
Parameterized algorithms for Eccentricity
Shortest Path Problem?

Sriram Bhyravarapu1, Satyabrata Jana1, Lawqueen Kanesh2, Saket Saurabh1,3,
and Shaily Verma1

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
{sriram, satyabrataj,saket,shailyverma}@imsc.res.in

2 Indian Institute of Technology Jodhpur, India
lawqueen@iitj.ac.in

3 University of Bergen, Norway

Abstract. Given an undirected graph G = (V,E) and an integer `, the
Eccentricity Shortest Path (ESP) problem asks to check if there
exists a shortest path P such that for every vertex v ∈ V (G), there is
a vertex w ∈ P such that dG(v, w) ≤ `, where dG(v, w) represents the
distance between v and w in G. Dragan and Leitert [Theor. Comput.
Sci. 2017] studied the optimization version of this problem which asks
to find the minimum ` for ESP and showed that it is NP-hard even on
planar bipartite graphs with maximum degree 3. They also showed that
ESP is W[2]-hard when parameterized by `. On the positive side, Kučera
and Suchý [IWOCA 2021] showed that ESP is fixed-parameter tractable
(FPT) when parameterized by modular width, cluster vertex deletion
set, maximum leaf number, or the combined parameters disjoint paths
deletion set and `. It was asked as an open question in the same paper,
if ESP is FPT parameterized by disjoint paths deletion set or feedback
vertex set. We answer these questions and obtain the following results:
1. ESP is FPT when parameterized by disjoint paths deletion set, split

vertex deletion set, or the combined parameters feedback vertex set
and `.

2. A (1 + ε)-factor FPT approximation algorithm when parameterized
by the feedback vertex set number.

3. ESP is W[2]-hard parameterized by the chordal vertex deletion set.

Keywords: Shortest path, Eccentricity, Chordal, Split, Feedback vertex set,
FPT, W[2]-hardness

1 Introduction

Given a graph G = (V,E) and a path P , the distance from a vertex v ∈ V (G) to
P is min{dG(v, w) | w ∈ V (P)}, where dG(v, w) is the distance between v and w

? A subset of the results of this paper were accepted to be presented at the 34th
International Workshop on Combinatorial Algorithms (IWOCA 2023)

ar
X

iv
:2

30
4.

03
23

3v
1

 [
cs

.D
S]

 6
 A

pr
 2

02
3

2 Bhyravarapu et al.

in G. Given a graph G and a path P , the eccentricity of P , denoted by eccG(P),
with respect to G is defined as the maximum over all of the shortest distances
between each vertex of G and P . Formally, eccG(P) = max{dG(u, P)|u ∈ V (G)}.
Dragan and Leitert [8] introduced the problem of finding a shortest path with
minimum eccentricity, called the Minimum Eccentricity Shortest Path
problem (for short MESP) in a given undirected graph. They found interesting
connections between MESP and the Minimum Distortion Embedding prob-
lem and obtained a better approximation algorithm for Minimum Distortion
Embedding. MESP may be seen as a generalization of the Dominating Path
Problem [9] that asks to find a path such that every vertex in the graph either
belongs to the path or has a neighbor in the path. In MESP, the objective is
to find a shortest path P in G such that the eccentricity of P is minimum.
Throughout the paper, we denote the minimum value over the eccentricities of
all the shortest paths in G as the eccentricity of the graph G, denoted by ecc(G).
MESP has applications in transportation planning, fluid transportation, water
resource management, and communication networks.

vertex cover

neighborhood
diversity twin cover

split vertex
deletion set

max leaf [2]

disjoint paths

modular width [10]
cluster vertex
deletion set [10]

clique width

tree width

interval vertex
deletion set

chordal vertex

feedback vertex set

FPT

open

*

deletion set

deletion set
bipartite vertex
deletion set [8]

W[2]-hard

Fig. 1. The hierarchy of parameters explored in this work. Arrow points from parameter
a to parameter b indicates b ≤ f(a), for some computable function f . Parameters in red
are studied in this paper. The symbol “∗” attached to the feedback vertex set means it
is FPT in combination with the desired eccentricity. The grey box represents the result
implied by those obtained.

Dragan and Leitert [7] demonstrated that fast algorithms for MESP im-
ply fast approximation algorithms for Minimum Line Distortion, and the
existence of low eccentricity shortest paths in special graph classes will imply
low approximation bounds for those classes. They also showed that MESP is
NP-hard on planar bipartite graphs with maximum degree 3. In parameter-
ized settings, they showed that MESP is W[2]-hard for general graphs and gave
an XP algorithm for the problem when parameterized by eccentricity. Further-
more, they designed 2-approximation, 3-approximation, and 8-approximation al-
gorithms for MESP running in time O(n3), O(nm), and O(m) respectively, where

Parameterized algorithms for Eccentricity Shortest Path Problem 3

n and m represents the number of vertices and edges of the graph. The latter
8-approximation algorithm uses the double-BFS technique. In 2016, Birmelé et
al. [1] showed that the algorithm is, in fact, a 5-approximation algorithm by a
deeper analysis of the double-BFS procedure and further extended the idea to
get a 3-approximation algorithm, which still runs in linear time. Furthermore,
they study the link between MESP and the laminarity of graphs introduced
by Volké et al. [11] in which the covering path is required to be a diameter
and established some tight bounds between MESP and the laminarity param-
eters. Dragan and Leitert [7] showed that MESP can be solved in linear time
on distance-hereditary graphs and in polynomial time on chordal and dually
chordal graphs. Recently, Kučera and Suchý [10] studied MESP with respect to
some structural parameters and provided FPT algorithms for the problem with
respect to modular width, cluster vertex deletion (clvd), maximum leaf number,
or the combined parameters disjoint paths deletion (dpd) and eccentricity (ecc).
We call the decision version of MESP, which is to check if there exists a shortest
path P such that for each v ∈ V (G), the distance between v and P is at most
`, as the Eccentricity Shortest Path Problem (for short ESP). In this paper, we
further extend the study of MESP in the parameterized setting.

1.1 Our Results and Discussion

In this paper, we study the parameterized complexity of ESP with respect to
the structural parameters: feedback vertex set (fvs), disjoint paths deletion set
(dpd), split vertex deletion set (svd), and chordal vertex deletion set (cvd). We
call this version as ESP/ρ, where ρ is the parameter. We now formally define
ESP/fvs+ ecc (other problems can be defined similarly).

ESP/fvs+ ecc Parameter: k + `
Input: An undirected graph G, a set S ⊆ V (G) of size k such that G−S is
a forest, and an integer `.
Question: Does there exist a shortest path P in G such that for each v ∈
V (G), distG(v, P) ≤ ` ?

First, we show an algorithm for ESP/fvs + ecc, in Section 3, that runs in
2O(k log k)`knO(1) time where ` is the eccentricity of the graph and k is the size
of a feedback vertex set. In Section 4, we design a (1 + ε)-factor FPT algorithm
for ESP/fvs. Then, in Section 5 we design an algorithm for ESP/dpd running
in time 2O(k log k) · nO(1).

In addition, we show that ESP/svd admits an FPT algorithm. We then ex-
plore the problem on cvd which is a generalization of fvs, svd, clvd and show
that ESP/cvd is W [2]-hard. These results are presented in Sections 6 and 7
respectively.

2 Preliminaries

All the graphs considered in this paper are finite, unweighted, undirected, and
connected. For standard graph notations, we refer to the graph theory book

4 Bhyravarapu et al.

by R. Diestel [5]. For parameterized complexity terminology, we refer to the
parameterized algorithms book by Cygan et al. [3]. For n ∈ N, we denote the
sets {1, 2, · · · , n} and {0, 1, 2, · · · , n} by [n] and [0, n] respectively. For a graph
G = (V,E), we use n and m to denote the number of vertices and edges of G.
Given an integer `, we say that a path P covers a vertex v if there exists a
vertex u ∈ V (P) such that the distance between the vertices u and v, denoted
by, dG(v, u), is at most `. A feedback vertex set of a graph G is a set S ⊆ V (G)
such that G− S is acyclic.

In addition to feedback vertex set, we have considered the following structural
parameters:

1. A disjoint paths deletion set (dpd) is a set S ⊆ V (G) such that G − S is a
set of disjoint paths.

2. A split vertex deletion set is a set S ⊆ V (G) such that G−S is a split graph,
where a split graph is a graph such that vertices of G can be partitioned into
two sets: one induces an independent set and other induce a clique.

3. A chordal vertex deletion set is a set S ⊆ V (G) such that G−S is a chordal
graph, where a chordal graph is a graph with no induced cycle of length at
least 4.

Given a graph G, a feedback vertex et [3], a disjoint path deletion set [10],
a split vertex deletion set [4], and a chordal vertex deletion set [2], of size k can
be found in FPT time parameterized by k.

Next, we state a few known results.

Lemma 1 (Dragan and Leitert [8]). If a given graph G contains a shortest
path with eccentricity `, the MESP problem can be solved for G in O(n2`+2m)
time, where m is the number of edges in G.

Lemma 2 (Kučera and Suchý [10]). For any graph G = (V,E), any set
M ⊆ V , and any vertex s ∈ V , at most one permutation π = (m1, . . . ,m|M |)
of the vertices in M exists, such that, there is a shortest path P with the fol-
lowing properties: The first vertex on P is s, P contains all vertices of M , and
the vertices from M appear on P in exactly the order given by π. Moreover,
given a precomputed distance matrix for G, the permutation π can be found in
O(|M | log |M |) time.

3 Parameterized by Feedback Vertex Set and Eccentricity

In this section, we design an FPT algorithm for ESP/fvs+ecc. The main theorem
of this section is formally stated as follows.

Theorem 1. There is an algorithm for ESP/fvs + ecc running in time
O(2O(k log k)`knO(1)).

Parameterized algorithms for Eccentricity Shortest Path Problem 5

Outline of the Algorithm. Given a graph G and a feedback vertex set S
of size k, we reduce ESP/fvs + ecc to a “path problem” (which we call Col-
orful Path-Cover) on an auxiliary graph G′ (a forest) which is a subgraph
of G[V \ S], using some reduction rules and two intermediate problems called
Skeleton Testing and Ext-Skeleton Testing. In Section 3.1, we show
that ESP/fvs+ ecc and Skeleton Testing are FPT-equivalent. Next, in Sec-
tion 3.3, we reduce Skeleton Testing to Ext-Skeleton Testing. Then in
Section 3.4, we reduce Ext-Skeleton Testing to Colorful Path-Cover.
Finally, in Section 3.5, we design a dynamic programming based algorithm for
Colorful Path-Cover that runs in O(`22O(k log k)nO(1)) time. Together with
the time taken for the reductions to the intermediate problems, we get our de-
sired FPT algorithm. A flow chart for the steps of the algorithm is shown in
Figure 2.

ESP/fvs+ ecc construction of

(G,S, k, ℓ)
Skeleton Testing

Ext-Skeleton Testing

Reducing

Colorful Path Cover
construction of

Colorful Path

Skeleton

#

of components

(G,S, k, ℓ, S)

(G,S, k, ℓ,ES)

in G− S

(F,B, ℓ,F , t)

Fig. 2. Flow chart of the Algorithm for ESP/fvs+ ecc.

