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ABSTRACT 
Menu systems are challenging to design because design 
spaces are immense, and several human factors affect user 
behavior. This paper contributes to the design of menus 
with the goal of interactively assisting designers with an 
optimizer in the loop. To reach this goal, 1) we extend a 
predictive model of user performance to account for ex-
pectations as to item groupings; 2) we adapt an ant colony 
optimizer that has been proven efficient for this class of 
problems; and 3) we present MenuOptimizer, a set of inter-
actions integrated into a real interface design tool (QtDe-
signer).	
   MenuOptimizer supports designers’ abilities to 
cope with uncertainty and recognize good solutions. It al-
lows designers to delegate combinatorial problems to the 
optimizer, which should solve them quickly enough without 
disrupting the design process. We show evidence that satis-
factory menu designs can be produced for complex prob-
lems in minutes.	
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INTRODUCTION 
Menu systems, consisting of menus, hotkeys or toolbars, 
are widespread interfaces for selecting commands. Interface 

design strongly affects their usability. However, despite 
apparent simplicity, designing usable menu systems is chal-
lenging because the number of alternative designs grows 
superexponentially as a function of the number of com-
mands. For instance, a linear menu with n items can, in 
theory, be organized in n! ways. However, professional 
applications comprise hundreds of items organized in hier-
archical menus. A menu hierarchy can be organized in 
about (2n)! ways. For 50 items, the size of the search space 
is a whopping 100! ≈	
 10158. Design heuristics, such as plac-
ing frequently used items at the top [5], may be effective for 
small n but fail with larger n or if additional human factors 
such as semantic relationships among items are considered. 
Although experts can quickly generate a handful of solu-
tions to hard design problems [6], they cannot examine all 
promising solutions. Novices, known to search the space 
depth-first [3], are likely to get stuck in a local search space.  

Combinatorial optimization methods (e.g., [29]) have been 
successfully used to generate user interfaces such as virtual 
keyboards [8,21,24,34]. These methods explore a large 
number of designs in order to find ones that minimize or 
maximize a pre-specified objective function. Computation 
time is on a scale of hours, days, or weeks. While empirical 
evidence confirms improvements in usability in other con-
texts (e.g., [24,34]), there is reason to suggest that they may 
be impractical for the design of menu systems. First, de-
signers cannot be expected to wait days or weeks for a solu-
tion. Moreover, designers may not be able to define the 
optimization problem completely in advance. Interaction 
design, in general, is rather more an iterative process of 
redefinition and refinement. Finally, predictive models for 
menu systems performance are only just emerging 
[5,20,25], are limited to linear menus, and have yet to cover 
all important human factors that affect design choices. 

Figure 1: MenuOptimizer assists in the design of menus: While the designer edits the menu (action in red), a model-based optimizer 
updates itself to provide feedback and suggestions (in blue): A) Item feedback indicates the frequency (line width) and user per-
formance over time (color gradient). B–C) Hotkeys and separators are automatically assigned. D) Item placements to improve user 
performance are suggested. E) Designers can normally edit items (move, delete, etc.) and also F) lock items to constrain them to-
gether to accelerate optimization. 

 
 



 

This paper contributes the design of a user interface and an 
optimization method for interactively assisting in menu de-
sign with an optimizer in the loop. MenuOptimizer	
   illus-
trates our approach by integrating an optimizer into 
QtDesigner, a widely used design tool. The goal is to im-
prove the quality of process and outcomes in the design of 
menus. The key challenges are, on the one hand, how to 
support designers’ abilities to cope with uncertainty, define 
constraints, and recognize good solutions and, on the other 
hand, to allow designers to delegate combinatorial subprob-
lems to an optimizer that should solve them rapidly enough 
not to disrupt the process of design.  

Figure 1 reviews the concept of designer–optimizer inter-
actions in MenuOptimizer. At present, it supports the de-
sign of static hierarchical menus. Two design scenarios are 
supported: 1) In the updating of existing menus, user be-
havior is partially known from logs or interviews. 2) 
Sketching novel menus involves assumptions about usage 
and objective, which can change during the design phase. 
Both scenarios are supported with the same functionality: 
Designers can edit menus by adding, renaming, or moving 
commands in it, and every edit updates the optimizer to 
work with the present menu design. The optimizer provides 
suggestions at item level (optimal placement for an item), 
menu level (improvements made by moving items), and the 
menu system level (menu templates). Designers can specify 
and change their assumptions about use and users by edit-
ing distribution graphs directly. To direct the optimizer, 
designers can also change the objective function by setting 
the relative weight of user performance, consistency (ex-
pectations as to item locations), and edit distance to the 
present design. With multiple optimization objectives, the 
optimizer’s suggestions are plotted in real time on a Pareto 
front plot. Designers can also lock items, which restricts the 
optimizer’s search space.  

To realize the interactions in MenuOptimizer, we extended 
a state-of-the-art predictive model of user performance 
(Search–Decision–Pointing; SDP [5]) with a model of ex-
pected item groupings; the system proposes logical groups 
and hierarchies that are statistically consistent with other 
applications. Furthermore, we show that the menu design 
problem can be formulated as a known optimization prob-
lem. We then describe an ant colony optimizer, a method 
proven to be efficient for this class of problem. 

After presenting MenuOptimizer, we show evidence from 
several evaluations. We consider two realistic design cases. 
The first is the optimization of Mozilla	
   Firefox from logs 
collected on regular users; the second involves the image 
editing software Seashore.	
   We report on the short- and 
long-term performance of the optimizer, showing that it can 
rapidly produce satisfactory suggestions for menus. Moreo-
ver, data from a preliminary study suggests that interactions 
with MenuOptimizer can help novice designers to design 
menus with less editing effort. Finally, we detail further 
directions for interactive optimization of menu systems. 

