follows from Lemma 4.4(iv). If V contained an infinitely

ascending chain, then Lf contained an infinitely ascending chain and its supremum, a direct contradiction to an early
language learning result by Gold [20] (he showed that no class of languages containing all finite sets as well as an
infinite set can be TxtEx-learned).

‘‘⇐’’: Let D ⊆ V . Let v ∈ D. Recursively define a sequence (vi)i by v0 = v and, for all i, we let vi+1 be any element
from D such that vi+1 ⋢


j≤i vj, or vi, if no such element exists. As V has no infinitely ascending chains, (


j≤i vj)i is

not infinitely ascending and is almost everywhere equal some u. Thus, for all w ∈ D, w ⊑ u. Thus, using that u is the
supremumof finitelymany elements fromD, u is the supremumof all ofD, i.e., u =


D. Let i be such that


j≤i vj = u.

As Lf is closed under finite union, we have


j≤i

L(vj) =
4.4(iii)

L


j≤i

vj


= L(u) = L


D


⊇
4.4(i)


v∈D

L(v) ⊇


j≤i

L(vj).

Thus, L(


D) =

v∈D L(v) as desired.

(vii) Let u, v, w ∈ V with u ⊓ w = v ⊓ w and u ⊔ w = v ⊔ w. The conclusion is straightforward if w is comparable with
either u or v. Thus, suppose that w is not comparable with both u and v. We get L(u) \ L(w) = L(v) \ L(w) from (v).
Using (iii) and Lemma 4.4(v), we get

L(u) = (L(u) \ L(w)) ∪ (L(u) ∩ L(w))
= (L(v) \ L(w)) ∪ (L(u ⊓ w))

= (L(v) \ L(w)) ∪ (L(v ⊓ w))

= (L(v) \ L(w)) ∪ (L(v) ∩ L(w))
= L(v).

Thus, u = v.
(viii) ‘‘⇒’’: Suppose L is closed under complements. By DeMorgan’s laws and (iii), L is closed under union. Let v be a

grammar for L(⊥V ). Then ⊥V ⊑ v, therefore L(⊥V ) ⊆ L(v) = L(⊥V ). Thus, L(⊥V ) = ∅ and, hence, ⊥V ∉ range(f ).
Further, L(v) = Σ∗, hence, by Lemma 4.4(ii), v = ⊤V .

Let · be such that, for all a ∈ V , a is a grammar for L(a). Let a ∈ V . For all x ∈ Σ∗, we have x ∈ L(a) or x ∈ L(a) = L(a).
Thus, f (x) ⊑ a ⊔ a. Therefore,Σ∗

= L(a ⊔ a). From Lemma 4.4(ii) we get a ⊔ a = ⊤V .
‘‘⇐’’: For each a ∈ V and x ∈ Σ∗, we have

x ∈ L(a) ∩ L(a) ⇔ f (x) ⊑ a ⊓ a ⇔ f (x) = ⊥V ⇔ x ∈ ∅. (9)
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Thus, L(a) ∩ L(a) = ∅. As L is closed under union, let v be a grammar for L(a) ∪ L(a). We have

L(v) = L(a) ∪ L(a) = L(a ⊔ a) = L(⊤V ). (10)

Now we have v = ⊤V and, using Lemma 4.4(i), L(a) ∪ L(a) = L(v) = Σ∗. Thus, L(a) = L(a).
(ix) This follows directly from Proposition 4.3(ii). �

Now we get to the second main theorem of this section, which shows that all learners having a certain subset of the
properties listed above in Theorem 2.9 can necessarily be expressed as LLs.

Theorem 4.6. Let h ∈ R. The following are equivalent.

(i) There is an LS (V , f ) such that h = φf .
(ii) h TxtEx-learns L set-drivenly, globally consistently, locally conservatively and strongly monotonically.
(iii) There is a 1–1 L(·) and a computable function t such that, for all x, v, t(x, v) halts iff x ∈ L(v) and, for all σ ∈ Seq, L(h(σ ))

is the ⊆-minimum element of TxtEx(h) containing all of content(σ ).