3.1 Reducing to Skeleton Testing

The input to the problem is an instance (G,S, k, `) where S ⊆ V (G) is a feedback
vertex set of size k in G. Let (G,S, k, `) be a yes instance, and P be a solution
path which is a shortest path such that for each v ∈ V (G), there exists u ∈ V (P)
such that dG(u, v) ≤ `. Our ultimate goal is to construct such a path P . Towards
this, we try to get as much information as possible about P in time f(k, `)nO(1).
Observe that if S is an empty set, then we can obtain P by just knowing its end-
points as there is a unique path in a tree between any two vertices. Generalizing
this idea, given the set S, we define the notion of skeleton of P .

Definition 1 (Skeleton). A skeleton of P , denoted by S, is the following set
of information.

– End-vertices of P , say u, v ∈ V (G).
– A subset of S \ {u, v}, say M , of vertices that appear on P . That is, V (P)∩

(S \ {u, v}) =M .

6 Bhyravarapu et al.

m1 m2 m3 m4

m5 = v x1

x2

x3

mo = u

S

M

T1
T2 T3

Fig. 3. Example of a skeleton of P . Here P is a shortest path (blue edges) between two
red colored vertices u and v through green colored internal vertices. For the vertices
x1, x2 and x3, f(x1) = f(x2) = 1, f(x3) = 2, g(x1) = 3, g(x2) = g(x3) = (3, 4).

– The order in which the vertices of M appear on P , is given by an ordering
π = m1,m2, . . . ,m|M |. For notational convenience, we denote u by m0 and
v by m|M |+1.

– A distance profile (f, g) for the set X = S \ M , is defined as follows:
The function f : X → [`] such that f(x) denotes the shortest distance
of the vertex x from P , and the function g : X → {0, 1, · · · , |M | +
1, (0, 1), (1, 2), · · · , (|M |, |M | + 1)} such that g(x) stores the information
about the location of the vertex on P , that is closest to x. That is, if the
vertex closest to P belongs to {m0,m1, . . . ,m|M |,m|M |+1} then g(x) stores
this by assigning the corresponding index. Else, the closest vertex belongs
to the path segment between mi,mi+1, for some 0 ≤ i ≤ |M |, which g(x)
stores by assigning (i, i+ 1).

An illustration of a skeleton is given in Fig. 3. By following the definition of
skeletons, we get an upper bound on them.

Observation 1 The number of skeletons is upper bounded by n22kk!`k(2k+2)k.

We say that a path P realizes a skeleton S if the following holds.

1. M = S ∩ V (P), X ∩ V (P) = ∅, the ordering of vertices in M in P is equal
to π, endpoints of P are m0 and m|M |+1,

2. For each v ∈ V (G), there exists a vertex u ∈ V (P) such that dG(u, v) ≤ `,
3. For each v ∈ X, dG(v, w) ≥ f(v) for all w ∈ V (P) (where f(v) is the shortest

distance from v to any vertex on P in G), and
4. For each v ∈ X, if g(v) = i, where i ∈ [0, |M | + 1], then dG(v,mi) = f(v)

and if g(v) = (i, i + 1) where i ∈ [0, |M |], then there exists a vertex u on a
subpath mi to mi+1 in P such that u /∈ {mi,mi+1} and dG(u, v) = f(v).

Now, given an input (G,S, k, `) and a skeleton S, our goal is to test whether
the skeleton can be realized into a desired path P . This leads to the following
problem.

Parameterized algorithms for Eccentricity Shortest Path Problem 7

Skeleton Testing Parameter: k + `
Input: A graph G, a set S ⊆ V (G) of size k such that G− S is a forest, an
integer `, and a skeleton S.
Question: Does there exist a shortest path P in G that realizes S?

Our next lemma shows a reduction from ESP/fvs+ ecc to Skeleton Test-
ing problem.

Lemma 3. (G,S, k, `) is a yes instance of ESP/fvs + ecc, if and only if there
exists a skeleton S such that (G,S, k, `, S) is a yes instance of Skeleton Test-
ing.

Proof. For the forward direction, suppose that (G,S, k, `) is a yes instance of
ESP/fvs+ ecc and let P be its solution path. Let M = V (P) ∩ S, |M | = t and
X = S \M . Let π be the ordering of vertices in M on P . Let m0,m|M |+1 be the
first and last endpoints of P , respectively. We define f : X → [`] such that for a
vertex v ∈ X, f(v) is the minimum distance from v to path P . Let u be the vertex
in path P such that d(v, u) = f(v). Note that f only assigns values from the set
[`]. We define a function g, g : X → {0, 1, · · · , t + 1, (0, 1), (1, 2), · · · , (t, t + 1)}
as follows: g(v) = i if u = mi for some i ∈ [0, t + 1], and g(v) = (i, i + 1) if u
is contained in mi to mi+1 subpath for some i ∈ [0, t]. Note that g only assigns
values from the set {0, 1, · · · , t+ 1, (0, 1), (1, 2), · · · , (t, t+ 1)}. Observe that the
tuple (M,X, π,m0,mt+1, f, g) is a skeleton of P . Hence, (G,S, k, `, S) is a yes
instance of Skeleton Testing, where S = (M,X, π,m0,mt+1, f, g).

In the backward direction, suppose that S = (M,X, π,m0,mt+1, f, g) is a
skeleton such that (G,S, k, `, S) is a yes instance of Skeleton Testing and let
P be its solution. Observe that P is also a solution to (G,S, k, `) of ESP/fvs+ecc,
as for every v ∈ V (G), there is a vertex u ∈ V (P) such that dG(u, v) ≤ `. ut

Observation 1 upper bounds the number of skeletons by 2O(k(log k+log `))n2. This
together with Lemma 3, implies that ESP/fvs + ecc and Skeleton Testing
are FPT-equivalent. Thus, from now onwards, we focus on Skeleton Testing.

3.2 Algorithm for Skeleton Testing

Let (G,S, k, `, S) be an instance of Skeleton Testing, where S =
(M,X, π,m0,m|M |+1, f, g). Our algorithm works as follows. First, the algorithm
performs a simple sanity check by reduction rule. In essence, it checks whether
the different components of the skeleton S are valid.

Reduction Rule 1 (Sanity Test 1) Return that (G,S, k, `, S) is a no in-
stance of Skeleton Testing, if one of the following holds:

1. For i ∈ [0, |M |], mimi+1 is an edge in G and g−1((i, i + 1)) 6= ∅. (g is not
valid.)

2. For a vertex v ∈ X, there exists a vertex u ∈ M ∪ {m0,m|M |+1} such that
dG(u, v) < f(v). (f is not valid.)

8 Bhyravarapu et al.

3. For a vertex v ∈ X, g(v) = i and dG(v,mi) > f(v). (f is not valid.)
4. For an i ∈ [0, |M |], mimi+1 is not an edge in G, and there is either no mi

to mi+1 path in G− (S \ {mi,mi+1}) or the length of the path is larger than
the shortest path length of mi to mi+1 path in G. (π is not valid.)

5. For i, j ∈ [0, |M |], i < j, there exists mi to mi+1 shortest path Pi in G −
(S \{mi,mi+1}) and a mj to mj+1 shortest path Pj in G− (S \{mj ,mj+1})
such that if j = i+1, then (V (Pi)\{mi+1})∩ (V (Pj)\{mj}) 6= ∅, otherwise
V (Pi) ∩ V (Pj) 6= ∅. (π is not valid – shortest path claim will be violated.)

6. For i ∈ [0, |M |] such that mimi+1 /∈ E(G), g−1((i, i + 1)) 6= ∅, and for
every connected component C in G − S, and for every mi to mi+1 path P
in G[V (C) ∪ {mi,mi+1}] there exists a vertex u ∈ g−1((i, i + 1)) such that
there is no vertex v ∈ V (P) \ {mi,mi+1} for which dG(u, v) = f(u). (g is
not valid.)

Lemma 4. Reduction rule 1 is safe.

Proof. Proof of (1) follows from the fact that, to maintain the shortest path
property of the solution, the edge mimi+1 must be in solution. It contradicts
that for every v ∈ g−1((i, i+ 1)), there exists a vertex u in mi to mi+1 subpath
of the solution path such that u /∈ {mi,mi+1} and dG(u, v) = f(v). Proof of
(2) follows from the fact that otherwise, the property of the function g will
be violated in the solution path. Proof of (4) follows from the shortest path
property of the solution. Proofs of (3) and (6) are trivial as it is impossible to
find a solution path in these cases.

Proof of (5): Suppose that (G,S, k, `, S) is a yes instance of Skeleton Test-
ing and P be its solution. For i, j ∈ [0, |M |], i < j, there existsmi tomi+1 short-
est path Pi in G−(S\{mi,mi+1}) and amj tomj+1 shortest path Pj in G−(S\
{mj ,mj+1}). Suppose that j = i+1, then (V (Pi)\{mi+1})∩(V (Pj)\{mj}) 6= ∅.
Let v∗ ∈ (V (Pi)\{mi+1})∩(V (Pj)\{mj}) be the last intersecting vertex on paths
Pi, Pj by ordering on path Pi. Observe that distance of mi to v∗ in Pi is strictly
less that mi to mi+1(mj) subpath on P , that is dPi

(mi, v
∗) < dP (mi,mi+1), as

v∗ 6= mi+1 = mj and both Pi and mi to mi+1 subpath on P are shortest mi to
mi+1 paths in G. Similarly, dPj (v

∗,mj+1) ≤ dP (mj ,mj+1), as both Pj and mj

to mj+1 subpath on P are shortest mj to mj+1 paths in G. This implies that
dP (mi,mj+1) > dPi

(mi, v
∗) + dPj

(v∗,mj+1). By replacing mi to mj+1 subpath
in P by the subpaths mi to v∗ of Pi and v∗ to mj+1 of Pj we obtain a shorter
path in G, which contradicts the shortest path property of the solution P . The
case when j 6= i+ 1 can be argued analogously. ut

Reducing the components of G−S: Now, we describe our marking procedure
and reduction rules that are applied on the connected components in G−S. Let
Pi be a path segment (subpath) of P , between mi and mi+1, with at least two
edges. Further, let P int

i be the subpath of Pi, obtained by deleting mi and mi+1.
Then, we have that P int

i is a path between two vertices in G−S (that is, a path
in the forest G−S). This implies that P is made up of S and at most k+1 paths
of forest G − S. Let these paths be P = P int

1 , . . . , P int
q , where q ≤ k + 1. Next,

we try to understand these k + 1 paths of forest G − S. Indeed, if there exists

Parameterized algorithms for Eccentricity Shortest Path Problem 9

a component C in G − S such that it has a vertex that is far away from every
vertex in S, then C must contain one of the paths in P (essential components).
The number of such components can be at most k + 1. The other reason that
a component contains a path from P is to select a path that helps us to satisfy
constraints given by the g function (g-satisfying components). Next, we give a
procedure that marks O(k) components, and later, we show that all unmarked
components can be safely deleted.

Marking Procedure: Let C∗ be the set of marked connected components of
G− S. Initially, let C∗ = ∅.

