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a b s t r a c t

In empirical cognitive science, for human learning, a semantic or behavioralU-shape occurs
when a learner first learns, then unlearns, and, finally, relearns, some target concept.

Within the formal framework of Inductive Inference, for learning from positive data,
previous results have shown, for example, that such U-shapes are unnecessary for
explanatory learning, but are necessary for behaviorally correct and non-trivial vacillatory
learning.

Herein we also distinguish between semantic and syntactic U-shapes. We answer a
number of open questions in the prior literature as well as provide new results regarding
syntactic U-shapes. Importantly for cognitive science, we see more of a previously noticed
pattern that, for parameterized learning criteria, beyond very few initial parameter values,
U-shapes are necessary for full learning power.

We analyze the necessity of U-shapes in two memory-limited settings.
The first setting is Bounded Memory State (BMS) learning, where a learner has an

explicitly-bounded state memory, and otherwise only knows its current datum. We show
that there are classes learnable with three (or more) memory states that are not learnable
non-U-shapedly with any finite number of memory states. This result is surprising, since,
for learning with one or two memory states, U-shapes are known to be unnecessary. This
solves an open question from the literature.

The second setting is that of Memoryless Feedback (MLF) learning, where a learnermay
ask a bounded number of questions about what data has been seen so far, and otherwise
only knows its current datum. We show that there is a class learnable memorylessly with
a single feedback query such that this class is not learnable non-U-shapedly memorylessly
with any finite number of feedback queries.

We employ self-learning classes together with the Operator Recursion Theorem for
many of our results, but we also introduce two new techniques for obtaining results. The
first is for transferring inclusion results from one setting to another. The main part of
the second is the Hybrid Operator Recursion Theorem, which enables us to separate some
learning criteria featuring complexity-bounded learners, employing self-learning classes.
Both techniques are not specific to U-shaped learning, but applicable for a wide range of
settings.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In Section 1.1we explain andmotivateU-shaped learning and present a conjecture significant for cognitive science and based
in part on new results in the present paper.
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In Section 1.2 we discuss the general techniques of the present paper including two new, interesting techniques.
Section 1.3 summarizes our results regarding the necessity of U-shaped learning in memory limited contexts and

indicates which are our main results. These main results provide cognitive science insight about U-shaped learning, and
they include those answering interesting, previously open questions.

1.1. U-shaped learning

U-shaped learning occurs when a learner first learns a correct behavior, then abandons that correct behavior and finally
returns to it once again. This pattern of learning has been observed by cognitive and developmental psychologists in a
variety of child development phenomena, such as language learning [6,37,44], understanding of temperature [44,45], weight
conservation [5,44], object permanence [5,44] and face recognition [7]. The case of language acquisition is paradigmatic. For
example, in the case of the past tense of English verbs, it has been observed that children learn correct syntactic forms
(call/called, break/broken), then undergo a period of overregularization in which they attach regular verb endings such as
‘ed’ to the present tense forms even in the case of irregular verbs (break/breaked, speak/speaked) and finally reach a final
phase in which they correctly handle both regular and irregular verbs. This example of U-shaped learning behavior has
figured prominently in cognitive science [37,40,46].1

While the prior cognitive science literature onU-shaped learningwas typically concernedwith the reality of such learning
behavior orwithmodeling howhumans achieve this U-shaped behavior, [4,12] aremotivated by the question ofwhyhumans
exhibit this seemingly inefficient behavior. Is it a mere evolved but harmless inefficiency or is it necessary for full human
learning power? A technically answerable version of this question is: are there some formal learning tasks for which U-
shaped behavior is logically necessary? We first need to describe some formal criteria of successful learning.

An algorithmic learning function h is, typically, fed an infinite sequence consisting of the elements of a (formal)
language L in arbitrary order with possibly some pause symbols # in between elements. During this process h outputs
a corresponding sequence p(0), p(1), . . . of hypotheses (grammars) which may generate the language L to be learned.
A fundamental criterion of successful learning of a language is called explanatory learning (TxtEx-learning) and was
introduced by Gold [27]. Explanatory learning requires that the learner’s output conjectures stabilize in the limit to
a single conjecture (grammar/program, description/explanation) that generates the input language. Behaviorally correct
learning (TxtBc-learning) [19,39] requires, for successful learning, only convergence in the limit to possibly infinitely many
syntactically distinct but correct conjectures. Another interesting class of criteria features vacillatory learning [10,31]. This
paradigm involves learning criteria which allow the learner to vacillate in the limit between at most some bounded, finite
number of syntactically distinct but correct conjectures. For each criterion that we consider above (and below), a non-U-
shaped learner is naturallymodeled as a learner that never semantically returns to a previously abandoned correct conjecture
on languages it learns according to that criterion.

[4] showed that every TxtEx-learnable class of languages is TxtEx-learnable by a non-U-shaped learner, that is, for TxtEx-
learnability, U-shaped learning is not necessary. Furthermore, based on a proof in [23], [4] noted that, by contrast, for
behaviorally correct learning [19,39], U-shaped learning is necessary for full learning power. In [12] it is shown that, for non-
trivial vacillatory learning, U-shaped learning is again necessary (for full learning power). In the present paper we will see
that, for the learning criteria for which it presents new results, again, beyond a very few initial parameter values, seemingly
inefficient U-shaped learning does increase learning power. This leads us to a conjecture significant for cognitive science: for
the still open problems usefully shown in Table 1 in Section 5 below, beyond initial, small parameter values, we will again
see that U-shapes are necessary for full learning power.

What turns out to be a variant of non-U-shaped learning is strongly non-U-shaped learning essentially defined in [49],2
where the learner is required never to syntactically abandon a correct conjecture on languages it learns according to that
criterion. Clearly, strong non-U-shaped learnability implies non-U-shaped learnability.3 In our experience, for theoretical
purposes, it is frequently easier to show non-U-shaped learnability by showing strong non-U-shaped learnability.

A notion similar to non-U-shapedness is that of decisiveness [38], where a learner may not semantically return to any
semantically abandoned conjecture (not just abandoned correct conjectures) on any text (not just on texts for learnable
languages). It is intuitively clear that this is a very strong requirement formemory-limited learning criteria, (see Theorem4.9
below, which shows, in certain memory-limited settings anyhow, that only finite classes of languages can be decisively
learned).4 However, the notion herein of class-decisive, which requires decisive behavior only on texts for successfully
learned languages, might be more interesting.5 Note that class-decisive learning is closer to non-U-shaped learning than

1 U-shapes are such an important topic in cognitive science that a Special Issue of the Journal of Cognition and Development (Volume 5, Issue 1, 2004)
was devoted to them.
2 Wiehagen actually used the term semantically finite in place of strongly non-U-shaped. However, there is a clear connection between this notion and

that of non-U-shapedness. Our choice of terminology is meant to expose this connection. See also [20].
3 For non-U-shaped learning, the learner (on the way to success) must not semantically abandon a correct conjecture. In general, semantic change of

conjecture is not algorithmically detectable, but syntactic change is. However, in the cognitive science labwe canmany times observe a behavioral/semantic
change, but it is beyond the current state of the art to see, for example, grammars in people’s heads — so we cannot yet observe mere syntactic changes in
people’s heads.
4 In [4] it is shown that decisiveness even limits the power of TxtEx-learning.
5 The term ‘class-decisive’ is used in [31], but in the context of function learning.
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decisive learning.6 Furthermore, as for strongly non-U-shaped learning, we say a learner is strongly class-decisive iff, on texts
for learned languages, the learner never semantically returns to a syntactically abandoned conjecture. With regard to this
notion, herein we have only Remark 3.13 below.

1.2. Presented techniques

In this paper we employ general techniques to tackle problems regarding U-shaped learning, and two of them are new
to the present paper.

In [17] we presented a very general technique which can be used to show separations of learning criteria power, for
example, to show the necessity of U-shapes. We employ it again herein. This technique employs so-called self-learning
classes of languages as witnesses for separations of learning criteria power. A self-learning class of languages is such that
each element of each language of the class provides instructions for what to compute and output as a new hypothesis.
The technique itself is to employ, with self-learning classes, subtle infinitary self-and-other program reference arguments
employing (variants of) the Operator Recursion Theorem (ORT) from [8,9] (see also [31]). This technique of self-learning
classes together with the ORT can also be employed in the setting of learning computable functions, for which the technique
was extensively studied in its own right in [18]. Both papers (in different settings) show self-learning classes to be very strong
in the following sense. For learners not restricted to be total, for example, to run in usefully bounded time, two associated
learning criteria separate if and only if the associated self-learning class witnesses the separation.

In Section 2.2, new to the present paper, we importantly also extend the powerful tool of self-learning classes so as to
separate learning criteria restricted to linear time computable learners from other criteria. In that section we, then, provide a
new and interesting theorem to help carry out the separation proofs employing the associated self-learning classes — for the
case of learners restricted to be linear time computable. This result is called the Hybrid Operator Recursion Theorem (HORT)
(Theorem 2.4 below). It is a generalization of the ORT mentioned just above. The HORT permits self-and-other program
reference between certain highly restricted complexity-bounded programming systems and a general purpose programming
system.7

Just as the original tool of self-learning classes was not restricted to analyzing U-shaped learning, one could apply our
HORT-based extension (and variants) to other learning criteria as well.

Introduced in [11] is Bounded Memory State (BMS) learning (see Section 1.3 below for a discussion), and, in [11], it
is asserted that BMS-learning with an arbitrary (but finite) number of memory states per learning process is equivalent
to iterative learning (see also Theorem 3.5 below). But does the result from [21] that iterative learning does not require
U-shaped behavior carry over to BMS-learning? Below we present another technique, also new to the present paper, the
Transfer Lemma, Lemma 2.7, for formally transferring inclusion results. Often, one can say something like ‘‘It is easy to
see that the proof we gave for X can be modified to be a proof for Y’’. The Transfer Lemma is about making these kind of
statementsmore formal, so that one can say ‘‘Because of X and the Transfer Lemma, we immediately obtain Y’’. In particular,
we use the Transfer Lemma to obtain that U-shapes are unnecessary for BMS-learning with arbitrary but finitely many
memory states (see Corollary 3.6). This second technique is also not specialized only to analyze U-shaped learning, but can
be applied to other learning criteria as well. The technique is developed and discussed further in Section 2.3.

1.3. Memory-limited learning results

It is clear that human learning involves memory limitations. In the present paper (as in [11]) we consider the necessity
of U-shaped learning in some formally memory-limited versions of language learning. In the prior literature many types of
memory-limited learning have been studied [36,47,48,38,23,14,11,30]. Herein we study the types from [11] about which
that paper has some results, and answer the open questions from that paper about those types.

As noted above, [11] introduces Bounded Memory State (BMS) learning. Associated learners do not have access to any
previously seen data. Instead, after each datum presented, the learner may choose one out of a bounded number of memory
states, and, when presented with another datum, will be passed this memory state along with the new datum. Thus, each
output of new conjecture and new memory state may depend only on the new datum and the just previous memory state.
Intuitively, such a learner can be pictured as a finite state machine, where the transitions depend on each new datum.8

6 The difference is that non-U-shaped learning requires (class) decisiveness only for the correct conjectures of a language being learned and does not
require (class) decisiveness for the correct conjectures of a learnable language when it is not being learned.

Nonetheless, we (mostly) do not explore in the present paper trivial or other comparisons of criteria classes featuring class decisiveness versus those
featuring non-U-shapedness.
7 It differs a bit conceptually from the Hybrid Recursion Theorem of [41] in that the latter involves bounded finitary self-reference between, for example,

a relatively unrestricted complexity-bounded programming system and a general purpose one.
8 For such a learner with a number of memory states equal c ≥ 1, intuitively, the learner can store any one out of c different values in its long term

memory [24,34]. For example, when c is 2k , the memory is equivalent to the learner having k bits of memory.
For the criteria studied for example in [48,14,29,30], learning functions also have access to their just prior output conjecture (if any), but, for the criteria

studied herein, learning functions have no such access.
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In [11], the authors show that BoundedMemory State learning with up to twomemory states does not require U-shapes.
As an open problem (Problem 40) they ask whether or not U-shapes are similarly unnecessary for higher numbers of

memory states. Surprisingly, one of our main results herein, Theorem 3.3 says that there is a class learnable with three
memory states which is not learnable for any number of memory states and without U-shapes. Hence, in all but the bottom
two cases for number of memory states available, U-shapes are necessary for increased learning power.

