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ABSTRACT
Drift analysis aims at translating the expected progress of an evo-

lutionary algorithm (or more generally, a random process) into a

probabilistic guarantee on its run time (hitting time). So far, drift

arguments have been successfully employed in the rigorous analy-

sis of evolutionary algorithms, however, only for the situation that

the progress is constant or becomes weaker when approaching the

target.

Motivated by questions like how fast fit individuals take over a

population, we analyze random processes exhibiting a multiplica-

tive growth in expectation.We prove a drift theorem translating this

expected progress into a hitting time. This drift theorem gives a sim-

ple and insightful proof of the level-based theorem first proposed

by Lehre (2011). Our version of this theorem has, for the first time,

the best-possible linear dependence on the growth parameter δ (the

previous-best was quadratic). This gives immediately stronger run

time guarantees for a number of applications.
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1 INTRODUCTION
In a typical situation in evolutionary search, an algorithm first

makes good progress while far away from the target, since a lot can

still be improved. As the search focuses more and more on the fine

details, progress slows and finding improving moves becomes rarer.

Thus, the expected progress is typically an increasing function in

the distance from the optimum. However, there are also many pro-

cesses where this situation is reversed. For example, for heuristics

involving a population, once a superior individual is found, this
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improvement needs to be spread over the population. This process

gains speed when more individuals exist with the improvement.

Turning expected progress into an expected first hitting time

is the purpose of drift theorems. For example, the additive drift

theorem [15, 16] requires a uniform lower bound δ on the expected

progress (the expected drift) and gives an expected first hitting time

of at most n/δ , where n is the initial distance from the optimum.

This theorem can also be applied when the drift is changing during

the process, but since a uniform δ is used in the argument, the

additive drift theorem cannot be used to exploit a stronger drift

later in the process.

A first step towards profiting from a changing drift behavior was

the multiplicative drift theorem [8, 9]. It assumes that the expected

drift is at least δx when the distance from the optimum is x , for
some factor δ < 1. The first hitting time can then be bounded by

O(log(n)/δ ), where n is again the initial distance from the optimum.

Apparently, this gives a much better bound than what could be

shown via the additive drift in this setting. Multiplicative drift can

be found in many optimization processes, making the multiplicative

drift theorem one of the most useful drift theorems.

To cope with a broader variety of changing drift patterns, the

variable drift theorem [18, 23] has been developed. However, while

there are several variants of this drift theorem, they all require that

the strength of the drift is a monotone increasing function in the

distance from the optimum (the farther away from the optimum,

the easier it is to make progress).

In this paper we are concerned with the reverse setting where

drift is a decreasing function it the distance from the optimum.

While many drift theorems are phrased such that the aim is to

reach the point zero, for our setting it is more natural to consider

the case of reaching some target value n starting at a value of 1,

and to suppose that the drift is δx going up (for the multiplicative

drift theorem, we had a drift of δx going down). Thus, we call our

resulting drift theorem the multiplicative up-drift theorem.

Making things more formal, consider a random process (Xt )t ∈N
over positive reals starting at X0 = 1 and with target n > 1. We

speak of multiplicative up-drift if there is a δ > 0 such that, for all

t ≥ 0, we have the drift condition

(D) E[Xt+1 − Xt | Xt ] ≥ δXt .

Note that this is equivalent to

(D’) E[Xt+1 | Xt ] ≥ (1 + δ )Xt .
One trivial case of any drift process is the deterministic process

with the desired gain per iteration. We quickly regard this case

now as it gives the right impression of what should be a natural

expected first hitting time for a well-behaved process exhibiting

multiplicative up-drift.

Example 1.1. Let δ > 0. Suppose X0 = 1 and, for all t , Xt+1 =
(1 + δ )Xt with probability 1. Then this process satisfies the drift
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condition (D) with equality. Clearly, the time to reach a value of at

least n is ⌈log
1+δ (n)⌉. For small δ , this is approximately log(n)/δ ,

for large δ , it is approximately log(n)/log(δ ). We note here already

that we will be mostly concerned with the case where δ is small.

This case is the harder one since the progress is weaker, and thus

there is a greater need for stronger analyses tools in this case.

Unfortunately, not all processes with multiplicative up-drift have

a hitting time of O(log(n)/δ ), as the following example shows.

Example 1.2. Let δ > 0. Suppose X0 = 1 and, for all t , Xt+1 =
2(1 + δ )Xt − 1 with probability 0.5 (which we term a success) and

Xt+1 = 1 otherwise. Again, the drift condition (D) is satisfied with

equality. A straightforward induction shows that, after k successes,

the process has a value of 1 + 2δ
∑k−1
i=0 (2 + 2δ )i . Thus, we require

a sequence of about log
2+2δ (n/δ ) consecutive successes to reach

a value of n which, for values of δ = o(1/logn), has a probabil-

ity of about 2
− log

2+2δ (n/δ ) ≈ δ/n. Therefore we expect to need

Ω(n/δ ) iterations, significantly more than the O(log(n)/δ ) seen in

the deterministic process.

Note that for this process the additive drift theorem immediately

gives the upper bound of O(n/δ ) since we always have a drift of at
least δ towards the target. Hence Example 1.2 describes a process

where the stronger assumption of multiplicative up-drift does not

lead to a better hitting time.