MOTIVATION AND FORMATIVE STUDY 
Designing user interfaces is, in general, a complex, expen-
sive, and time-consuming process [6,26,28,32]. Some rea-
sons cited in existing literature are related to the issue of 
combinatorial explosion as described above: 1) Designers 
cannot explore the space of possible interface designs man-
ually [14,26]. 2) Designers underestimate the diversity of 
the user population [15]. 3) They have difficulties in 
demonstrating the advantages of a design to others [26]. 4) 
Finally, designers find it difficult to analyze a design’s effi-
ciency [32]. For instance, in the evaluation of a design, 
there is a tendency to favor aesthetics over efficiency [32].  

Because we were unable to find literature on such problems 
specific to menu systems, we conducted a pre-study. Six 
experienced designers were interviewed. They all work in 
the industry as designers or usability professionals. They 
stated that they design between zero and three complex 
(~1,000-item) menu systems per year in the context of 
software or Web applications and 1–5 intermediately com-
plex menu systems (~100 items) a year. Their reported 
range of command sets is 50 to 1,000 commands. They 
stated their main design goals as being “understandability” 
and “allowing users to find what they want.” However, item 
selection time for experienced users (users who already 
know item locations) appears not to be among their main 
concerns because they need to satisfy the immediate expec-
tations of their clients. 

The interviewees confirmed that designing large menu sys-
tems is “very difficult” and involves “trial and error in the 
beginning.” Several design challenges were mentioned, 
among them “labeling top-level menus,” “coherence be-
tween commands and their labels,” and “choosing the best 
placements for items.” They described their design process 
as “iterative” and involving feedback from final users. They 
also confessed that they do not always seek the best solu-
tions. For instance, “it happens that we put commands in 
two places because they are not in a perfect location in ei-
ther. However, we know that this also introduces confu-
sion.” To solve the problems mentioned above, the design-
ers considered important “the logic of the software,” “expe-
rience,” and “feedback from customers.” None of the de-
signers mentioned collecting logs for individual users, but 
they do use analytical tools (e.g., Google Analytics) to learn 
about frequency distributions for commands. We learned 
that updating the hierarchy of commands (links on Web 
sites) in line with visitors’ expectations was a frequent task. 

Finally, when asked what kind of support they would de-
sire, the designers stated tools that “provide alternative ver-
sions of the current menu system” so that they “can com-
pare designs.” They also wanted to “check whether all 
commands are in the menu system.” 

While this pre-study interviews included only professionals, 
we believe that designing small-to-intermediate menus must 
involve a large number of applications and designers.  



 

RELATED WORK 
MenuOptimizer contributes to the areas of automatically 
generated interfaces [11,17,28], mixed-initiative design [16] 
and, in particular, to optimizer-assisted design. We concen-
trate on optimizer-assisted design here, identifying three 
sub-areas: 1) designs generated by one-shot (offline) opti-
mizers, 2) design guided by the output of an offline opti-
mizer, and 3) design optimization with a human in the loop.  

1. Offline (non-interactive) optimization has been used in 
HCI in the context of widget layouts [31], text entry 
[21,24,34], menus [14,23], accessibility [1213], and dialog 
layout [9]. Regarding menus, Goubko et al. [14] proposed a 
framework for optimizing menus on cellular phones. How-
ever, they impose a constraint on the menu structure, use a 
contrived predictive model [20], and describe neither the 
optimization method nor evaluate its outcomes. Matsui et 
al. [23] proposed an optimizer for hierarchical menus on 
mobile devices that is based on genetic algorithms and sim-
ulated annealing. As the objective function, they used the 
SDP model [5] and introduced two costs: that of favoring 
proximity between semantically related items and a granu-
larity cost to favor balanced hierarchies. Our optimization 
method also builds on the SDP model, but we introduce 
several necessary improvements, including a model of con-
sistency that can suggest item groupings. Importantly, we 
reject the constraint of balanced hierarchies, making the 
task harder but more realistic.  

2. Optimization results can be seeds for the design process. 
AIDE [32] initially computes a layout that the designer can 
then edit. At all times, the designer can compare the present 
layout with the precomputed optimum generated with the 
branch and bound method. In the design of Template	
  Gal-­‐
lery	
   (see Figure 2B), we follow the idea of comparing the 
present menu with the best known. MenuOptimizer also 
continuously provides suggestions during editing. 

3. To involve the designer in the optimization process 
[3,27,30]: Quiroz et al. proposed an interactive genetic al-
gorithm for generating widget layouts when no predictive 
models are available [27]. In each iteration, the designer 
chooses the best three designs out of ten to guide the opti-
mizer. While not addressing UI design, Scott et al. [30] 
proposed a technique in which the user can guide an opti-
mizer by constraining its search space during optimization.  

To our knowledge, interactive optimization of menus has 
not previously been studied. MenuOptimizer builds on ideas 
from the three areas mentioned above. 1) The optimizer can 
be used in offline mode; after defining items and user be-
havior, the optimizer searches for the best solutions. 2) 
MenuOptimizer also provides a visualization of suggestions 
that the designer can choose to follow, and guidance is of-
fered via comparison of the current menu with the best 
known. 3) MenuOptimizer does not assume perfect 
knowledge in the predictive model. Several interactions 
allow the designer to guide and focus the optimizer.  

WALKTHROUGH 
We introduce MenuOptimizer in a design scenario. The 
interface elements in parentheses refer to Figures 1–5. The 
scenario is divided into two stages: global and local editing. 