Proof. We have that (i) implies (iii) by basic properties of the LLs (see Theorem 2.9).
Regarding (iii) implies (ii): set-drivenness, global consistency and local conservativeness are straightforward. Then h

is prudent [11, Proposition 21]. Concerning strong monotonicity we have the following. Let D,D′
⊆ Σ∗ with D ⊆ D′.

Then D ⊆ L(hset(D′)), while L(hset(D)) is the ⊆-minimum element of TxtEx(h) containing all of D (from prudence we have
L(hset(D)) ∈ TxtEx(h)). Hence, L(hset(D)) ⊆ L(hset(D′)).

Regarding (ii) implies (i): As h learns set-drivenly, let hset be such that, for all sequences σ , h(σ ) = hset(content(σ )). Note
that, for all D,D′ such that hset(D) = hset(D′), we have

hset(D) = hset(D ∪ D′) (11)

by consistency and conservativeness.
Let V = range(hset) and define ⊔ by

∀D0,D1 : hset(D0) ⊔ hset(D1) = hset(D0 ∪ D1). (12)

To show ⊔ to be well-defined: Let D0,D′

0,D1,D′

1 be such that hset(D0) = hset(D′

0) and hset(D1) = hset(D′

1). We have

D0 ∪ D′

0 ∪ D1 ∪ D′

1 (13)
⊆

consistency
L(hset(D0)) ∪ L(hset(D′

0)) ∪ L(hset(D1)) ∪ L(hset(D′

1)) (14)

= L(hset(D0)) ∪ L(hset(D1)) (15)
⊆

strict monotonicity
L(hset(D0 ∪ D1)). (16)

Similarly, we get

D0 ∪ D′

0 ∪ D1 ∪ D′

1 ⊆ L(hset(D′

0 ∪ D′

1)). (17)

From conservativeness we get

hset(D0 ∪ D1) = hset(D0 ∪ D′

0 ∪ D1 ∪ D′

1) = hset(D′

0 ∪ D′

1). (18)

This shows ⊔ to be well-defined.
We define⊑ by, for all a, b ∈ V , a ⊑ b iff a⊔b = b. It is easy to verify that⊑ is a partial order on V (see [37, Theorem 2.1]).
Let f : Σ∗

→ V , x → hset({x}). Then, for all σ ∈ Seq, φf (σ ) = h(σ ).
Obviously, f and suprema in V are computable. Furthermore, for each v ∈ V there is a finite set D ⊆ range(f ) such that

x∈D x = v.
This shows that (V , f ) is an LS as desired. �

Theorem 4.6 allows for a straightforward corollary on the level of LCs. The next theorem gives this corollary and one
more characterization of LCs.

Theorem 4.7. Let L be a set of languages. The following are equivalent.

(i) L is an LC.
(ii) L can be TxtEx-learned by a globally consistent, locally conservative, set-driven and strongly monotonic learner.
(iii) There is a 1–1 L(·) such that there is a computable function t such that, for all x, v, t(x, v) halts iff x ∈ L(v) and a (total)

computable function g such that, for all D ⊆ Σ∗ L(g(D)) is the ⊆-minimum element of L containing D.
(iv) L can be TxtEx-learned by a strongly monotonic set-driven learner using a uniformly decidable hypothesis space.
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Proof. We have that (i), (ii) and (iii) are equivalent by Theorem 4.6.
Further, (i) implies (iv) by Theorems 2.9 and 4.5.
Regarding (iv) implies (ii) we have the following. Suppose h ∈ P TxtEx-learnsL stronglymonotonically and set-drivenly

using a uniformly decidable hypothesis space L. We will define a learner h′
∈ P using hypotheses in a uniformly decidable

hypothesis space L′-system defined such that each hypothesis is a pair of a natural number and a finite sequence; in
particular, for all e, σ , L′(e, σ ) = L(e) ∪ content(σ ). We define a learner h′ as follows.8

∀σ ∈ Seq : h′(σ ) =

h′(σ−), if σ ≠ ∅ ∧ content(σ ) ⊆ L′(h′(σ−));
(h(σ ), σ ), else if content(σ ) ⊈ L(h(σ ));
(h(σ ),∅), otherwise.

