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Abstract13

We study the problem of multicommodity flow and multicut in treewidth-2 graphs and prove14

bounds on the multiflow-multicut gap. In particular, we give a primal-dual algorithm for computing15

multicommodity flow and multicut in treewidth-2 graphs and prove the following approximate16

max-flow min-cut theorem: given a treewidth-2 graph, there exists a multicommodity flow of value f17

with congestion 4, and a multicut of capacity c such that c ≤ 20f . This implies a multiflow-multicut18

gap of 80 and improves upon the previous best known bounds for such graphs. Our algorithm runs19

in polynomial time when all the edges have capacity one. Our algorithm is completely combinatorial20

and builds upon the primal-dual algorithm of Garg, Vazirani and Yannakakis for multicut in trees21

and the augmenting paths framework of Ford and Fulkerson.22
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1 Introduction29

Given an undirected graph with edge capacities and k source-sink pairs, the maximum30

multicommodity flow problem asks for the maximum amount of flow that can be routed31

between the source-sink pairs. If the flows are restricted to be integral, then the problem is32

called the maximum integral multicommodity flow. An important special case of this problem33

is the maximum edge disjoint paths problem, where the objective is to find the maximum34

number of source-sink pairs that can simultaneously be connected by edge-disjoint paths.35

In a multicommodity flow with congestion c, an edge may be used by up to c flow paths.36

The maximum edge disjoint paths problem is NP-Hard, even in very restricted settings such37

as when the graph is series-parallel [14]. Maximum edge disjoint paths problem is hard38

to approximate in general (even with congestion, see Section 2.1 for further discussion).39

Multicommodity flow problems have been studied extensively over the last five decades and40

find extensive applications in VLSI design, routing and wavelength assignment etc. [17].41
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55:2 Multicommodity Flows and Multicuts in Treewidth-2 Graphs

A natural dual to the maximum multicommodity flow problem is the minimum multicut42

problem. Given an edge-capacitated graph with k source-sink pairs, a multicut is a set of43

edges whose removal disconnects all the source-sink pairs, and the capacity (or value) of the44

cut is the sum of capacities of the edges in it. The value of any feasible multicommodity45

flow is at most the capacity of any feasible multicut. The ratio of the values of the minimum46

multicut and maximum multicommodity flow is called the multiflow-multicut gap. The ratio47

of the values of the minimum multicut and maximum multicommodity flow with congestion-c48

is called the multiflow-multicut gap with congestion c. In case c is 1 or 2, we call it the49

integral or half-integral multiflow-multicut gap respectively. Minimum multicut is NP-Hard50

to compute, even in very restricted setting such as trees [11]. More precisely, it is known to51

be equivalent to the vertex cover problem in stars with unit weights [11], which implies that52

it is APX-Hard in series-parallel graphs. There is a rich literature on proving bounds on the53

multiflow-multicut gap. Perhaps the most famous of them is the max-flow min-cut theorem54

of Ford and Fulkerson [7], which states that the value of the minimum multicut is equal to55

the maximum (integral) flow when k = 1. Hu [12] extended the result of Ford and Fulkerson56

to show that the multiflow-multicut gap is 1 even when k = 2. Another tight example,57

closely related to our work, is the case where the graph obtained by adding an edge for each58

source-sink pair is series-parallel [5]. There are many other special cases where the multiflow-59

multicut gap is 1, for example when G is a path or a cycle, but in general it can be arbitrarily60

large. Garg et al. [10] proved a tight bound of Θ(log k) on the multiflow-multicut gap for61

any graph G. For Kr minor-free graphs, Tardos and Vazirani [16] used the decomposition62

theorem of Klein et al. [13] to prove a bound of O(r3) on the multiflow-multicut gap. The63

integral multiflow-multicut gap can be Ω(
√

|V |), even for planar graphs (see Figure 1).64

Garg et al. [11] gave a tight bound of 2 on the integral multiflow-multicut gap when65

G is a tree. For graphs of treewidth r, Abraham et al. [1] gave a bound of O(r) on the66

multiflow-multicut gap by rounding a natural linear programming relaxation. Chekuri et67

al. [3] and Ene et al. [6] showed how to round a fractional multicommodity flow solution into68

an integral one by losing a factor of O(r3). Combining their results gives a bound of O(r4)69

on the integral multiflow-multicut gap for graphs of treewidth r. Note that this implies a70

O(1) bound on the multiflow-multicut gap for treewidth 2 graphs. All the results mentioned71

above are algorithmic in nature and also imply an approximation algorithm for the (integral)72

multicommodity flow and multicut problems. Except for the case when G is a tree, all the73

results mentioned above are proved by rounding a natural linear programming relaxation to74

the problem.75

We extend the augmenting paths framework of Ford and Fulkerson [7] to develop a primal-76

dual algorithm for multiflow and multicut for treewidth 2 graphs (see Theorem 2). It is a well77

known fact that the augmenting paths framework cannot be used for multicommodity flows78

in general. To the best of our knowledge, this is the first time augmenting paths framework79

has been adapted (in a non-trivial manner) for developing an algorithm for multicommodity80

flows and multicuts.81

A simple topological obstruction of Garg et al. [11] shows that the integral multiflow-82

multicut gap is Ω(r) for graphs with treewidth r (see Figure 1). Chekuri et al. [2] and Ene83

et al. [6] raised the question if the integrality gap of the natural linear programming for84

multicommodity flows is O(r) for graphs with treewidth r. We believe that the topological85

obstruction of Garg et al. [11] gives the best possible lower bound on the integral multiflow-86

multicut gap for graphs of treewidth r. To this end, we make the following conjecture, which87

strengthens the one stated by Ene et al. [6].88

▶ Conjecture 1. The integral multiflow-multicut gap for graphs with treewidth r is Θ(r).89
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Figure 1 In the above instance, all the edges have unit capacity and hence only one source-sink
pair can be connected by edge-disjoint paths. We need at least k edges to disconnect all the
source-sink pairs and hence the integral multiflow-multicut gap is at least Ω(k). The graph has a
treewidth of Θ(k). This shows that the integral multiflow-multicut gap can be Ω(r) for graphs with
treewidth r.