Our firstmain result (Theorem 2.1) shows that the targeted bound

ofO(log(n)/δ ), which as we saw is optimal when we want to cover

the deterministic process given in Example 1.1, can be obtained

when strengthening condition (D) by assuming (i) that, given Xt ,
the next state Xt+1 is binomially distributed with expectation (1 +
δ )Xt , and (ii) that the process never reaches the state 0. The first

condition is very natural. When generating offspring independently,

the number of offspring satisfying a particular desired property is

binomially distributed. The second condition is technical necessity.

From the up-drift condition alone, we cannot infer any progress

from state 0. Consequently, 0 could well be an absorbing state,

resulting in an infinite hitting time if this state can be reached with

positive probability.

In quite some applications, however, we cannot rule out that the

random process reaches the state 0. For example, when regarding

the subpopulation of individuals having some desired property,

then in an algorithm using comma selection, this might die out

completely in one iterations (though often with small probability

only). To cover also such processes, in our second drift theorem

(Theorem 2.2) we extend our Theorem 2.1 to include that the state

0 is reached with at most the probability that can be deduced from

the up-drift and the binomial distribution conditions. To avoid that

the the state 0 is absorbing, we add an additional condition for

this state 0: we assume a minimum probability of ε to leave state

0. Since it allows for stronger run time guarantees in some cases,

we also consider lower bounds E0 on the expected state reached

when leaving zero (see Theorem 2.1 for the precise statement of

this aspect). We note that this is a feature, but not a restriction,

since we can always take E0 = ε .

As mentioned before, a main application for multiplicatively

increasing drift towards the optimum is the analysis of how fit in-

dividuals spread in a population. This particular setting was previ-

ously analyzed as the level-based theorem [4, 5, 20], modeled after

the method of fitness-based partitions [26]. Essentially, the search

space is partitioned into an ordered sequence of levels. The ongo-

ing search process increases the probability that a newly-created

individual is at least on a given level and, once this probability is

sufficiently high, that there is a good chance that the individual is

on an even higher level. We restate the details of this theorem in the

version from [4] in Theorem 3.1 below. The level-based theoremwas

originally intended for the analysis of non-elitist population-based

algorithms [5], but has since also been applied to EDAs, namely to

the UMDA in [21] and, with some additional arguments, to PBIL in

[22].

We use our second multiplicative up-drift theorem (Theorem 2.2)

to prove a new version of the level-based theorem (Theorem 3.2).

This new theorem allows to derive better bounds under essentially

the same conditions, in particular, improving the dependence on

the parameter δ from quadratic to linear. Our upper bounds almost

match the lower-bound example given in [4] and, in particular,

match the asymptotic dependence on δ displayed by this example.

Our version of the level-based theorem directly leads to better

bounds in all settings where the level-based theorem was used

previously. In Section 4, we show how it improves the run time

guarantees of two previous analyses of non-elitist evolutionary al-

gorithms. (i) We prove that the (λ, λ) EA with fitness-proportionate

selection and suitable parameters can optimize the OneMax and

LeadingOnes functions in time O(n4 log2 n), improving over the

previous-best published bound of O(n8 logn). (ii) We prove that

the (λ, λ) EA with 2-tournament selection and suitable parameters

in the restricted setting that only a constant fraction of the bits of

the search points are evaluated finds the optimum of OneMax in

O(n2.5 log2 n) iterations. The previous-best published bound here

is O(n4.5 logn).
Beyond these particular results, our modular proof (first analyz-

ing the multiplicative up-drift excluding 0, then including 0, then

applying it in the context of the level-based theorem) shows the

level-based theorem in a way that is more accessible than the pre-

vious versions and that gives more insight into population-based

optimization processes.

In particular, our proof suggests that the behavior of the process

under the named conditions is as follows.

• Once a critical mass in a level is reached, this level is never

again abandoned. Thus, we can focus in our analysis on

having a critical mass of individuals in one level and analyze

the time it takes to gain a critical mass in the next level.

• Reaching a critical mass in the next level consists of two

steps.

1. When few elements are in the next level, then these ele-

ments go extinct regularly and need to be respawned until

this initial population on this level via a mostly unbiased

random walk gains a moderate amount of elements.

2. With this moderate amount of elements, the bias of the

random walk is large enough to make a significant de-

crease of the population unlikely, but instead the number
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of elements increases steadily, as can be shown using a con-

centration bound for supermartingales, so that we quickly

gain a critical mass in the next level.

We are optimistic that this increased understanding of population-

based processes helps in the future design and analysis of such

processes.

2 MULTIPLICATIVE UP-DRIFT THEOREMS
In this section we prove two versions of the multiplicative up-drift

theorem. The first is concerned with processes that cannot reach

the value 0; the second one extends the first theorem to include

also the possibility of going down to 0.

2.1 Processes on the Positive Integers
As discussed in the introduction, an expectedmultiplicative increase

as described by (D) is not enough to ensure the run time we aim

at. For this reason, we assume that there is a number k such that,

conditional onXt , the next stateXt+1 is binomially distributed with

parameters k and (1+δ )Xt /k . Note that this implies (D). Since often
precise distributions are hard to specify, we only require that Xt+1
is at least as large as this binomial distribution, that is, we require

that Xt+1 stochastically dominates Bin(k, (1 + δ )Xt /k). See [6] for
an introduction to stochastic domination and its use in run time

analysis. To avoid that the process reaches the possible absorbing

state 0, we explicitly forbid this, that is, we require that all Xt take
values only in the positive integers.

Under these conditions, we analyze the time the process takes

to reach or overshoot a given state n. For technical reasons, we
require that n is not too close to k , that is, that there is a constant
γ0 < 1 such that n ≤ γ0k . For the trivial reason that the condition

Xt+1 ≽ Bin(k, (1+δ )Xt /k) does not make sense forXt > (1+δ )−1k ,
we also require n ≤ (1 + δ )−1k . For all such n, we show that an

expected number of O(log(n)/δ ) iterations suffices to reach n.