1. Global editing: Kim is designing a menu system for im-
age editing software with a set of 50 commands. Kim first 
states her command set by typing commands in an empty 
menu. Then, she explicates her assumptions about users and 
their frequencies of command selections (User	
  Profile	
  Panel). 
She uses a slider to indicate that she prefers to optimize for 
consistency instead of performance (Objective	
   Panel). Now 
the optimization problem has been set, the optimizer starts 
to propose menu designs, which are visible (Template	
   Gal-­‐
lery). Kim examines the gallery as the suggestions appear 
and selects one with four submenus and large logical 
groups. Two menus have titles that are given automatically. 

2. Local editing: Kim is not happy with the Crop	
  item	
  being 
far away from Select, so she moves the two together by 
drag-and-drop. The optimizer shows that this placement 
decreases a user’s average selection performance by 1.5%. 
Nevertheless, Kim moves the items because she wants to 
keep them together. Then, Kim follows the optimizer’s sug-
gestion to move Select	
   to the Edit menu (Suggestions). Kim 
then marks Undo, Redo, and a few other items with Locks 
because she wants to keep these items together. From now 
on, the optimizer only suggests designs maintaining this 
group. Finally, Kim finalizes the design by asking MenuOp-­‐
timizer to assign hotkeys. As the menu is created in 
QtDesigner, it can be easily instantiated in the application. 

This scenario should take about 15 minutes, with the time 
for the global and local phases split roughly half and half. 
To realize this scenario, we need 1) a predictive model of 
menu performance, 2) an optimization method, and 3) in-
teractions between the designer and the optimizer. We now 
present these three components. 

ADAPTING A PREDICTIVE MODEL FOR MENUS  
Model-based optimization critically relies on a valid and 
comprehensive predictive model. Several models of menu 
performance have been proposed [1,2,5,20,25]. We imple-
ment and extend the most recent model: the SDP model [5]. 
It covers four human factors: target acquisition, visual 
search, decision-making, and learning (see below).  

To assist the designer better, two adaptations have been 
made to the existing model. First, we extend the model to 
user performance with hierarchical menus attached to the 
menu bar. Second, the grouping of commands into sub-
menus or logical groups (marked by separator lines) is cen-
tral to menus. Such decisions should be informed by a no-
tion of “semantics”, indicating which commands belong 
together. Our informal tests suggested that user expectations 
of item groups from previous applications are central. Both 
designers and users expect certain commands to be together 
(e.g., Undo and Redo). Having these adaptations in the opti-
mizer frees the designer from the work of grouping items.  



 

SDP: A Predictive Model for Linear Menus 
SDP (Search–Decision–Pointing) is a three-component lin-
ear regression model that predicts the selection time of an 
item in a menu [5]: Search, the time to localize an item, 
increases linearly with the number of items in the menu. 
Decision is the time to decide from among items given the 
“entropy” determined by the frequencies of previous selec-
tions and given by the Hick-Hyman law. Pointing is based 
on Fitts’ law and predicts that items closer to the top are 
faster to select. Search and decision are modulated by the 
number of repetitions of an item. With practice, perfor-
mance shifts from being dominated by search (linear) to 
decision (logarithmic). Our model parameters are the same 
as  [5], but the designer can change them to test hypotheses. 
Adaptation 1: Menus Attached to the Menu Bar 
To deal with a menu system, a model must account for two 
aspects: 1) steering from one submenu to another and 2) 
menu bars. For the former, we use a steering cost, proposed 
in [1], that penalizes designs with deep submenu structures. 
For the latter, we assume that at the beginning of a selec-
tion, the cursor is on the left side of the screen and in the 
middle and that items have a width four times their height.  
Adaptation 2: Consistency Score for Grouping Items  
Here we propose a model that allows the optimizer to pro-
duce logical groups and hierarchies that are statistically 
consistent with other applications. To allow this, we built a 
database of item co-occurrences. The database currently has 
3,290 commands and 111,859 command pairs collected by 
a menu-logger tool [22] from 68 applications in Mac OS X. 
Using this database, we compute a score for the expected 
relative position of command pairs in a selected set of prior 
applications. Each command pair i, j has an expectation 
score E(i, j) between 0 and 1, representing the two com-
mands’ tendency to be close in prior menus. A higher score 
is given to pairs that tend to be in the same submenu and 
the highest to pairs that are always in the same logical 
group (e.g., Undo and Redo). The expectation score E(i, j) 
for a given menu is computed as follows: 
𝐸(𝑖, 𝑗) = !.!!

!!!!!
𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 𝑖, 𝑗 +𝑀𝑒𝑛𝑢 𝑖, 𝑗 + 𝐺𝑟𝑜𝑢𝑝(𝑖, 𝑗)  (1) 

where Hierarchy(i,j), Menu(i,j), and Group(i,j) each returns 
1 if i and j are in the same hierarchy (have a common an-
cestor), menu, or logical group, respectively; and 0 other-
wise. 𝐷!" is the shortest path in the hierarchy to reach j from 
i. Therefore, for command pairs that tend to be in a child–
parent relationship in the menu tree, the score is between 0 
and 1/3. The score is above 1/3 if they are in the same sub-
menu and greater than 2/3 if they are in the same group. For 
commands that are not in the database, we use a simple 
lexical similarity score: the number of shared words. 

𝐸!"#$%&! 𝑖, 𝑗 =
𝑐𝑜𝑚𝑚𝑜𝑛𝑊𝑜𝑟𝑑𝑠 𝑖, 𝑗

max   𝑙𝑒𝑛𝑔𝑡ℎ 𝑖 , 𝑙𝑒𝑛𝑔𝑡ℎ 𝑗
                                                    (2) 

For instance, E(Show	
   All	
   Bookmarks, Hide	
   Bookmarks) is 
1/3. For item pairs not sharing words, we assign a score of 
0.0. To calculate the average expectation score Eaverage, we 
average the expectation scores over selected applications.  

Evaluating the consistency of a given menu: Now, the com-
puted Eaverage(i, j) score can be used for determining a score 
for the consistency of a given menu system Cmenu over 
pairwise comparisons with its expectation score Emenu:  

C!"#$ =
|  𝐸!"#$ 𝑖, 𝑗 −!