It is known that the integrality gap for the linear programming relaxation for the multicut90

and the integer multicommodity flow for treewidth r graphs is Ω(log r) and Ω(r) respectively.91

Hence, any algorithm which rounds the linear programming relaxation for multicommodity92

flow and multicut separately won’t be able to resolve this conjecture. We believe that a93

primal-dual algorithm, which works with multicommodity flow and multicut simultaneously94

will lead to the resolution of this conjecture. We also believe that the techniques we develop95

in this paper makes important progress towards developing such an algorithm.96

2 Our Contribution97

As already noted in Section 1, results of Abraham et al. [1] and Ene et al. [6] imply an98

O(1) bound on the (integral) multiflow-multicut gap for treewidth 2 graphs, albeit with a99

large (unspecified) constant. Our main technical contribution is developing the first primal-100

dual algorithm for multiflow and multicut for treewidth 2 graphs. We prove the following101

approximate max-flow min-cut theorem for treewidth 2 graphs (see Section 3 for precise102

definitions):103

▶ Theorem 2. Let G be an undirected, (integer) edge capacitated treewidth 2 graph and104

{(si, ti)}k
i=1 be the source-sink pairs. Then there exists an integral multicommodity flow of105

value f with congestion 4 and a multicut of value c such that c ≤ 20f . Furthermore, there106

exists a primal-dual algorithm that computes such a flow and cut in time polynomial in size of107

the graph and the largest capacity. For unit capacity graphs, the algorithm runs in polynomial108

time.109

Our proof of Theorem 2 is completely combinatorial and does not require us to solve a110

linear program. It is based on the primal-dual framework. This leads to a more explicit111

algorithm and sheds further light on the structure of the multicuts and multicommodity flows112

in treewidth 2 graphs. All previous algorithms for computing multicommodity flows and113

multicuts were based on rounding the standard linear programming relaxation (except for114

some special cases, see Section 2.1). In many combinatorial optimization problems, algorithms115

based on the primal-dual schema give (near) optimal bounds on the approximation ratio,116

and we hope that further extensions of our approach will lead to tight results in the context117

of this problem as well. We would also like to point out that the bounds of Theorem 2 are118

the best known.119

APPROX/RANDOM 2022



55:4 Multicommodity Flows and Multicuts in Treewidth-2 Graphs

The broad outline of our proof follows the Ford-Fulkerson algorithm for computing the120

maximumum (s, t)-flow and minimum (s, t)-cut in a graph. Since multiflows and multicuts121

are linear programming dual of each other, our algorithm can also be seen as a primal-dual122

algorithm. In each iteration, we increase the total flow by performing an augmenting step,123

ie. rerouting previously routed flow paths. This is done by generalizing the well known124

augmenting paths framework of Ford and Fulkerson [7] for single commodity flow. This125

generalization requires new ideas as it is well known that the augmenting paths framework126

can not be used directly for multicommodity flows. We then use the reachability graphs127

defined by the flows at the end of the algorithm to find a multicut for the instance, which128

can also be seen as generalisation of the cut-picking algorithm of Ford-Fulkerson [7].129

The problem of computing minimum multicut can be formulated as an integer linear130

program. We can relax the integrality constraints to obtain a linear programming (LP)131

relaxation for multicut. The ratio between the optimum solution to the integer program and132

the LP relaxation is called the integrality gap of the relaxation. Theorem 2 also implies the133

same bound on the integrality gap of the integer programming relaxation for multicut in134

treewidth 2 graphs.135

In Section 3, we formally define the problem statement and state the connection between136

treewidth 2 and series-parallel graphs. In Section 4, we give a quick overview of the137

augmenting paths algorithm of Ford-Fulkerson [7] for the single commodity case. In Section138

5, we illustrate the basic ideas of our algorithm for a special case, ie. parallel-path graphs. In139

Section 7 and Section 8, we give the full algorithm for series-parallel graphs. We then go on140

to show how to pick a multicut in Section 9.141

2.1 Other Related Work142

Garg et al. [11] gave a primal-dual 2-approximation algorithm for finding an integral mul-143

ticommodity flow and multicut for trees. Their result also implies a tight bound on the144

integral multiflow-multicut gap for trees. By combining the results of [8, 9], we can obtain a145

primal-dual algorithm for computing a multicut and integral flow when the graph obtained by146

adding an edge for every source-sink pair to G is planar. These also imply a tight half-integral147

multiflow-multicut gap of 2 and integral multiflow-multicut gap of 4 for such instances. To148

the best of our knowledge, there are no other completely combinatorial algorithm proving149

bounds on the multiflow-multicut gap for non-trivial class of instances.150

The problem of finding maximum edge disjoint paths is NP-Hard, even in very restricted151

settings [14]. There is an O(
√

n) approximation algorithm for finding maximum edge disjoint152

paths in general (undirected) graphs on n vertices [2]. This also matches the integrality gap153

of the natural linear programming relaxation for the problem [11]. Recently, Chuzhoy et al.154

showed that it is not possible to approximate the maximum edge disjoint paths problem155

better than 2Ω(log1−ϵ n) under reasonable hardness assumptions and it is an outstanding open156

problem to improve the O(
√

n) approximation algorithm, even for planar graphs. If we relax157

the edge-disjointedness condition and allow every edge to be used by up to c paths for some158

integer c ≥ 2, then the problem is called the maximum edge disjoint paths with congestion c.159

A long line of impressive work culminated in a O(polylog n) approximation algorithm for160

general graphs [4] and a constant factor approximation algorithm for planar graphs [15] when161

a congestion of 2 is allowed. Both these results also imply the same bound on the integrality162

gap of the natural linear programming relaxation. The exact integrality gap of the maximum163

edge disjoint paths with congestion 2 for Kr minor-free graphs is still not known and is an164

interesting open question.165



T. Friedrich, N. Kumar, D. Issac , N. Mallek and Z. Zeif 55:5

3 Preliminaries166

Let G = (V, E) be a simple undirected graph with edge capacities c : E → Z≥0; we call this167

the supply graph. Let H = (V, F ) be a simple graph each edge of which corresponds to a168

commodity and the endpoints of that edge are the source-sink of that commodity. H is the169

demand graph and its edges the demands.170

Let P be the set of all paths in G between a source and its corresponding sink. For a171

path P ∈ P , we refer to fP as the value of flow on P . A multiflow f : P → R≥0 is feasible if172

for every edge e ∈ E, the total flow on all paths containing the edge,
∑

P :e∈P fP , is at most173

the capacity of the edge, c(e). We say that a multiflow has congestion l if the flow paths174

are allowed to use an edge up to l times its capacity, ie.
∑

P :e∈P fP ≤ l · c(e). If the value175

of flow on every path is an integer (resp. half-integer), then the flow is called an integral176

(resp. half-integral) multiflow.177

A maximum multiflow is a feasible flow f which maximises
∑

P ∈P fP . A multicut is a178

set of edges E′ ⊆ E such that every P ∈ P contains at least one edge in E′. Equivalently,179

a multicut is a set of edges whose removal disconnects every source-sink pair. Since a180

multicut contains an edge of every path in P, the value of any feasible multicut is at least181

the value of any feasible multiflow. The ratio of the minimum multicut to the maximum182