– Step 1. If there exists a connected component C in G− (S ∪ V (C∗)), such
that it contains a vertex v with dG(v,mi) > `, for allmi ∈M , and dG(v, u) >
`− f(u), for all u ∈ X, then add C to C∗. (Marking essential components)

– Step 2. For i = 0 to |M | proceed as follows: Let C be some connected
component in G− (S ∪ V (C∗)) such that there exists a mi to mi+1 path Pi

in G[V (C) ∪ {mi,mi+1}], which is a shortest mi to mi+1 path in G and for
every vertex v ∈ g−1((i, i+1)), there exists a vertex u ∈ V (Pi) \ {mi,mi+1}
for which dG(u, v) = f(v). Then, add C to C∗ and increase the index i.
(Marking g-satisfying components)

Let C1 be the set of connected components added to C∗ in Step 1. We now
state a few reduction rules the algorithm applies exhaustively in the order in
which they are stated.

Reduction Rule 2 If |C1| ≥ k + 2, then return that (G,S, k, `, S) is a no in-
stance of Skeleton Testing.

Lemma 5. Reduction rule 2 is safe.

Proof. For each component C in C1, C contains a vertex v such that dG(v,mi) >
`, for all mi ∈M and dG(v, u) > `− f(u), for all u ∈ X, which implies we must
add a path from component C in solution path as a subpath such that it contains
a vertex that covers v. Observe that we can add at most |M | + 1 subpaths in
the solution path. Therefore, |C1| ≤ |M | + 1 if (G,S, k, `, S) is a yes instance of
Skeleton Testing. We obtain the required bound as |M | ≤ k. ut

Reduction Rule 3 If there exists a connected component C in G−S such that
C /∈ C∗, then delete V (C) from G. The resultant instance is (G−V (C), S, k, `, S).

Lemma 6. Reduction rule 3 is safe.

Proof. We show that (G,S, k, `, S) is a yes instance of Skeleton Testing if
and only if (G−V (C), S, k, `, S) is a yes instance of Skeleton Testing. Recall
that S = (M,X, π,m0,m|M |+1, f, g). In the forward direction, consider that
(G,S, k, `, S) is a yes instance of Skeleton Testing and P be its solution.
Suppose that P contains a mi to mi+1 subpath P ∗ such that P ∗ is a path in
G[V (C)∪{mi,mi+1}]. Since C is not in C∗, there exists a connected component
C ′ ∈ C∗ such that there exists a mi to mi+1 path P ′ in G[V (C ′) ∪ {mi,mi+1}],

10 Bhyravarapu et al.

such that P ′ is a shortest mi to mi+1 path in G and for every vertex v ∈
g−1((i, i + 1)), dG(v, P ′ − {mi,mi+1}) = f(v). We replace subpath P ∗ from P
by subpath P ′. Let P ′′ is the resultant path. We claim that P ′′ is also a solution
to (G,S, k, `, S). Observe that P ′′ satisfies functions f and g. Suppose that there
is a vertex v ∈ V (G) such that dG(v, P ′′) > `. Then v must be in C. Since C is
not added to C∗ in Step 1 of the marking procedure, every vertex in C is either
at distance at most ` from some mi, i ∈ [0, |M | + 1] or dG(v, u) ≤ ` − f(u) for
some u ∈ X. Hence v is covered by some vertex on P ′′, a contradiction. So P ′′
is also a solution to (G,S, k, `, S) and P ′′ does not contain any vertex from C.
As every vertex of C gets covered, P ′′ is also a solution to (G−V (C), S, k, `, S).
If P contains no vertex from C then by the similar procedure we can obtain a
solution path P̂ for (G,S, k, `, S) which doesn’t contain any vertex of C. Observe
that P̂ is also a solution to (G− V (C), S, k, `, S) of Skeleton Testing.

In the backward direction suppose that (G−V (C), S, k, `, S) is a yes instance
of Skeleton Testing and let P be its solution. Since C is not added to C∗ in
Step 1 of the marking procedure, every vertex in C is either distance at most `
from some mi, i ∈ [0, |M |+ 1] or dG(v, u) ≤ `− f(u) for some u ∈ X, therefore
every vertex in C is covered by some vertex on P . This implies that P is also a
solution to (G,S, k, `, S). This completes the proof. ut

Observe that when Reduction rule 2 and Reduction rule 3 are no longer
applicable, the number of connected components in G−S is bounded by 2(k+1).
This is because |C1| ≤ k+1 and there exists a path (that is part of the solution)
from each component in C∗ − C1 and therefore |C∗ − C1| ≤ k + 1. Otherwise,
the given instance is a no instance of Skeleton Testing. Notice that all our
reduction rules can be applied in nO(1) time.

3.3 Reducing Skeleton Testing to Ext-Skeleton Testing:

Let (G,S, k, `, S) be a reduced instance of Skeleton Testing. That is, an
instance on which Reduction Rules 1, 2 and 3 are no longer applicable. This
implies that the number of connected components in G − S is at most 2k + 2.
Next, we enrich our skeleton by adding a function γ, which records an index of
a component in G − S that gives the mi to mi+1 subpath in P or records that
mimi+1 is an edge in the desired path P , where i ∈ [0, |M |].

Definition 2 (Enriched Skeleton). An enriched skeleton of a path P , de-
noted by ES, contains S and a segment profile of paths between mi and mi+1,
for i ∈ [0,M]. Let C1, C2, . . . , Cq be the connected components in G− S. Then,
the segment profile is given by a function γ : [0, |M |] → [0, q]. The function γ
represents the following: For each i ∈ [0, |M |], if γ(i) = 0, then the pair mi,mi+1

should be connected by an edge in the solution path P , otherwise if γ(i) = j, then
in P , the mi to mi+1 subpath is contained in G[V (Cj) ∪ {mi,mi+1}]. Also, ES
is said to be enriching the skeleton S.

Let S be a skeleton. The number of ES, that enrich S is upper bounded by
(q+1)k+1. Thus, this is not useful for us unless q is bounded by a function of k, `.

Parameterized algorithms for Eccentricity Shortest Path Problem 11

Fortunately, the number of connected components in G − S is at most 2k + 2,
and thus the number of ES is upper bounded by 2O(k log k).

We say that a path P realizes an enriched skeleton ES enriching S, if P
realizes S and satisfies γ. Similar to Skeleton Testing, we can define Ext-
Skeleton Testing, where the aim is to test if a path exists that realizes
an enriched skeleton ES. Further, it is easy to see that Skeleton Testing
and Ext-Skeleton Testing are FPT-equivalent, and thus we can focus on
Ext-Skeleton Testing. Let (G,S, k, `,ES) be an instance of Ext-Skeleton
Testing, where G−S has at most 2k+2 components. Similarly, as Skeleton
Testing, we first apply some sanity testing on an instance of Ext-Skeleton
Testing.

Reduction Rule 4 (Sanity Test 2) Return that (G,S, k, `,ES) is a no in-
stance of Ext-Skeleton Testing, if one of the following holds:

1. mimi+1 is an edge in G and γ(i) 6= 0, (or) mimi+1 is not an edge in G and
γ(i) = 0.

2. For an i ∈ [|M |], γ(i) = j 6= 0 and there is,
– No mi to mi+1 path in G[V (Cj) ∪ {mi,mi+1}], (or)
– No mi to mi+1 path in G[V (Cj) ∪ {mi,mi+1}] which is also a shortest
mi to mi+1 path in G, (or)

– There does not exist a mi to mi+1 path Pi in G[V (Cj) ∪ {mi,mi+1}]
which is also a shortest mi to mi+1 path in G and satisfies the property
that for every vertex v ∈ g−1((i, i+1)), there exists a vertex u ∈ V (Pi) \
{mi,mi+1} for which dG(u, v) = f(v).

The safeness of the above rule follows from Definition 2.

3.4 Reducing Ext-Skeleton Testing to Colorful Path-Cover

Let (G,S, k, `,ES) be an instance of Ext-Skeleton Testing on which Reduc-
tion Rule 4 is no longer applicable. Further, let us assume that the number of
components in G − S is k′ ≤ 2k + 2 and γ : [0, |M |] → [0, k′] be the function
in ES. Our objective is to find a path P that realizes ES. Observe that for an
i ∈ [0, |M |], if γ(i) = j 6= 0, then the interesting paths to connect mi,mi+1

pair are contained in component Cj in G − S. Moreover, among all the paths
that connect mi to mi+1 in Cj , only the shortest paths that satisfy the function
g are the interesting paths. Therefore, we enumerate all the feasible paths for
each mi,mi+1 pair in a family Fi and focus on finding a solution that contains
subpaths from this enumerated set of paths only. Notice that now our problem
is reduced to finding a set of paths P in G− S which contains exactly one path
from each family of feasible paths and covers all the vertices in G−S which are
far away from S. In what follows, we formalize the above discussion. First, we
describe our enumeration procedure.

For each i ∈ [0, |M |] where γ(i) = j 6= 0, we construct a family Fi of feasible
paths as follows. Let Pi be a path in G[V (Cj) ∪ {mi,mi+1}], such that (i) Pi

is a shortest mi to mi+1 path in G, (ii) for every vertex v ∈ g−1((i, i + 1)),

12 Bhyravarapu et al.

dG(v, Pi − {mi,mi+1}) = f(v). Let m′i,m′i+1 be the neighbours of mi,mi+1,
respectively in Pi. Then we addm′i tom′i+1 subpath to Fi. Observe that a family
Fi of feasible paths satisfies the following properties: (1) V (Fi) ∩ V (Fi′) = ∅,
for all i, i′ ∈ γ−1(j), i 6= i′, as item 5 of reduction Rule 1 is not applicable, and
we add only shortest paths in families. (2) Fi contains paths from exactly one
component in G − S (by the construction). Let F be the collection of all the
families of feasible paths.

The above discussion leads us to the following problem.

Colorful Path-Cover
Input: A forest F , a set B ⊆ V (F), an integer `, and a family F =
{F1,F2, . . . ,Ft} of t disjoint families of feasible paths.
Question: Is there a set P of t paths such that for each Fi, i ∈ [t], |P∩Fi| = 1
and for every vertex v ∈ B, there exists a path P ∈ P and a vertex u ∈ V (P),
such that dF (u, v) ≤ `?

Let F be the forest obtained from G−S by removing all the components Cj

in G − S such that γ−1(j) = ∅, that is, components which do not contain any
interesting paths. Notice that the number of components that contain interesting
paths is at most 2k + 2. We let B ⊆ V (F) be the set of vertices which is
not covered by vertices in S, that is, it contains all the vertices v ∈ V (F)
such that dG(v,mi) > `, for all i ∈ [0, |M | + 1] and dG(v, u) > ` − f(u), for
all u ∈ X. We claim that it is sufficient to solve Colorful Path-Cover on
instance (F,B, `,F) where F consists of at most 2k + 2 trees. The following
lemma shows a reduction formally and concludes that Ext-Skeleton Testing
parameterized by k and Colorful Path-Cover problem parameterized by k,
are FPT-equivalent.

Lemma 7. (G,S, k, `,ES) is a yes instance of Ext-Skeleton Testing if and
only if (F,B, `,F) is a yes instance of Colorful Path-Cover.