Furthermore, from another main result herein, Theorem 3.10, we have that there is a class learnable with just two
memory states, which is not strongly non-U-shapedly learnable even by an iterative learner. However, as we show in
Theorem 3.11, this latter result does no longer hold if we assume total learners, where every learnable class with a bounded
number of memory states can be learned strongly non-U-shapedly with finitely (but unboundedly) many memory states.
Corollary 3.6 gives that U-shapes are not necessary for learning with finitely many memory states; our proof employs the
Transfer Lemma, and uses the extensional equivalence of iterative learning and learning with finitely many memory states
([11], see also Theorem 3.5).

We conclude the analysis of BMS cases with two remarks on class-decisive learning criteria with one and two memory
states (Remarks 3.12 and 3.13).

Also in [11], Memoryless Feedback (MLF) learning is introduced. This is similar to BMS-learning in that a learner does
not have direct access to any strictly previously seen data. Instead, for a given natural number n, the learner may query, in
parallel, for up to n different data points, whether those data points have been seen previously. No querymay depend on the
outcome of another query, and all queries are individually answered truthfully, so that the learner knows, for each queried
datum, whether it has been seen before.

In [11], the authors show that, for each choice of parameter n > 0, U-shapes are necessary for the full learning power
of MLF-learning. As an open problem (Problem 39), they ask, for any given parameter m > 0, whether there is a parameter
n > m such that MLF-learning with a (possibly high) parameter of n allows for non-U-shaped learning of all classes of
languages that are MLF learnable with parameterm. We answer this question negatively, and show a much stronger result,
another of our main results herein: Theorem 4.2 below, says that there is a class of languages learnable memorylessly with
a single feedback query which is not non-U-shapedly MLF learnable with arbitrarily many sequential recall queries. For this
result, the learner may even continue asking queries, dependent on the outcome of previous queries, and not be limited to any
finite number.

We complement this latter result by showing that any class of infinite languages learnable memorylessly with finitely
many feedback queries is so learnable without U-shapes. Even stronger, Theorem 4.3 states that each TxtEx-learnable class
of infinite languages is learnable memorylessly with arbitrarily many feedback queries and without U-shapes.

For this latter theorem, it is essential that the number of feedback queries is not bounded: Theorem4.6 states that there is
a class of infinite languages learnable memorylessly with a single feedback query, which is not learnable without U-shapes
by any particular bounded number of feedback queries.

We conclude our analysis of MLF-learning by showing that it is essential that a query can be used to find out whether
the current datum has been seen before (see Theorem 4.8) and that (all and) only finite collections of languages can be
MLF-learned decisively.

This paper is an extension of [16].

2. Mathematical preliminaries

Complexity-theoretic notions follow [41]. Unintroduced computability-theoretic notions follow [42].
N denotes the set of natural numbers, {0, 1, 2, . . .}.
The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset and proper superset relation between

sets. The symbol \ denotes set-difference.
The quantifier ∀

∞x means ‘‘for all but finitely many x’’, the quantifier ∃
∞x means ‘‘for infinitely many x’’. For any set A,

card(A) denotes its cardinality.
With P and R we denote, respectively, the set of all partial and of all total functions N → N. With dom and rng we

denote, respectively, domain and range of a given function.
We sometimes denote a partial function f of n > 0 arguments x1, . . . , xn in lambda notation (as in Lisp) as

λx1, . . . , xn f (x1, . . . , xn). For example, with c ∈ N, λx c is the constantly c function of one argument.
For any predicate P , we let µx P(x) denote the least x such that P(x).
We fix any computable 1–1 and onto pairing function ⟨·, ·⟩ : N × N → N.9 We let π1 and π2 be the decoding functions

for the first and second component, respectively. Whenever we consider tuples of natural numbers as input to f ∈ P, it is
understood that the general coding function ⟨·, ·⟩ is used to (left-associatively) code the tuples into a single natural number.
We similarly fix a coding for finite sets and sequences, so that we can use those as input as well.

If f ∈ P is not defined for some argument x, thenwedenote this fact by f (x)↑, andwe say that f on x diverges; the opposite
is denoted by f (x)↓, and we say that f on x converges. If f on x converges to p, then we denote this fact by f (x)↓ = p. If f

9 For a linear-time example, see [41, Section 2.3].
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is computable and we can fix a program for f , then we use, for all x, t , f (x)↓t to say that the fixed program for f converges
within t steps.

The special symbol ? is used as a possible hypothesis (meaning ‘‘no change of hypothesis’’). We say that f ∈ P converges
to p iff ∃x0 : ∀x ≥ x0 : f (x)↓ ∈ {?, p}; we write f → p to denote this.10

A partial function ψ ∈ P is partial computable iff there is a deterministic, multi-tape Turing machine which, on input x,
returnsψ(x) ifψ(x)↓, and loops infinitely ifψ(x)↑. P and R denote, respectively, the set of all partial computable and the
set of all computable functions N → N. The functions in R are called computable functions.

We let ϕ be any fixed acceptable programming system for the partial computable functions N → N with associated
complexity measure Φ . Further, we let ϕp denote the partial computable function computed by the ϕ-program with code
number p, and we letΦp denote the partial computable complexity function of the ϕ-program with code number p.

In this paper, we consider linear time computability with respect to (ϕTM,ΦTM). We call a function f linlin iff f is linear
time computable and there is a linear time computable function f̂ such that f̂ ◦ f is the identity.

A set L ⊆ N is computably enumerable (ce) iff it is the domain of a computable function. Let E denote the set of all ce sets.
We let W be the mapping such that ∀e : W (e) = dom(ϕe). For each e, we write We instead of W (e). W is, then, a mapping
from N onto E . We say that e is an index, or program, (inW ) forWe.

In this paper, a computable operator is a mapping from any one (respectively, two) partial function(s) N → N into one
such partial function such that there exists an algorithmwhich, when fed any enumeration(s) of the graph(s) of the input(s),
outputs some enumeration of the graph of the output. Rogers [42] extensively treats the one-ary case of these operators and
calls them recursive operators.

An effective operator is a mappingΘ : P → P such that there is an f ∈ R with, for all e,Θ(ϕe) = ϕf (e). Note that every
effective operator has a unique extension to a computable operator.

A finite sequence is amappingwith a finite initial segment ofN as domain (and range,⊆ N).∅ denotes the empty sequence
(and, also, the empty set). The set of all finite sequences is denoted by Seq. For any given set A ⊆ N, the set of all finite
sequences of elements in A is denoted with Seq(A). For each finite sequence σ , we will denote the first element, if any, of
that sequence by σ(0), the second, if any, by σ(1) and so on. len(σ ) denotes the number of elements in a finite sequence
σ , that is, the cardinality of its domain. We use � (with infix notation) to denote concatenation on sequences. With a slight
abuse of notation, for a sequence σ and a natural number x, we let σ � x denote the sequence that starts with the sequence
σ and then ends with x. For any finite sequence σ such that len(σ ) > 0, we let last(σ ) be the last element of σ and σ− be
σ with its last element deleted. By convention, we set ∅

−
= ∅.

For a partial function f ∈ P and i ∈ N, if ∀j < i : f (j)↓, then f [i] is defined to be the finite sequence f (0), . . . , f (i − 1).
The symbol # is pronounced pause and is used to symbolize ‘‘no new input data’’ in a text. For each (possibly infinite)

sequence q, let content(q) = (rng(q) \ {#}).
Later, wewill type infinite sequences as being inR, but, technically, texts (for languages⊆ N) are infinite sequences, which

may contain pauses (#s) which are not natural numbers. We will assume the pauses to be appropriately coded as natural
numbers. The special symbol ? mentioned above is treated in a way analogous to that of #.

From now on, by convention, f , g and h with or without decoration range over (partial) functions N → N; x, y with or
without decorations range over N; σ , τ with or without decorations range over finite sequences of natural numbers; Dwith
or without decorations ranges over finite subsets of N.

We will make use of a padded variant of the s-m-n Theorem [42]. Intuitively, s-m-n permits algorithmic storage of
arbitrary data (and, hence, programs) inside any program. The suitable padded variant of s-m-n we use herein states that
there is a strictly monotonically increasing total computable function s such that s is linlin and

∀a, b, c : ϕs(a,b)(c) = ϕa(b, c). (1)

In (1), ϕ-program s(a, b) is essentially ϕ-program a with datum b stored inside. We will also use variants of Case’s
Operator Recursion Theorem (ORT), providing infinitary self-and-other program reference [8,9,31]. ORT itself states that, for
all computable operatorsΘ : P → P,

∃e ∈ R ∀a, b : ϕe(a)(b) = Θ(ϕe)(a, b). (2)

We will employ a version where the function e is linlin.

2.1. Computability-theoretic learning

In this section we formally define several criteria for computability-theoretic learning.
The prior literature (as exemplified in [31]) usually defines each learning criterion independently of others, even though

many criteria share some concepts. We prefer a unified notation for learning criteria and use an approach introduced in
[32]; this approach covers many criteria defined in the prior literature, in particular all criteria discussed in this paper.

10 f (x) converges should not be confused with f converges to.
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The benefits from this level of abstraction are manifold:
(i) Achieving better understanding of particular learning criteria and their relations with one another.
(ii) Development of unified problem solving techniques.
(iii) Discovery of new but natural learning criteria.
(iv) Improvements in mathematical clarity, precision, economy and rigor.

Item (i) is a general goal also in many other publications; we believe that our unified notation facilitates this goal by making
the definitions of different criteria easier to compare for humans, as well as making variants easier to define by exchanging
or adding parts of a learning criterion.

Item (ii) is exemplified in Section 2.3, where we give one such technique; others are given in [17], of which we cite one
in Lemma 2.2. For new learning criteria mentioned in Item (iii), we refer to [15], where dynamic modeling was introduced.

Finally, we want to stress Item (iv) by saying that we discuss many criteria in this paper, all of which are succinctly
defined in this section without reference to ‘‘analogous’’ or ‘‘similar’’ definitions. In particular, we give an overview over
many criteria and their properties in Table 1 in Section 5.

In the introduction we referred to learning with a bounded number of memory states as BMS-learning, Memoryless
Feedback learning was calledMLF-learning. Thus, both BMS andMLF refer to how a learner processes information about the
target language. On the other handwe sawTxtEx-learning,where ‘‘Txt’’ refers to data presentation from texts, and ‘‘Ex’’ refers
to the sequence of conjectures converging to a correct hypothesis. This is the classical way of denoting these criteria, but
this naming scheme is inconsistent: names sometimes refer to how data is processed, sometimes to data presentation and
restrictions on conjectures. Our unified notation always makes all parts of a learning criterion explicit. For example, BMS-
learning will be denoted as TxtBMSEx-learning (to denote learning from text, with data processing with bounded memory
states and Ex-style convergence), and TxtEx-learning will be denoted by TxtGEx (‘‘G’’ denotes the model of data processing
where all data presented so far is accessible, including the order of presentation; ‘‘G’’ stands for Gold, who first formalized
this method of data processing [27]).

We are now ready to give our unified notation.
A learner is a partial computable function.
A language is a ce set L ⊆ N. Any total function T : N → N ∪ {#} is called a text. For any given language L, a text for L is a

text T such that content(T ) = L. With Txt(L)we denote the set of all texts for L.
For this paper, a learning criterion is a triple (α, β, δ), whereα,β and δ are of the appropriate type;we proceed by defining

these types, before returning to the formal definition of learning criteria.
A sequence generating operator is an operator β taking as arguments a function h (the learner) and a text T and that

outputs a function p. We call p the learning sequence of h given T . Intuitively, β defines how a learner processes a given text
to produce a sequence of conjectures.

We define the sequence generating operators G, Psd, Sd, ItCtr and It as follows. G, Psd, Sd, ItCtr and It, respectively,
stand for Gold [27], partially set-driven [43,25,26,31], set-driven [47,31] iterative with counter [21] and iterative [47,48],
respectively. For all h, T , i,

G(h, T )(i) = h(T [i]);
Psd(h, T )(i) = h(content(T [i]), i);
Sd(h, T )(i) = h(content(T [i]));

ItCtr(h, T )(i) =


h(∅), if i = 0; 11

h(ItCtr(h, T )(i − 1), T (i − 1), i − 1), otherwise;

It(h, T )(i) =


h(∅), if i = 0;
h(It(h, T )(i − 1), T (i − 1)), otherwise.