(integral/half-integral) multiflow is called the (integeral/half-integral) multiflow-multicut gap.183

A cut S ⊆ V is a partition of the vertex set (S, V \ S). Let δE(S) denote the edges in E184

with exactly one endpoint in S. For a subset E′ ⊆ E let c(E′) be the total capacity of edges185

in E′. Let δmin(u, v, G) denote the minimum value cut between u and v in G.186

187

Series-Parallel Graphs: We will mostly focus on 2-terminal series-parallel graphs as188

the problem in treewidth-2 graphs can be easily converted to one in 2-terminal series-parallel189

graphs (see Proposition 3). From now on, we omit 2-terminal series-parallel graphs as simply190

series-parallel graphs. We will use a well known recursive definition of series-parallel graphs.191

A series-parallel graph has two distinguished vertices (also called the merge vertices) u, v.192

An edge is a series-parallel graph with its endpoints as the two merge vertices. Starting from193

an edge, any series-parallel graph can be constructed by two operations: parallel and series194

composition. Given two series-parallel graphs G1, G2 with merge vertices (u1, v1), (u2, v2), a195

parallel composition Gp of G1, G2 is constructed by setting u = u1 = u2, v = v1 = v2 and196

(u, v) as the merge vertices. Given two series-parallel graphs G1, G2 with merge vertices197

(u1, v1), (u2, v2), a series composition Gs of G1, G2 is constructed by setting v1 = u2 and198

(u1, v2) as the merge vertices. See Fig. 6 for an illustration. Consider k ≥ 2 simple node199

disjoint paths P1, P2, . . . , Pk between two vertices u, v. We call such a graph a parallel-path200

graph. In other words, parallel-path graphs have two distinguished vertices u and v and201

consist of internally vertex-disjoint u-v paths.202

203

Series-Parallel Tree Decomposition: For a series-parallel graph G, we associate with204

it a tree-decomposition T (G). This is the canonical tree-decomposition of a series-parallel205

graph and consists of either 2 or 3 vertices in each bag. The tree-decomposition T (G) can be206

defined recursively as follows: if G is just an edge {u, v} then T (G) consists of a single bag207

{u, v}; if G is a parallel-composition of G1, G2, . . . , Gr with merge vertices u and v, then208

T (G) is obtained by taking the bag R = {u, v} as the root and adding edges from R to the209

root of each of T (G1), T (G2), . . . , T (Gr); if G is a series composition of G1, G2 with merge210

vertices u, v and the common merge vertex of G1 and G2 being w, then T (G) is obtained211

by taking the bag R = {u, v, w} as the root and adding edges from R to the root of each of212

APPROX/RANDOM 2022



55:6 Multicommodity Flows and Multicuts in Treewidth-2 Graphs

T (G1) and T (G2). We will use T throughout to denote the series-parallel tree-decomposition213

of the input series-parallel graph G, and for a node X of T , we use TX to denote the sub-tree214

of T rooted at X. Also, we use GX to denote the graph induced in G by the union of vertices215

in all the nodes in TX .216

We will work with series-parallel graphs in the paper. But the results apply also to217

treewidth-2 graphs because of the following proposition.218

▶ Proposition 3. Given an edge-capacitated treewidth-2 graph G and source-sink pairs T ,219

one can in polynomial time find a series-parallel graph H ⊇ G such that any multicommodity220

flow with congestion g in H with respect to T is a multicommodity flow with congestion g in221

G with respect to T , and any multicut of H with respect to T is a multicut of G with respect222

to T having the same capacity.223

Proof. It is well known that every treewidth-2 graph is the sub-graph of a (2-terminal)224

series-parallel graph and such a super-graph that is (2-terminal) series-parallel can be found225

in polynomial time. We add the extra edges to make the graph series-parallel and set their226

capacities to 0. It is easy to see that then the proposition follows. ◀227

For the sake of presentation, we make the following simplifying assumption. Let v ∈ V228

be a vertex and suppose that k source-sink pairs are incident on v. Then we add k edges229

(v, v1), (v, v2), . . . , (v, vk) to G and set the capacity of each (v, vi) to be equal to a large230

number, say
∑

e∈E ce. If a source-sink pair (v, t) is incident on v, we replace it by (vi, t), such231

that each vi has exactly one source-sink pair incident on it. We repeat this process for each232

vertex in the graph and let U be the set of new vertices introduced by this operation. Now233

every source-sink pair is incident on vertices in U and any vertex has at most one source-sink234

pair incident on it. Furthermore, there is one to one correspondence between any feasible235

multiflow and multicut with value at most
∑

e∈E ce in the original and the modified graph.236

Hence, from now on we assume that exactly one source-sink edge is incident on any vertex of237

G.238

4 Ford-Fulkerson Algorithm for Single Source239

We heavily use the augmenting paths framework of Ford-Fulkerson [7] to design our algorithm.240

We give a brief overview of their algorithm here. Given a source vertex s and a set of sink241

vertices T = {t1, t2, . . . , tm}, we wish to find the maximum amount of flow that can be routed242

from s to vertices in T . It is convenient to work with a directed network N = (V, E′), where243

each edge (u, v) ∈ E is replaced by two directed edges (arcs) (u, v) and (v, u) in N . The244

capacity of each of the arcs is equal to the capacity of the corresponding original edge. All245

the flow paths are directed from s to T in N . One can show that if a flow of value f can be246

routed in N , then a flow of value f can be routed in G as well. This allows us to work with247

N instead of G.248

Let F be a set of flow paths directed from s to T in N and f(e) be the flow through249

arc e in F . We define the residual network with respect to F , NF = (V, E′), as follows: if250

f(u, v) ≥ f(v, u), then we set the capacity of (u, v) to cuv − f(u, v) + f(v, u) and the capacity251

of the arc (v, u) to cuv +f(u, v)−f(v, u) in Nf . Note that when f is empty, then the capacity252

of the forward and the backward arcs is equal to the capacity of the original edge in G.253

The algorithm works in iterations. In each iteration, we increase the amount of flow from254

s to T by 1. At the beginning of each iteration, we find the set of reachable vertices RF in255

the residual network NF with respect to the current flow F . If there exists a ti ∈ RF , then256

we augment a unit of flow along a path from s to ti in NF . We update our residual graph as257
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described above and repeat the procedure until some vertex of T is reachable from s in the258

residual graph. We stop when none of the vertices of T are reachable from s in the residual259

graph. If the algorithm terminates after f iterations, then there exist f flow paths in the260

original graph G from s to T . In fact such flow paths can be computed directly from the261

final residual graph in polynomial time.262

Let S be the set of reachable vertices in the residual network at the termination of the263

algorithm and f be the total number of flow paths routed. Ford-Fulkerson [7] showed that264