Theorem 2.1 (First Multiplicative Up-Drift Theorem). Let

γ0 < 1. Let (Xt )t ∈N be a stochastic process over the positive integers.

Assume that there are n,k ∈ Z≥1 and δ ∈ (0, 1] such that n ≤
min{γ0k, (1 + δ )−1k} and for all t ≥ 0 and all x ∈ [1..n] with
Pr[Xt = x] > 0 we have the binomial condition

(Bin) (Xt+1 | Xt = x) ≽ Bin(k, (1 + δ )x/k).
Let T := min{t ≥ 0 | Xt ≥ n}. Further, suppose that δ is bounded

from above by a polynomial inn. Then there is a constantC , depending
on γ0, but independent of δ , k and n, such that

E[T ] ≤ C
log(n)
δ
.

In addition, once the process has reached state 100/δ or higher, the

probability to ever return to a state 50/δ or lower, is at most
1

e−1 .

Before proving this result, let us give a simple example of a

possible application. Consider the following elitist (µ, λ) EA. It
starts with a parent population of µ individuals chosen uniformly

and independently from {0, 1}n . In each iteration, it generates λ
offspring, each by independently and uniformly choosing a parent

individual and mutating it via standard bit mutation (with the usual

mutation rate 1/n). If the offspring population contains at least one

individual that is at least as good as the best (in terms of fitness)

parent, then the new parent population is chosen by selecting µ
best offspring (breaking ties arbitrarily). If all offspring are worse

than the best parent, then the new parent population is composed

of a best individual from the old parent population and µ − 1 best
offspring (again, breaking all ties randomly).

We now use the above theorem to analyze the spread of fit indi-

viduals in the parent population. Let us assume that at some time,

the parent population contains at least one individual of at least

a certain fitness. We shall call such individuals fit in the follow-

ing. Recall that standard bit mutation creates a copy of the parent

individual with probability 1/en := (1 − 1/n)n ≈ 1/e . Hence if

the parent population contains x fit individuals, the number of fit

individuals in the offspring population is at least (in the domination

sense) Bin(λ, x
µen ). Due to the elitist selection mechanism, it is also

always at least one. If (1 + δ ) := λ
µen is greater than one, and let

us for simplicity assume that δ ≤ 1 as well, then we can apply the

first up-drift theorem and observe that after an expected number

of O(log(µ)/δ ) iterations, the parent population consists of only fit

individuals.

We now prove the theorem. The formal proof is omitted for

reasons of space (in can be found in [10]), so we only outline the

main difficulties and solutions in a high-level language. One of the

main difficulties is that the drift towards the target is negligibly

weak in the early stages of the process. To demonstrate this, assume

that δ = o(1) and that Xt = o(1/δ ). Then the up-drift condition (D)
only ensures a drift of E[Xt+1−Xt | Xt ] ≥ δXt = o(Xt ). At the same

time, the binomial condition (Bin) allows a variance Var[Xt+1 | Xt ]
of order Xt . For this reason, in this regime we do not progress

because of the drift, but rather because of the random fluctuations

of the process.

It is well-known that random fluctuations are enough to reach a

target, with a classical example being the unbiased random walk

(Wt ) on the line [0..n] := {0, 1, . . . ,n}. This walk, when started in 0,

still reaches n in an expected number ofO(n2) iterations despite the
complete absence of any drift in [1..n − 1]. The key to the analysis

is to not regard the drift E[Wt+1 −Wt | Wt ] of the process, but

instead the drift of the process (W 2

t ). Then an easy calculation gives

E[W 2

t+1 −W
2

t | Wt = x] = 1

2
(x + 1)2 + 1

2
(x − 1)2 − x2 = 1 for

all x ∈ [1..n − 1] (see [12, Section 5] for an extensive discussion).

Consequently, by regarding the drift with respect to a different

potential function, we obtained an additive drift of 1, and from this

an expected time of O(n2) to reach the state n.
Very similar arguments have been used in the analysis of unbi-

ased processes arising from running evolutionary algorithms. [17]

turned an area with small drift into an area with significantly more

drift by employing the concave potential function x 7→
√
x , stating

that any other function x 7→ xε with ε < 1 would be equally suit-

able to obtain the same tight upper bound; the same argument was

used in a more general setting in [3].

In [11, Theorem 5] a negative drift in a (small) part of the search

space was overcome by considering random changes which make

it possible for the algorithm to pass through the area of negative

drift by chance. This was formalized by using a tailored potential

function turning negative drift into positive drift by excessively

rewarding changes towards the target, as opposed to steps away
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from the target. This ad-hoc argument was made formal and cast

into a Headwind Drift Theorem in [19, Theorem 4].

In abstract terms, the art here is finding a potential function

д : Z≥0 → R that transforms the unbiased process (Xt ) into a

process (д(Xt )) with constant drift. Such a potential function has

to be increasing and convex. Since the resulting bound for the

expected hitting time is (roughly) the potential д(n) of the target
state n, at the same time the potential function should increase as

slowly as possible.

For our situation, it turns out that д defined by д(x) = x ln(x)
is a good choice as this again gives a constant drift and thus an

expected time of roughly O(log(1/δ )/δ ) to reach a state Ω(1/δ ),
from where on we will observe that also the original process has

sufficient drift. We are not aware of this potential function being

used so far in the theory of evolutionary algorithms (apart from a

similar function being used in [2], a work done in parallel to ours).

