Non-Volatile Memory Accelerated Geometric
Multi-Scale Resolution Analysis

Andrew Wood*, Moshik Hershcovitch, Daniel Waddington', Sarel Cohen?

Meredith Wolf®, Hongjun SuhY, Weiyu Zong*, Peter Chin*

TIBM Research
moshikh@il.ibm.com
daniel.waddington @ibm.com

*Boston University
aewood @bu.edu
spchin@bu.edu
willzong @bu.edu

Abstract—Dimensionality reduction algorithms are standard
tools in a researcher’s toolbox. Dimensionality reduction algo-
rithms are frequently used to augment downstream tasks such
as machine learning, data science, and also are exploratory
methods for understanding complex phenomena. For instance,
dimensionality reduction is commonly used in Biology as well
as Neuroscience to understand data collected from biological
subjects. However, dimensionality reduction techniques are lim-
ited by the von-Neumann architectures that they execute on.
Specifically, data intensive algorithms such as dimensionality
reduction techniques often require fast, high capacity, persistent
memory which historically hardware has been unable to provide
at the same time. In this paper, we present a re-implementation
of an existing dimensionality reduction technique called Ge-
ometric Multi-Scale Resolution Analysis (GMRA) which has
been accelerated via novel persistent memory technology called
Memory Centric Active Storage (MCAS). Our implementation
uses a specialized version of MCAS called PyMM that provides
native support for Python datatypes including NumPy arrays
and PyTorch tensors. We compare our PyMM implementation
against a DRAM implementation, and show that when data fits in
DRAM, PyMM offers competitive runtimes. When data does not
fit in DRAM, our PyMM implementation is still able to process
the data.

I. INTRODUCTION

Dimensionality reduction is a set of algorithms designed
to extract the “useful” information that is often assumed to
be embedded in a higher dimensional signal. Dimensionality
reduction techniques have been used with great success in the
field of machine learning [1], [2] and information retrieval [3],
[4], [5]. Some of the most popular variants, such as the linear
Singular Value Decomposition (SVD) [6] (and by extension
Principal Component Analysis (PCA) [7]), as well as nonlinear
versions such as ISOMAP [8] have even become standard
items in a researcher’s toolbox. Most recently, modern ma-
chine learning has pivoted to be more “biologically” based:
developing algorithms and models which ever increasingly
mimic the brain. Likewise, dimensionality reduction tech-
niques have followed the same trend. One technique based
on the behavior of the cortex called Geometric Multi-Scale
Resolution Analysis (GMRA) [9], learns nonlinear manifolds

tHasso Plattner Institute $Williams College YSeoul National University
sarel.cohen@hpi.de

mgw2@williams.edu hjsuh319@snu.ac.kr

in data by cleverly examining the local geometry of points in
the pointcloud.

However, dimensionality reduction algorithms such as
GMRA have historically been limited by the von-Neumann
architectures they execute on: primarily constrained by small
system memory (DRAM) capacity. In contrast, modern re-
search has become dominated by “big data”, with datasets
such as ImageNet [10], Cifar100 [11], MusicNet [12], [13],
WMT14 [14] being exponentially larger than any in history.

In the last few years, a notable hardware breakthrough
has been the invention of Intel Optane Persistent Memory
Modules!. Optane-PM in particular communicates via the
memory bus, circumventing bottlenecks such as PCle lanes,
using the same interface to the CPU as DRAM. While there
are other Persistent Memory technologies, Optane-PM is the
most mature product on the market. Optane-PM is based
on 3D XPoint (3DXP) technology and operates at a cache-
line granularity with a latency of around 300ns [15], [16].
While this latency is slower than current DRAM (~100ns),
it is 30x faster than the current state of the art NVMe
SSDs. Additionally, a single DIMM of Optane-PM can reach
512GB, which is 8x larger than the available DRAM. Thus,
the maximum Optane-PM capacity of a commodity 2U server
machine is 12TB - significantly more than DRAM.