!!!!!
!
!!!   𝐸!!"#$%" 𝑖, 𝑗   |

𝑛(𝑛 − 1)/2
,              (3) 

where n is the number of items in menu system M.  

This score has several desirable effects on the optimizer 
(one result is shown later in Figure 4):  

1. Item pairs that tend to be in the same logical groups are 
“pulled” together.  

2. Item pairs that cannot be positioned to match Eaverage 
are penalized, with the penalty depending on how far 
from the expected position they end up.  

3. Unrelated items are bumped from submenus whose 
other items are cohesive. 

In summary, we augment the SDP model with a consistency 
model to allow the optimizer to suggest item groups and 
form hierarchies. Optimizing consistency was our primary 
goal according to the results of the formative study. How-
ever, speed is also important for many users because even 
experienced ones do not always switch to hotkeys [19]. 
Moreover, improving speed does not always take place at 
the expense of groupings. For instance, an entire group can 
be moved. The optimizer must propose designs according 
to this dual objective. 

OPTIMIZER DESIGN 
In this section, we show that the problem of designing 
menu systems can be formulated as the Quadratic Assign-
ment Problem (QAP). Developed in operations research, 
the QAP is the task of assigning n facilities to n locations 
on a factory floor. The QAP is NP-hard, and optima for 
problems with n > 20 cannot be expected to be found [33]. 
Analogously, menu design is about assigning items to slots 
in submenus in a menu tree. This observation is important 
because it allows us to adapt an existing optimization meth-
od known to work well for this problem. 

Feedback 
latency (s) 

Search 
space 

Response Algorithm 

10-1 n Predicted command 
and menu performance 

Exhaustive search 

100 n2 Optimal command 
placement 

Exhaustive search 

101 n3 Menu swap/move sug-
gestions 

Exhaustive search 

100 n3 Improvement in menu  
designs 

Heuristic generation 

101 (2n)! 

 

Hill-climbing 
 

102 
 

(2n)! 
 

Ant colony optimizer 
 

103 
 

(2n)! 
 

Table 1: Optimizer responses on different time scales. 
 n = number of items in the menu system. 

 



 

Problem Formulation: Menu System Design as the QAP 
The letter assignment problem (i.e., virtual keyboard de-
sign) has been shown to be the QAP [4]. There, n letters 
must be positioned in m locations (keyslots) so as to mini-
mize typing times for a language. The goal is to minimize 
the cost cij of typing letter j when starting from letter i, typi-
cally given by Fitts’ law, and weighted by the probability pij 
in the digraph distribution. More formally, the goal is 

min
!∈!(!,!)

𝑝!"𝑐!(!)!(!)

!

!!!

!

!!!

,                                                                 4  

where C = [csr] is an m x m matrix and P = [pij] is an n x n 
matrix; P(n,m) is the set of all 1–1 (injective) mappings 
from {1, …, n} to {1, …, m}, corresponding to the place-
ment of the letters in these locations; and, 𝜓(𝑖) is the loca-
tion of letter i in the current solution 𝜓 ∈ 𝑃(𝑛,𝑚). Now, 
𝑝!"𝑐!(!)!(!) is the cost contribution of assigning letter i to 
location 𝜓(𝑖) and letter j to 𝜓(𝑗). This problem can be for-
mulated with a quadratic objective function [33]: Let xij be 
a binary variable that is 1 if letter i is assigned to location j, 
and 0 otherwise. Now, Eq. 4 is equivalent to  

min 𝑝!"𝑎!"𝑥!"𝑥!"

!

!!!

!

!!!

!

!!!

!

!!!

,                                        (5)   

where 𝑎!" is the cost of using keyslot l after keyslot k.  

The design of menu systems is a QAP, too: n commands are 
assigned to slots in k submenus that form a tree. Three dif-
ferences must be addressed for treating menu system design 
as the QAP. First, instead of transitioning from a previous 
command j in Eq. 4, SDP assumes each selection to start 
from the same position; no changes are needed to Eq. 4. 
Second, every additional factor in the cost function adds a 
sum term to Eq. 4. However, the formula collapses back to 
the quadratic form when one allows a larger cost matrix C. 
In the case of SDP, we have four coefficients: 1) the num-
ber of items in the menu, 2) the position of the target item, 
3) the number of trials for that item, and 4) decision entropy 
in that menu. Hence, a four-dimensional cost matrix is nec-
essary. We also need to consider that menus form hierar-
chies (trees). If there are k submenus and n items, they can 
be organized in (n + k)n+k-2 ways into a tree. It can be shown 
that, although this vastly expands P(n, m) (the set of map-
pings of items to locations in the tree), Eq. 4 still applies.  
Multi-scale Interactive Optimization 
We follow the multi-scale approach presented in Table 1: 
The goal is to generate immediate responses to the design-
er’s edits but improve them when more time is given:  
• Item-level responses in 10-1–101 seconds: The effects of 

edits on user performance are computed by an exhaustive 
search in 𝒪 𝑛! . User	
  Performance	
  Graph and item-level 
feedback for a case of n = 25 takes about 600 ms on a 
normal laptop. Move/Swap	
   Suggestions	
   are computed 
in  𝒪 𝑛! . To provide first suggestions rapidly, we start 
computation with the most frequent items. For a descrip-
tion of these UI features, please see the next section. 

• Rapid menu-system-level responses in 100–101 s: First, 
a heuristic menu generator provides the initial suggestions 
by arranging commands in a frequency-based order and 
creating menu hierarchies of depth 3 with a minimum of 
three commands per submenu. With optimization for 
consistency, related commands are also moved to be to-
gether. A greedy hill-climbing algorithm is initialized by 
the best designs found. It improves them by generating h 
x 10 designs by random local edits and taking the h best 
solutions for the next iteration (we use h=3). It runs for 
about 30s before handing over to the ant colony. 