A technical annoyance in the analysis of the time taken to reach

Ω(1/δ ) is that the additive drift theorem, for good reason, does

not allow that the process overshoots the target. In the classical

formulation, this follows from the target being 0 and the process

living in the non-negative numbers. For this reason, we cannot just

show that the process (д(Xt )) has a constant drift, but we need to

show this drift for a version of this process that is suitably restricted

to the range [1..O(1/δ )].
Once the process has reached a value ofΘ(1/δ ), the drift is strong

enough to rely on making progress from the drift (and not the ran-

dom fluctuations around the expectation). This is easy when the

process is above Xt = ω(1/δ2), since we then have an expected

progress of at least Ω(
√
Xt ) and thus a simple Chernoff bound

is enough to guarantee that each single round gives a progress of

Xt+1 ≥ (1−o(1))(1+δ )Xt . WhenXt is smaller, say onlyΘ(1/δ ), only
the combined result of Θ(1/δ ) rounds gives an expected progress

large enough to admit such a strong concentration. Since the rounds

are not independent, we need some careful martingale concentra-

tion arguments for this phase.

2.2 Processes That Can Reach Zero
We now extend the multiplicative up-drift theorem to include state

0. Since the subprocess consisting only of states greater than 0 sat-

isfies the assumptions of the first up-drift theorem, we obtain from

the latter an upper bound on the time spend above 0. It therefore

remains to estimate the time spent on state 0, which in particular

means estimating how often the process reaches this state. Since

the process is a submartingale we can employ the optional stop-

ping theorem to estimate that with probability 1−Ω(δ ) the process
reaches 0 before D0 = min{100/δ ,n}. Consequently, after an ex-

pected number of O(δ ) attempts, the process reaches D0, and from

there with constant probability never goes back to zero.

Theorem 2.2 (Second Multiplicative Up-Drift Theorem).

Let γ0 < 1. Let (Xt )t ∈N be a stochastic process over Z≥0. Assume

that there are n,k ∈ Z≥1, E0, ε > 0, and δ ∈ (0, 1] such that n ≤
min{γ0k, (1 + δ )−1k} and for all t ≥ 0 and all x ∈ [0..n] with
Pr[Xt = x] > 0, the following two properties hold.

(Bin) If x ≥ 1, then (Xt+1 | Xt = x) ≽ Bin(k, (1 + δ )x/k).
(0) If x = 0, then

• Pr[Xt+1 ≥ 1 | Xt = x] ≥ ε ;

• E[min{100/δ ,n,Xt+1} | Xt = x ∧ Xt+1 ≥ 1] ≥ E0.

Let n ∈ Z≥1 and T := min{t ≥ 0 | Xt ≥ n}. Then

E[T ] = O
(

1

E0εδ
+
log(n)
δ

)
.

To prove this theorem, we again need to cope with the problem

that a process may overshoot a target and that this overshooting,

while irrelevant for the time to reach the target, may interfere

with our mathematical arguments. The following lemma solves

this problem for us here, as it states, roughly, that we can replace

a binomial random variable with expectation E with a random

variable that is identically distributed in [0..E] and takes values

only in [0..4E] such that the expectation is not lowered. We suspect

that this result may be convenient in many other such situations,

e.g., when using additive drift in processes that may overshoot the

target.

Lemma 2.3. Let Y be a random variable taking values in the non-

negative integers such that Y ≽ Bin(k,p) for some k ∈ N and p ∈
[0, 1] with kp ≥ 1. Let E = kp denote the expectation of Bin(k,p).
Then there is a random variable Z such that

• Pr[Z = i] = Pr[Y = i] for all i ∈ [0..E],
• Pr[Z = i] = 0 for all i ≥ 4E + 1,
• E[Z ] ≥ E.

Proof. Let Z be defined by Pr[Z = i] = Pr[Y = i] for all i ∈
[0..E] and Pr[Z = ⌈4E⌉] = 1 − Pr[Y ∈ [0..E]]. Then it remains

to show that E[Z ] ≥ E. If X ∼ Bin(k,p), and hence E = E[X ],
then Pr[X > E] ≥ 1

4
by [7]. Since Y ≽ X , we have Pr[Y > E] ≥

Pr[X > E] ≥ 1

4
. By definition, Pr[Y > E] = Pr[Y = ⌈4E⌉] and thus

E[Y ] = ∑ ⌈4E ⌉
i=0 i Pr[Y = i] ≥ ⌈4E⌉ Pr[Y = ⌈4E⌉] = ⌈4E⌉ · 1

4
≥ E. �

We now prove Theorem 2.2.

Proof. We first analyze the time spend on all states different

from 0. To this aim, let X̃t , t = 0, 1, . . . , be the subprocess where

we are above zero. Formally speaking, X̃ is the subsequence of (Xt )
consisting of all Xt that are greater than 0. Viewed as a random

process, this means that we sample the next state according to

the same rules as for the X -process; however, if this is zero, then
immediately and without counting this as step we sample the new

state from the distribution described in (0) conditional on being

positive (which is the same as saying that we resample until we

obtain a positive result). With this, the distribution describing one

step of the process is a distribution on the positive integers such that

(X̃t+1 | X̃t ) ≽ Bin(k, (1+δ )X̃t /k). We may thus apply Theorem 2.1

and obtain that after an expected total number ofO(log(n)/δ ) steps,
the process X̃ reaches or exceeds n.