(19)

It is easy to see that h′ is set-driven, globally consistent, locally conservative and stronglymonotonic. Furthermore, h′ TxtEx-
learns L as desired. �

We end this section with another sufficient condition for a language to be an LC.

Proposition 4.8. Let L be a class of languages closed under intersection and TxtEx-learnable set-drivenly, globally consistently
and locally conservatively as witnessed by h ∈ P . Then h is strongly monotone, and, in particular, L is an LC.

Proof. Let σ ∈ Seq, x ∈ Σ∗. We need to show L(h(σ )) ⊆ L(h(σ � x)). Let L0 = L(h(σ )) ∩ L(h(σ � x)). As h is globally
consistent, we have content(σ ) ⊆ L0. Note that L0 ∈ L, as L is closed under intersection. Let T ⊇ σ be a text for L0. As h is
globally conservative and TxtEx-learns L0, we have, for all k ≥ len(σ ), h(T [k]) = h(σ ). Thus, L(h(σ )) = L0. We now have

L(h(σ )) = L0 = L(h(σ )) ∩ L(h(σ � x)) ⊆ L(h(σ � x)). (20)

We now get that L is an LC by Theorem 4.7. �

5. Complex examples of lattice classes

In this section, we provide additional examples of lattice classes that are more complex than the ones given earlier. In
particular, most of these lattices are infinite. We begin with the pattern languages [2], and then discuss monomials. We
conclude by showing that the function-distinguishable language classes [16] are LCs.

Definition 5.1. LetΣ be an alphabet and let X be a countably infinite set (of variables) disjoint fromΣ .
Let Pat = (Σ ∪ X)∗ be the set of all patterns. For any π ∈ Pat, with w0, . . . wn+1 ∈ Σ∗ and x0, . . . xn ∈ X such that

π = w0x0w1x1 . . . xnwn+1, let

L(π) = {w0vx0w1vx1 . . . vxnwn+1 | ∀x ∈ X : vx ∈ Σ∗
\ {ε}}

denote the set of all strings matching the pattern π . We call any L such that there is a pattern π with L = L(π), a (non-
erasing) pattern language. For each w ∈ Σ∗, let pat(w) = {π ∈ Pat | w ∈ L(π)} denote the set of patterns matched by w.
Note that, for eachw ∈ Σ∗, pat(w) is finite.

The pattern languages are not learnable globally consistently and iteratively in a non-redundant hypothesis space, see
[10, Corollary 12]. The usual iterative algorithm was first published in [32].

Theorem 5.2. This theorem follows [33]. For any finite set D ⊆ Σ∗, we let pat(D) =

w∈D pat(w).9 Let Vpat be the lattice

{pat(D) | D ⊆ Powfin(Σ
∗)} with order relation ⊇.10 Then (Vpat , pat) is an LS.

Now φpat learns the pattern languages globally consistently and iteratively (as well as with all other properties as given
in Theorem 2.9). Note that some of the grammars of (Vpat , pat) are not for pattern languages, for example pat({a3, b4}) =

{x1, x1x2, x1x2x3, x1x1x2, x1x2x1, x1x2x2}.11
Also note: One can code the elements of Vpat , as all but ⊥Vpat are finite sets.

We can generalize the construction given for the pattern languages.

Theorem 5.3. Let (Li)i be an enumeration of languages such that there is a computable function h such that, for all x ∈ Σ∗, h(x)
is the finite set of all i with x ∈ Li.12 Then a superset of {Li | i ∈ N} is an LC.