Proof. Recall that S = (M,X, π,m0,m|M |+1, f, g) and ES = (S, γ). In the for-
ward direction, suppose that (G,S, k, `,ES) is a yes instance of Skeleton Test-
ing and let P be its solution. Consider a connected component Cj in G − S.
If γ−1(j) = ∅, then by the properties of P , there does not exists i ∈ [0, |M |]
such that mi to mi+1 path is contained in G[V (Cj) ∪ {mi,mi+1}]. Other-
wise for every i ∈ γ−1(j), let Pi be the subpath in P from mi to mi+1. Let
m′i,m

′
i+1 be the neighbours of mi,mi+1 in Pi and Let P ′i be m′i to m′i+1 sub-

path in Pi. We have that P ′i is contained in Cj and satisfies function g. Let
P = {P ′i |i ∈ [0, |M |], V (P ′i) ⊆ V (G − S)}. By the construction of Fi, we have
that P ∩ Fi = P ′i , that is |P ∩ Fi| = 1 due to Item 5 of Reduction Rule 1. As
P realizes S, and for every vertex v ∈ B, dG(v,mi) > `, for all i ∈ [0, |M | + 1]
and dG(v, u) > `− f(u), for all u ∈ X. Therefore, there exists a path in P which
contains a vertex v′ such that dG(v, v′) ≤ `. This implies that P is a solution to
(F,B, `,F) of Colorful Path-Cover, and hence (F,B, `,F) is a yes instance
of Colorful Path-Cover.

Parameterized algorithms for Eccentricity Shortest Path Problem 13

In the backward direction, suppose that (F,B, `,F) is a yes instance of Col-
orful Path-Cover and let P be its solution. Let P ′i = Fi∩P and m′i,m′i+1 be
its end vertices such that mim

′
i,m

′
i+1mi+1 ∈ E(G). Let Pi be the mi to mi+1

path containing edges mim
′
i,m

′
i+1mi+1 and path P ′i . We construct a path P by

concatenating paths Pi in P if γ(i) 6= 0 and edges mimi+1 when γ(i) = 0. By the
construction of Fi’s, P satisfies functions g, f , γ and ordering π of M . Observe
that for every vertex v ∈ V (G) \ B, dG(v,mi) ≤ `, for some i ∈ [0, |M | + 1] or
dG(v, u) ≤ `− f(u), for some u ∈ X. Therefore every vertex in V (G) \B is cov-
ered by P . Clearly, P covers every vertex in B. Since we add only shortest paths
in F and as Reduction Rule 4 is not applicable, P is also a shortest path in G.
This implies that P is a solution to (G,S, k, `,ES) of Ext-Skeleton Testing
and hence (G,S, k, `,ES) is a yes instance of Ext-Skeleton Testing ut

We design a dynamic programming-based algorithm for the Colorful
Path-Cover problem parameterized by k. Since the number of trees is at most
2k+2, and the number of families of feasible paths is |F| = t, we first guess the
subset of families of feasible paths that comes from each tree in F in O(kt) time.
Now we are ready to work on a tree with its guessed family of feasible paths.
We first present an overview of the algorithm and then present the algorithm in
Section 3.6.

Lemma 8. Colorful Path-Cover can be solved in time O(`2 ·
2O(k log k)nO(1)) when F is a forest with O(k) trees.

3.5 Overview of the Algorithm for Colorful Path-Cover

Consider an instance (T,B, `,F = {F1,F2, . . . ,Ft}) of Colorful Path-Cover
problem where T is a tree, B ⊆ V (T), and ` ∈ N and F is a disjoint family of
feasible paths. The aim is to find a set P of t paths such that for each Fi, i ∈ [t],
|P ∩Fi| = 1 and for every vertex v ∈ B, there exists a path P ∈ P and a vertex
u ∈ V (P), such that dT (u, v) ≤ `.

For a vertex v ∈ V (T), the bottom-up dynamic programming algorithm
considers subproblems for each child w of v which are processed from left to
right. To compute a partial solution at the subtree rooted at a child of v, we
distinguish whether there exists a path containing v that belongs to P or not.
For this purpose, we define a variable that captures a path containing v in P.
If there exists such a path, we guess the region where the endpoints of the path
belong, which includes the cases that the path contains: (i) only the vertex v,
(ii) the parent of v and one of its endpoints belongs to the subtree rooted at w
or v’s child that is to the left of w or v’s child that is to the right of w, (iii)
both its endpoints belong to the subtrees of the children which are to the left or
the right of w, and (iv) one of the endpoints belongs to the subtree rooted at w
while the other belongs to the subtree of the child to the left or the right of w.
An illustration of these cases is given in Fig. 4.

At each node v, we store the distance of the nearest vertex (say w′) in the
subtree of v, that is, on a path in P, from v. We store this with the hope that

14 Bhyravarapu et al.

w′ can cover vertices of B that come in the future. In addition, we also store the
farthest vertex (say w′′) in the subtree of v that is not covered by any chosen
paths of P in the subtree. Again, we store this with the hope that w′′ ∈ B can be
covered by a future vertex, and the current solution leads to a solution overall.

At each node v, we capture the existence of the following: there exists a set
of t′ ≤ t paths Y , one from each Fi, that either includes v or not on a path
from Y in P satisfying the distances of the nearest vertex w′ and the farthest
vertex w′′ (from v) that are on Y and already covered and not yet covered by
Y , respectively. To conclude the existence of a colorful path cover at the root
node, we check for the existence of an entry that consists of a set Y of t paths,
one from each Fi, and all the farthest distance of an uncovered vertex is zero.

3.6 Algorithm for Colorful Path-Cover

In this section, we design a dynamic programming-based FPT algorithm for the
Colorful Path-Cover problem parameterized by k. Since the number of trees
is at most 2k + 2, and the number of families of feasible paths is |F| = t, we
first guess the subset of families of feasible paths that comes from each tree in
F in O(kt) time. Now we are ready to work on a tree with its guessed family of
feasible paths. Consider an instance (T,B, `,F = {F1,F2, . . .Ft}) of Colorful
Path-Cover problem where T is a tree, B ⊆ V (T), and ` ∈ N and F is a
disjoint family of feasible paths. The aim is to find a set P of t paths such that
for each Fi, i ∈ [t], |P ∩ Fi| = 1 and for every vertex v ∈ B, there exists a path
P ∈ P and a vertex u ∈ V (P), such that dT (u, v) ≤ `.

First, we give a description of our algorithm. The algorithm starts by ar-
bitrarily rooting tree T at a vertex r ∈ V (T). In the following, we state some
notations used in the algorithm. For a vertex v ∈ V (T), we denote the number
of children of v in T by deg(v). By Tv, we denote the subtree of T rooted at v.
Also, the ith child of v is denoted by chvi . For a vertex v ∈ T , and 0 ≤ i ≤ deg(v),
we define Tv,i as the subtree of T containing vertex v and subtrees rooted at
its first i children (in order of index). Also, Tchvj is the subtree of T containing
vertex v and subtree rooted at its ith child. Recall that every vertex v ∈ V (T)
can be contained in at most one Fi, i ∈ [t]. For each vertex v ∈ V (T), we assign
a value F (v) ∈ [0, t] to v as follows: F (v) = i, if v ∈ V (Fi), 0 otherwise (when
no path in any Fi, i ∈ [t] contain v). Recall that a path P covers a vertex v if
there exists a vertex u ∈ V (P) such that dG(v, u) ≤ `. For a vertex v ∈ V (T),
the dynamic programming algorithm considers subproblems for each child of v.
We process its children from left to right (in index ordering) and at ith child,
we consider the subtree Tv,i. Before we define an entry in the table, we give the
definition of the variables used for an entry.

Consider v ∈ V (T) and i ∈ [deg(v)]. To compute a partial solution at subtree
Tv,i, we must distinguish whether v is contained in a path in the solution. If it
is contained in a path in the solution, then we also guess the endpoints of the
path. For this purpose, we define a variable tp which can take a value from the
set {1, 2, . . . , 11}, where each value represents a different case defined as follows:

Parameterized algorithms for Eccentricity Shortest Path Problem 15

– tp=1: Paths containing v are not in the solution.
– tp=2: The vertex v itself is a path that is contained in the solution.
– tp ∈ {3, 4, 5, 6}: For all these cases, we have the parent of v in the solution,

in addition to satisfying their respective properties.
• tp=3: One of its endpoints is v itself.
• tp=4: One of its endpoints is in Tv,i−1 (6= v).
• tp=5: One of its endpoints is in Tchvi (6= v).
• tp=6: One of its endpoints is in Tchvj for some j > i (6= v).

– tp=7: Both of its endpoints are in Tv,i−1 (at least one endpoint is not equal
to v).

– tp=8: One of its endpoints is in Tv,i−1, and the other in Tchvi (6= v).
– tp=9: One of its endpoints is in Tv,i−1, and the other in Tchvj for some j > i

(6= v).
– tp=10: One of its endpoints is in Tchvi , and the other in Tchvj for some j > i

(6= v).
– tp=11: One of its endpoints is in Tchvj for some j > i, and the other in Tchv

j′

for some j′ > i (6= v).

We have a variable (sg)η. Here sg represents sign of η, which can
be either + or −, and (sg)η can take a value from the set {(−)` −
1, . . . , (−)1, (−)0, (+)0, (+)1, . . . , (+)`}. The “−” sign represents that there are
uncovered vertices in V (Tv,i) ∩B which needs to be covered in future, and “+”
sign represents that all the vertices in V (Tv,i) ∩ B are covered and the partial
solution may cover more vertices outside Tv,i. The value (−)η represents that
the maximum distance of a vertex u ∈ B from v in subtree Tv,i such that u is not
covered by the partial solution is η. It means that vertices up to distance η from
v in V (Tv,i)∩B needs to be covered by some paths in future. We consider values
only till `− 1 distance, as it is a trivial observation that any vertex at distance
at least ` from v in Tv,i cannot be covered by any path that is not in Tv,i. The
value (+)η represents that the minimum distance of a vertex u in subtree Tv,i (u
need not belong to B) such that distance from u to v is `− η and u is contained
in a path in the solution. It means that vertices in B which are at a distance at
most η from v (at most ` from u) in T can be covered by a path containing u in
the solution.

In the following definition, we state the entries in our dynamic programming
routine.

Definition 3. For each v ∈ V (T), d ∈ [deg(v)], Y ⊆ [t],tp ∈
{1, 2, . . . , 11}, (sg)η ∈ {(−)` − 1, . . . , (−)1, (−)0, (+)0, (+)1, . . . , (+)`} we cre-
ate an entry c[v, d, Y, tp, (sg)η] in our table which stores true if and only if the
following holds:

– There exists a set Pv,d of |Y | paths such that for each j ∈ Y , |Pv,d∩Fj | = 1,
if F (v) ∈ Y , then path in Pv,d ∩ FF (v) should satisfy definition of tp, and
all paths in Pv,d except maybe path containing v should be contained in the
subtree Tv,d.

16 Bhyravarapu et al.

chvi chvi chvi chvi

chvi chvi chvi chvi

chvi chvi

v v v v

v v v

v v v v

v

chvi chvi

tp = 2 tp = 3 tp = 4tp = 1

tp = 6 tp = 7 tp = 7tp = 5

tp = 9 tp = 10 tp = 11tp = 8

Fig. 4. Illustration of the tp cases based on its value. The “blue” color indicates the
path in F that is a part of the solution path.