It remains to analyze how many steps the process X spends on

state 0. Clearly, by (0), the expected time to leave the state of 0 is 1/ε .
Hence it suffices to analyze the number of times the process reaches

zero. Let D0 = min{100/δ ,n}. Since we know from Theorem 2.1

that the process goes below D0/2 only with constant probability,

and hence only constantly many times, after reaching or exceeding

D0, it suffices to show that the process falls back to being 0 only an

expected number of O(1/E0δ ) times before reaching or exceeding

a value of D0.
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Let t0 be a time where Xt0 = 0 and let t1 be the first time after t0
where Xt1 > 0. Let Yt = Xt1+t for all t ≥ 0. We are interested in the

first time that (Yt ) reaches or exceeds D0. Since it does not change

this hitting time, we can replace Y0 by D0 in case that Y0 > D0.

Then by (0), E[Y0] = E0.
Let R be the first time that Y exceeds D0 or hits 0. This is a stop-

ping time. To ease the following argument, we regard the following

processZ , which equalsY until the stopping time (and hence has the

same stopping time). We define Z recursively. We start by setting

Z0 := Y0. Assume thatZt is defined andZt ·1Zt ≤D0
= Yt ·1Yt ≤D0

. If

Zt > D0, then we setZt+1 = Zt . Otherwise, that is, whenZt = Yt =
x ≤ D0 for some x , then we recall that Yt+1 ≽ Bin(k, (1+ δ )x/k) ≽
Bin(k,x/k). In this case, we let Zt+1 be the random variable con-

structed in Lemma 2.3 (w.r.t. Yt+1, k , and p = x/k). By this lemma,

we have Zt+1 · 1Zt+1≤D0
= Yt+1 · 1Yt+1≤D0

, allowing us to continue

our recursive definition of Z , and E[Zt+1 | Zt ] ≥ E[Zt ], showing
that (Zt ) is a submartingale. We can thus use the optional stopping

theorem to see that E[ZR ] ≥ E[Z0]. Furthermore,

E[ZR ] = Pr[ZR ≥ D0]E[ZR | ZR ≥ D0] + Pr[ZR = 0]E[ZR | ZR = 0]
= Pr[ZR ≥ D0]E[ZR | ZR ≥ D0] ≤ Pr[ZR ≥ D0]⌈4D0⌉,

the latter again due to Lemma 2.3. Consequently

Pr[YR ≥ D0] = Pr[ZR ≥ D0] ≥
E[Z0]
⌈4D0⌉

=
E0
⌈4D0⌉

.

This shows that, in expectation, the process will restart at 0 at most

⌈4D0⌉ times before exceeding D0. �

3 THE LEVEL-BASED THEOREM
We start by restating the best known version of the level-based

theorem from [4]. Afterwards we will give our new version and its

derivation.

3.1 Previous-Best Level-Based Theorem
The following version of the level-based theorem has a quadratic

dependence on δ .

Theorem 3.1 ([4]). Let D mapping populations to distributions

over X be given. Given a partition (A1, . . . ,Am ) of X, define T :=

min{λt | Pt ∩Am , ∅} where, for all t , Pt+1 is the population gained
by sampling λ individuals from D(Pt ). If there are z1, . . . , zm−1,δ ∈
(0, 1] and γ0 ∈ (0, 1) such that, for any population P ∈ Xλ , the
following three conditions are satisfied.

(G1) For each level j ∈ [m − 1], if |P ∩A≥j | ≥ γ0λ, then

Pr

y∼D(P )
[y ∈ A≥j+1] ≥ zj .

(G2) For each level j ∈ [m− 2] and all γ ∈ (0,γ0], if |P ∩A≥j | ≥ γ0λ
and |P ∩A≥j+1 | ≥ γλ, then

Pr

y∼D(P )
[y ∈ A≥j+1] ≥ (1 + δ )γ .

(G3) The population size λ satisfies

λ ≥ 4

γ0δ2
ln

(
128m

z∗δ2

)
, where z∗ = min

j ∈[m−1]
zj .

Then we have

E[T ] ≤ 8

δ2

m−1∑
j=1

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)
.

The proof (given in [4]) used drift theory with an intricate po-

tential function.

3.2 A Tighter Level-Based Theorem
We now derive from our multiplicative up-drift theorems a version

of the level-based theorem with (tight) linear dependence on δ .

Theorem 3.2 (Level-Based Theorem). Consider a population-

based process as follows. For each possible population P of λ indi-

viduals from the search space X, there is a distribution D(P) on X.
Starting with an arbitrary population P0, we iteratively define Pt+1
by sampling λ times independently from D(Pt ).

Assume that there are a partition (A1, . . . ,Am ) of X, a constant
C , numbers z1, . . . , zm−1,δ ∈ (0, 1], and γ0 ∈ (0, 1) such that for any

population P ∈ Xλ the following three conditions are satisfied, where

we use the short-hand A≥j :=
⋃m
k=j Ak .

(G1) For each level j ∈ [m − 1], if |P ∩A≥j | ≥ γ0λ, then

Pr

y∼D(P )
[y ∈ A≥j+1] ≥ zj .

(G2) For each level j ∈ [m− 2] and all γ ∈ (0,γ0], if |P ∩A≥j | ≥ γ0λ
and |P ∩A≥j+1 | ≥ γλ, then

Pr

y∼D(P )
[y ∈ A≥j+1] ≥ (1 + δ )γ .

(G3) The population size λ satisfies

λ ≥ 8

γ0δ2
log

(
Cm

δ

(
log λ +

1

z∗λ

))
, where z∗ = min

j ∈[m−1]
zj .