By default, Optane-PM can be used in three modes: block
device mode in which it acts as a faster storage device, Memory
Mode in which it acts as high capacity volatile memory cached
by DRAM, and App Direct mode which allows load/store
access to the device which is persistent. For a program to
use Optane-PM in block device mode, the program must
still pay an OS I/O penalty to access data on the device.
In Memory Mode, a program does not pay this penalty, but
must copy-off to additional storage devices if persistence is
required. App Direct mode treats the memory as separate from
volatile memory in the system. Optane-PM is exposed as a
DAX (direct access) device. Once it has been mapped into

"Herein termed Optane-PM

Client
Application
(Python)

MCAS Server

XResources Partition
XResources Partition Active
XResources Partition Data
X Resources Partition . Objects
\
)
/

PR L TR - ’back-ﬂaw

sharing

Shard 0
Shard 1
Client

Application Shard ..
(C++) Shard N

Client
Application
(C++)

MCAS Server

Client

Application Shard 0
(C++) Shard 1

Shard ..
Shard N

XResources Partition
XResources Partition
XResources Partition
XResources Partition

Client
Application
(C++)

Fig. 1: The high level architecture of MCAS. MCAS abstracts Optane
in DAX mode to a key-value store api via the network which allows
clients to load/store memory via the system memory bus while
maintaining data persistence. Image taken from [18].

the process virtual address space, it can be accessed directly
through load/store. Under-the-hood, data is moved around in
cache lines and 256B blocks internally to the Optane-PM
device. Although App Direct mode is very powerful, it does
require programs to be aware of this “special” memory and
pay close attention to crash-consistency and data recovery
(normally requiring access to low level persistent memory and
software transaction support libraries).

While Optane-PM technology is still in its infancy, there
are some early adopters in databases (see [17]). However, to
the best of our knowledge, we are the first to exploit this
technology to accelerate dimensionality reduction algorithms
such as GMRA.

In this paper, we use components of MCAS [18], a key-
value store framework built from the ground up for persistent
memory, to implement GMRA. Specifically, we use a simpli-
fied MCAS library integrated into the Python programming
language called Python Micro-MCAS (PyMM). PyMM uses
local persistent memory resources only, unlike the broader
MCAS solution which is a network-attached programmable
key-value store.

One of the key features of PyMM is its support for native
Python types such as NumPy ndarray and PyTorch tensor.
We use PyMM to re-implement GMRA. In total, we were
required to only 15 lines of code change (out of 1000+
lines of code) to integrate our existing implementation with
PyMM. We then show that despite the higher latency of
Optane-PM , PyYMM-GMRA is still comparable to its DRAM
only counterpart when data fits into DRAM. Additionally,
short of writing your own Python interface to persistent
memory, PyMM provides a straightforward solution when data
is larger than available DRAM. Specifically, we evaluate our
performance on the MNIST [19] and Cifar10 [11] datasets.

II. BACKGROUND AND RELATED WORK

A. MCAS: Memory Centric Active Storage

MCAS is a networked key-value store designed to interface
with Optane devices in DAX mode. While the MCAS archi-
tecture can be seen in Figure 1, it can generally be thought of
as an abstraction layer between the persistent memory and a

[Applications and Libraries]
[Common Data Types]
4 N (7 N\

Volatile
L Shelf S JL Shelf T) [Memory Space]

N
J/
N\

Key-Value Store Key-Value Store

(Namespace) (Namespace)
Pluggable Pluggable
Memory API Memory API
L S
CXL-attached Intel Optane
Memory PMM

Fig. 2: The PyMM architecture. PyMM exports micro-MCAS, a
networkless version of MCAS, to the Python programming language,
and also provides support for native Python types as well as NumPy
arrays and PyTorch tensors. PyMM abstracts away memory manage-
ment from the client through the use of a shelf datatype which can
be seen above.

client application. A key feature of MCAS is the support of
in-store operations. This feature, called Active Data Objects
(ADO)s, allows code to run directly on the MCAS server
without needing to transfer values to the client or move data
objects into DRAM. Thus, MCAS enabled systems allow
client applications to modify existing data objects, create new
data objects, and delete data objects without the need to pay
runtime penalties for copying/transferring data. Additionally, if
persistence is enabled, all data objects will live after program
execution and after system reboots. Therefore, programs can
avoid paying additional I/O runtime penalties by using MCAS.
We note that programs will also need to add crash-consistency
code to ensure data recovery in the event of a system crash,
this behavior is not enabled by default.