The Ant Colony Optimizer: 102–103 seconds 
Although the greedy search produces reasonable solutions 
rapidly (see below), they are limited to a local optimum. To 
search globally, we apply a method that is known to work 
particularly well for the QAP. Ant colony optimization 
(ACO) [7] is based on the biological metaphor of an ant 
colony foraging for food. Multiple searchers cooperate to 
produce solutions according to a memory of past solutions. 

Implementation for Menu Systems 
To our knowledge, ACO has not yet been applied to menus. 
We use the Max-Min Ant System (MMAS) variant [33]. It 
ensures the exploration of the search space by imposing 
upper and lower bounds 𝜏!"# and 𝜏!"#  (respectively) to the 
pheromone level. To increase efficiency, only the best ants 
add pheromone. The pseudo-code for MMAS is: 

1. Initialize pheromone trails to 𝜏!"# 
2. WHILE (not converged) DO 
3.      FOR each ant 
4.            FOR each element i 
5.                  PlaceElement i 
6.      UpdateTrails 

In initialization, pheromone trails are set to 𝜏!"#. In each 
iteration, the odds of placing command i in slot j are 

𝑝!" =
𝜏!"(𝑡)

𝜏!"(𝑡)(!,!)∈!(!!)
  ,                                                                            (6) 

where N(sp) is the set of feasible placements and 𝜏!" 𝑡  is 
the pheromone value for location j. In the subsequent itera-
tion, pheromone is updated for the best ants according to 

𝜏!" 𝑡 + 1 ← 𝜌  𝜏!" 𝑡 + ∆𝜏!"!"#$  ,                                                     7  
where 𝜌 < 1 is the evaporation factor, ∆𝜏!"!"#$ = 1/
𝑓(𝑆!"#$), and Sbest is the best global solution.  

Hierarchies complicate optimization. Previous work has 
made simplifications to make the problem more tractable 
(see [14,23]) but did not explore unconstrained hierarchies 
or use a realistic cost function. To represent hierarchies, we 
use pointers to mark the locations of submenus in the parent 
menu. We also found the following techniques useful: 

1. Compression: Because the ants randomly place com-
mands, sparse placements arise. We “compress” menus 
by removing empty slots before pheromone deposit. 

2. Penalties for illegal structures: Ants generating menus 
wherein some commands are not accessible are penalized 
by a decrease in pheromone values for their solutions. 



 

3. Two-phased search: We first develop pheromone struc-
tures for valid hierarchies (all items included) and only 
then move on to focus on command assignment. 

4. Pheromone diffusion: Pheromone deposition is diffused 
1) for items close in consistency score and 2) to positions 
in neighboring submenus. 

Multi-Objective Optimization 
We implemented three scalarizations that collapse the nor-
malized objectives into a single variable: weighted sum, 
weighted Tchebycheff scalarization, and weighted square 
root sum. In our experience the weighted square root sum 
offers the most stable performance in the Pareto frontier. 

Parameter Setting 
Parameters were set by testing 1,152 combinations for the 
number of ants, 𝜌, the number of winners, and diffusion 
heuristics. Each was tested for 5,000 iterations for the Fire-­‐
fox	
   problem (see below). The winning configuration was 
further fine-tuned manually for a larger set of problems. 

USER INTERFACE DESIGN 
MenuOptimizer augments QtDesigner, a C++/Qt graphical 
user interface builder used by novice and expert software 
designers alike. MenuOptimizer	
   can be used exactly like 
the regular QtDesigner. A designer can manipulate a menu 
system by adding, removing, and moving items, groups, 
and submenus by direct manipulation. The optimizer-
produced features are reviewed here in three main catego-
ries. An overview of the UI is provided in Figure 2. 

Model-based Feedback for Design Choices 
Metrics and visualizations that summarize the current status 
of an interface arguably help designers to take into account 
elements that can be difficult to perceive; they inform and 

justify design choices; and they can be referred to when one 
is communicating a design to others [32]. MenuOptimizer 
provides SDP-based feedback at two levels: 

Items: The user performance and selection frequency for 
each item are visually represented in a place underneath it 
(see Figure 1A). The width of the line indicates frequency: 
more frequent commands have longer lines. The color gra-
dient indicates user performance over time for the item. 

Menu system: User	
   Performance	
   Graph	
   (see Figure 2E) 
shows the average selection times for each user over time. 
The Template	
  Gallery	
  plot in Figure 2C shows the currently 
chosen menu against suggestions by the optimizer.  

Suggestions for Improvement 
A major feature of MenuOptimizer is its improvement sug-
gestions. A key difference from previous systems [32] is 
that several suggestions are offered both locally and global-
ly (a multi-scale approach). Menu-level suggestions are 
updated whenever the optimizer finds a better solution. 

Menu system: Template	
  Gallery	
  (Figure 2C) is a key feature 
of MenuOptimizer: It updates the optimizer’s suggestions 
(templates) for menu systems that have a higher objective 
score than the present design does. Three features assist the 
designer in decision-making and exploration: 

1. Pareto front plot: Templates are organized in a scatter 
plot to emphasize the tradeoff between selection time 
(y-axis, predicted by SDP) and consistency (x-axis, from 
Eq. 2). The plot shows the evolution of the Pareto opti-
mality frontier: the frontier where it is not possible to im-
prove for one objective without being worse for the other.  