We note in passing another family of sequence generating operator called bounded example memory, denoted (Bemn)n∈N,
due to John Canny as cited in [38] (see also [14]), where a learner may store up to a fixed number n of seen data points for
later use.

For Bounded Memory States learning with n ≥ 1 states, learners are functions of the kind ⟨h, f ⟩, i.e., learners with two
outputs: the first for a new conjecture, the second for a newmemory state. Given such a learner ⟨h, f ⟩ and a text T , we define
recursively the BMSn learning sequence p and the sequence q of states12 of ⟨h, f ⟩ given T thus.

p(0) = h(∅); (3)
q(0) = f (∅); (4)
∀i : p(i + 1) = h(q(i), T (i)); (5)
∀i : q(i + 1) = min(n − 1, f (q(i), T (i))). (6)

11 h on ∅ provides an initial conjecture.
12 Without loss of generality, the set of states is {0, . . . , n − 1} and 0 is the initial state.
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The sequence generating operator BMSn is defined accordingly. BMS∗ learning replaces (6) by
∀i : q(i + 1) = f (q(i), T (i)), (7)

and returns as conjecture sequence λx ↑ if rng(q) is infinite and p otherwise.
Memoryless Feedback learning, as given in [11], is a learning criterion where the learner works in two stages. In the

first stage, the learner is presented a datum and uses it to compute a finite set. In the second stage, the learner computes a
new conjecture, given the same datum and, additionally, for each element x of the finite set computed in the first stage, an
indicator of whether x occurred previously in the current text.

Intuitively, each element x in the set resulting from the first stage represents the question ‘‘have I seen datum x
previously?’’.

Variants ofMemoryless Feedback learning,where the size of each such set is bounded by a fixed parameter n ∈ N, are also
studied in [11]. Herein, we additionally study a variant where a learner is allowed to make queries sequentially, which we
call memoryless recall learning (MLR). Variants of feedback learning where the learner has the additional information of the
last conjecture made (as in iterative learning) are called feedback learning and the associated family of sequence generating
operators is denoted (Fbn)n∈N [48,36,14]. The variant allowing sequential recalls is called recall learning, denoted (Rcln)n∈N,
and is not studied in the prior literature.

We will not give formal details for modeling the associated sequence generating operators. Instead, we employ an
informal query function rcl described below. For each n ∈ N∪{∗}, letMLFn be the sequence generating operator associated
with allowing n parallel queries (feedback learning). Further, for all m ∈ N ∪ {∗}, we let MLRm be the sequence generating
operator associated with allowingm sequential queries (recall learning).

As indicated, for specifying learners with feedback or recall queries, we introduce the use of rcl as follows.13
For a, b, c ∈ P and d ∈ N we will frequently make statements such as the following.

∀x : ϕd(x) =


a(x), if rcl(c(x));
b(x), otherwise.

(8)

Intuitively, this means that ϕd on input (new datum) xwill first recall c(x), and then, if c(x)was seen previously, output a(x),
otherwise b(x). Furthermore, for a finite set D, we use rcl(D) to denote the set {x ∈ D | rcl(x)}.

Successful learning might require the learner to observe certain restrictions, for example non-U-shapedness. These
restrictions are formalized in our next definition.

A sequence acceptance criterion is a predicate δ on a learning sequence and a text. We give the following examples:
Explanatory learning [27] (Ex), Vacillatory learning [10,31] (Fex), Behaviorally correct learning [19,39] (Bc), Postdictively
complete learning [2,3,1] (Pcp), non-U-shaped [4] (NU), strongly non-U-shaped [20] (SNU), class decisive (CDec) and
strongly class decisive (SCDec).14 Formally, we let, for all p, T ,

Ex(p, T ) ⇔ [∀
∞i : Wp(i) = content(T ) ∧ p(i) = p(i + 1)];

∀n : Fexn(p, T ) ⇔
[∃ a set D of at most n grammars for content(T ) :

∀
∞i : p(i) ∈ D];

Bc(p, T ) ⇔ [∀
∞i : Wp(i) = content(T )];

Pcp(p, T ) ⇔ [∀i : content(T [i]) ⊆ Wp(i)];

NU(p, T ) ⇔ [∀i : Wp(i) = content(T ) ⇒ Wp(i+1) = Wp(i)];

SNU(p, T ) ⇔ [∀i : Wp(i) = content(T ) ⇒ p(i + 1) = p(i)];
CDec(p, T ) ⇔ [∀i ≤ j ≤ k : Wp(i) = Wp(k) ⇒ Wp(j) = Wp(i)];

SCDec(p, T ) ⇔ [∀i ≤ j ≤ k : Wp(i) = Wp(k) ⇒ p(j) = p(i)].

We combine any two sequence acceptance criteria δ and δ′ by intersecting them, and we denote this combination by δδ′.
A learning restriction is a predicate α on a learner and a language, parameterized with a sequence generating operator β .

We write the parameter β as a subscript and give the following examples.

• No restriction: The constantly true predicate of the appropriate type T.
• Total Learner: ∀β, h, L : Rβ(h, L) ⇔ h ∈ R.

Similarly to the total learner, we denote the restriction to linear time computable learners with LinFβ .
We will now give the formal definitions for successful learning.

Definition 2.1. A learning criterion is a triple (α, β, δ) such that α is a learning restriction, β a sequence generating operator
and δ a sequence acceptance criterion. We also write αTxtβδ to denote this learning criterion. Furthermore, to denote
criteria as in the previous literature, we may list α, β and δ in a different order.15

13 The use of rcl is ‘‘syntactic sugar’’.
14 In [38], the notion of decisivenesswas introduced. The difference between decisive and class decisive learning is that, for the latter, a learner need only
be decisive on the class to be learned. This notation was used in [31] in the context of function learning.
15 In particular, NU is usually denoted as a prefix to a learning criterion.
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Let a learning criterion I = (α, β, δ) be given. We use αI , βI and δI to denote α, β and δ, respectively. For δ′ a sequence
acceptance criterion, we let δ′I = Iδ′

= (α, β, δδ′). For a learner h we say that h I-learns a language L iff the restriction α
holds for h and L given β and, for all texts T for L, the learning sequence of h on T (as defined by β) and the text T fulfill
restriction δ.

For each learning criterion I , we denote the class of all languages I-learned by h with I(h). Abusing notation, we use
αTxtβδ to denote the set of all classes of languages I-learnable by some learner (as well as the learning criterion).

We omit α if α = T.

From [17] we take the following definition (inspired by the notion of ‘‘stabilizer segments’’ [26]).
Let β be sequence generating operator. For a learner h and a language L, we define a β-sink of h on L to be a conjecture e

such that

∀T ∈ Txt(L)∀i0 : [β(h, T )(i0) = e ⇒ (∀i ≥ i0)(β(h, T )(i) = e)]. (9)

Intuitively, a sink is a conjecture never abandoned on texts for L.
We use this notion of a sink to give another restriction on learning. Intuitively, it requires a learner to not just converge

to any correct conjecture, but to a sink. For all β, h, L,

Sinkβ(h, L) ⇔ [∀T ∈ Txt(L)∃e : (β(h, T ) → e ∧ e is a β-sink of h on L)].

Sink-stabilizing is of interest as strong non-U-shaped learning can be characterized in terms of sink-stabilizing learning
in the theorem just below. This lemma is a special case of a theorem from [17]; we will use it in the proof of Theorem 3.11.

Lemma 2.2 (Sink Locking Lemma). Let β ∈ {G, Psd, Sd, ItCtr, It} and α ∈ {T,R}. Then

SinkαTxtβEx = SNUαTxtβEx.

2.2. A programming system with linear time universal function

In this section we will develop a technique to separate learning criteria with linear time computable learners from other
criteria.

We would like to encode complete sets of instructions for learners to perform in data. Encoding these instructions in
the ϕ-system would, in general, require ϕ-universality to execute these instructions; this universality is computationally
expensive [41, Section 3.1.6].

Frequently separation proofs do not require the full generality of the ϕ-system to encode the necessary instructions, and
thus a learner might not need to have access to a ϕ-universality. We formalize this with complexity-bounded programming
systemsψ which aremuchmore restricted than both ϕ and standard complexity-bounded systems (the latter as in [33,41]).
Our systems ψ crucially have linear time universality! However, they are strong enough to suffice for our associated
separation results.

We proceed by giving a family of such systems. Theorem 2.3 will note its qualities, and the ψ/ϕ-Hybrid ORT given in
Theorem 2.4 is extremely useful for several proofs below.

For each finite set of linear time computable functions D and each n > 1, ψD,n will denote a programming system in
which all elements of D are computable. Let a finite set D = {f1, . . . , fk} of linear time computable functions be given.

For all n, ψD,n-programs are basically trees of computation, where the depth of each tree is bounded by n. Each inner
node of the tree has one of six types, defining its semantics. The type 0 nodes correspond to one of the base functions
(all of D and one more function f0, which will compute an s-m-n function in the ψD,n)-system), 1 to a projection, and 2 to a
constant function; 3 is reserved for if-then-else, 4 for pairing and 5 for composition.

• Nodes of type 0, 1 or 2 have exactly one child; this child is a leaf and labeled, respectively, with the index of the function
to use, the index of the projection or the associated constant.

• Nodes of type 3 have exactly three children, none of them a leaf, denoting the condition and the two branches of the
if-then-else.

• Nodes of type 4 have exactly two children, none of them a leaf, denoting the two components of the pair.
• Nodes of type 5 also have two children (none a leaf), denoting the ψD,n-programs to compose.

Furthermore, each tree is labeled by some number; this number has no semanticmeaning and is used for technical purposes
(to get a linear time invertible s-m-n function).

It is clear that all such labeled trees with type annotations can be coded into the natural numbers in an efficient way
(see [41] for an example of efficient coding). The semantics are as suggested by the list above. Note that each function from
theψD,n)-system expects its input as a coded tuple of multiple inputs; it cannot access the value of this coded tuple, but has
to apply projections on it.

We now define a linlin s-m-n function. Let f0 be the following (linlin) function. Given a (coded) computation tree t as
above and a number x, traverse the tree. For every projection node, if the index of the projection is >1, reduce that index
by 1; otherwise, replace that projection node by a node of type 2, with associated constant x. Label the resulting tree with
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the triple of the old label, the (code of) t and x. It is clear that this function is linlin (as there are only constantly many inner
nodes on a tree of constant depth, and assuming all the codings of the tree to be efficient).

Note that f0 does not increase the depth of the tree, and thus turnsψD,n-programs intoψD,n-programs.16 It is easy to see
that an application of f0 on t and x returns a tree computation tree t ′ which, in each computation, works just like t , but with
the first argument constantly x and all other arguments are filled with the arguments to t ′ (the first argument to t ′ will be
used as the second argument to t and so on). Thus, f0 is an s-m-n function, and we will refer to it also as sψ .

It is now straightforward to see the following theorem.

Theorem 2.3. Let D be a finite set of linear time computable functions and let n ∈ N. We have that

(i) ψD,n has a linear time universal function;
(ii) all elements of D are ψD,n-computable;
(iii) ψD,n has a ψD,n-computable instance sψ of s-m-n.

Let sϕ be a linear time, linear time left-invertible instance of ϕ-s-m-n. Let D include unpairing, sϕ , a left-inverse for sϕ ,
a left-inverse for sψ and plus, minus, less than or equal, equality and logical connectives. From now on (including later
sections), we fix

ψ = ψD,100. (10)

Note that we chose 100 for no particular reason other than that it is easily big enough for our purposes.
For any function g for which there is an n such that g isψD,n-computable, we let d(g) be theminimum such n (intuitively,

g describes the complexity of g in the ψ-system).
For any j and m, we say that a j-ary operator Θ is m-ψ admissible iff there are t ∈ N, 1 ≤ i1, . . . , it ≤ j, r0, . . . , rt ∈ R

such that

∀g1, . . . , gj : Θ(g1, . . . , gj) = λx r0(gi1(r1(x)), . . . , git (rt(x))), (11)

and 2 + t + maxi≤t d(ri) ≤ 100 − m.
Intuitively, an operator is m-ψ admissible if it is given by a ψ-program additionally with placeholders for ‘‘calls’’ to

the arguments, where the total depth of the resulting program will still be low enough (below 100) if the arguments have
defining programs with a low enough depth (at most m). In particular, we will use operators which make a few calls to the
argument functions and otherwise are defined in terms of if-then-else, composition, equality, less than or equal and logical
connectives, which will then easily lead to 80-ψ admissible binary operators.