MCAS currently supports pure Python ADOs which execute
Python code directly on the MCAS server. However, this api
is not easy to use, and requires considerable skill by the
developers to write correct applications. Therefore, a novel
abstraction library called PyMM was developed to encapsulate
MCAS Python calls as well as support native Python types.

B. PyMM: Python Micro-MCAS

As previously mentioned, PyYMM is a new Python library
that encapsulates the MCAS api and provides a significantly
easier interface. Specifically, PyMM is built on top of a
networkless MCAS implementation which is called Micro-
MCAS. Additionally, PyMM includes built-in support for
native Python types such as NumPy arrays and PyTorch
tensors. While arbitrary datatypes can be stored on an MCAS
server, the client is responsible for writing the code that
interfaces their datatypes with the persistent memory such
as writing metadata, etc. For NumPy and PyTorch, most
linear algebra operations would require custom code. PyMM
handles this for the client, allowing the client to use existing

NumPy algorithms as-is, and without major modification to
their existing NumPy/PyTorch code. The PyMM stack can be
seen in Figure 2.

PyMM is built around a shelf datatype. A shelf represents
a logical grouping of data objects which are held in a specific
set of memory resources. In our case, the memory resource
is Optane acting in DAX mode, enabling both high mem-
ory speeds and persistence. Therefore, PyYMM shelf objects
will exist across program executions and system resets. Data
objects can also be exchanged between DRAM or any other
memory device which is directly attached to the CPU via the
memory bus, including GPUs. Shelf objects can be created in
two modes: devdax (visible as a character device file) or fsdax
(visible as block device files). In our case, we create shelf
objects in fsdax mode.

In our experiments, we use PyMM’s built-in support
for NumPy arrays which correspond to the shelf type
pymm.ndarray. This shelf type is polymorphic with
NumPy’s native ndarray type, meaning that all existing
NumPy algorithms will work (and operate in-place) with a
shelf.

For data-intensive algorithms such as dimensionality reduc-
tion, fast system memory with high capacity and persistence is
required. For dimensionality reduction algorithms, the entire
dataset is usually required to exist in memory at once, as global
knowledge is needed. These algorithms commonly construct
complicated internal representations of the data which they
then use to perform dimensionality reduction. For instance,
SVD and PCA require computing the gram matrix (A7 A or
AAT), ISOMAP and LDA build diffusion maps, and GMRA
uses approximate nearest neighbor strategies. These compli-
cated data structures are expensive to build, and consume
memory proportional to the number of data points. Therefore,
dimensionality reduction techniques require persistence: they
only build these structures once for a specific dataset, and then
save that structure for future use/reuse. By using MCAS, the
I/O penalty for serializing these complicated structure to disk
can be avoided.

While there has been work on building these structures in
a streaming fashion [20], [21], [22], [23], these algorithms
do not provide general case solutions for all dimensionality
reduction techniques, and they often are approximate algo-
rithms [21], [23]. By using PyMM (and therefore MCAS),
dimensionality reduction techniques are able to process large
datasets that were not otherwise possible without using stream-
ing approximations. By specifically using PyMM, these algo-
rithms require the fewest changes to their existing codebases
in order to benefit from MCAS.

We note that a separate project, called PMDK [24] also
provides persistent memory access to Optane via the memory
bus. A C/C++ wrapper called PyYNVM [25] provides PMDK
functionality to Python and allows for custom datatypes to be
compatible with PMDK. However, PyNVM does not use a
subclassing strategy and also does not support flat datatypes
such as NumPy ndarrays or PyTorch tensors. Thus, we chose
to use PyMM and MCAS for our implementation.

Geometric Ptapprox-~__ Wavelet
scaling atscale j X correction
functior“
Y
D« Y
Dt N 7 Finer
kY j+1
Cieix -\.2‘;‘ pt approx
% at scale j+1
LIJj+-1,)(X
B k Original
Geometric data point

k
Conters wavelets

Manifold
(M)

Tree
structure

Fig. 3: A visualization of the linear approximation of a point using a
basis function at scale j, the approximation at a finer scale j+1 and
difference operator (geometric wavelet) from scale j to scale j + 1.
This image was taken from [9].