8 For any non-empty sequence σ , we let σ− denote the sequence derived from σ by deleting the last element.
9 By convention, we let pat(∅) = Pat.

10 Note that the order is inverted with respect to the usual powerset lattice.
11 Note that the pattern languages are not closed under intersection [29]. In particular, the language generated by the grammar {x1, x1x2, x1x2x3,
x1x1x2, x1x2x1, x1x2x2} is the intersection of the pattern languages recognized by x1x1x2 , x1x2x1 and x1x2x2 . In this intersection are no words of length
2, and the only words of length 3 are clearly aaa and bbb. Hence, the only pattern that might describe the intersection is x1x1x1 , which does not include b4
(which is in the intersection).
12 The property of having only finitelymany possible conjectures including a given datum is called finite thickness. Finite thickness is a sufficient condition
for TxtEx-learnability [2].
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Proof. We let V be the range of h and close it under intersection. Then (V ,∩) is a semi-lattice, and (V , h) is an LS. �

Note that this construction will not yield grammars for languages outside of (Li)i if (Li)i is closed under intersection. This
kind of closure of a class under finite intersection was already studied in [31].

Our next example concerns monomials over a set of variables {x1, . . . , xn}. Intuitively, a monomial is a boolean function
defined as the conjunction of any number of literals (a literal is a variable or its negation). We are interested in the set of all
input tuples on which the monomial will evaluate to ‘‘true’’. We represent each monomial for which there are such tuples
by a tuple in turn: If, for some k ≤ n, variable xk appears in the conjunctive definition of the monomial we put a 1, if the
negation appears a 0 and ? otherwise. Now a monomial will evaluate to true on all and only the tuples which match the
monomial tuple on all non-? places. The following definition makes these ideas formal.

Definition 5.4. Let n ∈ N. Amonomial of n variables is an element from {0, 1, ?}n.
Let ⊑ be the order on monomials of n variables such that

∀x, y ∈ {0, 1, ?}n : x ⊑ y ⇔ (∀k < n : y(k) ≠? ⇒ x(k) = y(k)).

Let Vmon−n be the (finite) lattice on {⊥}∪ {0, 1, ?}n induced by letting ⊥ be the minimum element and all other relations
be as given by ⊑. This lattice has a maximum element ?n and the set of atoms {0, 1}n.

For any monomialm, let

L(m) = {x ∈ {0, 1}n | x ⊑ m}

denote the set of all stringsmatching the monomialm.

Theorem 5.5. Let n ∈ N, let id be the identity on {0, 1}n. Then (Vmon−n, id) is an LS. In particular, φid learns the class of all
monomial languages.

Fernau [16] introduced the notion of function distinguishable languages (FDLs). We define these in automata-theoretic
terms. A finite-state automaton A = (Q ,Σ, q0,QF , δ) is a tuple where Q is a finite set of states, Σ is a finite alphabet,
q0 ∈ Q is the start state, QF are the final states and δ is the transition function with domain Q × Σ and co-domain the
powerset of Q . The transition function is extended recursively in the usual way so its domain is Q ×Σ∗.

A function f is distinguishing iff its domain isΣ∗, its codomain is a finite set, and if f (w) = f (z) implies f (wu) = f (zu) for
all u, w, z ∈ Σ∗. Consider any finite-state automatonA = (Q ,Σ, q0,QF , δ) and distinguishing function f . For all q ∈ Q and
for all x ∈ Σ∗ such that δ(q0, x) = q, define f̂ : Q → range(f ) to be f̂ (q) = f (x). Then A is a f -distinguishable automaton iff

(i) A is deterministic (so ∀q ∈ Q , a ∈ Σ, it is the case that |δ(q, a)| ≤ 1), and
(ii) for all distinct states q1, q2 ∈ Q , if q1 and q2 are both final or if there is a ∈ Σ such that δ(q1, a) = δ(q2, a) then

f̂ (q1) ≠ f̂ (q2).