Next we give our ψ/ϕ-Hybrid ORT.

Theorem 2.4 (ψ/ϕ-Hybrid ORT). There areψ-computable functions e and f such that, for all effective operatorsΘ0,Θ1 in two
arguments such thatΘ0 is 20-ψ admissible, there are strictly monotonically increasing linear time computable functions e, f such
that

∀n, x : ψe(n)(x) = Θ0(e, f )(n, x); (12)
∀n, x : ϕf (n)(x) = Θ1(e, f )(n, x); (13)

e ◦ e and f ◦ f are the identity and d(e), d(f ) ≤ 5.

Proof. Recall that sψ , sϕ are ψ computable s-m-n functions for ψ and ϕ, respectively. Further, let aψ and aϕ be such that,
for all b0, b1, aψ (b0, b1) = λm sψ (b0, ⟨⟨b0, b1⟩,m⟩) and aϕ(b0, b1) = λm sϕ(b1, ⟨⟨b0, b1⟩,m⟩).

There are a ψ-program d0 and a ϕ-program d1 such that, for all b, b0, b1, n, x,17

ψd0(⟨⟨⟨b0, b1⟩, n⟩, x⟩) = Θ0(aψ (b0, b1), aϕ(b0, b1))(⟨n, x⟩); (14)
ϕd1(⟨⟨⟨b0, b1⟩, n⟩, x⟩) = Θ1(aψ (b0, b1), aϕ(b0, b1))(⟨n, x⟩). (15)

Applying the respective s-m-n functions to the left-hand-sides of (14) and (15), we have, for all b0, b1, n, x,

ψsψ (d0,⟨⟨b0,b1⟩,n⟩)(x) = ψd0(⟨⟨⟨b0, b1⟩, n⟩, x⟩); (16)

ϕsϕ (d1,⟨⟨b0,b1⟩,n⟩)(x) = ϕd1(⟨⟨⟨b0, b1⟩, n⟩, x⟩). (17)

Hence, by (14) through (17), for all b, b0, b1, n, x,

ψsψ (d0,⟨⟨b0,b1⟩,n⟩)(x) = Θ0(aψ (b0, b1), aϕ(b0, b1))(⟨n, x⟩); (18)

ϕsϕ (d1,⟨⟨b0,b1⟩,n⟩)(x) = Θ1(aψ (b0, b1), aϕ(b0, b1))(⟨n, x⟩). (19)

16 Other approaches at defining an s-m-n function for ψD,n in a more classical way might increase the depth.
17 For the existence of d0 , we useΘ0 being 20-ψ admissible.
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Then, setting b0 = d0 and b1 = d1 in (18) and (19), we have, for all n, x,

ψsψ (d0,⟨⟨d0,d1⟩,n⟩)(x) = Θ0(aψ (d0, d1), aϕ(d0, d1))(⟨n, x⟩); (20)

ϕsϕ (d1,⟨⟨d0,d1⟩,n⟩)(x) = Θ1(aψ (d0, d1), aϕ(d0, d1))(⟨n, x⟩). (21)

Clearly,

e = aψ (d0, d1); (22)
f = aϕ(d0, d1) (23)

define 1-1 linear time computable functions e, f as desired.
Let sψ and sϕ be ψ-computable left-inverses for sψ and sϕ , respectively. Then e = π2 ◦ π2 ◦ sψ and f = π2 ◦ π2 ◦ sϕ are

as desired. �

Wewill useψ for several proofs in this paper. In particular,wewill construct classes learnable by a linear time computable
learner in one learning criterion, and we use the ψ/ϕ-Hybrid ORT to diagonalize out of these classes in another learning
criterion.

2.3. Transfer of inclusion results

From [11] we know that BMS-learning with an arbitrary (but finite) number of memory states per learning process
is equivalent to iterative learning (see Theorem 3.5 below). But does the result that iterative learning does not require
U-shaped behavior carry over to BMS-learning? In this section we present a theorem (the Transfer Lemma, Lemma 2.7) for
formally transferring inclusion results. Often, one can say something like ‘‘It is easy to see that the proof we gave for X can
be modified to be a proof for Y’’. This section is about making these kind of statements more formal, so that one can say
‘‘Because of X and the Transfer Lemma, we immediately get Y’’. In particular, we use the Transfer Lemma to obtain that
U-shapes are unnecessary for BMS-learning (see Corollary 3.6).

For this, we introduce inclusion qualifierswith which we augment inclusions between learning criteria. For example, we
use c as an indicator for a constructive inclusion (a learner for one learning criterion can be algorithmically turned into a
learner for another).

The following definition formally presents all of our inclusion qualifiers of the present paper.

Definition 2.5. Let I , I ′ be learning criteria.

• We write I ⊆c I ′ iff there is a computable operatorΘ such that, for all h ∈ P , I(h) ⊆ I ′(Θ(h)).18
• We write I ⊆i I ′ iff there is a computable operator Θ such that, for all h ∈ P , I(h) ⊆ I ′(Θ(h)) and, for all texts T , there

is a text T ′ for the same language as T such that βI(h, T ′) = βI ′(Θ(h), T ).19
• We write I ⊆si I ′ iff there is a computable operatorΘ such that, for all h ∈ P , I(h) ⊆ I ′(Θ(h)) and, for all texts T , there

is a text T ′ for the same language as T such that, for all i, WβI (h,T ′)(i) = WβI′ (Θ(h),T )(i).
20

• We write I ⊆mi I ′ iff there is a computable operatorΘ such that, for all h ∈ P , I(h) ⊆ I ′(Θ(h)) and, for all texts T , there
is a text T ′ for the same language as T and a strictly monotone function r such that βI(h, T ′) ◦ r = βI ′(Θ(h), T ).21

• Wewrite I ⊆msi I ′ iff there is a computable operatorΘ such that, for all h ∈ P , I(h) ⊆ I ′(Θ(h)) and, for all texts T , there
is a text T ′ for the same language as T and a strictlymonotone function r such that, for all i,WβI (h,T ′)(r(i)) = WβI′ (Θ(h),T )(i).

22

Note that one could definemanymore such inclusion qualifiers; in particular, it might be interesting to consider caseswhere
we require T ′

= T . However, for the present paper, the above definitions are sufficient.
We use I =c I ′ to denote I ⊆c I ′ and I ′ ⊆c I , and so on. We denote with I c

i
I ′ that I ⊆c I ′ and I ′ ⊆i I , and so on.

We give the following definition regarding properties of sequence acceptance criteria.

Definition 2.6. A sequence acceptance criterion δ is called

• monotonic iff, for all strictly monotone functions r and (p, L) ∈ δ, (p ◦ r, L) ∈ δ23,24;
• semantic iff, for all (p, L) ∈ δ and p′ such that ∀i : Wp(i) = Wp′(i), (p′, L) ∈ δ.25

18 Intuitively,Θ gives us a constructive way to transform an I-learner into an at least as powerful I ′-learner. The letter ‘‘c’’ stands for ‘‘constructive’’.
19 Intuitively,Θ(h) only constructs learning (conjecture) sequences that are constructed by h. The letter ‘‘i’’ stands for ‘‘identical’’.
20 The letters ‘‘si’’ stand for ‘‘semantically identical’’.
21 Intuitively,Θ(h) produces the same conjecture sequences as h, just maybe skipping conjectures. The letters ‘‘mi’’ stand for ‘‘monotonically identical’’.
Note that this has nothing to do withmonotone learning as discussed in the literature [28,49,35].
22 The letters ‘‘msi’’ stand for ‘‘monotonically semantically identical’’.
23 Intuitively, leaving out some conjectures does not prevent learning.
24 Note that, again, this definition of monotonic has no relation to monotone learning as discussed in the literature (see Footnote 21).
25 Intuitively, all that matters about the conjectures is their semantics.
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It is easy to see that all sequence acceptance criteria explicitly given in this paper are monotonic; furthermore, Pcp, NU
and CDec are semantic, while Ex, SNU and SCDec are not.

We now present the central lemma of this section, the Transfer Lemma.
Lemma 2.7 (Transfer Lemma). Let I, I ′ be learning criteria and δ a sequence acceptance criterion.

I ⊆i I ′ ⇒ Iδ ⊆i I ′δ.
I ⊆si I ′ ∧ δ semantic restriction ⇒ Iδ ⊆si I ′δ.
I ⊆mi I ′ ∧ δ monotonic restriction ⇒ Iδ ⊆mi I ′δ.
I ⊆msi I ′ ∧ δ monotonic, semantic restriction ⇒ Iδ ⊆msi I ′δ.

The proof is straightforward.

3. Bounded memory states learning (BMS)

In this section we discuss and present our results on bounded memory states learning.
The first main theorem of this section is Theorem 3.3, which solves Problem 40 from [11], as mentioned in Section 1. The

theorem implies that U-shapes are necessary for full learning power whenever at least three memory states are available.
In Theorem 3.5 we state the equivalence of learning with finitely many memory states and iterative learning [11]. We

use this result and the Transfer Lemma (Lemma 2.7) to show that U-shapes are unnecessary for learning with finitely many
memory states (Corollary 3.6).

The secondmain theorem of this section is Theorem 3.10, which implies that there is a class learnable with twomemory
states which is not strongly non-U-shapedly learnable even with an iterative learner.

In contrast to the second main result, we have Theorem 3.11: for total learners, all learning with a bounded number of
memory states can be done strongly non-U-shapedly with a finite number of memory states (finite on each text).

The remaining results concern BMS-learning with only one or two memory states.
For BMS-learning we do not address the question of learning infinite ce sets only. However, it is easy to see that each

separation we give is witnessed by a set of infinite ce sets.
The following definition is useful for the proof of Theorem 3.3. Lemma 3.2 gives some useful observations regarding this

definition.
Definition 3.1. Let f ∈ P . We think of f as the state transition function of a BMS-learner. For this definition, we let f ∗

∈ P
be such that f ∗(∅) = 0 and ∀σ , x : f ∗(σ � x) = f (f ∗(σ ), x).26

For all g ∈ R, let Yg be such that
Yg = {j | (∀k ≤ j + 1 : f ∗(g[k])↓) ∧ (∀k ≤ j)f ∗(g[k]) ≠ f ∗(g[j + 1])}. (24)

Intuitively, Yg is the set of all j such that f , when presented the text g , changes into a previously not visited state after seeing
element g(j).
Lemma 3.2. Let f ∈ P . Let f ∗ be as in Definition 3.1 above. For g ∈ P , we will below refer to the following statement.

∀k : f ∗(g[k])↓. (25)
(i) There is a computable operatorΘ : P → P 27 such that, for all g ∈ R, if (25), thenΘ(g) is total and decides Yg .
(ii) If rng(f ) is finite, then, for all g ∈ R, Yg is finite.
(iii) For all g ∈ R, if (25), then

∀τ ⊂ g ∃σ ∈ Seq({g(j) | j ∈ Yg}) : f ∗(τ ) = f ∗(σ ). (26)

Proof. Obviously,Θ as follows satisfies (i).

∀x, j : Θ(ϕx)(j) =


↑, if (∃k ≤ j + 1 : f ∗(ϕx[k])↑);
1, else if (∀k ≤ j)f ∗(ϕx[k]) ≠ f ∗(ϕx[j + 1]);
0, otherwise.

(27)

(ii) is easy to see.
(iii) can be seen by⊆-induction on τ as follows. Let τ ⊂ g be such that, for all τ̂ ⊂ τ , ∃σ ∈ Seq({g(j) | j ∈ Yg}) : f ∗(τ̂ ) =

f ∗(σ ). Let τ0 ⊆ τ be the ⊆-minimum such that f ∗(τ0) = f ∗(τ ). The conclusion is trivial if τ0 = ∅. Else, len(τ0)− 1 ∈ Ys. Let
σ ∈ Seq({s(j) | j ∈ Ys}) such that f ∗(τ−

0 ) = f ∗(σ ). Therefore,

f ∗(τ ) = f ∗(τ0) = f (last(τ0), f ∗(τ−

0 )) = f (last(τ0), f ∗(σ ))
= f ∗(σ � last(τ0)).