δ(S) = f , ie. the maximum amount of flow from s to T in G is equal to the minimum (total)265

capacity set of edges which disconnect s from T . This is also known as the max-flow min-cut266

theorem for sinlge-commodity flow.267

268

Residual Graph for Multicommodity Flow We can analogously define a residual269

network NF of a graph G with respect to any (directed) flow F , and not just the single270

commodity flow. From now on, we will refer to NF as the residual network of G with a271

current (directed) flow F . We will use f−(v) and f+(v) to denote the net incoming and272

outgoing flow incident at the vertex v.273

5 Algorithm for Parallel-Path Graphs274

To illustrate the basic ideas of our approach, we first describe the algorithm for parallel-path275

graphs. Let G be a parallel-path graph and (u, v) be its merge vertices. We make a further276

simplifying assumption that all the source-sink pairs lie on different paths of G. This implies277

that all the source-sink paths contain either u or v. Let p be the maximum amount of flow278

that can routed between u and v in G.279

Our algorithm works with four copies of G, i.e. G(1) = G(2) = G(3) = G(4) = G each with280

the same capacities as G. Our flow paths at the end will lie in the union of the four copies.281

The capacity constraints on the edges will be satisfied within each copy. Thus, we will have282

a flow with congestion at most 4. We use the augmenting paths framework of Ford and283

Fulkerson to route flow in G(1). As it is well known, the augmenting paths framework can284

lead to infeasible flows when applied to a multicommodity setting. We carefully use the285

edges in G(2), G(3), G(4) to correct the infeasible flows routed in G(1).286

In G(1), we identify u, v as a single vertex and use the Ford-Fulkerson algorithm to287

construct a flow and cut as follows: let r be the vertex formed by identifying u, v. Observe288

that r is a cut-vertex and all the source-sink paths go through r. We think of a path between289

an si − ti pair as the union of two (directed) paths: one from r to si and the other from r to290

ti. To send f units of flow between an si − ti pair, we first send a flow of value f from r to si291

and then another flow of value f from r to ti. We call each of these as a half-flow-path of292

the flow between si and ti. Note that all the half-flow-paths are directed away from r. Since293

every flow path is rooted at r, we treat it as the common source and use the augmenting294

paths algorithm of Ford-Fulkerson (see Figure 2). We use this process iteratively to route295

more flow between the source-sink pairs and distinguish between two cases:296

Case 1: Suppose the algorithm terminates with a total flow of f < p (recall that p is297

the maximum u-v flow). Let S be the set of all the reachable vertices from r at the end298

of the algorithm. If there exists an i such that si, ti ∈ S, then we would have been able to299

send more flow from r to si and r to ti. Note that an r − si path does not overlap with an300

r − ti path since si and ti are assumed to be in different paths of the parallel-path graph G.301

Since it is not possible to send any additional flow between the source-sink pairs, it must be302

true that S does not contain at least one of si, ti, and hence the edges δ(S) form a feasible303

APPROX/RANDOM 2022



55:8 Multicommodity Flows and Multicuts in Treewidth-2 Graphs

(a) Step 0: Source-sink pairs in G(1)

(b) Step 1: Identify u, v as a single vertex
r

(c) Step 2: Augment flows from r
(d) Step 3: Separate u, v and use a (u, v)
path in G(2) to get a feasible flow

Figure 2 Routing flow in a parallel-path graph

multicut for this instance. Since r was formed by combining u, v, we may not have a feasible304

flow of value f , i.e. for a source-sink pair, one half-flow-path may be routed from u while the305

other one is routed from v. To convert this into a feasible flow, we use (at most) f units of306

u-v flow in G(2). This results in a flow with congestion 2. Since every half-flow path uses at307

most one edge of the cut δ(S), we have that the value of the multicut is at most 2 times the308

total flow routed (with congestion 2).309

Case 2: Suppose at some point in the algorithm, that the total flow routed (in G(1))310

becomes exactly p. Since the maximum u-v flow in G is p, there exists a set of edges, say311

C, of value p whose removal separates u and v in G(1) (by the max flow-min cut theorem312

[7]). In this case, we pick a set of cut edges C with total value p in G(1). Let G(1)
1 , G(1)

2 be313

the graphs formed after removing the edges in C and let u ∈ G(1)
1 , v ∈ G(1)

2 .314

Now, let us re-split r into u and v as it was. Each of the half-flow-paths are now rooted315

at either u or v. If both G(1)
1 , and G(1)

2 do not contain any source-sink pairs within them,316

we terminate. If there are source-sink pairs that are not separated by the removal of C, we317

augment flow from u in G(1)
1 and from v in G(1)

2 to increase our total flow. To do this, we use318

the augmenting paths algorithm with u (resp. v) as the single source for G(1)
1 (resp. G(1)

2 ).319

Note that G(1)
1 (resp. G(1)

2 ) may contain flow edges of half-flows rooted at v (resp. u). In the320

residual network, we orient a flow-edge in the opposite direction to the flow, irrespective of321

where the flow is rooted.322

Since G(1)
1 possibly contains parts of half-flow-paths rooted at v, some of the half-flow-323

paths for source-sink pairs routed in G(1)
1 (after removing C) may also be mismatched after324

augmentation (see Fig 3), i.e. one of them is rooted at u and the other is rooted at v, even325

though both were routed from the single source u in G(1)
1 . The same also can happen for326

G(2)
2 .327

Let M be the set of pairs of mismatched half-flow-paths that were routed after removing328

the edges of C. In any pair of mismatched half-flow-paths in M , at least one of them uses329

an edge of C. Hence, total number of mismatched half-flow-paths in M is at most p. We use330

the p u-v flow paths in G(4) to correct them, i.e., we obtain a complete flow path between si331

and ti by using the two half-flow paths (ignoring direction) in G(1) and a path from u to v in332

G(4).333

Similarly, we correct the p units of flow routed before deleting C by using at most p334
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Figure 3 In the first picture (from left), we route a unit of flow from v to s1 and v to t1 and also
pick a (u, v) cut (in green). This creates two connected components, one containing u and the other
containing v. Observe that a part of the half-flow path from v to s1 is also present in the component
containing u. In the second picture, we augment a unit of flow from u to s2 and u to t2. This results
in flow paths as shown in third figure, i.e. u to s1, s2 and v to t1, t2. Since any mismatched flow-path
routed after picking the (green) cut has to cross an edge of the cut, they can be at most its capacity.
As shown in last figure, we use one (u, v) flow path in the second copy to correct (s1, t1) flow and
another (u, v) path in the fourth copy to correct (s2, t2) flow.