C. Geometric Multi-Scale Resolution Analysis (GMRA)

GMRA is a dimensionality reduction technique that is
inspired by the cortex. At the microscale, neurons in the
cortex fire, which induces synchrony between neurons. Neu-
ral synchrony at the macroscale produces patterns, which
combined with other firings, have long been believed to
be the intermediary representation of data [26]. Macroscale
firings can also be viewed as dimensionality reduction: at the
macroscale, due to neural synchrony, at any given point only
a subset of the neurons are firing. Therefore, by viewing ever
larger populations of neurons, it is believed that the cortex
computes lower-dimensional representation of data at different
scales in increasing layers of abstraction. GMRA mimics this
behavior by processing a point cloud at different scales to
produce increasingly fine-grained manifolds.

The GMRA algorithm contains three steps to compute these
manifolds at different scales:

1) It computes a leveled tree decomposition of the mani-
fold into dyadic cells. Dyadic cells have the following
properties:

a) Each dyadic cell contains a subset of the point-
cloud, and the entire subset exists within a sphere
with a fixed radius.

b) The children of a dyadic cell divide the points
contained in the parent into disjoint subsets.

¢) The children of a dyadic cell cover the points inside
the parent.

It is worth noting that due to these rules, each level of
the tree covers the entire point cloud, and all cells at a
level are disjoint. The root node of the tree contains the
entire point cloud, and the final level of the tree contains
the finest-scale (smallest radii) grouping of the points.

2) It computes a d-dimensional affine approximation for
each dyadic cell. This approximation represents the
basis of each dyadic cell and is a linear piecewise
approximation (i.e. the SVD decomposition of the cell’s
covariance).

3) It computes a sequence of low-dimensonal affine differ-
ence operators that encode the difference between sub-
sequent levels of the tree (i.e. scales). These difference
operators allow efficient querying of the points by scale.

GMRA essentially searches for manifolds by grouping
points according to their local topology and produces piece-
wise linear approximations of the groups. First, GMRA con-
siders the entire point cloud as a group and computes a linear
approximation of the entire dataset using SVD [6]. Then, it
iteratively partitions the point cloud into smaller groups by
finding open balls which contain the maximum number of
points, where it computes linear approximations for those
groups, producing the next level of cells in the tree. This
cycle repeats until some halting criteria is met. To query the
tree, GMRA computes difference operators between levels of
the tree which allow a query to start at the root, lookup the
embeddings for the query, and then walk the tree, updating the
embeddings using the linear difference operators (a process
which can be seen in Figure 3).

By computing the linear approximation of a cell using SVD
of the covariance, the approximation geometrically becomes a
parallel plane that passes through the mean of the cell and is
approximately tangent to the local area of the manifold in the
cell. As seen in Figure 3, the linear approximation, called the
scaling function fit to each group can be queried by starting at
scale O (the roughest scale), getting the approximation for the
query at that scale, and then applying the difference operator
(wavelet correction) to get the approximation at the next
scale (finer scale). Since each level of the tree represents the
decomposition of the point cloud at a scale, by walking from
the root to the child at the appropriate level, GMRA produces
low-dimensional embeddings for each point at arbitrary scales.
GMRA has been used to improve performance of downstream
tasks [27], [28] such as classification and anomaly detection.

ITII. OUR APPROACH
A. GMRA Implementation

The GMRA tree decomposition step can be implemented in
a few ways [9]:

1) Use approximate nearest neighbors to construct a
weighted graph where the nodes represent points in the
point cloud, and draw weighted edges from a node to its
k nearest neighbors. The weight of this edge takes the

s —= 4113
form e™ = where k£ and o are hyperparameters. In

practice, k is taken between 10 and 50, and o is typically
the distance between z; and its LgJ nearest neighbor.
By partitioning this weighted graph (e.g. METIS rou-
tines [29]), the dyadic cells are constructed as the vertex
groups left after each separation, while the tree structure
is given by the action of separation. For instance, the
partitioning algorithm is run recursively on all previous
partitions, yielding the dyadic cells and their parent-child
relationships.