– If sg is −, then there exists a vertex u ∈ B at distance η from v in Tv,d which
is not covered by any paths in Pv,d but can be covered in future (is not at
distance greater than ` from v). For every vertex u ∈ B at distance at least
η + 1 from v in subtree Tv,d there exists a path in Pv,d which covers u.

– If sg is +, then there exists a vertex u, in Pv,d, at distance `− η from v in
Tv,d. And u can cover vertices (in future) that are at distance at most η from
v. All other vertices in Pv,d are at distance at least `− η from v. Further all
vertices in Tv,d ∩B are covered by Pv,d.

Otherwise c[v, d, Y, tp, η] stores false.

Observe that (T,B, `,F = {F1,F2, . . . ,Ft}) is a yes instance
of Colorful Path-Cover if and only if there exists an entry
c[r, deg(r), {1, 2, . . . , t}, tp∗, (+)η∗], tp∗ ∈ {1, 2, 7, 8} and η∗ ∈ [0, `], which is
set to true.

Next, we give (recursive) formulas for the computation of entries in our
dynamic programming table. Consider v ∈ V (T), d ∈ [deg(v)], Y ⊆ [t], tp ∈
[11], (sg)η ∈ {(−)` − 1, . . . , (−)1, (−)0, (+)0, (+)1, . . . , (+)`}, we compute the
entry c[v, d, Y, tp, (sg)η] based on the following cases:

Parameterized algorithms for Eccentricity Shortest Path Problem 17

Leaf vertex: v is a leaf vertex. Set c[v, d, Y, tp, (sg)η] = true, if one of the
following holds: (a1) tp = 1, (sg)η = (−)0, v ∈ B, or (a2) tp ∈ {2, 3}, (sg)η =
(+)`. Otherwise, set the entry to false. Correctness follows trivially from the
definition of entry.
Non-leaf vertex: v is not a leaf vertex. We consider following cases depending
on tp variable:
Case tp = 1: We further consider following cases.

(1) If sg = −, then set c[v, d, Y, 1, (−)η] = true if there exists a partition Y1]
Y2 of Y such that one of the following holds: (a1) c[v, d− 1, Y1, 1, (sg)η1] = true,
(sg)η1 ∈ {(−)η, . . . , (+)η − 1} and (a2) c[chvd, deg(ch

v
d), Y2, 1, (−)η − 1] = true,

(b1) c[v, d − 1, Y1, 1, (−)η] = true, and (b2) c[chvd, deg(ch
v
d), Y2, 1, (sg)η2] = true,

(sg)η2 ∈ {(−)η − 1, . . . , (+)η}.
(1.1) If sg = +, then set c[v, d, Y, 1, (+)`−1] = true if there exists a partition

Y1] Y2 of Y such that one of the following holds: (a1) c[v, d− 1, Y1, 1, (sg)η1] =
true, (sg)η1 ∈ {(−)` − 1, . . . , (+)` − 1} and (a2) c[chvd, deg(ch

v
d), Y2, tp2, (+)`] =

true, tp2 ∈ {2, 7, 8}, or, (b1) c[v, d − 1, Y1, 1, (+)` − 1] = true, and (b2)
c[chvd, deg(ch

v
d), Y2, tp2, (sg)η2] = true, tp2 ∈ {1, 2, 7, 8}, (sg)η2 ∈ {(−)` −

2, . . . , (+)`}.
(1.2) If sg = + and η < ` − 1, then set c[v, d, Y, 1, (+)η] = true if

there exists a partition Y1] Y2 of Y such that one of the following holds:
(a1) c[v, d − 1, Y1, 1, (sg)η1] = true, (sg)η1 ∈ {(−)η, . . . , (+)η} and (a2)
c[chvd, deg(ch

v
d), Y2, 1, (+)η + 1] = true, or (b1) c[v, d− 1, Y1, 1, (+)η] = true, and

(b2) c[chvd, deg(ch
v
d), Y2, 1, (sg)η2] = true, (sg)η2 ∈ {(−)η, . . . , (+)η + 1}.

Correctness of Case tp =1 (1): sg = −: Consider the case when (a1) and (a2)
are true, then there exists a set of paths P1 which set (a1) to true and there is a
set of paths P2 which set (a2) to true. We claim that P = P1∪P2 is a solution to
c[v, d, Y, 1, (−)η] = true. Observe that no path containing v is in P, as tp = 1 in
(a1). The condition (a2) implies that there exists an uncovered vertex u ∈ Tchvd
at distance η from v. If chvd ∈ P2, then u will be covered by chvd and u need not
wait for future vertices to cover it. Hence tp = 1 in (a2). Since Y = Y1] Y2, we
have that for each i ∈ Y , we have exactly one path in P ∩Fi. Next, observe that
there exists a vertex u ∈ B at distance η from v in Tchvd , which is not covered
by paths in P1 and P2. Also (sg)η1 ∈ {(−)η, . . . , (+)η − 1}, u is not covered by
P1, as any vertex in P1 requires at least η+1 distance to reach u. Observe that
every vertex at distance at least η + 1 from v in Tv,d is covered by paths in P.
Analogous arguments follows for the case when (b1) and (b2) are true.
Correctness of Case tp = 1 (1.1): sg = +: Since tp = 1, v /∈ P. Hence, we do
not consider the entry c[v, d, Y, 1, (+)`]. Consider the case when (a1) and (a2)
are true, then there exists a set of paths P1 which set (a1) to true and there is a
set of paths P2 which set (a2) to true. We claim that P = P1 ∪ P2 is a solution
to c[v, d, Y, 1, (+)` − 1] = true. As tp2 ∈ {2, 7, 8} and no path in P1 contain v,
we have that no path containing v is in P. Since Y = Y1] Y2, we have that
for each i ∈ Y , we have exactly one path in P ∩ Fi. Next, observe that every
vertex in Tchvd is covered by P2 and since (sg)η1 ∈ {(−)`−1, . . . , (+)`−1}, every
vertex in Tv,d−1 is covered either by P1 or P2. By (a2) we also satisfy (+)`, that

18 Bhyravarapu et al.

is vertices at distance at most ` is covered by P2. Analogous arguments follows
for the case when (b1) and (b2) are true.
Correctness of tp = 1 (1.2): sg = +: Since η < `− 1, none of the children of
v can be in P. Hence tp = 1 in both (a1) and (a2). Consider the case when (a1)
and (a2) are true, then there exists a set of paths P1 which set (a1) to true and
there is a set of paths P2 which set (a2) to true. We claim that P = P1 ∪ P2 is
a solution to c[v, d, Y, 1, (+)η] = true. Since Y = Y1] Y2, we have that for each
i ∈ Y , we have exactly one path in P ∩ Fi. Next, observe that every vertex in
Tchvd is covered by P2 and since (sg)η1 ∈ {(−)η, . . . , (+)η}, every vertex in Tv,d−1
is covered either by P1 or P2. By (a2) we also satisfy (+)η, that is vertices at
distance at most η is covered by P2. Analogous arguments follows for the case
when (b1) and (b2) are true.
Case tp = 2: If F (v) /∈ Y , or sg = (−), or η 6= `, or v is not a path in
FF (v), then set c[v, d, Y, 2, (sg)η] = false. Correctness follows trivially. Otherwise
we set c[v, d, Y, 2, (+)`] = true if there exists a partition Y1] Y2 of Y \ {F (v)}
such that the following holds: (a1) c[v, d − 1, Y1 ∪ {F (v)}, 2, (+)`] = true and
(a2) c[chvd, deg(ch

v
d), Y2, tp2, (sg)η2] = true, (sg)η2 ∈ {(−)` − 1, . . . , (+)`}, tp2 ∈

{1, 2, 7, 8}.
Correctness of Case tp = 2: Suppose that (a1) and (a2) are true, then there
exists a set of paths P1 which set (a1) to true and there is a set of paths P2

which set (a2) to true. We claim that P = P1 ∪ P2 ∪ {v} is a solution to
c[v, d, Y, 2, (+)`] = true. Since Y = Y1] Y2] {F (v)}, we have that for each
i ∈ Y , we have exactly one path in P ∩ Fi. Next, observe that every vertex
in Tchvd ∪ Tv,d−1 is covered by P since (sg)η2 ∈ {(−)` − 1, . . . , (+)`} and path
containing v is in P, hence every vertex in Tv,d is covered by P.
Case tp = 3: If F (v) /∈ Y , or sg = (−), or η 6= `, or there is no path
in FF (v) containing v, parent of v and has one of its endpoints as v, then
set c[v, d, Y, 3, (sg)η] = false. Correctness follows trivially. Otherwise we set
c[v, d, Y, 3, (+)`] = true if there exists a partition Y1] Y2 of Y \ {F (v)}
such that the following holds: (a1) c[v, d − 1, Y1 ∪ {F (v)}, 3, (+)`] = true and
(a2) c[chvd, deg(ch

v
d), Y2, tp2, (sg)η2] = true, tp2 ∈ {1, 2, 7, 8}, (sg)η2 ∈ {(−)` −

1, . . . , (+)`}. The correctness can be argued similar to Case 2.
Case tp = 4: If F (v) /∈ Y , or sg = (−), or η 6= `, or there is no path in FF (v)

containing v, parent of v and has one of its endpoints in Tv,d−1 (endpoint is
not v), then set c[v, d, Y, 4, (sg)η] = false. Correctness follows trivially. Otherwise
we set c[v, d, Y, 4, (+)`] = true if there exists a partition Y1] Y2 of Y \ {F (v)}
such that the following holds: (a1) c[v, d − 1, Y1 ∪ {F (v)}, 4, (+)`] = true, and
(a2) c[chvd, deg(ch

v
d), Y2, tp2, (sg)η2] = true, tp2 ∈ {1, 2, 7, 8}, (sg)η2 ∈ {(−)` −

1, . . . , (+)`}. The correctness can be argued similar to Case 2.
Case tp = 5: If F (v) /∈ Y , or sg = (−), or η 6= `, or there is no path in FF (v)

containing v, parent of v and has one of its endpoints in Tchvd (endpoint is not
v), then set c[v, d, Y, 5, (sg)η] = false. Correctness follows trivially. Otherwise we
set c[v, d, Y, 5, (+)`] = true if there exists a partition Y1] Y2 of Y \ {F (v)} such
that the following holds: (a1) c[v, d − 1, Y1 ∪ {F (v)}, tp1, (+)`] = true, tp1 = 6
and (a2) c[chvd, deg(ch

v
d), Y2 ∪ {F (v)}, tp2, (+)`] = true, tp2 ∈ {3, 4, 5}.