u-v flow paths in G(2). After these corrections we have as much resultant flow between the335

terminal pairs as the number of half-flow pairs routed. Note that we did not use G(3) yet,336

but we will need it for routing in the general case (see Section 7). Hence, we obtain a flow of337

congestion 3 in this case.338

Let S1 (resp. S2) be the set of reachable vertices from u in G(1)
1 (resp. from v in G(1)

2 )339

at the end of the algorithm (i.e. when we are not able to send any more flow in G(1)
1 and340

G(1)
2 ). We pick C ∪ δ(S1) ∪ δ(S2) as our multicut. It is straightforward from construction341

that this is indeed a multicut. Hence the value of the multicut is p + |δ(S1)| + |δ(S2)|. Note342

that |δ(S1)| + |δ(S2)| is at most the total number of half-flows routed as each edge in δ(S1)343

(resp. δ(S2)) is saturated with flow going outside of S1 (resp. S2). Using the fact that p is at344

most the total number of half-flow pairs routed, we have that the value of the multicut is at345

most 3 times the total flow. It is easy to see that the run time of the above algorithm is346

similar to that of the Ford-Fullkerson algorithm, and hence we have the following theorem.347

▶ Theorem 4. Given an edge-capacitated parallel-path graph and source-sink pairs such that348

none of the source-sink pairs lie on one of the parallel paths, we can find an integral flow of349

value f with congestion 3, and a multicut of value at most 3f in time polynomial in size of350

the graph and the largest capacity. For unit capacity graphs, the algorithm runs in polynomial351

time.352

6 Augmenting External Flows into a Parallel-Path Graph353

We showed in the previous section how to successfully augment multicommodity flows in354

a parallel-path graph H (with no terminal pairs on a path). Now, suppose H occurs as a355

building block of a series-parallel composition during the construction of a (larger) series-356

parallel graph. In our algorithm for series-parallel graphs, it is crucial that we are able to357

augment flows coming from vertices outside H into H through its merge vertices. Moreover,358

this has to be done in a way that the flows routed already inside do not get destroyed.359

We show in this section that a careful use of copies of the graph allows us to extend the360

augmenting paths framework of Ford and Fulkerson [7] to augment external flows into a361

parallel-path graph.362

We first process all the source-sink pairs which are contained inside H using the algorithm363

described in Section 5. If a cut separating u and v in H is picked by the algorithm, then364

as shown in Section 5, we may safely continue to augment flow coming into H(1) by using365
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the augmenting paths algorithm. This is because the maximum number of mismatched366

half-flow-paths arising after a u-v cut is picked is at most the value of the minimum (u, v)367

cut and can be corrected by using one of the u-v flow paths in H(4). Also, mismatched368

half-flow-paths that were routed before the (u, v) cut was picked can be corrected using u-v369

flow paths in H(2).370

We next show that we can safely continue to augment flows into H(1) from outside (i.e. for371

source-sink pairs not contained inside H) even in the other case i.e. when a (u, v)-cut has372

not been picked by the algorithm. As before, let p denote the value of minimum u-v cut in373

H. Suppose that a total flow less than p is routed by the algorithm. This implies that no374

(u, v)-cut is picked. Let the number of half-flow-paths incident at u, v be fu, fv respectively375

and the total flow be f = fu + fv. Let H(1)
w be the graph formed by adding a vertex w to376

H(1) and connecting it to u and v with edges of capacity fwu and fwv respectively. Suppose377

we are able to augment fw = fwu + fwv units of flow in H(1)
w from w in the residual graph378

(note that in the residual graph, all the flow paths in H(1) are rooted and directed away from379

u and v). Then we show how to use the additional 2f ≤ 2p edge-disjoint paths from u to v,380

in H(2) and H(3) (f flow-paths in each) to reconstruct feasible flow paths, i.e. for each flow381

augmentation that happened from w to a vertex y, we produce a flow path from w to y, in382

addition to the flow paths that were already routed inside H.383

▶ Lemma 5. All flow paths (old and new) in H(1)
w can be reconstructed by using at most 2f384

u-v paths.385

Proof. To prove the lemma, we need the following crucial observation: if we augment a unit386

flow from the vertex w to x in H(1)
w , then the amount of outgoing and incoming flow after387

augmentation remains unchanged for every vertex on the augmenting path except for w and388

x. The net flow (i.e. the amount of outgoing flow minus the incoming flow) of w increases by389

1 while that of x decreases by 1. Let (s1, t1), . . . , (sq, tq) be the q source-sink pairs which were390

routed inside H(1) and h1, h2, . . . , hq be the amount of flow routed for each one of them. Let391

w1, w2, . . . , wl be the vertices to which we augmented flow from w in H(1)
w and d1, d2, . . . , dl392

be the flow routed for each of them. Let O = {s1, t1, . . . , sq, tq} and N = {w1, w2, . . . , wl}.393

Before the augmentations from w, the net flow out of u and v in H(1) is fu and fv respectively394

and the net flow out of each vertex in O is −hi. After the augmentations, the net flow out of395

u and v within H(1) (i.e. without taking into account flow on edges wu and wv) are fu + fwu396

and fv + fwv respectively, while that of vertices in O, N are −hi, −dj respectively.397

Since u and v have positive net flow in H(1), vertices in O ∪ N have negative net flow and398

rest of the vertices have zero net flow, we must have flow paths (with suitable flow value)399

from u, v to all the vertices in O ∪ N . We first correct the flow paths corresponding to the400

source-sink pairs (s1, t1), . . . , (sq, tq) by using min(fu, fv) ≤ f edge disjoint paths between u401

and v in H(2) and H(3). If exactly fwu (resp. fwv) edge disjoint paths starting at u (resp. v)402

terminate at vertices in N , then we already have a feasible flow. If fwu+g (resp. fwv −g) units403

of flow incident at u (resp. v) terminate at vertices in N , then we use g flow paths from u to v404

to correct the flow paths originating at w. We now argue that |g| ≤ max(fu, fv). This follows405

from the fact that fu −g (resp. fv +g) paths incident at u (resp. v) must terminate in O, hence406

|g| ≤ fu or |g| ≤ fv which gives |g| ≤ max(fu, fv). Hence total number of paths between u407

and v used to correct the flows is at most max(fu, fv)+min(fu, fv) = fu +fv = 2f ≤ 2p. ◀408

We will build on the intuition developed in this section to give a routing algorithm for409

the general case in the next section.410
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7 Routing Algorithm for Series-Parallel Graphs411

Building upon the ideas developed in the previous sections, we now describe the full algorithm412

for routing flows in series-parallel graphs. We will also pick some cut-edges during the routing413

here, but they will not form the whole multicut; the algorithm for picking the complete414

multicut will be presented later in Section 9. Our routing algorithm is recursive using the415

recursive construction of series-parallel graphs through series and parallel compositions.416