Then T := min{λt | Pt ∩Am , ∅} satisfies

E[T ] = O
(
mλ log(γ0λ)

δ
+

1

δ

m−1∑
i=1

1

zj

)
.

Besides the linear dependence on δ , the new level-based theorem

differs from the previous one in a few minor technical details. One

is the minimum value for λ in (G3). Here we first note that our

leading constant is larger by a factor of two, but as said before, we

did not aim to optimize the constants in this first work giving the

right dependence on δ . We then observe that in our bound on λ,
the logarithmic factor differs from the corresponding one in the

previous theorem. A precise and complete comparison is not totally

trivial, but for almost all reasonable values of the variables our

O(log λ + 1

z∗λ ) expression should be significantly smaller than the

corresponding expression
128

z∗δ in the previous theorem. Minimally

annoying in our version is that λ appears also in the right-hand side

of (G3), but since it only appears inside a logarithm, an optimal

solution of this inequality is not important.

For the resulting time bound, as said, the main difference is the

dependence on δ in the term reflecting the times needed to gain fit-

ness levels, which isO( 1δ
∑m−1
j=1

1

zj ) in our version and
8

δ 2

∑m−1
j=1

1

zj
in the previous version. The remaining term, which in our theorem

is the total time taken to fill the levels up to a fraction of γ0, is again
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harder to compare. This is even more true since for the previous the-

orem, it is not totally clear where this term
8

δ 2

∑m−1
j=1 λ ln( 6δλ

4+zjδλ
)

comes from (apart from a drift analysis with a complicated potential

function). In particular, since this term also depends on the zi , it
seems to encompass not only the times to fill the levels. In any

case, it seems to us that in most applications (i) these two terms

will be of a similar order of magniture or, when δ is small, the term

in our theorem will be smaller, and (ii) when the parameters of

the algorithm under investigation are chosen wisely, the times for

finding improving solutions should clearly dominate the times for

filling up the levels; hence the precise comparison of these terms is

less important.

We now prove the new level-based theorem.

Proof. Our proof proceeds as follows. First we will show that

we have multiplicative up-drift for the number of individuals on the

lowest level which does not have at leastγ0λ individuals, conditional
on never losing a level. A simple induction allows us to go up

level by level. Then we show that any level which has at least

γ0λ individuals will not get lost until the optimization ends, with

sufficiently high probability.

Since we are only interested in the time until we have the first

individual inAm , we may assume that condition (G2) also holds for
j =m − 1. Let a level j ≤ m − 1 be given such that |P ∩A≥j | ≥ γ0λ;
we now condition on never losing level j, that is, on never having

less than γ0λ individuals on level j or higher. We let (Xt ) be the
random process describing the number of individuals on level j + 1
or higher, that is, we have Xt = |Pt ∩A≥j+1 | for all t .

From (G1) we have that if Xt = 0, then the number Y := Xt+1
of individuals sampled in A≥j+1 follows a binomial law with pa-

rameters λ and success probability p ≥ zj . Consequently, the prob-
ability to sample at least one individual on a higher level is at least

Pr[Y ≥ 1] ≥ 1 − (1 − zj )λ ≥ 1

1+ 1

zj λ
≥ 1

2
min{zjλ, 1} =: ε , using the

elementary, but very convenient estimate from [25, Lemma 9].

We now estimate E0 := E[min{100/δ ,γ0λ,Y } | Y ≥ 1].
Obviously, E0 ≥ 1. Assume that λzj ≥ 1 and hence E[Y ] ≥
1. Since a binomial random variable with expectation at least

1 is at least its expectation with probability at least
1

4
[7, 13]

and since, trivially, (Y | Y ≥ 1) ≽ Y , we have E0 ≥
1

4
min{100/δ ,γ0λ,E[Y ]} = 1

4
min{100/δ ,γ0λ, λzj }. Consequently,

in any case E0ε ≥ 1

8
min{100/δ ,γ0λ, λzj }.

From (G2) we see that when Xt > 0, then the number Xt+1 of
individuals sampled on level j+1 or higher stochastically dominates

a binomial law with parameters λ and (1 + δ )Xt /λ. Consequently,
we can apply Theorem 2.2 and estimate that the expected number

of generations until there are at least γ0λ individuals on level j + 1
or higher is

O

(
1

E0εδ
+
log(γ0λ)

δ

)
= O

(
1

λzjδ
+
log(γ0λ)

δ

)
.

Summing over all levels, we obtain the desired bound on the number

of steps to reach a search point in Am :

O

(m−1∑
i=1

(
1

λzjδ
+
log(γ0λ)

δ

))
= O

(
m log(γ0λ)

δ
+

1

λδ

m−1∑
i=1

1

zj

)
.

We now argue that we indeed do not lose a level with at least γ0λ
individual (except for a small failure probability). We let k be four

times the implicit constant in the run time bound just computed.

Consider now a level j ≤ m − 1 such that |P ∩A≥j | ≥ γ0λ. We

use (G2) to see that the probability of any generated individual to

be at least on level j is

Pr

y∼D(P )
[y ∈ A≥j ] ≥ (1 + δ )γ0.

Thus, the expected number of generated individuals on level j is
at least (1 + δ )γ0λ. We now want to determine the probability of

undershooting this expected value by a factor of 1−δ/2; for this we
use a multiplicative Chernoff bound and see that this probability is

at most

exp(−δ2γ0λ/8)
(G3)
≤

(
km

log(λ) + (z∗)−1/λ
δ

)−1
.