A language is f -distinguishable if and only if there is a f -distinguishable automaton accepting it. The class of f -
distinguishable languages is denoted LfDL.

The following shows that the concept of FDLs is subsumed by the concept of LCs, while the concept of LCs is not subsumed
by the concept of FDLs.

Theorem 5.6.
LfDL | f is distinguishable


⊂

L(V ,f ) | (V , f ) is a lattice space


.

The inequality is witnessed by a class of regular languages as stated below.

Proof. ‘‘≠’’: We argue that the class of all finite languages Lfin is an LC but not function-distinguishable. To see that it is a
lattice class, consider the lattice of all finite sets with inclusion as the order, and the function f is given by the mapping of
allw ∈ Σ∗ to {w}. On the other hand, each LfDL is not closed under union (see [16, Property 17]), but, trivially, Lfin is.

‘‘⊆’’: Consider anyLfDL. Let h be the learner forLfDL given in [16, § 6]. By Fernau [16, Theorem 35], h fulfills the condition
of Theorem 4.6(iii). Hence, h is a Lattice Learner by Theorem 4.6 and LfDL is an LC. �

For the reader familiar with [16] we specify a concrete LS (V , f ) such that φf learns the class of f ′-DLs for any
distinguishing function f ′

: Σ∗
→ X .

Define V as the set of all stripped13 f ′-distinguishable DFA ∪ {({q0},Σ, q0,∅,∅)}, and ⊑ such that B1 ⊑ B2 iff L(B1) ⊆

L(B2) for B1, B2 ∈ V .
Obviously, V is a partially ordered set. (V ,⊑) is also an upper semi-lattice – the supremum B of B1, B2 is obtained as

follows: Compute the stripped minimal DFA B0 for L(B1) ∪ L(B2) (algorithms can be found in the literature). If B0 ∈ V
then B := B0. Else build a finite positive sample set I+ by first adding all shortest strings leading to an accepting state

13 An automaton is stripped when taking away any state or transition would change the language recognized by the automaton.
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in B0. Then, for every hitherto unrepresented transition δ(q1, a) = q2 (a ∈ Σ) of B0, add to I+ the string obtained from
concatenating a string leading to q1 with a with a string leading from q2 to an accepting state. Use the learner h from [16]
on I+. By Lemma 34 and Theorem 35 in [16] the result is a stripped DFA recognizing the smallest f ′-distinguishable language
containing L(B1)∪L(B2), and since the elements of V are all stripped there is only one such DFA in V , which is the supremum
of B1 and B2. Also note that (V ,⊑) has a minimum element ⊥V = ({q0},Σ, q0,∅,∅).

For any distinguishing function f ′
: Σ∗

→ X define f : Σ∗
→ V by setting f (w) := Aw where Aw is theminimal stripped

DFA with L(Aw) = {w} (Aw is f ′-distinguishable by Fernau [16], Lemma 15). We show that (V , f ) is an LS.
Obviously, f is computable. For each v ∈ V there is a finite set D ⊆ range(f ) such that


x∈D x = v: Take any two

elements B1, B2 ∈ V such that B1 ⊔ B2 = v and construct the set I+ as specified above. We can set D := I+.
Thus, the class of f ′-DLs is learnable by φf .14

It follows that the famously-studied class of k-reversible languages [4], which are function distinguishable [16], can be
learned by lattice learners.

6. Query learning of LCs

This section is concerned with learning LCs from queries [5]. We address the issue from a more Grammatical Inference-
oriented view. For example, some concrete algorithms are given and complexity questions are considered.