Let G be the input series-parallel graph and let u and v be its merge vertices. We417

construct four copies of G denoted by G(1), G(2), G(3) and G(4), each with the same capacities418

as G. The algorithm outputs the following: a set of (directed) flow paths F in G(1), a set of419

cut-edges C (not necessarily a multicut), and two numbers (l(2), l(4)). During the algorithm420

we will reserve some flow-paths between the merge vertices u and v in G(2), G(3), and G(4)
421

for flow correction. The reserved flow will be used in the flow-correction phase in Section 8422

to correct the mismatched flows in G(1). The number l(2) gives the number of flow paths423

available in each of G(2) and G(3) between u and v for flow-correction in the future, after we424

have reserved the flow-paths for correcting the flows routed so far. The number l(4) gives425

the same for G(4). In a sense, l(2), l(3), l(4) are the residual flow-correcting capacities that G426

passes on up to its parent in the recursion call.427

We also maintain a global tuple D = {d1, d2, . . . , dk} where di denote the amount of428

flow routed for terminal pairs (si, ti). We will maintain throughout the algorithm that429

di = f−(si) = f−(ti), where f−(x) denote the incoming flow to x in F . Whenever we430

augment a new unit of flow for an si-ti pair, we assume that di increases by one, even if not431

mentioned explicitly.432

We first describe the base case, i.e. if G is an edge (u, v) with capacity c(u, v). If (u, v)433

do not form a source-sink pair, then the algorithm returns an empty flow, l(2) = l(4) = c(e)434

and C = ∅. If (u, v) is a source-sink pair i.e. if (u, v) = (si, ti), we send c(e) units of435

(directed) flow from u to v in G(1), reserve c(e) amount of flow-paths from u to v in each of436

G(2), G(3), G(4) and return l(2) = l(4) = 0 and C = {(u, v)}.437

Now, we go to the recursion step. Let G be composed of G1 and G2 in series or parallel.438

Let u1, v1 be the merge vertices of G1 and u2, v2 be the merge vertices of G2. We first run439

the routing algorithm on G1 and G2 separately. For i = 1, 2, let (Fi, l(2)
i , l(4)

i , Ci) be the440

output of the algorithm. Depending on whether G1 and G2 are joined in series or parallel,441

the algorithm now branches out into two cases.442

7.1 Parallel Case443

Recall that in the parallel case, G is obtained by connecting G1 and G2 in parallel i.e. by444

setting u = u1 = u2, and v = v1 = v2. Before routing flow, we remove all the edges in C1445

and C2 from G(1). Our algorithm here is similar to the parallel-path case in Section 5. We446

say that a terminal pair is newly connected if one of the terminals is in G1 and the other447

is in G2. If no source-sink pairs get newly connected due to the parallel combination, we448

simply return F1 ∪ F2, l(i) = l(i)
1 + l(i)

2 for i = 2, 4 and C = C1 ∪ C2.449

Otherwise, some source-sink pairs get newly connected. All paths between the newly450

connected source-sink pairs have to contain either u or v. Let s be the vertex obtained by451

identifying u and v as a single vertex. We initialize the flow F to be F1 ∪ F2. Let Rs be452

the set of reachable vertices from s in the residual graph of G(1) with respect to the flow453

F . We say that a newly connected source-sink pair (sj , tj) is reachable from s if both454

sj ∈ Rs & tj ∈ Rs.455

If there is such a reachable newly connected source-sink pair then we augment in F , one456
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unit of flow each to sj and tj from the vertex s and set dj = dj + 1. Since sj ∈ G1 and457

tj ∈ G2, the two augmenting paths from the vertex s to sj and tj are vertex disjoint except458

at s. Hence we can augment along both the paths simultaneously. However, note that this459

does not mean we can directly construct a flow path between sj and tj by combining both of460

these half-flows (ignoring directions), as the half-flow path to sj may begin at u while the461

half-flow path to tj may begin at v. Later in the correction step in Section 8, we will use a462

(u, v) path in either G(2), G(3), or G(4) to obtain a feasible flow.463

As in the parallel-path case, we repeat the above routing procedure until one of the464

following happens: either there are no more reachable source-sink pairs from s, or we have465

routed l(2)
1 +l(2)

2 many units. Let f denote the number of half-flow pairs routed after connecting466

G1, G2 in parallel.467

1. In case 1, i.e. if the routing terminates with f < l(2)
1 + l(2)

2 , then we reserve f out of the468

available l(2)
1 + l(2)

2 u-v paths for flow correction in each of G(2) and G(3). We return the469

flow F , cut edges C = C1 ∪ C2, and numbers l(2) = l(2)
1 + l(2)

2 − f, and l(4) = l(4)
1 + l(4)

2 .470

2. In case 2, i.e. if f = l(2)
1 + l(2)

2 , then we pick a min-cut separating u and v in G(1), say Cs.471

We set C = C1 ∪ C2 ∪ Cs. Let G(1)
u and G(1)

v be the two graphs formed after removing472

the edges of Cs from G(1). Even after removing the cut edges in Cs, there might be473

source-sink pairs that are reachable from u in G(1)
u or v in G(1)

v . We augment F by routing474

from u in G(1)
u (resp. from v in G(1)

v ) to the reachable source-sink pairs and update D475

accordingly. We do this until no source-sink pairs are reachable from u in Gu and v in Gv.476

We reserve l(2)
1 + l(2)

2 u-v paths in each of G(2) and G(3) and l(4)
1 + l(4)

2 u-v paths in G(4) for477

flow corrections and return l(2) = l(4) = 0 along with the flow F and cut C = C1 ∪ C2 ∪ Cs.478

7.2 Series Case479

Recall that in the series case, G is obtained by connecting G1 and G2 in series, i.e. by480

identifying w = v1 = u2. Before routing flow, we remove all the edges in C1 and C2 form the481

first copy of G. To make the presentation simpler, w.l.o.g we assume that l(2)
1 ≤ l(2)

2 .482

If no new source-sink pairs get connected due to the series combination, we simply return483

F1 ∪ F2, l(i) = min{l(i)
1 , l(i)

2 } for i = 2, 4 and C = C1 ∪ C2.484

Otherwise, some new source-sink pairs get connected. All paths between the newly485

connected source-sink pairs have to contain w. Nevertheless we route from any of u1, w and486

v2 as below. We identify u1, w and v2 into a super-source vertex, say s, and find a source-sink487

pair (sj , tj) such that both sj and tj are reachable from s in the residual graph of G(1) with488

respect to flow F , which is initialized to F1 ∪ F2. We call such source-sink pairs reachable489

from s. Note that if both are reachable then both can be routed simultaneously, as one of490

them lies in G1 and the other in G2. We augment in F one unit of flow from s to sj and491

from s to tj and update D accordingly. However, note that this might not directly give us a492

flow path from sj to tj , as the half-flow path to sj may begin at u1 while the half-flow path493

to tj may begin at v2. Later in the correction step, we will use a (u1, v2) path in G(2), G(3),494

or G(4) to obtain a feasible flow.495

We keep augmenting as above until one of the following happens: either no more source-496

sink pairs are reachable from s or we have routed min{l(2)
1 , l(2)