2) Use the CoverTree algorithm [30] to partition the data
into a level tree based on radii at different scales. The

CoverTree algorithm builds a graph where each node
corresponds to a single point in the pointcloud, and
draws a directed edge z; — x; if x; is within radius
2% from z; (as measured by euclidean distance).

Since a CoverTree has a root node, the dyadic cells are
constructed by computing all vertices reachable within
the radius 27 at scale j given the root of the subtree.
The procedure then recurses for all children of the root
reachable by radius 27! for the next scale j — 1. Note
that in order to use the CoverTree construction, the
max scale must be known apriori (to the construction)
and can be an expensive operation. However, CoverTree
construction is the only approach which provides the
theoretical bounds for the GMRA algorithm.

3) Iterated PCA. At the largest scale, compute the top d
principle components, and then assign the points into
two children based on the sign of their d 4 1-st singular
vector. The tree relationship is constructed by recursing
on the two children.

4) Tterated k-means clustering. At the largest scale, parti-
tion the data into d clusters, and recurse on each cluster.

Our implementation currently supports the CoverTree con-
struction. The original implementation of GMRA is in MAT-
LAB and uses custom C/C++ code which are distributed in
binary form. This has the unfortunate side effect of locking the
GMRA-MATLAB implementation to a specific, outdated ver-
sion of MATLAB using outdated (and in some cases, unsup-
ported) third party libraries. Additionally, GMRA-MATLAB
will not interface with MCAS and therefore is constrained by
DRAM.

Our implementation also makes use of custom C/C++ code,
however our C/C++ is distributed in source code form and
is exported to Python using libtorch (the C++ library of
PyTorch [31]). Most importantly, our implementation inter-
faces with PyMM and therefore can leverage its PyTorch
and NumPy support. Specifically, we implemented the tree
construction using the CoverTree algorithm in C++ for speed
and parallelism, and then exported our code to Python using
Pybind11 [32]. Final wavelet construction occurs in pure
Python with full PyMM support. Our implementation demon-
strated PyMM’s seamless support for existing NumPy routines.
For instance, we used NumPy’s svd algorithm and scipy’s qr
algorithm with pymm.ndarray datatypes on persistent memory.

IV. EXPERIMENTS

We took two datasets, MNIST [19] and Cifar10 [11] for our
experiments. Both datasets contain images, but with different

‘ Name ‘ # examples | dimensionality | # labels |
MNIST 70k 784 10
Cifarl0 60k 3072 10

TABLE I: A breakdown of the datasets. Note that while Cifar10 has
fewer examples, the dimensionality of each example is significantly
higher.

12 == dram
pymm

10

data loading time (s)

°
=

) .
0.0

140 | ® dram

pymm

120
100
80
60
40
20
0

mnist cifar1o

mnist cifar1o

wavelet construction + data loading time (s)

140 { mmm dram
pymm

wavelet construction time (s)

mnist cifar1o

140 | ™= dram
pymm

total script time (s)

mnist cifar1o

| Dataset | Data Loading DRAM (s) | Data Loading PyMM(s) | Wavelet Construction DRAM(s) | Wavelet Construction PyMM(s) | num trials |

0.53+1.73 x 103
1.2 +£8.26 x 1073

0.33 +2.02 x 10~3

MNIST
0.83 +2.58 x 10~3

Cifar10

62.4 +1.88

71.24+1.55 20
134.7 £5.07

140.6 £ 5.24 20

TABLE 1II: Top: Timing results of our experiments. The top two figures show the timings from loading data and wavelet construction
respectively. The bottom two figures aggregate these results into the total time of using DRAM/PyMM and the total running time of the
experiments respectively. Note that while PyMM performs much worse during the data loading phase, this phase comprises of 1% of the
total time spent using PYMM/DRAM. Bottom: Expected timing values including standard deviations. MNIST took 209.35MB on the shelf

and Cifar10 took 703.12MB on the shelf.

number of examples, dimensionality, and content. Most no-
tably the Cifar10 dataset contains larger, color images while
the MNIST dataset contains smaller, grayscale images. A
breakdown of the datasets (preprocessed and in original form)
is shown Table 1.