(28)

Hence, (σ � last(τ0)) ∈ Seq({g(j) | j ∈ Yg}) is the desired sequence witnessing (iii) for τ . �

26 Note that f ∗(∅) = 0 is the initial state of any given BMS-learner.
27 I.e. there exists a computable f ∈ R such that, for all ϕ-programs q,Θ(ϕq) = ϕf (q) [42].
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Contrasting TxtBMS1Ex = NUTxtBMS1Ex and TxtBMS2Ex = NUTxtBMS2Ex from [11], we have the following theorem,
solving an open problem, Problem 40, from [11].
Theorem 3.3. We have

TxtBMS3Ex \


n>0

NUTxtBMSnEx ≠ ∅.

Proof. Let h0 ∈ P be such that

∀v, x : h0(x, v) =


⟨?, v⟩, if x = #;

ϕx(v), otherwise.
(29)

Let L = TxtBMS3Ex(h0). Let n > 0. Suppose, by way of contradiction, L ∈ NUTxtBMSnEx, as witnessed by ⟨h, f ⟩ (h returns
the new conjecture, f the new state). Suppose, without loss of generality, rng(f ) is finite. Let f ∗ be as in Definition 3.1 above.
Let h∗ be such that h∗(∅) = ? and ∀σ , x : h∗(σ � x) = h(f ∗(σ ), x). Let, for all s ∈ R, Ys be as in Definition 3.1 above, and let
Θ be as shown existent in Lemma 3.2(i).

Intuitively, h∗(σ ) is the hypothesis of the learner after seeing σ as input.
We define ce sets P,Q in uniform dependence of r, s ∈ P (we abbreviate, for all i, si = λj s(i, j)) such that, for all

a, b, σ , τ ,
Q (b, τ ) ⇔ ∃ξ ∈ Seq(rng(τ )) : ∅ ≠ Wh∗(τ�r(b)�ξ) ∩ (rng(sb) \ rng(τ )); (30)

and

P(a, b, σ , τ ) ⇔



a ≠ b ∧

σ ∈ Seq({sa(j) | Θ(sa)(j) = 1}) ∧

τ ∈ Seq(rng(sb)) ∧

f ∗(σ ) = f ∗(τ ) ∧

f ∗(σ � r(a)) = f ∗(τ � r(b)) ∧

Q (b, τ ).

(31)

Fix a ce-index for P . By 1-1 ORT, there are 1-1 e, r, s, t, y, z ∈ R with pairwise disjoint ranges and p ∈ N such that a number
of restrictions are satisfied. The first group of restrictions is given by the following four equations. ∀x, i :

ϕp(x) = µ⟨a, b, σ , τ , d⟩ [P(a, b, σ , τ ) in ≤ d steps]; (32)
Wy(i) = rng(si) ∪ {r(i)}; (33)
Wz(i) = rng(si); (34)

We(i) = {r(i)} ∪ rng(t) ∪


∅, if ϕp(0)↑;

content(π3(ϕp(0))), else if i = π1(ϕp(0));
content(π4(ϕp(0))), otherwise.

(35)

The second group of restrictions in our application of ORT is indicated by a labeled graph using vertices {0, 1, 2}. For all
elements x ∈ rng(r) ∪ rng(s) ∪ rng(t) and ℓ ∈ N, an edge from vertex v to vertexw labeled x

ℓ
(we use this kind of label for

readability; x
ℓ
is not to be confused with a fraction) in the graph just below adds the restriction ϕx(v) = ⟨ℓ,w⟩ as part of

our application of ORT.

0 1 2

∀i, j :
si(j)
z(i)

∀i :
r(i)
e(i) (∀i, j | Θ(si)(j) = 0) si(j)

y(i)

∀i :
t(i)

e(π2(ϕp(0)))

The third and last group of restrictions is as follows.
(∀i, j | Θ(si)(j)↑)ϕsi(j)(1)↑ (36)

and, for all x ∈ rng(r)∪ rng(s)∪ rng(t) and vertices v such that ϕx(v)was not previously specified, we have the restriction
ϕx(v) = ⟨?, v⟩.

It is easy to verify that these three groups are not contradictory and embody a valid application of ORT.
The above graph now allows us to easily determine whether certain interesting subsets of rng(r) ∪ rng(s) ∪ rng(t) are

in L. For example,
∀i ∈ N : rng(si) = Wz(i) ∈ L. (37)

Statement (37) can be derived with the help of the graph, as it shows that, for all i,M , on any element from rng(si), stays in
state 0 and outputs z(i) as hypothesis.

From (37) we get, for all i and σ ∈ Seq(rng(si)), f ∗(σ )↓; in particular, for all i, we have (25) with si in the place of g .
Therefore, for all i, using Lemma 3.2(i),Θ(si) is total and (36) is vacuous. By Lemma 3.2(ii), for each i, Ysi is finite, and, thus,
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the above graph easily shows
∀i ∈ N : rng(si) ∪ {r(i)} = Wy(i) ∈ L. (38)

Hence,
∀i ∈ N,∀ρ ∈ Seq(Wy(i)) : ⟨h∗, f ∗

⟩(ρ)↓. (39)

Claim 1. ∀b ∈ N ∃τ ⊂ sb : Q (b, τ ).

Proof of Claim 1. Let b ∈ N. By the Pigeonhole Principle, as rng(f ) is finite, there is v such that ∃
∞k : f ∗(sb[k]) = v. By

(37), there is j0 such that

Wh∗(sb[j0]) = Wz(b); and ∀j ≥ j0 : h∗(sb[j]) ∈ {?, h∗(sb[j0])}. (40)

Let j1 > j0 be such that f ∗(sb[j1]) = v. By (38), there is k ∈ N such that
Wh∗(sb[j1]�r(b)�sb[k]) = Wy(b). (41)

Let j2 > k be such that f ∗(sb[j2]) = v. Then
Wh∗(sb[j2]�r(b)�sb[k]) = Wy(b). (42)

Hence, ∃τ ⊂ sb : Q (b, τ ) as witnessed by sb[j2] for τ and sb[k] for ξ . � (for Claim 1)

Claim 2. ϕp(0)↓.

Proof of Claim 2. For the proof of this claim only, for each b ∈ N, we fix τb as shown existent by Claim 1.
There are only finitely many pairs of states (elements of rng(f )), while there are infinitely many b ∈ N. Hence, by the

Pigeonhole Principle, there are a, b ∈ N such that a ≠ b, f ∗(τa) = f ∗(τb) and f ∗(τa � r(a)) = f ∗(τb � r(b)). To show the
claim, we use Lemma 3.2(iii) with sa in place of g to replace τa by σ such that σ ∈ Seq({sa(j) | j ∈ Ysa}) and f ∗(τa) = f ∗(σ ).
Thus,

f ∗(σ � r(a)) = f ∗(τa � r(a)) = f ∗(τb � r(b)) (43)
and

f ∗(σ ) = f ∗(τa) = f ∗(τb). (44)
Now we see that P(a, b, σ , τb), as

a ≠ b by choice of a, b;
σ ∈ Seq({sa(j) | Θ(sa)(j) = 1}) by choice of σ and Θ(sa) decides Ysa;

τb ∈ Seq(rng(sb)) as τb ⊂ sb;
f ∗(σ ) = f ∗(τb) as (44);
f ∗(σ � r(a)) = f ∗(τb � r(b)) because of (43);
Q (b, τ ) by choice of τb. � (for Claim 2)

Let
⟨a, b, σ , τ , d⟩ = ϕp(0), (45)

and let ξ be as stated existent by Q (b, τ ). We have

We(a) = {r(a)} ∪ rng(t) ∪ content(σ ), (46)

and

We(b) = {r(b)} ∪ rng(t) ∪ content(τ ). (47)

It is easy to see (from the graph above) thatWe(a),We(b) ∈ L.

Let

ρa = σ � r(a), (48)
ρb = τ � r(b), (49)
Ta = ρa � t , (50)
Tb = ρb � t, (51)

and

T ′

b = ρb � ξ � t . (52)
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Then Ta is a text for We(a) and Tb, T ′

b are texts for We(b). As f ∗(ρa) = f ∗(ρb), and, as h has to identify We(a) from ρa � t = Ta
and We(b) from ρb � t = Tb, we have, for all k > 0, h∗(ρa � t[k]) =? and h∗(ρb � t[k]) =?. Thus, there is ℓ such that
Wh∗(ρb[ℓ]) = We(b).
To see that we have a U-shape with text T ′

b:
(i) ∃ℓ : Wh∗(ρb[ℓ]) = We(b) (as stated just above);
(ii) Wh∗(ρb�ξ) ≠ We(b) (by ξ witnessing Q (b, τb)); and
(iii) ∃ℓ : Wh∗(ρb�ξ�t[ℓ]) = We(b) (as T ′

b is a text forWe(b) ∈ L).

This is a contradiction to L ∈ NUBMSn(⟨h, f ⟩). �

With BMS′

∗
we denote the variant of BMS∗ where a learner is not allowed to return to a state that it left earlier. We give

the following lemma to help with a later proof. Recall that the decorations on the equality signs just below are inclusion
qualifiers, introduced in Definition 2.5.

Lemma 3.4. We have

TxtBMS∗Ex =mi TxtBMS′

∗
Ex. (53)

Proof. The inclusion ‘‘⊇’’ is trivial.
Regarding ‘‘⊆’’, let h, f ∈ P . Let h′, f ′

∈ P be such that, for all k,D, x,

h′(∅) = h(ε); (54)
f ′(∅) = ⟨f (∅), {f (∅)}⟩; (55)
h′(⟨k,D⟩, x) = h(k, x); (56)

f ′(⟨k,D⟩, x) =


⟨h(k, x), ⟨k,D⟩⟩, if f (k, x) ∈ D;

⟨h(k, x), ⟨f (k, x),D ∪ {f (k, x)}⟩⟩, otherwise.
(57)

Note that ⟨h′, f ′
⟩ will never visit the same state again after leaving it.

Furthermore, it is straightforward to see inductively the following. Suppose ⟨h′, f ′
⟩ on a text for a language L outputs, for

some k,D, ⟨k,D⟩. Then, for all k′
∈ D, there is a sequence σ of elements from L such that h, starting from state k′, will end in

state k after processing σ .
Thus, for all languages L and each text T for L, we can construct a text T ′

= T (0)σ0T (1)σ1T (2) . . . for L such that, for all i,
h′∗(T [i]) = h∗(T (0)σ0 . . . T (i − 1)σi−1).

Therefore, Lemma 3.4 follows. �

Using Lemma 3.4, we can assume, without loss of generality, that BMS∗-learners never come back to a once abandoned
state.

The following theorem was mentioned without proof (and without inclusion qualifiers) in [11]. We will need it (with
associated inclusion qualifiers, see Definition 2.5) for later conclusions.

Theorem 3.5 ([11]). We have

TxtBMS∗Ex
msi

i
TxtItEx. (58)

Proof. The inclusion ‘‘⊇’’ is straightforward by storing the last hypothesis in the state.
Regarding ‘‘⊆’’, let ⟨h, f ⟩ ∈ P . We use a 1-1 computable function pad such that, for all e, x,Wpad(e,x) = We. Let h′

∈ P be
such that

h′(∅) = pad(h(∅), f (∅)); (59)
h′(pad(e, k), x) = pad(h(k, x), f (k, x)). (60)

A straightforward induction shows, for all texts T and all i, BMS(h, T )(i) is semantically equivalent to It(h′, T )(i) (the latter
is a padded version of the former). Using Theorem 3.4, both claims follow. �

Note that Theorem 3.5 shows the equivalence of unrestricted It- and BMS∗-learning, while it leaves open whether BMS∗-
learning allows for learningmore classes of languages than It-learning in cases where not just Ex is the sequence acceptance
criterion, but Ex intersected with some non-semantic or non-monotonic sequence acceptance criterion. For example, SNU
is a non-semantic sequence acceptance criterion; see the paragraph just after Corollary 3.6 below.