Definition 6.1. Let (V , f ) be an LS and v ∈ V be the learning target.15 A membership query (MQ) for w ∈ Σ∗ and L ⊆ Σ∗ is
a query ‘w ∈ L?’ receiving an answer from {0, 1} with MQ(w) = 1 ifw ∈ L and MQ(w)= 0 otherwise.16 An MQ-learner for
an LS (V , f ) is an algorithm that uses MQs instead of text to produce its sequence of hypotheses, outputting one hypothesis
after each MQ.

An equivalence query (EQ) for v0 ∈ V is a query ‘v0 = v?’ receiving an answer fromΣ∗
∪ {yes} (Σ∗

∩ {yes} = ∅) such
that EQ(v0) = yes for L(v0) = L(v) and EQ(v0) = c where c is in the symmetric difference of v0 and v otherwise.

Let (V , f ) be an LS. As Lf is TxtEx-learnable, Lf is also TxtEx-learnable in the limit from MQs: Consider a learner just
querying all stringsw ∈ Σ∗ in length-lexical order, keeping allw with MQ(w) = 1, adding a pause on all otherw; this way,
we build a text for the target, which we can feed to our LL.

If we are interested in complexity, unfortunately in general we cannot bound the number of MQs needed in any
interesting way. Let (V , f ) be an LS. Given an MQ-learner h for (V , f ), we call the number of queries that h makes on
any language L ∈ Lf before having converged to a grammar for L the query complexity of h on L. For each v ∈ V , define
Tv := {T ⊆ range(f )|


t∈T t = v} and let T0 be an element of Tv with minimal cardinality. Obviously, |T0| is a lower

bound on the query complexity. However, there are LCs with properties that allowmore specific statements as follows. This
theorem applies, for example, to the class of all k-factor languages or the class of all k-piecewise testable languages.

Theorem 6.2. Let (V , f ) be an LS such that V is finite and each v ∈ V is the supremum of a set of atoms. Let m be the number of
atoms of V . Then the worst case query complexity using only MQs is (exactly!) m.

Proof. Clearly, querying one string xv with f (xv) = v for each atom v ∈ V and outputting the supremum of {xv | MQ(xv) =

1} gives the desired MQ-learner.
We show that the worst case query complexity is lower bounded by m by an adversary argument. Suppose h is an MQ-

learner forLf . The adversary answers the firstm−1 queries forwwith f (x) ≠ ⊥V with 0 (and all with f (x) = ⊥V with 1, as
necessary). Let v be an atom v such that h has not queried an xwith f (x) = vwithin the first up tom−1 queries. Suppose, by
way of contradiction, h does not makemore queries. Thus, h cannot learn both Lf (v) and Lf (⊥V ), a contradiction. Otherwise,
if h’s current hypothesis is ⊥V , the adversary will henceforth answer consistently with Lf (v) and vice versa. Thus, h cannot
have converged yet and will need another query before convergence.

Note that, in the case of Theorem6.2, theMQ-learner is finite, i.e., usingm queries and then outputting a single hypothesis
afterwards. �

Wegive another theorem regarding learnabilitywithmembership queries, this time about a specific infinite linear lattice.

Theorem 6.3. Let (V , f ) be an LS such that V equals N with the usual ordering. Suppose there is a computable g ∈ R such that
∀n ∈ N : f (g(n)) = n (i.e., we can compute, for any natural number, a string mapping to that number). Then the worst case
query complexity to learn any Ln with n ∈ N is O(log n).

14 Note that in a concrete implementation we would not have to construct I+ when computing suprema in V as we can just use the text seen so far. Also,
it seems relatively easy to define an iterative version of the learner from [16].
15 To be precise, the concept to infer is a language. However, as no two elements of V define the same language (see Footnote 4), our potential targets
directly correspond to elements of V .
16 Algorithmically, usingMQs onlymakes sense if themembership problem is decidable. Note that, for an LS (V , f ), a MQ forw ∈ Σ∗ amounts to checking
if f (w) ⊑ v.
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Proof. We use a doubling algorithm with two phases as follows. Let learner h first query g(0), then g(1), g(2), g(4), g(8)
and so on, until the first 0 as answer (on some 2n0 ). Thus, MQ(g(2n0)) = 1 and MQ(g(2n0+1)) = 0. Now h makes a binary
search in the interval between 2n0 and 2n0+1.