2. Distance of a template to the menu system currently edit-

 
Figure 2: MenuOptimizer integrates optimizer-based assistance into the QtDesigner	
  interface: A) The menu is edited. B) Objective	
  
Panel allows the designer to set the weights for three optimization objectives: performance, consistency, and similarity to the pre-
sent menu. C)	
  Template	
  Gallery shows new menu system suggestions (�) on a Pareto front plot with user performance (y-axis) and 
consistency (y-axis) and (D) a preview of the menu. The current menu system (X) is shown to aid in comparison. E) User	
  Profile	
  
Graph	
  shows predicted performance for each user. F) Association	
  Panel allows editing of assumptions about how closely related 
command pairs are. 



 

ed is indicated by the size of the marker. A small circle 
indicates that only a few changes (moves of items) dis-
tinguish the two designs. This dimension is useful for de-
signers who may at a later stage of design, want to con-
strain improvement suggestions to local changes. 

3. Preview: The template content is previewed when the 
mouse is hovered over the marker. By clicking, the de-
signer replaces the current menu with the proposed tem-
plate. Figure 2D shows the preview. 

Submenus: MenuOptimizer provides Move/Swap	
   Sugges-­‐
tions for a submenu (Figure 1D) and between submenus. 
The arrows indicate where to move an item to improve the 
user’s average selection time. Swap suggestions are marked 
with a double-headed arrow. A box adjacent to the arrow 
indicates the percentage gain. So as not to overload the dis-
play, we display only the three best suggestions at a time. 

Items: Designers can also select a command in the menu 
(click with timeout), and the system renders a colored line 
next to each item to indicate whether that position would 
improve or worsen the current menu design. 

Separator assignment: On the basis of a predefined thresh-
old for consistency score C(i, j), MenuOptimizer automati-
cally assigns separators that mark groups of adjacent items. 
Computation is done in linear time by comparing consisten-
cy scores for adjacent items. Examples of outcomes are 
shown later in the paper, in Figure 4. 

Hotkey Assignment: Upon request, MenuOptimizer assigns 
hotkeys. Because this important feature is not taken into 
account by the predictive model, we use a rule-based ap-
proach: First, we assign the most common command–
hotkey associations (e.g., Ctrl+S for Save), to maintain con-
sistency with expectations. We then assign hotkeys in fre-
quency-based order, using the first letter of the command. 
Modifiers (e.g., Shift) are added if collisions occur.  

Title suggestions: We use the command database to derive 
candidate titles for submenus. For each submenu, we choose 
the label that is shared by the most commands (voting) as a 
title. The strategy is conservative: In the case of multiple 
candidates, no title is suggested to avoid forcing the desi-
gner to make corrections. An example is shown in Figure 4. 

Editable Objectives and Assumptions 
Key aspects of the objective function are directly editable. 
This forces designers to explicate their assumptions and let 
them see the implications of these assumptions in real time 
as the optimizer updates its search problem and visualiza-
tions accordingly. It allows them to test different design 
ideas and explore the robustness of their design with differ-
ent assumptions about users. 

User profiles: The optimality of a menu depends on the 
target users and their assumed selection behavior. MenuOp-­‐
timizer allows an arbitrary number of users, each with 
unique distribution of selections. Internally, a user is repre-
sented as a sequence of item selections. User	
  Profile	
  Panel 
lets designers add users and choose different frequency 
distributions for commands by clicking and dragging their 
distribution graphs (Figure 3). An additional feature is the 
loading of distributions from log files: CSV-formatted log 
files rendered as distributions that are also directly editable.  

 
Figure 3. User	
  Profile	
  Panel	
  shows directly editable distributions 
of item selections by users. Designers can change the frequency 
(A) and the distribution (B).  

Locking of item groups: At some point, the designer may 
want to keep certain items together. Locks (Figure 1F) can 
be used to constrain items to groups [30] such that subse-
quent suggestions by the optimizer keep them intact. This 
mechanism also accelerates optimization because the 
locked groups reduce the size of the search space. 

Submenu optimization: The user can ask the optimizer to 
optimize only a submenu. The submenu is made inactive 
for about 10 seconds, during which the optimizer searches 
for local improvements to this submenu. The suggested 
improvement can be previewed in place before acceptance. 

Association Panel: Designers can edit the automatically 
suggested co-occurrence scores for command pairs to affect 
the groupings of items (Figure 2F). They	
   can mark two 
commands as “Strongly related,” “Related,” “Slightly relat-
ed,” or “Unknown” simply by clicking the cells. 

 
Figure 4: A menu system for the Firefox case proposed after 20,000 iterations (~15 minutes). The objective function had a 
weight of 75% for consistency and 25% for user performance (asterisks indicate the 3 most frequent items from 50 users’ logs). 



 

IMPLEMENTATION  
To maintain a high level of interactivity in the editing inter-
face, we use a client–server architecture wherein the opti-
mizer runs on a second computer and communicates its 
suggestions over XMPP. The optimizer is implemented in 
Python. Ants are parallelized to accelerate the search. The 
optimizer is fast enough to run on a regular laptop. We use 
a MacBook Pro 2.8 Ghz with 8 GB of RAM for all exam-
ples reported in this paper.  

TECHNICAL ASSESSMENT 
This section reports on qualitative and quantitative evalua-
tions of the optimizer system. Because the desirable 
tradeoff between quality and speed is designer- and appli-
cation-dependent, we report tests for short-to-mid-term per-
formance and also a benchmark for long-term performance.  

Case Studies: SeaShore and Firefox 
To assess the quality of the suggestions of the optimizer, we 
show outputs for two cases: a browser (Firefox) and an im-
age editor (Seashore). Both have ~50 items. The goal for 
Firefox was to improve its menu design, given logs of real 
users [10], from which we chose a random sample of 50. 
Seashore	
  emulates the case wherein a designer is creating a 
menu system from scratch. The input is a list of commands 
and our estimates of user behavior. To avoid bias, we use a 
database for consistency scores (Eq. 2) that does not include 
the two applications. Output for Firefox after 20,000 itera-
tions (or 15 minutes on a laptop), is presented in Figure 4 
(not handpicked). We can observe the following: 

• A system with seven submenus was created with no sub-
submenus. 