Then, after km
log(λ)+(z∗)−1/λ

δ /2 generations, the process is done

with probability at least 1/2, if no level was ever lost. We bound

the probability of ever losing a level in this time by a union bound

with 1/2. Since, conditional on never losing a level, we succeed

in this time with probability at least 1/2, we succeed overall with

probability at least 1/4. A simple restart argument concludes the

proof. �

4 APPLICATIONS
With the improved level-based theorem, we easily obtain the fol-

lowing results. Both improve previous results that were obtained

via the first level-based theorem.

4.1 Fitness-Proportionate Selection
Dang and Lehre [5] showed that fitness-proportionate selection

can be efficient when the mutation rate is very small; in contrast

to previous results that show, for the standard mutation rate 1/n,
that fitness-proportionate selection can lead to exponential run-

times [14, 24]. More precisely, Dang and Lehre regard the (λ, λ) EA
with fitness-proportionate selection for variation and standard-

bit mutation as variation operator (Algorithm 1). Here fitness-

proportionate selection (with respect to a non-negative fitness func-

tion f ) means that from a given population x1, . . . ,xλ we choose a

random element such that xi is chosen with probability
f (xi )∑λ
j=1 f (x j )

.

When

∑λ
j=1 f (x j ) is zero, we choose an individual uniformly at

random.

Dang and Lehre show that this algorithm with mutation rate

pmut =
1

6n2
and population size λ = bn2 lnn for some constant b >

0 optimizes the OneMax and LeadingOnes benchmark functions

in an expected number of O(n8 logn) fitness evaluations. With our

tighter version of the level-based theorem, we obtain the following

result. We note that the previous improved level-based theorem

(Theorem 3.1) would give a bound of O(n5 log2 n) for the smallest-

possible choice of λ.

Theorem 4.1. Consider the (λ, λ) EA with fitness-proportionate

selection,

• with population size λ ≥ cn2 ln(n) with c sufficiently large

and λ = O(nK ) for some constant K , and
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Algorithm 1: The (λ, λ) EA with fitness-proportionate se-

lection and mutation rate pmut to maximize a function f :

{0, 1}n → R≥0.
1 Initialize P0 as multi-set of λ individuals chosen independently

and uniformly at random from {0, 1}n ;
2 for t = 1, 2, 3, . . . do
3 Pt ← ∅;
4 for i = 1 to λ do
5 select x ∈ Pt−1 via fitness-proportional selection;
6 generate y from x by flipping each bit independently

with probability pmut;

7 Pt ← Pt ∪ {y};

• mutation rate pmut ≤ 1

4n2
and pmut = Ω( 1

λ logn ).

Then in an expected number of O(n2λ logn) fitness evaluations, this
algorithm optimizes both theOneMax and the LeadingOnes function.

For the best-possible choice of λ, this bound is O(n4 log2 n).

Proof. Let f be either of the two functions OneMax or

LeadingOnes. We apply Theorem 3.2 with γ0 =
1

2
, C = 1, and

the partition formed by the sets Ai := {x ∈ {0, 1}n | f (x) = i − 1}
with i = 1, 2, . . . ,n + 1 =:m.

To show (G1), assume that we have at least γ0λ individuals

with fitness at least j for some j ∈ [0..n − 1]. Since the selection
operator favors individuals with higher fitness, the probability that

the parent of a particular offspring has fitness at least j , is at least γ0.
Given that such a parent was chosen (and that this does not have

fitness n since we would be done then anyway), the probability to

generate a strictly better search point is at leastpmut(1−pmut)n−1 ≥
pmut(1− (n− 1)pmut) = pmut(1−o(1)) since pmut = o( 1n ). Hence we
have (G1) satisfied with z∗ = zj = γ0pmut(1 − o(1)).

To show (G2), let j ∈ [0..n − 2], γ ∈ (0,γ0] and P be a population

such that at least γλ individuals have a fitness of at least j + 1. Let
F+ be the sum of the fitness values of the individuals of fitness at

least j+1 and let F− =
∑
x ∈P f (x)−F+ be the sum of the remaining

fitness values. By our assumption, F+ ≥ γλ(j + 1). The probability
that an individual of fitness j + 1 or more is chosen as parent of a

particular offspring is

F+∑
x ∈P f (x) =

F+

F+ + F−

≥ γλ(j + 1)
γλ(j + 1) + F−

≥ γλ(j + 1)
γλ(j + 1) + (1 − γ )λj

= γ

(
1 +

1 − γ
j + γ

)
≥ γ

(
1 +

1

2

j + 1

2

)
≥ γ

(
1 +

1

2n

)
.

The probability that a parent creates an identical offspring is (1 −
pmut)n ≥ 1−npmut. Consequently, the probability that an offspring

has fitness at least j + 1 is at least γ times (1 + 1

2n )(1 − npmut) ≥
1 + 1

2n − npmut −O(n−2) ≥ 1 + 1

4n −O(n−2) =: 1 + δ . With this δ ,
we have satisfied (G2).

Finally, we observe that

8

γ0δ2
log

(
Cm

δ

(
log λ +

1

z∗λ

))
= O

(
n2 log

(
O(n2)

(
lognK +O(log−1 n)

)))
= O

(
n2 logn

)
= O(λ),

that is, we have (G3).
Consequently, we can employ Theorem 3.2 and derive an ex-

pected optimization time of

E[T ] = O
(
mλ log(γ0λ)

δ
+

m

z∗δ

)
= O(n2λ logn),

which is O(n4 log2 n) for the smallest-possible choice of λ. �

4.2 Partial Evaluation
Also in Dang and Lehre [5] a different parent selection algorithm

was considered, 2-tournament selection, where a parent is chosen

by picking two individuals uniformly at random and the fitter one

is allowed to produce one offspring (see Algorithm 2).