The total query complexity of h on any n ∈ N is ⌈log n⌉ for the first phase searching for the right interval. This search
will end with some n0 with 2n0 ≤ n. Thus, the binary search in the second phase uses at most ⌈log(2n0+1

− 2n0)⌉ ≤ ⌈log n⌉
queries. This gives the desired query complexity bound. �

Note that, on linear orderings, using MQs is equivalent to using EQs. Hence, Theorem 6.3 translates trivially to EQs.
However, for nonlinear orderings, the situation changes if we allow EQs instead of MQs:

Theorem 6.4. Let (V , f ) be an LS. Then Lf is learnable from EQs. In particular, there is a learner h such that, for all v ∈ V , the
maximum length of any ascending path from ⊥V to v (if existent) is (exactly) the worst case EQ query complexity of h on Lf (v).

Proof. We design an EQ learner h as follows. Let D be the set of all EQ counterexamples received by h so far. Then we query
x∈D f (x). Clearly, h EQ-learns Lf .
Let v ∈ V and p be a maximal sequence of increasing elements of V with first element ⊥V and last element v. We

inductively show that there are answers to EQs of h such that the sequence of outputs of h is p. The base case of the
induction is clear. Now let D and i be such that h got D as EQ counterexamples, i = |D| and


x′∈D f (x′) = p(i). Let x ∈

Lf (p(i + 1)) \ Lf (p(i)) (this set is non-empty, see Theorem 4.1). Then p(i) @ f (x) ⊔


x′∈D f (x′) ⊑ p(i + 1). Thus, as p is
maximal ascending path, f (x) ⊔


x′∈D f (x′) = p(i + 1). Giving x as an EQ counterexample is thus as required.

This establishes the lower bound on theworst case query complexity, the upper bound is similar and straightforward. �

7. VC-dimension of LCs

Onemodel of stochastic learnability is the PAC (probabilistically approximately correct) learningmodel [49]. Learnability
in this model was shown to be strongly connected to the VC-dimension of the class in question [50,7]. In this section, we
characterize the VC-dimension of lattice classes in terms of their lattice spaces in Theorem 7.1 and give an easy sufficient
condition in Corollary 7.2. As an anonymous reviewer pointed out, a small VC-Dimension is not directly connected to efficient
PAC-learnability. The analysis of efficiently PAC-learnable lattice classes is left as future work.

For any set L ⊆ Pow(Σ∗), we denote with VC(L) the supremum of the cardinalities of all sets S such that {S ∩ L | L ∈

L} = Pow(S) (such a set is said to be shattered by L).
We characterize the VC-dimension of an LC in the following theorem.

Theorem 7.1. Let (V , f ) be an LS. Let M be the set of all M ⊆ N such that (Pow(M),⊆) can be order-embedded into V . Then

sup
M∈M

card(M) = VC(Lf ).

Proof. Regarding ‘‘≤’’: Consider anyM ∈ M andW ⊆ V such that there is an isomorphism h from (Pow(M),⊆) to (W ,⊑).
We will now construct a set S to be shattered by Lf , more precisely, by {Lf (w) | w ∈ W }.

By Theorem 4.1, Lf is an isomorphism; thus, so is Lf ◦ h. Hence, for all m ∈ M , (Lf ◦ h)({m}) and (Lf ◦ h)(M \ {m}) are
incomparable. Thus, for eachm ∈ M , choose zm ∈ (Lf ◦ h)({m}) \ (Lf ◦ h)(M \ {m}).