Parameterized algorithms for Eccentricity Shortest Path Problem 19

Correctness of the Case tp = 5: Suppose that (a1) and (a2) are true, then
there exists a set of paths P1 which set (a1) to true and there is a set of paths P2

which set (a2) to true. Let P1 ∈ P1 ⊆ FF (v) and let P2 ∈ P1 ⊆ FF (v). Observe
that P∗1 = (P1 \ {P1})∪ {P2} also sets (a1) to true. We claim that P = P∗1 ∪P2

is also a solution to c[v, d, Y, 5, (+)`] = true. since Y = Y1] Y2] {F (v)}, and
tp1 = 6 and tp2 ∈ {3, 4, 5}, and exactly one path containing v is in P, we have
that for each i ∈ Y , we have exactly one path in P∩Fi. Next, observe that every
vertex in Tchvd ∪ Tv,d−1 is covered by P, hence every vertex in Tv,d is covered by
P.
Case tp = 6: If F (v) /∈ Y , or d = deg(v), or sg = (−), or η 6= `, or there is no path
in FF (v) containing v, parent of v and has one of its endpoints in Tchv

d′
, d′ > d

(endpoint is not v), then set c[v, d, Y, 6, (sg)η] = false. Correctness follows triv-
ially. Otherwise we set c[v, d, Y, 6, (+)η] = true if there exists a partition Y1]Y2 of
Y \{F (v)} such that the following holds: (a1) c[v, d−1, Y1∪{F (v)}, tp1, (+)`] =
true, and (a2) c[chvi , deg(ch

v
i), Y2, tp2, (+)`] = true, where tp1, tp2 = 6. The cor-

rectness can be argued similar to Case 5.

Case tp = 7: If F (v) /∈ Y , or sg = (−), or η 6= `, or there is no path in FF (v)

containing v, and both of its endpoints in Td,i−1 (at least one endpoint is not v),
then set c[v, d, Y, 7, (sg)η] = false. Correctness follows trivially. Otherwise we set
c[v, d, Y, 7, (+)`] = true if there exists a partition Y1]Y2 of Y \{F (v)} such that
the following holds: (a1) c[v, d − 1, Y1 ∪ {F (v)}, tp1, (+)`] = true, tp1 ∈ {7, 8}
and (a2) c[chvd, deg(ch

v
d), Y2, tp2, (sg)η2] = true, tp2 ∈ {1, 2, 7, 8}, (sg)η2 ∈ {(−)`−

1, . . . , (+)`}. The correctness can be argued similar to Case 5.

Case tp = 8: If F (v) /∈ Y , or sg = (−), or η 6= `, or there is no path in FF (v)

containing v, and one of its endpoints in Td,i−1 and other endpoint is in Tchvd (end-
point is not v), then set c[v, d, Y, 8, (sg)η] = false. Correctness follows trivially.
Otherwise we set c[v, d, Y, 8, (+)`] = true if there exists a partition Y1]Y2 of Y \
{F (v)} such that the following holds: (a1) c[v, d−1, Y1∪{F (v)}, tp1, (+)`] = true,
tp1 = 9 and (a2) c[chvi , deg(ch

v
i), Y2 ∪ {F (v)}, tp2, (+)`] = true, tp2 ∈ {3, 4, 5},

(sg)η2 ∈ {(−)`− 1, . . . , (+)`}. The correctness can be argued similar to Case 5.

Case tp = 9: If F (v) /∈ Y , or d = deg(v) or sg = (−), or η 6= `, or there is no
path in FF (v) containing v, and one of its endpoints in Td,i−1 and other endpoint
is in Tchv

d′
for some d′ > d (endpoint is not v), then set c[v, d, Y, 9, (sg)η] = false.

Correctness follows trivially. Otherwise we set c[v, d, Y, 9, (+)`] = true if there
exists a partition Y1]Y2 of Y \{F (v)} such that the following holds: (a1) c[v, d−
1, Y1∪{F (v)}, tp1, (+)`] = true, tp1 = 9 and (a2) c[chvd, deg(ch

v
d), Y2, tp2, (+)`] =

true, tp2 ∈ {1, 2, 7, 8}, (sg)η2 ∈ {(−)` − 1, . . . , (+)`}. The correctness can be
argued similar to Case 5.

Case tp = 10: If F (v) /∈ Y , or d = deg(v), or sg = (−), or η 6= `, or there is no
path in FF (v) containing v, and one of its endpoints is in Tchvd , and other endpoint
is in Tchv

d′
for some d′ > d (endpoint is not v), then set c[v, d, Y, 10, (sg)η] = false.

Correctness follows trivially. Otherwise we set c[v, d, Y, 10, (+)`] = true if there
exists a partition Y1] Y2 of Y \ {F (v)} such that the following holds: (a1)
c[v, d − 1, Y1 ∪ {F (v)}, tp1, (+)`] = true, tp1 = 11 and (a2) c[chvd, deg(ch

v
d), Y2 ∪

20 Bhyravarapu et al.

{F (v)}, tp2, (+)`] = true, tp2 = 10. The correctness can be argued similar to
Case 5.
Case tp = 11: If F (v) /∈ Y , or d = deg(v), or sg = (−), or η 6= `, or there
is no path in FF (v) containing v, one its endpoints is in Tchv

d′
for some d′ >

d, and other endpoint is in Tchv
d′′

for some d′′ > d (endpoint is not v), then
set c[v, d, Y, 11, (sg)η] = false. Correctness follows trivially. Otherwise we set
c[v, d, Y, 11, (+)`] = true if there exists a partition Y1] Y2 of Y \ {F (v)} such
that the following holds:(a1) c[v, d − 1, Y1 ∪ {F (v)}, tp1, (+)`] = true, tp1 = 11
and (a2) c[chvd, deg(ch

v
d), Y2, tp2, (+)`] = true, tp2 ∈ {1, 2, 7, 8}, (sg)η2 ∈ {(−)`−

1, . . . , (+)`}. The correctness can be argued similar to Case 5.
This completes the description of the (recursive) formulas and their correct-

ness for computing all entries of the dynamic programming table. The correct-
ness of the algorithm follows from the correctness of the (recursive) formulas, and
the fact (T,B, `,F = {F1,F2, . . . ,Ft}) is a yes instance of Colorful Path-
Cover if and only there exists an entry c[r, deg(r), tp∗, (+)η∗], tp∗ ∈ {1, 2, 7, 8}
and η∗ ∈ [0, `], which is set to true. Next, we analyse the running time of our
algorithm. Recall that |F| ≤ t and for each i ∈ [t] we have that |Fi| ≤ n2.
Observe that each of our table entries can be computed in time O(`2 · 22tnO(1))
time. The number of entries is bounded by O(` · 2tnO(1)).

Since we guessed the subset of families of feasible paths that come from
each tree in F in O(kt) time, the running time of our algorithm is bounded by
O(`2 · 2O(t log k)nO(1)). Since t ≤ k, we get the desired running time.

3.7 Proof of Theorem 1

ESP/fvs + ecc and Skeleton Testing are FPT-equivalent from Lemma 3.
Observation 1 upper bounds the number of skeletons by 2O(k(log k+log `))n2.
Then, we show that Skeleton Testing and Ext-Skeleton Testing are
FPT-equivalent and for each skeleton we have at most 2O(k log k) enriched skele-
tons. Finally, given an instance of Ext-Skeleton Testing, we construct an
instance of Colorful Path-Cover in polynomial time. The Colorful Path-
Cover problem can be solved in O(`2 ·2O(k log k)nO(1)) time, and this completes
the proof of Theorem 1.

4 (1+ε)-factor parameterized by feedback vertex set

Theorem 2. For any ε > 0, there is an (1 + ε)-factor approximation algorithm
for ESP/fvs running in time O(2O(k log k)nO(1)).

We make use of our algorithm in Theorem 1 that runs in O(2O(k log k)`knO(1))
time. Notice that, `k comes because of the number of skeletons (Observation 1).
Specifically, for the function f : X → [`] that maintains a distance profile of the
set of vertices of S that do not appear on P . To design a (1 + ε)-factor FPT
approximation algorithm, we replace the image set [`] with a set of fixed size
using ε such that we approximate the shortest distance of the set of vertices of S

Parameterized algorithms for Eccentricity Shortest Path Problem 21

that do not appear on P , with the factor (1+ ε). The rest is similar to Theorem
1. Below we describe the result, the procedure and its correctness in detail.
Let the function f : X → {ε`, `} denote the approximate shortest distance of
each vertex x ∈ X from a hypothetical solution P of ESP/fvs. Formally,

f(v) =

{
ε` if dG(v, P) < ε`,

` if ε` ≤ dG(v, P) ≤ `.

Correctness. Suppose that P ∗ is a shortest path, with eccentricity ` and the
function f as defined in the proof of Theorem 1, returned by the algorithm in
Theorem 1. We prove that for each vertex v ∈ V (G), dG(v, P) ≤ (1 + ε)`. Ob-
serve that for a vertex x ∈ X, if 1 ≤ dG(x, P

∗) < ε`, then for a correct guess of
f , f(x) = ε` and dG(x, P ∗) < ε`. Also if ε` ≤ dG(x, P

∗) ≤ `, then for a correct
guess of f , f(x) = ` and dG(x, P ∗) ≤ `. Recall that, in the algorithm when we
construct instances for a good function γ (reducing to instance of Colorful
Path-Cover), we remove such vertices to construct an instance of Colorful
Path-Cover. The assumption (or guess) we made was that the eccentricity
requirement for v is satisfied using x. More explicitly, we use the following con-
ditions: if f(x) = ε` (resp, f(x) = `), then the eccentricity requirement for the
vertex v is satisfied using x if dG(v, x) ≤ ` (resp, dG(v, x) ≤ ε`). Now consider a
vertex v ∈ V (G)\S. Suppose that there exists a shortest path from v to P ∗ con-
taining no vertex from S, then by the description and correctness of algorithm
of Theorem 1, we obtain that dG(v, P) ≤ `. Next, suppose that the shortest path
from v to P ∗ contains a vertex x ∈ X, then dG(v, x) + dG(x, P

∗) ≤ `. There-
fore, for such vertices, while dG(x, v) ≤ ` and dG(x, P) < ε`, we obtain that
dG(v, P) ≤ dG(x, v)+ dG(x, P) ≤ `+ ε` = (1+ ε)` and similarly, if dG(x, v) ≤ ε`
and dG(x, P) ≤ `, then dG(v, P) ≤ dG(x, v) + dG(x, P) ≤ ε`+ ` = (1+ ε)`. This
completes the correctness of the proof of Theorem 2.

5 Disjoint Paths Deletion Set
In this section, we design an FPT algorithm for the ESP problem parameterized
by the disjoint paths deletion set (dpd).

Theorem 3. There is an algorithm for ESP/dpd running in time
O(2O(k log k)nO(1)).

We make use of the algorithm for ESP/fvs + ecc (Theorem 1) that runs
in O(2O(k log k)`knO(1)) time. Notice that, the eccentricity parameter ` occurs
in the running time due to the size of skeletons that contain `k (observation 1)
term. Now this `k term comes because of the function f : X → [`] that is defined
to maintain a distance profile of the set of vertices of S that do not appear on
P . For the case of dpd, we can show that there is a set Q ⊆ [`] with |Q| ≤ 2k2

(lemma 9 which we prove below). We can define a function f : X → Q that will
maintain the distance profile of the set of vertices of S that do not appear on P .
The rest of the algorithm is exactly as similar as for theorem 1. Hence we obtain
the following result.

22 Bhyravarapu et al.

Lemma 9. Let (G,S, k) be a yes instance of ESP/dpd, and P be a hypothetical
solution. Then there is a set Q ⊆ [`] of size ≤ 2k2 such that for each w ∈ S,
dG(w,P) ∈ Q. Moreover, one can construct such a Q in O(k2n2) time.