Algorithm 2: The (λ, λ) EA with 2-tournament selection and

mutation rate pmut to optimize a function f : {0, 1}n → R≥0.
1 Initialize P0 as multi-set of λ individuals chosen independently

and uniformly at random from {0, 1}n ;
2 for t = 1, 2, 3, . . . do
3 Pt ← ∅;
4 for i = 1 to λ do
5 select x0,x1 ∈ Pt−1 uniformly at random;

6 select x ∈ {x0,x1} with maximal fitness (breaking ties

uniformly);

7 generate y from x by flipping each bit independently

with probability pmut;

8 Pt ← Pt ∪ {y};

The test functions they considered were OneMax and

LeadingOnes under partial evaluation (a scheme for randomizing

a given function), which we here define only for OneMax. Given a

parameter c ∈ (0, 1), we use n i.i.d. random variables (Ri )i≤n , each
Bernoulli-distributed with parameter c . OneMaxc is defined such

that, for all bit strings x ∈ {0, 1}n , OneMaxc (x) =
∑n
i=1 Rixi . With

other words, a bit string has a value equal to the number of 1s in it,

where each 1 only counts with probability c .
Dang and Lehre [5] showed the following statement as part of

their core proof [5, proof of Theorem 21] regarding the performance

of Algorithm 2 on OneMaxc (x).

Lemma 4.2. Let n be large and c ∈ (1/n, 1). Then there is an a such
that, for all γ ∈ (0, 1/2), the probability to produce an offspring of at

least the quality of the γλ-ranked individual of the current population

is at least γ (1 + a
√
c/n).

Using their old level-based theorem (with a dependence on δ
of order 5) and the best possible choice for λ, they obtain a bound
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for the expected number of fitness evaluations until optimizing

OneMax with partial evaluation with parameter c ≥ 1/n of

O

(
n4.5 logn

c3.5

)
.

Using the more refined level-based theorem from [4], see Theo-

rem 3.1 (with a quadratic dependence on δ ), one can find a run time

bound of

O

(
n3 logn

c2

)
.

With our level-based theorem given in Theorem 3.2 (with a linear

dependence on δ ), one can prove a run time bound of

O

(
n2.5(log(n))2

c1.5

)
.

For this we chose analogously to [5]: δ = a
√
c/n as given in

Lemma 4.2, pmut = δ/3,m = n + 1 (with the partitioning based on

fitness), γ0 = 1/2, zj = (1 − j/n)(δ/9) and λ = bn ln(n)/c for some

constant b.
Analogous improvements can be found in the case of

LeadingOnes.

5 CONCLUSION
In this work, we prove two drift results for multiplicatively increas-

ing drift. Since the desired hitting time bound of order log(n)/δ ,
which implies that the process behaves similarly to the determin-

istic process, can only be obtained under additional assumptions,

we formulate our results for processes in which each state Xt+1 is
distributed according to a binomial distribution with expectation

(1 + δ )Xt (or better in the domination sense).

As main application for our drift results, we prove a stronger

version of the level-based theorem. It in particular has the asymptot-

ically right dependence on 1/δ , which is linear. Previous level-based
theorems only shows a dependence of order δ−5 [5] or δ−2 [4]. This
difference can be significant in applications with small δ , e.g., the
result on fitness-proportionate selection [5], which has δ = Θ(1/n).

An equally interesting progress from our new level-based the-

orem is that its relatively elementary proof gives more insight in

the actual development of such processes. It thus tells us in a more

informative manner how certain population-based algorithms opti-

mize certain problems. Such additional information can be useful

to detect bottlenecks and improve algorithms.

The fact that our proof is more explanatory might also help

further extending this level-based theorem. For example, at the

moment the assumptions are formulated in a way that the run time

is estimated by the sum of the times needed to fill each level up to a

fraction of γ0 plus the times taken to find improvements from such

levels. It is known from other analyzes like [1, 27] that often the

best run times can be shown by waiting for different occupation

ratios for different levels. If an improvement is easy to find from a

certain level, then it pays off less to fill it up to a constant fraction.

For our version of the level-based theorem, we are optimistic that

an extension to different occupation ratios can be obtained with

similar methods. Such an extension of the theorem could be useful

to prove an asymptotically tight bound for the run time of the

(µ, λ) EA on OneMax. The current bounds, obtainable from any of

the level-based theorems (since δ is constant) most likely are not

tight. Note that for λ sufficiently larger than µ and µ large enough,

the (µ, λ) EA should have a similar run time as the (µ + λ) EA since

good individuals are not lost due to producing sufficiently many

copies, but the current bounds for the (µ, λ) EA only show larger

run times.

In terms of future work, we also note that there are processes

showing multiplicative up-drift where the next state is not de-

scribed by a binomial distribution. One example are population-

based algorithms using plus-selection, where, roughly speaking,

Xt+1 ∼ Xt + Bin(λ,Xt /λ). We are optimistic that such processes

can be handled with our methods as well. We did not do this in

this first work on multiplicative up-drift since such processes can

also be analyzed with elementary methods, e.g., exploiting that the

process is non-decreasing and with constant probability attains the

expected progress. Nevertheless, extending our drift theorems to

such processes should give better constants and a more elegant

analysis, so we feel that this is also an interesting goal for future

work.
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