2 } units of flow. Let f denote497

the total source-sink flow routed after connecting G1, G2 in series.498

1. In case 1, i.e. if the routing terminates with f < min{l(2)
1 , l(2)

2 }, then we reserve f flow499

paths between u1-v2 in G(2) and G(3) (note that these reserved flow-paths goes through w500

and in the flow-correction phase, we may use such a flow-path to correct a flow between501
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u1 and w, or w and v2, or u1 and v2). We return the flow F , the cut C = C1 ∪ C2, and502

l(2) = min{l(2)
1 , l(2)

2 } − f, and l(4) = min{l(4)
1 , l(4)

2 }.

Figure 4 On the left part (u1, w), we have l(2)
1 = 4 and on the right part, (w, v2) we have l(2)

2 = 5

503

2. In case 2, i.e. if f = min{l(2)
1 , l(2)

2 } = l(2)
1 (w.l.o.g), then we pick a min-cut separating u1504

and w in G(1), say Cu1,w. We set C = C1 ∪ C2 ∪ Cu1,w and G(1)
u1

and G(1)
w,v2

be the two505

graphs formed after removing the edges of C from G(1). Let s′ be the vertex formed by506

identifying w, v2 as a single vertex. Even after removing the cut edges in Cu1,w, there507

might be source-sink pairs that are reachable from s′ in G(1)
w,v2

. We augment flow (in508

F ) from s′ in G(1)
w,v2

to the reachable source-sink pairs from s′ until one of the following509

happens: either no more source-sink pairs are reachable from s′ or we have augmented510

l(2)
2 − l(2)

1 units of such flow.511

a. In case a), i.e. if no more terminal pairs are reachable from s′ and f < l(2)
2 (here f512

is the total amount of flow augmented after connecting G1 and G2 in series), then513

we reserve f − l(2)
1 units of flow paths between w and v2 in G(2) and G(3), reserve514

l(4)
1 flow-paths between u1 and w in G(4), and return the flow F , l(2) = l(4) = 0 and515

C = C1 ∪ C2 ∪ Cu1,w.516

b. In case b), i.e. if f = l(2)
2 (i.e. l(2)

1 units of flow was routed before deleting Cu1,w and517

l(2)
2 − l(2)

1 units of flow afterwards), then we pick a min-cut separating w and v2 in518

G(1)
w,v2

, say Cw,v2 . We set C = C1 ∪ C2 ∪ Cu1,w ∪ Cw,v2 and let G(1)
w and G(1)

w,v2
be the519

two graphs formed after removing the edges of C from G(1)
w,v2

. Even after removing520

the cut edges in Cw,v2 , there might be source-sink pairs that are reachable from w in521

G(1)
w . We augment flow (in F ) from w in G(1)

w to the reachable source-sink pairs from522

w. We do this until no source-sink pairs are reachable from w in G(1)
w . We reserve523

l(2)
1 + l(2)

2 amount of w − v2 flow-paths in G(2) and G(3). We also reserve l(4)
1 amount of524

u1 − w flow and l(4)
2 amount of w − v2 flow in G(2). We return F, l(2) = l(4) = 0, and525

C = C1 ∪ C2 ∪ Cu1,w ∪ Cw,v2 .526

(a) Case 2a (b) Case 2b

8 Constructing Feasible Flows527

Let D = {d1, d2, . . . , dk} be the vector of all the source-sink flow values at the end of the528

algorithm. We will show that a feasible flow between the terminal pairs of value
∑k

i=1 di529
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can be constructed using the second, third and fourth copy of G. First we note some of the530

properties of the routing algorithm, which will be helpful in proving further results.531

Let G be a series-parallel graph with merge vertices (u, v). Let (F, l(2), l(4), C) be the532

output of the algorithm on G and let f be the total flow (i.e. the number of half-flow pairs533

routed) in F . When G is not an edge we will assume that G is formed by the series or534

parallel composition of G1 and G2 with merge vertices (u1, v1) and (u2, v2) respectively. Let535

(F1, l(2)
i , l(4)

i , Ci) denote the output of the algorithm for Gi for i = 1, 2.536

▶ Lemma 6. After G has been processed, there exists a (u, v)-cut of value at most l(4) in537

G \ C.538

▶ Lemma 7. c(C) ≤ 2f .539

Recall that while routing in G, we reserved some flow paths between u and v for flow540

corrections. The next claim shows that the total value of reserved flow paths (across all541

iterations) is at most four times the total value of flow routed in G.542

▷ Claim 8. The value of reserved flow paths in each of G(2) and G(3) is at most f and that543

in G(4) is at most 2f .544

8.1 The Augmentation Property and Flow Correction545

We now show that a feasible flow of value equal to the total augmented flow can be obtained546

by using the reserved flow paths, at each stage of the algorithm. To prove this result, we547

inductively maintain an invariant called as the augmentation property, specified below.548

Let G∗ be the final graph and G be the graph obtained at an intermediate stage. Let (u, v) be549

the merge vertices of G. For giving the augmentation property, we distinguish between two550

cases, depending on whether a cut separating (u, v) has been picked by the algorithm so far.551

In both cases the augmentation property states that we can reconstruct all the source-sink552

flow paths that were augmented inside G (i.e. all the flow paths augmented inside G before553

its processing is finished), using only the flow paths reserved in the copies of G. In addition,554

to this, the property also states the following depending on the case.555

Case 1. No (u, v) cut has been picked by the algorithm so far: suppose a flow of556

f1, f2, . . . , fk was augmented to (terminal) vertices t1, t2, . . . , tk after the processing of557

G was finished (these are external flows that come from outside of G). Furthermore,558

suppose that fu and fv units of flow was augmented from u and v respectively into G559

(by external flows) after the processing of G is finished, i.e. fu + fv =
∑k

i=1 fi. Then560

the augmentation property states that we can additionally reconstruct these flow paths561

using only the reserved paths in copies of G such that: (i) exactly fu (resp. fv) units of562

flow path emerge from u (resp. v) (ii) there is exactly fi units of incoming flow incident563

at each ti. In other words, we reconstruct all flow paths corresponding to augmenting564

paths, except that they might originate from either u or v (there might have been a path565

originally augmented from u to ti, but in the reconstructed paths the path to ti might be566

from v).567

Case 2. A (u, v) cut has been picked by the algorithm: let Gu, Gv be the two connected568

components of G (after deleting the cut edges) containing the vertices u, v respectively.569