Furthermore, note that both Lemma 3.4 and its proof carry over to the version of BMS∗-learning, where a learner has to
use only finitely many memory states on any text (not just on texts for learned languages); Theorem 3.5 carries over with
the modification of confident TxtItEx, as already stated in [11] (a learner is confident iff it converges on any text, regardless
for what language; see [38,31]).

As we gave the equivalence of It- and BMS∗-learning with inclusion qualifiers, we can derive the following corollary. Not
employing the inclusion qualifiers, we have TxtBMS∗Ex ⊆ TxtItEx ⊆ NUTxtItEx (by Theorem 3.5 and [21]); furthermore,
using the inclusion qualifier, we can apply the Transfer Lemma (Lemma 2.7) to get NUTxtItEx ⊆ NUTxtBMS∗Ex. Altogether,
this gives the following corollary.
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Corollary 3.6. We have

NUTxtBMS∗Ex = TxtBMS∗Ex.

One might expect to be able to use the Transfer Lemma to show SNUTxtBMS∗Ex ⊂ TxtBMS∗Ex using SNUTxtItEx ⊂

TxtItEx – analogously to the justification of Corollary 3.6. However, note the ‘‘s’’ for semantic in the inclusion qualifier in
one direction of Theorem 3.5, which does not allow for transferring results regarding non-semantic sequence acceptance
criteria (such as SNU).

However, we can give a much stronger result, which also entails that even for two memory states, we cannot avoid
U-shapes in a strong way, see Theorem 3.10.28

But before we get to Theorem 3.10, we give Definition 3.7 and Lemma 3.8.

Definition 3.7. For all h∗
∈ P , h∗ is called canny iff, for all σ , (i) through (ii) below.

(i) h∗(σ )↓ ⇒ h∗(σ ) ∈ N, i.e., h∗ never outputs ?.
(ii) h∗(σ � #) = h∗(σ ).
(iii) For all x ∈ N, if h∗(σ � x) ≠ h∗(σ ), then, for all τ ⊇ σ � x, h∗(τ � x) = h∗(τ ).

With any learner h we can associate a function h∗ that maps a sequence σ of data input to the current conjecture of
learner h after seeing σ ; with Can we denote the learner restriction where only learners are allowed which, when starred,
are canny.

Lemma 3.8 (Theorem 1 in [21]). We have

CanTxtItEx = TxtItEx.

The proof of [21, Theorem 1] gives a construction to turn an iterative learner into a canny one learning at least as much.
It is easy to see that this construction preserves strong non-U-shapedness. Note that the construction does not, in general,
preserve (not necessarily strong) non-U-shapedness.

Using a slight modification of the proof of [21, Theorem 1], we get the following remark.

Remark 3.9. We have

CanSNUTxtItEx = SNUTxtItEx;
CanTxtBMS∗Ex = TxtBMS∗Ex;
CanSNUTxtBMS∗Ex = SNUTxtBMS∗Ex;
CanTxtBMS′

∗
Ex = TxtBMS′

∗
Ex;

CanSNUTxtBMS′

∗
Ex = SNUTxtBMS′

∗
Ex.

Theorem 3.10. We have

TxtBMS2Ex \ SNUTxtBMS∗Ex ≠ ∅.

Proof. Let h0 as in the proof of Theorem 3.3. Let L = TxtBMS2Ex(h0). Suppose, by way of contradiction, L ∈

SNUTxtBMS∗Ex, as witnessed by ⟨h, f ⟩. Without loss of generality, by Lemma 3.4 and the Transfer Lemma (Lemma 2.7),
we assume ⟨h, f ⟩ never to go back to a previous conjecture. By Remark 3.9, any strongly non-U-shaped TxtBMS′

∗
Ex-learner

can be assumed to be canny (without loss of generality), so suppose h is canny.
Let h∗ be such that, for all sequences σ , h∗(σ ) is conjecture of the learner h after seeing σ as input (in particular, h∗ is

undefined on all extensions of sequences on which it is undefined); similarly, h∗(z, σ ) is just the conjecture of the learner
after seeing σ as input, starting from the state z. We use f ∗(σ ) to denote the state of ⟨h, f ⟩ after seeing σ and.

We give an ORT-argument similar to that in the proof of Theorem 3.3, using the same graphical notation.
By 1-1 ORT, there are a 1-1 function a ∈ R and e0, e1, e2, b ∈ N with b ∉ rng(a) such that a number of restrictions are

satisfied. We abbreviate, for all i, t ,

P(i) ⇔ ⟨h∗, f ∗
⟩(a[i + 1])↓ = ⟨h∗, f ∗

⟩(a[i])↓, (61)
P(i) ⇔ ⟨h∗, f ∗

⟩(a[i + 1])↓ ≠ ⟨h∗, f ∗
⟩(a[i])↓, (62)

Q (i) ⇔ ∃σ ≤ i : σ ∈ Seq(rng(a[i])) ∧

h∗(f ∗(a[i]), b � σ)↓i ≠ h∗(f ∗(a[i]), b)↓i,
(63)

R(i) ⇔ ∃i′ ≤ i : Q (i′) ∧ P(i′), 29 (64)
A = {a(i) | P(i)}. (65)

28 As we shall see, this contrasts with the case of just one memory state, where every learner is strongly class-decisive (Remark 3.13).
29 Note that the existential quantifier is used only to make Rmonotone in the case of (67) below, for convenience.
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The first restriction is given by the following equation.

We0 = rng(a). (66)

Eqs. (68)–(71) have to be satisfied if

∀i : ⟨h∗, f ∗
⟩(a[i])↓, (67)

and we leave e1 and e2 unrestricted otherwise. Note that, given (67), P , Q and R are decidable.

We1 = {b} ∪ {a(i) ∈ A | ¬R(i)}
∪ {a(i) | ¬R(i) ∧ ∃i′ : R(i′)};

(68)

= {b} ∪


rng(a[i]), if there is a least i with R(i);
A, otherwise;

(69)

We2 = {b} ∪ {a(i) | ¬R(i)}; (70)

= {b} ∪


rng(a[i]), if there is a least i with R(i);
rng(a), otherwise.

(71)

The next group of restrictions is given by the following diagram.

0 1

∀i :
a(i)
e0

b
e1

(∀i | P(i)) :
a(i)
e2

The last group of restrictions is as follows. For all i with ⟨h∗, f ∗
⟩(a[i + 1])↑ or ⟨h∗, f ∗

⟩(a[i])↑, ϕa(i)(1)↑. For each x ∈

rng(a) ∪ {b} and vertices v such that ϕx(v)was not previously specified, we have the restriction ϕx(v) = ⟨?, v⟩.
It is straightforward to see We0 ∈ L. Thus, as a is a text for We0 , ∀i : h∗(a[i])↓ (i.e., (67) holds) and we have ∀

∞i : P(i).
We distinguish two cases as in (69) and (71).
Case 1: There is i with R(i).
Let i be the least such example. Then Q (i). Let σ be as given by Q (i). We have We1 = We2 = rng(a[i]) ∪ {b}. Clearly, this
language is in L. As h is canny (see Definition 3.7), we have that h∗(a[i] � b) is an index for We1 (a[i] � b � #∞ is a text for
We1 ). Furthermore, since Q (i) as witnessed by σ , h∗(f ∗(a[i]), b) ≠ h∗(f ∗(a[i]), b � σ), a contradiction to h being strongly
non-U-shaped.
Case 2: Otherwise.
We have We1 = A ∪ {b}. Clearly, this language is in L. Furthermore, We2 = rng(a) ∪ {b}, which is clearly in L as well.
From We0 ∈ L, there is i0 such that, for all i ≥ i0, h∗(a[i]) = h∗(a[i0]). Consider the text T for We1 which starts with the
subsequence of a[i0] which lists all and only the elements of A, then b, and then infinitely many #. T is a text for We1 ; thus,
as h is canny, after processing the element b in T , h outputs an index for We1 . Consider changing T by replacing the initial
subsequence of a[i0] with all of a[i0]. With this modified text, we only feed additional elements to the iteratively learning h,
which do not change h’s conjectures as compared with those on T . Hence, h∗(f ∗(a[i0]), b) is an index forWe1 .

Consider the text T = a[i0] � b � ♦i≥0 a(i0 + i) forWe2 . We have ∀i ≥ i0 : P(i) ∧ ¬(Q (i) ∧ P(i)). Thus, ∀i ≥ i0 : ¬Q (i).
On T , hwill have to change its conjecture after a[i0]�b, to identifyWe2 . Let i1 > i0 be such that h∗(a[i0]�b�♦i0≤i≤i1a(i)) ≠

h∗(a[i0] � b). Let t be large enough such that h∗(f ∗(a[i0]), b � ♦i0≤i≤i1a(i))↓t , h∗(f ∗(a[i0]), b)↓t and ♦i0≤i≤i1a(i) ≤ t . We now
have Q (t), a contradiction. �

Note that Theorem 3.10 entails that iterative learning cannot be done strongly non-U-shapedly, using Theorem 3.5 and
the Transfer Lemma (Lemma 2.7). Next we show that any class of languages learnable with a bounded number of memory
states by a total learner is also learnable by a strongly non-U-shaped learner, if we allow an arbitrary (but finite) number of
memory states; see the following theorem.

Theorem 3.11. We have
n∈N

RTxtBMSnEx ⊆i SNURTxtBMS∗Ex.

Furthermore, each learner witnessing inclusion in the right-hand-side learning criterion uses only finitely many memory states
on all texts.

Proof. Let n ∈ N, L ∈ RTxtBMSnEx as witnessed by h ∈ R. Using Lemma 3.4, we assume, without loss of generality,
h makes no cycles. Similarly, we assume all of h’s conjectures in different states to be syntactically different. We will now
build a BMS∗-learner h′. For this we need a data structure which is a labeled graph on n vertices. Initially, there are only the
n vertices {0, . . . , n− 1} and no edges. Further, the data structure contains a pointer to one of the vertices, labeling it as the
‘‘current’’ one (initially 0).
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Whenever h′ sees a new datum x, the data structure is updated as follows. For each possible state k ∈ {0, . . . , n− 1} that
h could be in, we run h on x from state k; suppose the result is ⟨e,m⟩ (recall that h is total). If in the graph there is an edge
from k tom labeled ? or there is no edge at all, replace the edge (or insert new edge) from k tom labeled e. It is clear that the
graph is only updated finitely many times on any text. Further, the pointer to ‘‘current’’ traverses the outgoing edge to the
numerically least successor state (choosing the least is an arbitrary decision; any definite choice would do).

We let the new state of h′ after seeing a new datum x be given by the updated data structure (and initially by the initial
data structure), pairedwith the label of the edgemost recently traversed by the pointer to ‘‘current,’’ which had then a non-?
label (and ? if there is no such edge). The new hypothesis is this label, padded with the current state (i.e., the current graph),
? if there is no such label. Thus, h′ changes its state (and its conjecture) only finitely often on any text.

It is straightforward to see that h′ RTxtBMS∗Ex-learns L. Further, it is clear that h′ is sink-locking, as each conjecture is
padded with the current state. We now get the result by the Sink-Locking Lemma (Theorem 2.2). �

We conclude this section by giving two results on BMS-learning for both the two and one memory states cases.

Remark 3.12. We have

LinFTxtBMS2Ex \ CDecTxtBMS2Ex ≠ ∅;

in particular,

CDecTxtBMS2Ex ⊂ TxtBMS2Ex.

Proof. Consider the languages {0}, {0, 1}, {2}, {2, 3}, {4}, {4, 5} and {0, 1, 2, 3, 4, 5, 6}. Fix respective indices e0, . . . , e6 for
these languages. The diagram depicts a linear time computable learner h which learns all these languages using two states
(an edge labeled x

e from state u to v denotes h(u, x) = ⟨e, v⟩; for all u, x such that there is no such outgoing edge, then
h(u, x) = ⟨?, u⟩).