Proof. Let Q be the set defined as Q = {dG(x, y), dG(x, y)+1, dG(x, y)−1: x, y ∈
S}. Clearly, |Q| ≤ 2k2 and the set Q can be computed in O(k2n2) time. Now
it remains to show that for any solution path P for a yes instance (G,S, k) of
ESP/dpd problem, we have that for every w ∈ S, dG(w,P) ∈ Q. Firstly, observe
that if w ∈ S ∩P , then dG(w,P) = 0 and clearly the value 0 ∈ Q, as d(x, x) = 0
for any x ∈ S. Now for each w ∈ S \ P , let Pw be a shortest path from w to
P and let w∗ = P ∩ Pw and z be the nearest vertex in S to w∗ on Pw. Clearly,
z ∈ S ∩Pw and dG(w,P) = dG(w, z)+ dG(z, w

∗). Let M = P ∩S. Now consider
the following three cases. (the cases are illustrated in Figure 5)
Case 1. If w∗ ∈ S, then z = w∗. And the value dG(w,P) is essentially dG(w,w∗).
As w,w∗ ∈ S so dG(w,w∗) ∈ {dG(x, y) : x, y ∈ S} ⊆ Q.
Case 2. If w∗ /∈ S and w∗ /∈ N(M), then there must be a subpath Pj of some
pair (mj ,mj+1) such that w∗ ∈ Pj . Since w∗ is not an endpoint of the subpath
Pj , we have that dG(z, w∗) = 1 and dG(w,w∗) = dG(w, z) + 1. As w, z ∈ S, so
dG(w,w

∗) ∈ {1 + dG(x, y) : x, y ∈ S} which is a subset of Q.
Case 3. If w∗ /∈ S ∩ P and w∗ ∈ N(M), then there must be a subpath Pj

of some pair (mj ,mj+1) such that w∗ ∈ Pj . Since w∗ is an endpoint of the
subpath Pj , we have that the value dG(w,w∗) must be either dG(w,mj)− 1 or
dG(w,mj+1) − 1. As w,mj ,mj+1 ∈ S, so dG(w,w∗) ∈ {dG(x, y) − 1: x, y ∈ S}
which is a subset of Q. ut

d

1

d− 2

wzmj+1mj

σj

1

Fig. 5. Illustration of the proof of lemma 9. The dashed line, the dotted line and the
dashed dotted line describes the Cases 1, 2 and 3 respectively. The green colored vertices
indicate the vertex w′ in the respective cases. The blue colored vertices represent the
vertex set Z. The subpath between mj and mj+1 is represented Pj .

6 Split Vertex Deletion Set

In this section, we design an FPT algorithm for the ESP problem parameter-
ized by the split vertex deletion set (svd). Let (G,S, k, `) be a yes instance of
ESP/svd, and P be a hypothetical solution where S is a split vertex deletion

Parameterized algorithms for Eccentricity Shortest Path Problem 23

set. Our main objective is to get P . Towards that, our main idea is to partition
the vertices from S that does not appear in P into a constant number of parts
such that we have an assurance that any solution (if it exists) respecting the
partition gives us a solution. In particular, we partition the vertices from S that
does not appears in P , say X into five disjoint sets X=1, X=2, X=3, X=4 and X≥5
such that X=i, i ∈ [4] is the set of vertices of X that are at a distance exactly i
from the hypothetical solution path, and X≥5 is the set of vertices that are at
a distance at least five from the hypothetical solution path. Rest of the process
we describe below explicitly. The following is the main result of this section.

Theorem 4. There is an algorithm for ESP/svd running in time O(2O(k log k) ·
nO(1)).

Proof. Consider an instance (G,S, k) of ESP/svd. Let C] I be partition of
V (G− S) such that C and I induce a clique and independent set, respectively.
First, we describe our algorithm. We assume that G is a connected graph, else
it is a trivial no instance. The algorithm first guesses a set M ⊆ S which is an
(exact) intersection of S with the vertex set of the hypothetical solution. Observe
that |V (P)∩C| ≤ 2, as every shortest path in the graph is also an induced path
in the graph. The algorithm guesses a set C∗ ⊆ V (C) of size at most 2 which is an
(exact) intersection of C with the vertex set of the hypothetical solution. Next,
the algorithm uses lemma 2 to find the (unique) ordering π of the vertices in
M∪C∗ on the hypothetical solution path. Let |M∪C∗| = t and {m1,m2, . . . ,mt}
be the guessed ordering π of vertices of M ∪ C∗ in the hypothetical solution
path and let X = S \M . Next, we guess endpoints of the solution path. Let
m0,mt+1 be the guessed endpoints of the hypothetical solution path such that
m0 is the first vertex and mt+1 is the last vertex on the hypothetical solution
path (we might also obtain m1,mt+1 such that m0 = m1 or mt = mt+1, or
m0 = mt+1). Observe that for a correct guess M,C∗,m0,mt+1 and ordering
m0,m1, . . . ,mt+1, following must be satisfied, else we discard the combination
of ordering M,C∗,m0,mt+1 and make another combination of guesses. If mimj

is an edge in G, then j = i+1. We assume that minimum eccentricity is greater
than four; otherwise, we can solve the problem in polynomial time (by lemma 1).

Next, we guess a partition X of the set X in 5 disjoint sets X=1, X=2,
X=3, X=4 and X≥5 such that X=i, i ∈ [4] is the set of vertices of S that are
at a distance exactly i from the hypothetical solution path, and X≥5 is the
set of vertices that are at a distance at least five from the hypothetical solu-
tion path. For a vertex v ∈ X=i, i ∈ [4] (resp. X≥5), if dG(v,mj) < i (resp.
dG(x,mj) < 5), for some j ∈ [0, t+ 1] then we discard such partition and guess
another partition of X. Let X ′ = X=1 ∪X=2 ∪X=3 ∪X=4 ⊆ X be the set of all
vertices in X such that for each v ∈ X ′, dG(v,mj) > i, where v ∈ X=i where
i ∈ [4] for all j ∈ [0, t+ 1]. In this case, for each vertex in X ′ there should exist
a vertex in mj to mj+1 subpath in the hypothetical solution that comes from
G[(V (G)\S)∪{mj ,mj+1}], for some j ∈ [0, t+1]. Recall that for every j ∈ [0, t],
if mjmj+1 is an edge in G then mjmj+1 is an edge in the hypothetical solution
also.

24 Bhyravarapu et al.

Next, we guess a function g : X ′ → [0, t]. Where for a vertex v ∈ X ′,
g(v) = j represents the guessed pair (mj ,mj+1) such that there exists a vertex
u ∈ I in mj to mj+1 subpath such that dG(u, v) = i, if v ∈ X=i. If a function
g satisfies the following, then we discard that guess of g. For some j ∈ [0, t] and
v ∈ g−1(j), there does not exist any vertex u ∈ I satisfying (i) u is adjacent to
both mj and mj+1 where (mj ,mj+1) /∈ E, (ii) d(u, v) = i, where v ∈ X=i for
some i ∈ [4]. For each M ⊆ S, X = S \M , C∗ ⊆ C, m0,m|M∪C∗|+1 ∈ V (G),
a partition X = X=1] X=2] X=3] X=4] X≥5 of X, X ′ as defined above,
and a function g : X ′ → [0, t], which are as described above and not discarded
by the above description we proceed as follows: For each i such that mimi+1 is
not an edge in G, we arbitrarily pick a vertex u ∈ I such that u is adjacent to
both mj and mj+1 and dG(v, u) = i whenever v ∈ X=i and v ∈ g−1(j) together
holds. This completes the description of the algorithm. We output the path P
by concatenating mimi+1 edge or mjumj+1 subpaths for every j ∈ [0, t].

Running time: Next, we analyze the running time of our algorithm. The num-
ber of subsets of S is 2k, which gives us 2k choices for M . The number of
choices for C∗,m0,m|M |+1 is at most O(n4). To find the permutation (order-
ing) of M ∪ C∗ we have only one choice, which can be found in O(nO(1)) time
by lemma 2. The choices for partition X are bounded by O(5k). The choices
for the function g are bounded by O(kk). Therefore, we obtain running time in
O(2O(k log k)ṅO(1)) of our algorithm.

Correctness: Next, we prove the correctness of our algorithm. We show that
a shortest path P is a solution to (G,S, k) of ESP/svd if and only if there
exists a M ⊆ S, X = S \ M , C∗ ⊆ C, m0,m|M∪C∗|+1 ∈ V (G), a partition
X = X=1]X=2]X=3]X=4]X≥5 of X, X ′ as defined above, and a function
g, such that P satisfies the properties of M,X,C∗,m0,m|M∪C∗|+1,X , X ′, g.

In the forward direction suppose that P is a solution to (G,S, k) of ESP/svd.
Let M ⊆ V (P) ∩ S, X = S \M , C∗ = V (P) ∩ C. Let π be the ordering of
vertices inM ∪C∗ on P . Let m0,m|M∪C∗|+1 be the first and last endpoints of P ,
respectively. Let X = X=1]X=2]X=3]X=4]X≥5 be partition ofX according to
distances of vertices from P . Let X ′ ⊆ X be the set of all vertices in X such that
for each v ∈ X ′, dG(v,mj) > i, i ∈ [4] for all j ∈ [0, t+ 1]. For defining function
g, if for a vertex v ∈ X ′ there exists ui in mj to mj+1 path, then set g(v) = j.
Observe that P satisfies properties of M,X,C∗,m0,m|M∪C∗|+1,X , X ′, g.

In the backward direction suppose that there exists a M ⊆ S, X = S \M ,
C∗ ⊆ C, m0,m|M∪C∗|+1 ∈ V (G), a partition X = X=1]X=2]X=3]X=4]X≥5
of X, X ′ as defined above, and a function g, such that P is a shortest path that
satisfies the properties of M,X,C∗,m0,m|M∪C∗|+1,X , X ′, g. We claim that P
is a solution to (G,S, k) of ESP/svd. Towards a contradiction, suppose that P
is not a solution (G,S, k) of ESP/svd and there exists a shortest path P1 which
is a solution to (G,S, k) of ESP/svd such that ` is the minimum integer such
that for all u ∈ V (G), dG(u, P1) ≤ `. Let v ∈ V (G) such that dG(v, P1) ≤ `
and dG(v, P) > `. Observe that for a correct guess of X , for every vertex u ∈
X∗ = ∪4i=1X=i, distance of u to P is optimal, that is for any solution P ∗ of
(G,S, k), dG(u, P ∗) = dG(u, P). Therefore, v /∈ X∗. Recall that ` ≥ 5, otherwise

Parameterized algorithms for Eccentricity Shortest Path Problem 25

the algorithm would have solved the instance completely using lemma 1. Let P v
1

be a shortest path from v to P1. Observe, that since G − S is a split graph,
every induced path is of length at most 3. As P v

1 is a shortest path of length at
least 5 (` ≥ 6), then by induced property of shortest path, we have that that
there is a vertex u ∈ S on P 1

v such that dG(u, P) = j ≤ 4. As X is a correct
guess so for each u ∈ X=i, i ∈ [4], we have that dG(u, P) = i. By the observation
that dG(u, v) ≤ ` − i (along the path P v

1), we obtain that dG(v, P) ≤ `, a
contradiction. Hence P is also a solution to (G,S, k). This completes the proof
of correctness of our algorithm and hence proof of theorem 4. ut

7 W[2]-hardness for ESP/cvd
In this section, we show that ESP/cvd is W[2]-hard. This construction is based
on [8] where the authors prove that ESP/ecc is W[2]-hard.