Suppose a flow of value f1, f2, . . . , fk was augmented into Gu (via u) to (terminal) vertices570

t1, t2, . . . , tk after the processing of G was finished. Then the augmentation property571

states that we can reconstruct feasible flow paths (in addition to the source-sink flow paths572

that were augmented inside G before its processing was finished) using only the reserved573
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flows for G, such that there is a flow of value fi from u into ti for each i = 1, 2, . . . , k.574

The same holds true for Gv as well.575

We show the following lemma by using induction on the structure of series-parallel graphs.576

This also implies that there exists a feasible flow of value
∑k

i=1 di.577

▶ Lemma 9. For any graph G obtained during an intermediate stage of the routing algorithm,578

the augmentation property holds.579

9 Picking a Multicut580

Let C be the cut edges picked after the completion of routing phase for G. In this section, we581

assume that the edges of C have been removed from G. In addition to the cut edges C, we582

pick another set of edges Y such that C ∪ Y is a feasible multicut for the given instance. We583

say that the edges in C were picked during the phase 1 of the algorithm. We now describe the584

phase 2 of the algorithm, where we pick the edges in Y . We start with all the vertices of G585

as unmarked and initialize the set Y as empty. We process the nodes of a tree-decomposition586

T of G (with treewidth 2) in a top-down manner, i.e. we process a node only after all its587

ancestors are processed. Let X be the current node we are processing. Recall that each node588

X corresponds to a series or a parallel combination of two subgraphs of G and it consists of589

union of the merge vertices of these two subgraphs. Let CX be the set of reachable vertices590

in the residual graph of GX , from X, just after the processing of X in phase 1 has been591

completed. Recall that the residual graph arises w.r.t to the current (directed) flow in the592

first copy of the graph. If all the vertices in X are already marked then do nothing. Let X ′
593

be the set of unmarked vertices in X. For any vertex x, let CompG(x) denote the connected594

component containing x in the current graph (i.e. G \ (Y ∪ C)). For each x ∈ X ′, mark595

all the vertices in CX ∩ CompG(x), add the edges in YX := δ(CX) ∩ E(CompG(x)) to Y , and596

delete those edges from G. Repeat this process until all the vertices of G have been marked.597

Then the union of Y and C is our required multicut.598

▶ Lemma 10. Let X ′ be a node of T and X be a node of TX′ . Then, CX′ ∩ V (GX) ⊆ CX .599

Proof. Since any path in the residual graph from outside GX has to enter through X and all600

edges in δ(CX) are directed inwards to CX in the residual graph, the vertices in V (GX) \ CX601

can never become reachable from any vertex outside GX in the residual graph. The lemma602

follows from this easily. ◀603

▶ Lemma 11. C ∪ Y is a multicut of G for the given terminal-pairs.604

Proof. Suppose Y ∪ C does not cut some terminal pair s, t. This means G − Y − C contains605

a path P between s and t. Let X be the bottom-most node in T such that GX contains both606

s and t. Clearly P contains at least one vertex from X. Let this vertex be x. We branch607

into 2 cases depending on when x was marked in phase 2.608

In Case 1, we suppose x was marked during the processing of X. Without loss of generality609

we can assume that the sub-path of P between x and s contains an edge of δG−C(CX), say610

e (follows from phase 1 algorithm). Since e is in the same connected component as x in611

G − C − Y , and e ∈ CX , we have that e would have been picked into Y during the processing612

of X, a contradiction.613

In Case 2, we suppose x was marked before the processing of X. Let X ′ be the node614

during whose processing, x was marked. Clearly X is in TX′ . Thus, by Lemma 10, we have615

that CX′ ∩ V (GX) ⊆ CX . Hence, without loss of generality we can assume that the sub-path616

APPROX/RANDOM 2022



55:16 Multicommodity Flows and Multicuts in Treewidth-2 Graphs

of P between x and s contains an edge of δG−C(CX′), say e. Since e is in the same connected617

component as x in G − C − Y , and e ∈ CX′ , we have that e would have been picked into Y618

during the processing of X ′. ◀619

For a node X of T , let f(X) denote the number of half-flow paths introduced during the620

processing of X in phase 1. Since every flow path consists of two half flow paths, we have621

that total flow routed in phase 1, f =
∑

X∈T f(X)/2. For a node X of T , let r(X) denote622

the number of flow paths reserved between the vertices of X when TX was being processed623

in phase 1. From Claim 8, it follows that
∑

X∈T r(X) ≤ 4
2 ·

∑
X∈T f(X) ≤ 2 ·

∑
X∈T f(X).624

Let M(X) denote the set of previously unmarked vertices that becomes marked during625

the processing of X in Phase 2. Let I(X) denote the set of nodes of T that have non-empty626

intersection with M(X).627

▶ Lemma 12. For a node X of T , the total capacity of edges picked into the cut Y during628

the processing of X in Phase 2 is at most
∑

X′∈I(X) f(X ′) +
∑

X′∈I(X) r(X ′).629

▶ Lemma 13. For a node X ′ of T , the number of nodes X of T such that X ′ ∈ I(X) is at630

most 3.631

Proof. During the processing in Phase 2 of each X such that X ′ ∈ I(X), at least one632

unmarked vertex in X ′ becomes marked. The lemma follows as there are at most 3 vertices633

in X. ◀634

▶ Lemma 14. |Y ∪ C| is at most 20 times the amount of flow routed between the terminal635

pairs by our algorithm.636

Proof. Recall that
∑

X∈T r(X) ≤ 2 ·
∑

X∈T f(X). From Lemma 13 and Lemma 12, it follows637

that |Y | is at most 3 · (
∑

X∈T f(X) + 2 ·
∑

X∈T r(X)) ≤ 9 ·
∑

X∈T f(X). Hence, the total638

capacity of edges in Y is at most 18 times the total flow routed in phase 1. From Lemma 7,639

we have that |C| is at most twice the total flow routed by the phase 1 algorithm. Therefore,640

total capacity of edges in Y ∪ C is at most 20 times the total flow routed by the phase 1641

algorithm. ◀642

This concludes our main result Theorem 2 and also implies the following corollary.643

▶ Corollary 15. Let G be an undirected, (integer) edge capacitated treewidth-2 graph and644

{(si, ti)}k
i=1 be the source-sink pairs. Our algorithm gives an 80-approximation for computing645

a multicut w.r.t. the source-sink pairs.646
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A Figures690

Figure 6 Series and Parallel Compositions

Figure 7 Series-Parallel Tree-Decomposition
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