0 1

0
e0
, 2
e2
, 4
e4

1
e1
, 3
e3
, 5
e5
, 6
e6

6
e6

Suppose, by way of contradiction, some BMS2-learner h learns these seven languages class-decisively. Without loss of
generality, h never leaves State 1 (for all state transitions from State 1 to State 0, we change this into a transition from
State 1 to State 1; see the proof of Theorem 3.4 for an argument for the correctness).
Case 1: h stays in State 0 for at least two of {0}, {2} and {4}.
Without loss of generality, h stays in State 0 for {0} and {2}. Thus, h outputs indices for {0} and {2} on 0 and 2, respectively.
Therefore, h is not decisive on the text 0, 2, 0, 1, 3, 4, 5, 6∞ for {0, 1, 2, 3, 4, 5, 6}.
Case 2: Otherwise.
Without loss of generality, h changes states on 0 and 2. Thus, for some conjectures a0, a2, b0, . . . , b3 ∈ N ∪ {?}, h has a
transition diagram as follows (some edges are omitted, but, for the rest of the proof, we do not need to know about them).

0 1

0
a0
, 2
a2

0
b0
, 1
b1
, 2
b2
, 3
b3

As h identifies {0}, we have that b0 is an index for {0} or ?. As h identifies {0, 1}, we have that {b0, b1} does not contain an
index for {0}. Thus, b0 =?. Therefore, as h identifies {0}, we have that a0 is an index for {0}. However, {a0, b1} does contain
an index for {0, 1} (because no other conjectures are made on the text 01∞ for {0, 1}). Hence, b1 is an index for {0, 1}.

Analogously, b3 is an index for {2, 3}. Therefore, h is not decisive on the text 0, 1, 3, 1, 2, 4, 5, 6∞ for {0, 1, 2,
3, 4, 5, 6}. �

Any TxtBMS1Ex-learner on # or any element x from a learned language L outputs an index for L or ?; furthermore, all
non-? outputs must be the same. Thus, we have the following remark.

Remark 3.13. For all C ⊆ P , we have

SCDecCTxtBMS1Ex =i TxtCBMS1Ex.
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4. Memoryless Feedback learning (MLF)

The main theorem in this section is Theorem 4.2 just below. This theorem answers the open question mentioned in
Section 1 above regarding memory-less feedback learning. Theorem 4.3 gives that memoryless learning with arbitrarily
many feedback queries is equivalent to TxtGEx-learning on classes of infinite languages.

Memoryless Feedback learning, as defined above, trivially allows a learner to query for whether the current input element
has been seen strictly previously. In Definition 4.7 below we give a variant of Memoryless Feedback learning, called MLF′-
learning, where all queries are answered based on all data seen so far, including the current datum. ForMLF′-learning, it is no
longer possible to query to see if the current datum has been seen previously. From Theorem 4.8 we have that the learning
power of MLF′-learning is strictly lower.

We conclude this section with a theorem regarding decisive memoryless learning.
Some results in this section make use of the following definition of a self-learning class of languages.

Definition 4.1. We use ψ as defined in Section 2.2. We assume that, in this system, we can appropriately use rcl to recall
previous data as introduced in Section 2.1 for the ϕ-system; recall that rcl is syntactic sugar. Let h0 ∈ P be such that

∀i, x : h0(x) =


?, if x = #;

ψx(0), otherwise.
(72)

Let L0 = TxtMLF1Ex(h0).

Theorem 4.2.

LinFTxtMLF1Ex \ NUTxtMLR∗Ex ≠ ∅.

Proof. We consider L0 from Definition 4.1, which is clearly learnable in linear time. Suppose h1 ∈ P TxtMLR∗Ex-learns
L0. We show that h1 is not non-U-shaped. For any sequence of data σ , we let h∗

1(σ ) denote the current conjecture of h1 after
having seen the sequence σ . It is easy to see that we can assume, without loss of generality,

∀τ , x : h∗

1(τ � x � x) ∈ N ⇒ h∗

1(τ � x) = h∗

1(τ � x � x). (73)

Let f ∈ P be such that, on input x, f first computes h1(x) where all queries are answered with ‘‘false’’. If h1(x)↓, f outputs
the maximum recalled element plus 1 (or 0, if no queries were asked). Then we have

∀x : h∗

1(x)↓ ⇒ f (x)↓ and h∗

1 on x does not recall any y ≥ f (x). (74)

By ψ/ϕ-Hybrid ORT, there are e0, e1, a ∈ N and strictly monotonic increasing functions b̂, ĉ ∈ R such that b̂ and ĉ have
disjoint ranges, neither containing a, and, abbreviating

b = b̂(f (a));

c = λi ĉ(i, f (a));
E = {c(i) | ∃j ≥ i : h∗

1(a � c[j])↓ ≠ h∗

1(a � c[j + 1])↓}

we have ∀i, t, x :
30

We0 = {a} ∪ rng(c); (75)

We1 =


{a}, if h∗

1(a)↑ or h∗

1(a) =?;
{a, b} ∪ E, otherwise;

(76)

ψa(x) =


?, if rcl(a);
e1, otherwise;

(77)

ψb̂(i)(x) =


?, if rcl(b̂(i));
e1, otherwise;

(78)

ψĉ(i,t)(x) =


e1, if rcl(b̂(t));
e0, otherwise.

(79)

Claim 1. h∗

1(a) ∈ N.

Proof of Claim 1. Suppose, byway of contradiction, otherwise.We have {a} = We1 ∈ L0. If h∗

1(a)↑, then h1 would not learn
We1 ∈ L0, a contradiction. Hence, h∗

1(a) =?. Using (73), we get that h1, on the text λi a, does not learn {a} = We1 ∈ L0, a
contradiction. � (for Claim 1)

30 Note that we use the shorthand rcl as introduced in Section 2.1 also for the ψ-system.
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Using (74) and Claim 1, we have f (a)↓. Hence, b is defined and c is total. It is now easy to see that

We0 ∈ L0. (80)

Therefore, h1 TxtMLR∗Ex-learnsWe0 . Let k be minimal such that

∀i ≥ k : h∗

1(a � c[i]) ∈ {?, h∗

1(a � c[k])}. (81)

With reasoning similar to that in Claim 1, we get k > 0 and c(0) ∈ E. Furthermore,

Wh∗
1(a�c[k])

= We0 . (82)

Hence, We1 is the finite set {a, b, c(0)} ∪ content(c[k]). It is easily verified thatWe1 ∈ L0.
Note that, as b̂ and ĉ are strictly monotonically increasing,

∀x ∈ {b} ∪ rng(c) : x ≥ f (a). (83)

Hence, by choice of f (see (74)), h1 on a cannot recall any x ∈ {b} ∪ rng(c). Therefore,

h∗

1(a) = h∗

1(c[k] � b � a). (84)

Claim 2. Wh∗
1(a)

= We1 .

Proof of Claim 2. From Claim 1 we have that h∗

1(a) ∈ N. As h1 TxtMLR∗Ex-identifiesWe1 from the text c[k] � b � λi a and
using (73),

Wh∗
1(c[k]�b�a)

= We1 . (85)

Using (84), we get the claim. � (for Claim 2)

We consider the text T = a � c[k] � b � λx # forWe1 . The following shows that h1 has a U-shape on T .

(i) Wh∗
1(a)

= We1 by Claim 2;
(ii) Wh∗

1(a�c[k])
= We0 by (82);

(iii) ∃j ≥ k + 1 : Wh∗
1(T [j]) = We1 as h1 TxtMLR∗Ex-identifiesWe1 .

Therefore, h1 is not non-U-shaped on L0. �

With Pow(E∞)we denote the powerset of all infinite ce sets.

Theorem 4.3.

Pow(E∞) ∩ NUTxtMLF∗Ex =c Pow(E∞) ∩ TxtGEx.

Proof. ‘‘⊆’’ is trivial.
‘‘⊇’’: Let h0 ∈ P , let L = Pow(E∞) ∩ TxtSdEx(h0). Without loss of generality, we can assume h0 ∈ R.31 We use a function
pad as in the proof of Theorem 3.5. Let f ,m, h1 ∈ P be such that, for all x,

f (x) = rcl({y ≤ x});

m(x) = µD (∀D′
| D ⊆ D′

⊆ f (x))h0(D) = h0(D′); 32

h1(x) =


?, if x = # or x ∈ f (x);
pad(h0(m(x)),m(x)), otherwise.

Let L ∈ L and let T be a text for L. Let D be the ≤-minimum locking set for h0 on L.

Claim 1. ∀
∞i : h∗

1(T [i]) ∈ {?, pad(h0(D),D)} and ∃
∞i : h∗

1(T [i]) = pad(h0(D),D).

Proof of Claim 1. Let c0 be such that D ⊆ content(T [c0]). Let c1 ≥ c0 be such that ∀c ≥ c1 :

T (c) ∉ content(T [c1]) ⇒ T (c) > max(D).33 (86)

Intuitively, after T [c1], the only new elements presented to the learner are strictly bigger than max(D). This implies that,
after T [c1],

∀c ≥ c1 : D ⊆ f (T (c)). (87)

31 This can be seen using standard delaying tricks.
32 Note that, for purposes of minimization, D is treated as a natural number and minimized with respect to ≤.
33 We use the convention max(∅) = −1.
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From D being the ≤-minimum locking set we get ∀D′ < D,∀∞i :

¬(∀D′′
| D′

⊆ D′′
⊆ f (T (i)))h0(f (T (i))) = h0(D′′).

Putting (87) and (4) together with D is a locking set, we get the claim. � (for Claim 1)

As D is a locking set, an application of the Sink Locking Lemma (Lemma 2.2) gives the desired result. �

The proof of Theorem4.6makes use of some graph theory, sowe give the just belowdefinitions and a lemma (Lemma4.5)
to support the proof of Theorem 4.6.

Definition 4.4. A directed graph is a pair (V , E), where V ⊆ N is a set of vertices and E ⊆ V × V is a set of edges; for each
vertex v ∈ V , we call card({y ∈ V | (v, y) ∈ E}) the out-degree of v; the supremum over all vertices’ out-degrees is the
out-degree of (V , E). A graph is called infinite iff its set of vertices is infinite.

For a graph G = (V , E), a set D ⊆ V is called an independent set of G iff, for all x, y ∈ D, (x, y) ∉ E.

Lemma 4.5. Let G be an infinite directed graph of finite out-degree. Then, for each k > 0 and each j ∈ N, there is a collection of
size j of mutually disjoint sets of vertices D with card(D) = k such that D is an independent set of G.

Proof. 34 Let n be the out-degree of G. By induction on k, clear for k = 1. Suppose the claim is true for some k ∈ N. Let j ∈ N.
We show that there are j independent sets of G of cardinality k + 1.

Let D0, . . . ,Dj+n−1 be j + nmutually disjoint independent sets of G of cardinality k. LetM be the (infinite) set of vertices
of G that is not in


i<j+n Di or reachable in G from


i<j+n Di in one step. Then, for each x ∈ M , as x has out-degree at most

n, there are at least j different i < j+ n such that Di ∪ {x} is an independent set of G of cardinality k+ 1. AsM is infinite, the
induction step follows. �

Theorem 4.6.

(LinFTxtMLF1Ex ∩ Pow(E∞)) \


n∈N

NUTxtMLFnEx ≠ ∅.

Proof. We consider h0 and L0 from Definition 4.1. Let L = L0 ∩ Pow(E∞). Suppose, by way of contradiction, L ∈
n∈N NUTxtMLFnEx, as witnessed by n and h.
For L ⊆ N and x ∈ N, wewrite hL

0(x) and hL(x), respectively, to denote the output of h0 and h, respectively,whenpresented
with x and all recalls to elements of L are answered with ‘‘yes’’, all others with ‘‘no’’.

Below, we introduce an infinite ce set of elements on which h is forced to output ?. Then we will use some or all of these
elements to make certain sets infinite. By ψ/ϕ-Hybrid ORT, there are a, w ∈ N and a 1-1 z ∈ R such that

Wa = {w} ∪ rng(z); (88)
∀x : ψw(x) = a; (89)
∀j, x : ψz(j)(x) =?. (90)

Obviously,Wa ∈ L; hence, for all ρ ∈ Seq(rng(z)), h∗(ρ)↓.

Claim 1. For all ρ ∈ Seq(rng(z))with ρ ≠ ∅ we have h∗(ρ) =?.