• There are many logical groups that are consistent with 
other applications (e.g., Undo,	
  Redo).	
  The group Delete-­‐
Paste-­‐Copy-­‐Cut is interesting. The four are grouped to-
gether (consistency) so that users can find them. Moreo-
ver, Paste has been moved up because it is the most fre-
quently of the four. 

• Because 15 minutes is not sufficient to explore the entire 
search space, some groups are not optimal (e.g book-
marking commands) 

• Three menus were given a title by the optimizer. The 
others would require edits by the designer. 

• Because consistency was preferred (75%) for this case, 
some frequently used items are not prominently placed. 

We give examples for Seashore in Appendix. The observa-
tions are similar and show that the optimizer is not over-
calibrated to the Firefox problem. Runtimes for Seashore 
are about one third due to fewer users. 

Temporal Performance  
Parameters of the optimizer system were originally cali-
brated to a scenario allowing a few minutes. To evaluate its 
ability to improve designs over time, we performed 25 runs 
of 10,000 iterations (~10 min) for the two optimizers in the 
system: the greedy searcher and ACO. Seashore and Firefox 
were used as cases. Figure 5 shows the average temporal 

performance of the ant colony optimizer against greedy 
search. A crossover is seen at around 300 iterations (~20 s). 
After that, ACO is preferable.  

However, the optimizer should, in theory, be useful for dif-
ferent classes of interface problems as long as they can be 
subsumed to the QAP. We therefore tested it in the context 
of virtual keyboards. This test is indicative of the perfor-
mance of ACO when calibrated for a long-term task. Our 
benchmark is the Metropolis keyboard optimized in [34]. 
We created a version of ACO that uses exactly the same 
objective function: Fitts’ law parameters for stylus move-
ment and digraph frequencies. Parameters were set in a 
separate trial; we then conducted runs of 50,000 iterations.  

Figure 6 shows the distribution of best-found solutions, in 
comparison to the Metropolis keyboard. The best-found 
keyboards from ACO were systematically better than Me-
tropolis. The best, JUSTHCI, named for the sequence of the 
first letters on the second row, improves on Metropolis’s 
words per minute (WPM) by 1.8 percent.  

 
Figure 6: Results of long-term optimization benchmarked 
against the Metropolis keyboard [34]. The JUSTHCI key-
board (43.9 WPM) outperforms Metropolis (43.1 wpm). 

PRELIMINARY USER STUDY 
The focus of our user study was on the joint performance of 
the designer and MenuOptimizer. We compared novice 
designer performances with and without MenuOptimizer in 
the task of designing medium-complexity (37 and 52 items 
for Arduino and Seashore, respectively) menus, with a fo-
cus on the effect of the functionality that we hypothesized 
would help the most: using the menu design suggestions 
appearing in Template	
  Gallery as a basis for editing a menu. 
We were also keen to understand how users use Template	
  
Gallery and learn about their rationale for edits.  
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Figure 5: Temporal performance of the optimizer system 
for the Firefox and Seashore case. In our test setup, 10,000 
iterations takes about 10 minutes. 
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Participants. Twelve participants without background in 
menu design (5 females) aged 22 to 44 were recruited from 
the local university. They received a compensation of 15€.  

Experimental design: The study follows a 2 x 2 within-
subjects design with Condition (MenuOptimizer vs. 
QtDesigner) and Task as the factors (see below). The order 
of the two factors was counterbalanced. 

Tasks. The stated task was to organize commands in a usa-
ble menu system such that its users will easily “understand 
it” and be able to “quickly select commands.” To avoid 
order effects, two versions were created: Seashore and Ar-­‐
duino. The first had 52 commands related to image manip-
ulation, the second 37 concerning electronics programming. 
Tasks were presented on a sheet of paper showing a list of 
commands with definitions and frequencies. 

Procedure. Participants were first instructed in the task and 
training was carried out with a predefined menu (different 
from those used during the experiment) for 15 minutes. In 
both conditions, a single menu was initially filled in with all 
the commands to let participants focus on organizing com-
mands rather than on entering their names in the interface. 
Participants could freely move, insert, and remove items 
and submenus. With MenuOptimizer, they could also use 
in-place item-level feedback, User	
   Performance	
   Graph, 
Evolution	
   Graph, and Template	
   Gallery. Participants had 
25+15 minutes to perform the task with each system. A 
semi-structured interview was performed after the study. 

Results 
For statistical analysis, we used 2 (Condition) x 2 (Task) 
ANOVA. The effect of Condition on time on task was not 
significant (M=23 mins). Users in both conditions spent 
about the same amount of time editing their menus. Users 
were also equally satisfied with their designs in both condi-
tions: the difference in quality ratings between QtDesigner 
menus (mean Likert rating: 4.4, σ=1.4) and MenuOptimizer 
menus (M=4.1, σ=1.5) was not statistically significant. 
However, users made significantly fewer edits (37.5%) 
when using MenuOptimizer than with QtDesigner	
  
(F1,20=8.15, p =.01), as shown in Figure 7. 

User-produced menus were evaluated against model-based 
predictions of 1) selection time and 2) consistency score 
(see Figure 8). The same statistical test was used as above, 
but one menu design was excluded due to a technical prob-
lem. First, designs produced with the help of MenuOpti-­‐
mizer (M=2.36s, SE=0.018) are faster than QtDesigner 
(M=2.41s, SE=0.017) but the statistical test was borderline-
significant (F1,19 =4.30, p=0.052). Second, the consistency 
score of MenuOptimizer designs is the same than the one of 
QtDesigner (both M=0.088, SE=0.005). However, an inter-
action effect was observed, F1,19=5.37, p=0.032. Menus 
designed with MenuOptimizer had slightly better con-
sistency scores for the more complex task (Seashore; 
M=0.078 versus 0.094, respectively), whereas scores were 

worse for the simpler task (Arduino) (M=0.099 versus 
0.083). (lower score is better.) 