Let S = {zm | m ∈ M}. We show that S is shattered by Lf . Let S ′
⊆ S, and let M ′

⊆ M be such that S ′
= {zm | m ∈ M ′

}.
Now, we have S ∩ Lf (h(M ′)) = S ′ from the properties of Lf and h.

Regarding ‘‘≥’’, let S ⊆ Σ∗ be shattered by Lf . We show (Pow(S),⊆) is isomorphic to ({Lf (


x∈D f (x)) | D ⊆ S},⊆). Let
h be such that, for all D ⊆ S, h(D) = Lf (


x∈D f (x)). Obviously, for all D,D′ with D ⊆ D′ we have h(D) ⊆ h(D′). Let D,D′ be

such that h(D) ⊆ h(D′). Let x ∈ D. Clearly, x ∈ h(D′). Let L ∈ Lf be such that S ∩ L = D′. h(D′) is the least element of Lf
such that D′ is a subset. Thus h(D′) ⊆ L. We have x ∈ S ∩ h(D′) ⊆ S ∩ L = D′. �

For any upper semi-lattice V , we denote with width(V ) the supremum of the cardinalities of all sets of mutually
incomparable elements of V . The following corollary provides an easy-to-check upper bound for the VC-dimension.

Corollary 7.2. Let (V , f ) be an LS. We have

VC(Lf ) ∈ O(logwidth(V )).

Proof. Theorem 7.1 shows that infinite VC-dimension gives infinite width. Otherwise, suppose the VC-dimension is finite.
Using Theorem 7.1, let S be a set of size VC(Lf ) such that (Pow(S),⊆) can be embedded into V thus, thewidth of V is at least
the width of (Pow(S),⊆), which is

 VC(V )
⌊VC(V )/2⌋


, according to Sperner’s Theorem [48]. Fromwell-known formulas for binomial

coefficients, we get

VC(Lf ) ∈ O

log


2VC(V )

√
VC(V )


⊆ O(logwidth(V )). �
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Note that the (logarithm of the) width of V can be an arbitrarily bad upper bound on the VC-dimension of an LC. Take,
for example, V to be the lattice with a maximum ⊤, minimum ⊥, and infinitely many incomparable elements in between,
one for each element ofΣ∗. The resulting LC has infinite width, and VC-dimension 1.

There are infinite LCs with finite width and thus finite VC-dimension. We mention one that relates to the Parikh map
[40] and the PAC-learning rays example in [1]. For all w ∈ Σ∗, let |w|a denote the number of as in w (e.g. |babbba|a = 2).
Consider the lattice V = (N,≤) so that ⊥ = 0 and the function fa : Σ∗

→ N such that x → {n ∈ N | |x|a = n}. It is easy to
see that Lfa contains infinitely many languages and that the width of this lattice is 1. Each n ∈ N corresponds to a language
in Lfa : the one that accepts all words that have at most n a’s.17

8. Conclusions and outlook

Lattice Classes are learnable and are very natural as evidenced by their various characterizations and their attractive
properties. It is also striking that so many disparate language classes are Lattice Classes. These include several important
classes in the subregular hierarchies, function-distinguishable classes such as the k-reversible languages, and the pattern
languages. In some cases, these new insight may be pushed further. For example, lattice-structured classes may bear
interesting relations with varieties of languages [14,15] or many other refinements of varieties [41,18].

Furthermore, Lattice Classes are modular, in the sense that the element-wise intersection of two lattice classes is also a
lattice class. In domains where there are several different kinds of constraints on the patterns to be learned (e.g. they are
both pattern languages and Strictly k-Local languages), Lattice Classes provide a natural way to compose learners.

It is obvious that if f and ⊔ are computable in polytime then lattice learners learn lattice classes in polynomial update
time. It is an interesting, open question whether we can say something about the converse as well. In general, this lattice
learning approach would probably yield worse learners than algorithms tailored to a given learning task.

Finally, we believe the ideas here can be fruitfully applied to characterizing classes of stochastic languages that can be
learned in similar ways.
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