Theorem 5. ESP/cvd is W [2]-hard.

Proof. Towards proving that the ESP/cvd is W[2]-hard, we give a polynomial
time parameter preserving reduction from Dominating Set (DS in short) pa-
rameterized by solution size to ESP/cvd. In DS, we are given a graph G, and
an integer k, the aim is to decide whether there exists a set S ⊆ V (G) of size at
most k such that for every vertex v ∈ V (G), N [v]∩ S 6= ∅. It is well known that
DS is W[2]-hard parameterized by the solution size k [6].

Consider an instance (G, k) of DS. First, we describe construction of an in-
stance (H,S, k′) of ESP/cvd. Let V (G) = {v1, . . . , vn}. To construct the graph
H we apply the following procedure (see fig. 6 for an illustration of the construc-
tion).

1. Initialize V (H) = V (G), that means, we add a vertex vi in V (H) corre-
sponding to each vertex vi in G. For each pair vi, vj ∈ V (H), i 6= j, we add
vivj edge in H. Let V ∗ be the set of vertices added in this step to V (H).

2. Add k sets U1, U2, . . . , Uk, where Ui = {ui1, ui2, . . . , uin} to V (H). Each
Ui, i ∈ [k] is a set of n vertices. The vertex uij in each set Ui where i ∈
[k], j ∈ [n], represents ith representative of jth vertex in G and we add k
representatives for each vertex.

3. Add a set of (k − 1) vertices {z1, z2, . . . , zk−1} to V (H). For each i ∈
[k − 1], make all vertices in Ui ∪ Ui+1 adjacent to zi, that is, add the set
{uijzi, u(i+1)jzi : i ∈ [k], j ∈ [n]} of edges to E(H).

4. Add four vertices, s, a, b, and t to V (H), also add two sets A =
{a1, a2, . . . , ak} and B = {b1, b2, . . . , bk} each of k vertices to V (H). Add
edge sets Ã = {aiai+1 : i ∈ [k − 1]} ∪ {sa1, aka} and B̃ = {bibi+1 : i ∈
[k−1]}∪{tb1, bkb} to V (H). Observe that we have added a path from s to a
of length k+1 using set A of vertices and edges Ã. Similarly we have added
a path from b to t of length k + 1 using set B of vertices and edges B̃.

5. Make the vertex a adjacent to all vertices in U1 and make the vertex b
adjacent to all vertices in Uk. That is add the set {u1ja, ukjb : j ∈ [n]} of
edges to E(H).

26 Bhyravarapu et al.

6. For each vertex uij ∈ Ui, i ∈ [k], j ∈ [n] and each vertex vt ∈ NG[vj] add a
set W ij

vt = {wij
t1, w

ij
t2, . . . , w

ij
t(k)} of k vertices to V (H). Add edge set W̃ ij

vt
=

{wij
tpw

ij
t(p+1) : p ∈ [k− 1]} ∪ {uijwij

t1, w
ij
t(k)vt} of edges to E(H). Observe that

we have added a uij to vt path of length k+1 using vertex set W ij
vt and edge

set W̃ ij
vt , for each i ∈ [k], j ∈ [n], vt ∈ NG[vj]. Intuitively if vjvt is an edge in

the graph G (or t = j, as we consider closed neighbourhood of vj), then we
add a path of length k+ 1 between each vertex corresponding to vj that we
have added in sets Ui, i ∈ [k] in step 2, and vertex corresponding to vertex
vt ∈ V ∗ that we have added in step 1.

7. (Make a ladder for ith representative of vj vertex with the vertices corre-
sponding to N [vj] in V ∗.) Next, we take the uij to vt paths added in the
above step, uij ∈ Ui, i ∈ [k], j ∈ [n] and vt ∈ NG[vj], we further add more
edges to vertices in these paths and construct a ladder structure. In par-
ticular we do as follows. For each vertex uij ∈ Uj , i ∈ [k], j ∈ [n] and each
pair of vertices vtvt∗ ∈ NG[vj] we take the uij to vt path and uij to vt∗

path added in above step. We have W ij
vt = {wij

t1, w
ij
t2, . . . , w

ij
tk} vertex set

corresponding to uij to vt path and W ij
vt∗

= {wij
t∗1, w

ij
t∗2, . . . , w

ij
t∗k} vertex

set corresponding to uij to v∗t path in the above step. We further add edges
Ŵ ij

vtvt∗
=

⋃
p∈[k] w

ij
tpw

ij
t∗(p) ∪ {w

ij
tqw

ij
t∗(q+1) : q ∈ [k − 1]} ∪ {wij

tkvt∗} to E(H).
We say that the graph H induced on vertex sets W ij

vt ∪W
ij
vt∗
∪ {uij , vt, vt∗}

together with edge set W̃ ij
vt ∪ W̃

ij
vt∗
∪ {vtvt∗} is a ladder between uij and

vt, vt∗ .

This completes the description of the graph H. Observe that the number of
vertices in H is polynomial in n and k, and the construction can be done in
polynomial time. Let X = {z1, z2, . . . zk−1} ∪ {a, b}. Clearly |X| = k + 1. Let
k′ = k + 1. This completes the description of the construction of (H, k′). We
claim that G has a dominating set of size at most k if and only if H has a
shortest path P with eccentricity at most (k + 1).

Correctness. We show that (H,S, k′) is a valid instance of ESP/cvd. First,
we show that X is a chordal deletion set of H.

Claim. H −X is a chordal graph.

Proof. Let C be a cycle of length at least four in H\X. As {v1, v2, . . . vn} forms a
clique in G so C can have at most two vertices from V ∗. Now in each component
of H \(X∪V ∗) has at most one vertex from U = ∪ki=1Ui. As V ∗ induces a clique,
so there is no induced cycle having more than one vertices from U . Let uji ∈ Uj

be an arbitrary vertex in C, by our construction neighbors of uij are vertices of
type wij

t1, which is first vertex in uij to vt ∈ NG[vj] path (step 5) or of type wi′j
t1 ,

which is first vertex in ui′j to vt ∈ NG[vj] path (step 7). Observe that by our
construction of ladders in step 6 and 7, every pair of vertices in neighbourhood
of uji in H is adjacent (such edges are added in E(H) by Ŷ type sets). Now let,
wij

tt′ be one of the nearest neighbour (say distance t′) of uji in C. If we look at

Parameterized algorithms for Eccentricity Shortest Path Problem 27

the neighbour of wij
tt′ in C, as C is a cycle of length at least 4 so the only choice

is wij
t∗t′ and w

ij
t(t′+1). Now wij

tt′ is one neighbour of wij
t∗t′ in C, let w be the other

neighbour of wij
t∗t′ , clearly dH(uji , w) = t′ or t′ + 1. In any of the cases, as our

construction there is an edge between wij
tt′ and w. That leads to a contradiction.

So, there is no induced cycle of length at least four in H \ X. Hence, we have
that H is a chordal graph.

NG[vj]V ∗

uij

s t

a b

U1 U2 UkUi

z1 z2 zk−1

uij

vt

vt∗

wij
t1

wij
t2

wij
tk

wij
t∗1 wij

t∗2

wij
t∗k

a1

ak

b1

bk

Fig. 6. Reduction from DS to ESP/cvd. Illustration to the proof of theorem 5.

Claim. G has a dominating set of size at most k if and only if H has a shortest
path P with eccentricity at most (k + 1).

Proof. In the forward direction, suppose that the graph G has a dom-
inating set D of size k. Let D = {vt1 , vt2 , . . . , vtk} and D∗ =
{a, u1t1 , z1, u2t2 , z2, . . . , zk−1, uktk , b}, where uiti is the ith representative of ver-
tex ti in set Ui added in step 2 of our construction ofH. Observe that P = H[D∗]
is an induced path by our construction. SinceD is a dominating set in G, for each
vertex vti ∈ D, we have that each vertex vt ∈ NG[vi] is at distance (k + 1) from
uiti in H. By construction, for the remaining vertices in H, there is a shortest
path from P of length at most (k + 1).

For the backward direction, note that each shortest path that does not con-
tain the vertices a or b have eccentricity more than k + 1, as distance from s

28 Bhyravarapu et al.

to a (resp, t to b) is exactly k + 1. Moreover, as dH(a, b) = 2k and any path
between a and b passing through V ∗ exceeds the value 2k so each shortest path
must intersects all set Ui and pass through all vertices zi′ where i ∈ [k] and
i′ ∈ [k − 1]. Suppose that there exists a shortest path P with eccentricity k + 1
in H. That means for every vertex v ∈ H there exists a vertex u ∈ P such that
dH(u, v) ≤ (k+1). Let v be an arbitrary vertex in V ∗, and there exists a vertex
uij ∈ P such that d(v, uij) = k + 1. This implies, v ∈ NG[vj]. As we choose v
arbitrarily, so the set D = {vj : uij ∈ V (P) ∩ Ui, i ∈ [k]} is a dominating set for
G with size at most k. This completes the proof.

This completes the proof of theorem 5. ut

References

1. Etienne Birmelé, Fabien de Montgolfier, and Léo Planche. Minimum eccentric-
ity shortest path problem: An approximation algorithm and relation with the k-
laminarity problem. In International Conference on Combinatorial Optimization
and Applications, pages 216–229. Springer, 2016.

2. Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algo-
rithmica, 75(1):118–137, 2016.

3. Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms,
volume 5. Springer, 2015.

4. Marek Cygan and Marcin Pilipczuk. Split vertex deletion meets vertex cover: new
fixed-parameter and exact exponential-time algorithms. Information Processing
Letters, 113(5-6):179–182, 2013.

5. Reinhard Diestel. Graph theory. Graduate texts in mathematics, 173, 2017.
6. Rodney G Downey and Michael R Fellows. Fundamentals of parameterized com-

plexity, volume 4. Springer, 2013.
7. Feodor F Dragan and Arne Leitert. Minimum eccentricity shortest paths in some

structured graph classes. In International Workshop on Graph-Theoretic Concepts
in Computer Science, pages 189–202. Springer, 2015.

8. Feodor F Dragan and Arne Leitert. On the minimum eccentricity shortest path
problem. Theoretical Computer Science, 694:66–78, 2017.

9. Ralph J Faudree, Ronald J Gould, Michael S Jacobson, and Douglas B West.
Minimum degree and dominating paths. Journal of Graph Theory, 84(2):202–213,
2017.

10. Martin Kučera and Ondřej Suchỳ. Minimum Eccentricity Shortest Path Problem
with Respect to Structural Parameters. In International Workshop on Combina-
torial Algorithms, pages 442–455. Springer, 2021.

11. Finn Völkel, Eric Bapteste, Michel Habib, Philippe Lopez, and Chloe Vigliotti.
Read networks and k-laminar graphs. arXiv preprint arXiv:1603.01179, 2016.

	Parameterized algorithms for Eccentricity Shortest Path Problem