Proof of Claim 1. Let ρ ∈ Seq(rng(z)) \ {∅}. By ψ/ϕ-Hybrid ORT, there are 1-1 b, u ∈ R such that, for all j, x,

Wb(j) = {u(j)} ∪ content(ρ); (91)
ψu(j)(x) = b(j). (92)

For each j, let Lj = Wb(j). For all j, and for all texts T for Lj, h0 on T outputs b(j) at least once and otherwise only ?. Thus,
Lj ∈ L0.

Let x = last(ρ) and let j0 be large enough such that, for all j ≥ j0, h on x does not recall u(j). For all j, let ej be the output
of h on x when all queries for elements from Lj are answered positively, all others negatively. Note that, for all j ≠ j0, we
have (Lj0 ∪ Lj) \ (Lj0 ∩ Lj) = {u(j0), u(j)}. Therefore, for all j ≥ j0, ej = ej0 . Thus, for all j ≥ j0 and all texts T for Wb(j) such
that T contains infinitely many occurrences of x, we have that h on T infinitely often outputs ej0 . In particular, there are two
different languages in L and texts for these languages, such that h on both of these texts infinitely often outputs ej0 . Thus,
ej0 =?. Obviously, by choice of Lj0 , ej0 = h∗(ρ). � (for Claim 1)

Now we can use rng(z) as the desired infinite ce set of elements on which h is forced to output ?.
Let, for each v ∈ N,

Ev = {z(j) | h on z(j) does not recall v and
h on v converges and does not recall z(j)

}. (93)

34 This result can be derived as a consequence from Turán’s Theorem [22, Theorem 7.1.1]. However, the according derivation is roughly as complex as the
below proof of this lemma. Hence, also in the interest of self-containment, we prove the lemma without reference to Turán’s Theorem.
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By ψ/ϕ-Hybrid ORT, there are 1-1 p, r, s ∈ R with pairwise disjoint ranges (and, without loss of generality, ranges
disjoint of rng(z)) such that, for all x, y,

Wp(x) = {r(x)} ∪ Er(x); (94)

ϕr(x)(y) =


p(x), if not rcl(s(x));
?, otherwise;

(95)

ψs(x)(y) =?. (96)

Claim 2. Let x ∈ N. Suppose Er(x) is infinite. Then h NUTxtMLFnEx-identifiesWp(x) = {r(x)} ∪ Er(x).

Proof of Claim 2.

Let T be a text for Wp(x). For i such that T (i) = r(x) we have Wh∗
0(T [i+1]) = Wp(x). Further, for all j > i, h∗

0(T [j + 1]) ∈

{?, p(x)}. Therefore,Wp(x) ∈ L. � (for Claim 2)

Claim 3. Let x ∈ N be such that Er(x) is infinite. Then h(r(x))↓ and Wh(r(x)) = Wp(x) = {r(x)} ∪ Er(x).

Proof of Claim 3. From Claim 2, we get that h NUTxtMLFnEx-identifies Wp(x). From Claim 1 and the definition of Er(x), we
get that, for all ρ ∈ Seq(Wp(x)) with last(ρ) ∈ Er(x), h∗(ρ) =?. Intuitively, h cannot give any conjecture other than ? when
presented with an element from Er(x), as it does not recall r(x). Thus, when h is presented r(x) for the first time, it has to give
a correct conjecture, i.e.,Wh(r(x)) = {r(x)} ∪ Er(x) (the text might contain only one occurrence of r(x)). � (for Claim 3)

Claim 4. There is a finite set D of cardinality n + 2, such that

(i) for all x ∈ D, h on r(x) does not recall any element from {r(y), s(y) | y ∈ D \ {x}}; and
(ii) for all x ∈ D, Er(x) is infinite.

Proof of Claim 4. Let G be the graph with vertex set N such that, for all x, y ∈ N, there is an edge from x to y in G iff: x ≠ y
and h on r(x) recalls r(y) or s(y). Clearly, the out-degree of G is bounded by n, as h recalls at most n elements on any input,
and r, s are 1-1 and have disjoint ranges. We apply Lemma 4.5 with n + 2 in the place of k and n + 1 in the place of j to
obtain n+ 1 mutually disjoint sets D0, . . . ,Dn, each fulfilling (i) of the claim. We proceed by showing that there are at most
n different x ∈ N such that Er(x) is finite in order to show that at least one of these sets fulfills (ii).

As, for all x, h(r(x))↓, we have

Er(x) finite ⇒ ∀
∞j : h on z(j) recalls r(x). (97)

Suppose, by way of contradiction, there are at least n + 1 different x ∈ N such that Er(x) is finite. Thus, for all but finitely
many j, h on z(j) recalls at least n + 1 elements from rng(r), a contradiction to h only making n recalls. � (for Claim 4)

Fix a D as shown existent in Claim 4.
By 1-1 ORT there are 1-1 t ∈ R, e ∈ N and ce sets F , L such that

F = {i | ∀x ∈ D : h on r(x) does not recall t(i)}; (98)
L = We = {r(x), s(x) | x ∈ D} ∪ {t(i) | i ∈ F}; (99)
∀i, y : ϕt(i)(y) = e. (100)

Note that, for all x ∈ D, h on r(x) does not recall any element from (L \ {r(x), s(x)}). Furthermore, F is infinite.

Claim 5. h NUTxtMLFnEx-identifies L.

Proof of Claim 5. Let T be a text for L, let i be such that, for all x ∈ D, s(x) ∈ content(T [i]). As F is infinite, there is j > i
such that T (j) ∈ {t(z) | z ∈ F}. Thus, h∗

0(T [j + 1]) = e and, for all j′ > j, we have

h∗

0(T [j′ + 1]) =


e, if T (j′) ∈ {t(z) | z ∈ F};

?, if T (j′) ∈ {r(x) | x ∈ D};

?, if T (j′) ∈ {#} ∪ {s(x) | x ∈ D}.

To see the second case, note that s(x) ∈ content(T [j′]). This shows that h0 on T converges to e. � (for Claim 5)

We consider the text T = ♦x∈D(r(x)� s(x))� ♦i∈F t(i) for L. Let i0 be such thatWh∗(T [i0]) = L. We have i0 ≠ 0, as otherwise
there would be a U-shape from Claim 3.

Let x ∈ D be such that h on T (i0 −1) does not recall r(x) or s(x) and T (i0 −1) ∉ {r(x), s(x)} (possible as card(D) = n+2).
Let τ contain all and only the elements from rng(T [i0 − 1]) recalled by h on T (i0 − 1).
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Now we consider the text T ′
= τ � T (i0 − 1) � r(x) � T for L. We have that

(i) Wh∗(τ�T (i0−1)) = L (by choice of τ );
(ii) Wh∗(τ�T (i0−1)�r(x)) = Wp(x) ≠ L (by Claim 3) and
(iii) ∃j > len(τ )+ 2 : Wh∗(T [j]) = L (as h∗ on T ′ has to converge to a correct ce-index for L).

Thus, h has a U-shape on T ′, a contradiction. �

Note that MLF allows for a learner to determine (at the cost of a query) whether the current datum has been seen
previously (i.e., is a repetition), and the previous proofs in this section sometimes made use of this ability. The next theorem
states that this ability is important for learning power.

Definition 4.7. Call MLF′ the sequence generating functional that one gets by modifying MLF to answer true to recalls for
the current datum.

The sequence generating functional MLF′ destroys a learners ability to determine whether the current datum has been
seen previously (i.e., is a repetition).

Theorem 4.8.

TxtMLF1Ex \ TxtMLF′

∗
Ex ≠ ∅.

Proof. We consider L0 from Definition 4.1.
By padded ORT there are 1-1 r, e ∈ R such that ∀n, k, x :

ϕr(0)(x) =


?, if rcl(r(0));
e(0), otherwise;

(101)

ϕr(⟨n,k⟩+1)(x) = e(n + 1); (102)
We(0) = {r(0)}; (103)

We(n+1) = {r(0)} ∪ {r(⟨n, x⟩ + 1) | x ∈ N}. (104)

It is easy to see that {We(n) | n ∈ N} ⊆ L0. Suppose, by way of contradiction, L0 ∈ MLF′

∗
Ex as witnessed by h. We have that

r(0)∞, the infinite sequence of repetitions of r(0), is a text forWe(0). Therefore, h on this text converges to a number p such
that Wp = We(0). Furthermore, for all k > 0, h∗ on r(0)k will get ‘‘yes’’ answers to a recall for r(0), and ‘‘no’’ answers to all
other recalls. Hence, ∀k : h∗(r(0)k) = h∗(r(0)) = p.

As h on r(0) recalls only finitely many elements, there is n large enough such that h on r(0) does not recall any element
inWe(n+1) different from r(0). Let T be a text forWe(n+1) containing r(0) infinitely often. We have, for all iwith T (i) = r(0),
h on T (i)will get ‘‘yes’’ answers to a recall for r(0), and ‘‘no’’ answers to all other recalls; thus,

h∗(T [i + 1]) = h∗(r(0)) = p. (105)

Therefore, h on T outputs p infinitely often, which is a contradiction asWp = We(0) ≠ We(n+1). �

We conclude this section with the following theorem regarding decisive memoryless learning.

Theorem 4.9.
n∈N

DecTxtMLFnEx =


n∈N

DecTxtMLRnEx = {L | L finite}.

Proof. We show the inclusions (1) ⊆ (2) ⊆ (3) ⊆ (1), where (1), . . .denote the three terms in the claim of the theorem.
The first inclusion is clear. Regarding the third inclusion: Let L be a finite collection of languages. Let D be a finite set of

data such that

∀L, L′
∈ L : L ≠ L′

⇒ ∃x ∈ D : x ∈ (L \ L′) ∪ (L′
\ L). (106)

Clearly, any learner which recalls all ofD and outputs a conjecture fromL consistent with the answers (including consistent
with the negative answers) whenever such a conjecture exists (and otherwise repeating the previous conjecture) will
identify all of L decisively.

Regarding the second inclusion: Let n ∈ N and let L ∈ DecTxtMLFnEx as witnessed by h ∈ P . Suppose, by way of
contradiction, L is infinite. Then h outputs an infinite number of different conjectures for the members of elements of L.
Thus, there is an infinite setM and, for each x ∈ M , a set Dx, such that h, after having seen Dx and no other data, will output
a conjecture (for a different language for each x ∈ M) on x. Using Lemma 4.5, there are x and y such that h on x, if all of Dx
and Dy were presented previously, does not recall any of Dy ∪ {y} and vice versa. Thus h, after being presented all of Dx ∪Dy,
will repeat a conjecture after abandoning it on the input sequence x, y, x. �
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Table 1
Known results and open problems.

Criterion NU SNU

Fu
ll

TxtGEx = [4] = [20]
n ≥ 2: TxtGFexn ⊂ [12] ⊂ [12]
TxtGBc ⊂ [23] ⊂ [23]
TxtGPcpEx = [13] = (unpublished)36
TxtPsdEx = [17] = [17]
TxtSdEx = [17] = [17]

Ite
r+

TxtItEx = [21] ⊂ [17]
TxtItCtrEx
TxtBemnEx
TxtFbnEx
TxtRclnEx

N
on

e

n ≥ 1: TxtMLFnEx ⊂ [11] ⊂ [11]
TxtMLF∗Ex ⊂ Theorem 4.2 ⊂ Theorem 4.2
TxtBMS1Ex = [11] = Remark 3.13
TxtBMS2Ex = [11] ⊂ Theorem 3.10
n ≥ 3: TxtBMSnEx ⊂ Theorem 3.3 ⊂ Theorem 3.3
TxtBMS∗Ex = Corollary 3.6 ⊂ Theorem 3.10

5. Some known results and open problems

We conclude the present paper with a table (Table 1) on a core of known results and open problems regarding necessity
of U-shapes.35

This table groups various learning criteria according to how they can access strictly previous data and any prior
conjecture. The group ‘None’ denotes no direct access to prior conjectures (and limited access to prior data or states), the
group ‘Iter+’ denotes access to any immediately prior conjecture (with no or limited access to strictly previous data), and
‘Full’ denotes direct access to all previous data points.

An entry ‘‘=’’ denotes that, without loss of generality, a learner can have the property of the header of that column,
while ‘‘⊂’’ denotes the opposite. An empty cell indicates an open problem. We would like to see these problems solved,
also because the associated proofs will likely give new insights into their respective learning criteria. The definition of the
different learning criteria can be found in Section 2.1.
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