Observations 
Workflow. All users adopted a top-down cascade strategy. 
They started by using the template	
  gallery. Then, they per-
formed sub-menu level optimization and edits.  

Template Gallery. Template	
  Gallery was used differently by 
different users. Some did not have the patience to wait for 
good designs and instead selected the first available tem-
plate and started editing it. Some selected several templates 
before starting to edit, sometimes only guided by scores in 
the Pareto plot. Finally, some users used the templates only 
for inspiration. For instance, one user intensively compared 
the current menu with suggested templates. 

Item Feedback. Users reported that the item-level perfor-
mance feedback (Figure 1A) is useful because it reminded 
them to focus also on the performance objective, and it mo-
tivated them to move frequent items to the top of groups or 
menus. However, most users did not understand the color 
coding. According to the SDP model, the selection time of 
an item decreases as a function of repetitions rather than as 
a function of position in the menu. It is, therefore, possible 
to have a green line for frequent items even if they are deep 
in the hierarchy. This was found to be confusing. 

Rationale for edits. Most users mentioned focusing on 
groupings rather than selection time because this is the most 
important objective. One participant mentioned focusing on 
groupings here because the hierarchy was “quite small” but 
would focus more on selection time for large ones. All us-
ers except one started by grouping items and only after-
wards, if at all, focused on selection time. 

 

  
Figure 7: Number of edits required for completing the task. 

 
Figure 8: Selection time and consistency score for user-

produced designs. Bottom left designs are better. 



 

Discussion 
This study is a first step to understand interactive optimi-
zation. Our experimental design had to adhere to the con-
straint of lab studies, and only 15 minutes of practice was 
given to explain MenuOptimizer. However, novice design-
ers already produced designs they were equally happy with 
significantly less effort. 

The study also provides useful recommendations for the 
design of MenuOptimizer and more generally interactive 
optimization systems. First, item feedback should stay sim-
ple enough that it does not introduce confusion. For in-
stance, encoding only frequency would probably have been 
sufficient. Second, the optimizer should even quicker pro-
vide a first acceptable design to start with because many 
users do not have the patience to wait for better designs. 
Third, many designers seemed to favor the quality of group-
ings over performance in the beginning stages of design. 
Our heuristic first-response optimizer worked better for the 
performance objective but there is room to improve on the 
grouping aspect to make the suggestions more readily usa-
ble. Finally, while MenuOptimizer lets designers compare 
menu designs with produced templates, it seems important 
to provide more comparative tools. For instance, by com-
paring existing designs with previous ones at different lev-
els (menu systems, submenus). 

This study also has several limitations requiring additional 
evaluations and, in particular, longitudinal studies. The time 
for designing a menu was limited to 30 minutes. With more 
time, designers can probably better handle functionalities 
and refine their strategies. Moreover, the evaluation was 
performed by novice users with medium size menus. More 
work is needed to understand the needs and behaviors of 
professional designers. Finally, the 24 produced menus 
should be experimentally evaluated by final users to evalu-
ate the real impact of MenuOptimizer on user performance. 

CONCLUSION AND FUTURE WORK 
This paper has investigated interface and optimizer design 
for the interactive optimization of menus. We extended the 
predictive model of menu performance by introducing a 
metric for consistency that allows the generation of menu 
hierarchies and item groups. We proposed MenuOptimizer, 
an interface providing feedback methods and proactive 
suggestions to operate menus at different levels of granular-
ity: items, menus, and menu systems. This changes the de-
sign process. Instead of organizing items one by one, the 
designer specifies the problem and starts the design process 
on the basis of a template, and the system assists the de-
signer in further edits. We have shown that the menu design 
problem can be formulated in terms of a QAP problem and 
we proposed an adaptation of the ant colony meta-heuristic 
that better matches the requirements of interactive and itera-
tive design.  

There are two kinds of evidence for the usefulness of this 
approach: 1) A user study shows that novice designers gen-
erate designs that equally satisfy them but with 38% less 

editing. 2) The temporal response curve of the optimizer 
system better suits interactive editing tasks than the prevail-
ing “fire or forget” approach.  

Finally, we see several opportunities to improve our ap-
proach. 

Menu systems. The present work is limited to linear menus 
and should be extended to cover hotkeys, ribbons and pal-
ettes. We are currently working on a predictive model of 
learning and adoption of hotkeys. 

Semantics. “Semantics” is a strong factor in menu use. Our 
approach was to use the consistency of item collocation as a 
secondary optimization objective. Although it allows 
grouping items and setting a hierarchy, it does not take into 
account the fact that semantics is actually a cognitive factor 
(or many). Ideally, semantics would be part of the predic-
tive model. Improvements are possible via integration of 
knowledge of relationships like synonyms, antonyms, or 
tools such as Wordnet or LSA. Previous work in modeling 
users’ navigation in hierarchies could also provide a useful 
starting point for this work [18].  

Predictive model. More generally, developing predictive 
models is the key to understanding user behavior and de-
veloping optimization methods. Existing models should be 
empirically validated in the field: The question is still open 
whether behavior predicted by such models actually hold 
for end-users in longer-term use. 

Scalability. Our optimizer presently deals well with medi-
um size menu systems (~50 items). We are yet to see how it 
scales up as the number increases to hundreds. We believe 
that for such cases, both the optimizer and the interface will 
need to better guide the designer to partition a problem. For 
instance, the Layer menu in PhotoShop has 30 items, and is 
a design problem of its own. 
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