For our experiments, we measured the runtime that the
GMRA algorithm took to process both the MNIST and Cifar10
datasets. We computed the CoverTree structure outside of
our expeiments, as it only needs to occur once, is shared
between the PyMM and DRAM versions, and only uses
DRAM. We then serialized the CoverTree to disk. To compare
DRAM to PyMM, we ran the tree deserialization, Dyadic cell
computation, and wavelet computation using both a DRAM
and PyMM enabled version of GMRA. Since the PyMM api
is similar to the raw NumPy api, and supports NumPy api
operations on PyMM-stored arrays, the differences between
the two implementations was minimal. Our experiments were
run with PyMM crash consistency disabled.

We ran the partial GMRA algorithm (CoverTree deserializa-
tion through wavelet construction) 10 times each using DRAM
and PyMM, and recorded timing splits for each stage of the
script. We note that changing between DRAM and PyMM
has minimal effect on the Dyadic cell construction (due to
this operation always occurring in DRAM and being minorly
influenced by L2-L4 cache misses). However, all major linear
algebra operations occur during the wavelet construction stage,

and this operation will either occur in DRAM or PyMM
as well as storing the dataset itself. In our experiment, we
included the cost of moving the dataset from DRAM/disk to
PyMM in the PyMM reported times.

In our experiments, we used a server equipped with two
Intel Xeon Gold 6248 processors containing 80cpu cores
running at 2.5GHz base clock. The server is also equipped
with 384GB of DDR4 DRAM and 786GB of Optane DC.
This server also has a NVIDIA Tesla m60 GPU, however we
did not make use of it in our experiments.

V. RESULTS AND DISCUSSION

In our experiments, we observed that our PyMM GMRA
implementation performed slower than the DRAM implemen-
tation. This behavior is expected, and results can be seen
in Table II. We were however surprised at how fast the
PyMM implementation was compared to how slow Optane
memory is with respect to DRAM speeds. In our experiments,
we observed a slowdown of 1.6x on MNIST and a 1.45x
slowdown on Cifarl0 for loading data into PyMM versus
DRAM. This finding is surprising given the reported latency:
Optane is 3x slower than DRAM. For wavelet construction;
the stage where PyMM has the greatest influence over GMRA,
we observed a slowdown of 1.14x on MNIST and a 1.04x
slowdown on Cifar10. Our timing results can also be seen in
Table II.

While the slowdown is almost negligible for MNIST and Ci-
far10, it is worth noting that for larger datasets, the slowdown
can amount to hours of additional runtime. However, there is
a hidden cost that we did not measure in our experiments: the
penalty for serializing the GMRA wavelets to disk. This I/O
penalty only applies to the DRAM version since PyMM is per-
sistent, and it is unlikely that this serialization would close the
runtime gap on large datasets. However, for downstream tasks,
the 1/0 penalty of using a DRAM system would be nontrivial,
since there is no guarantee that the lower dimensional dataset
would fit into DRAM, and that read speeds from persistent
storage such as a NVMe SSD or HDD would be significantly
slower than load speeds from PyMM.

Our experiments had crash consistency disabled. Crash
consistency is implemented via a software logging strategy
in PyMM that occurs at every write operation. While crash
consistency is important for our algorithms, it induces a copy
operation every time a data object is written. Since this policy
is in software, this adds significant overhead to the runtime
of any algorithm which uses PyMM if crash consistency is
enabled. We omitted crash consistency at this point because
our algorithm is not crash consistent. In order to make our
algorithm crash consistent, it would require additional code
changes which would create an unfair comparison between
our PyMM implementation and a (already crash inconsistent)
DRAM implementation.

VI. FUTURE WORK

One major improvement that we leave to future work is
to integrate our custom C/C++ tree structures into PyMM.
Currently, our tree structures (CoverTree and Dyadic cell
tree) are implemented on DRAM and execute in series. In
the future, we would like to put both of these structures on
persistent memory using PyMM and operate on them in-place.
A further direction is to add parallelization to our CoverTree
implementation. CoverTrees are highly parallelizable, however
we omitted this in our current implementation in order to
simplify the code.

Additionally, we envision a scenario where GMRA and
other dimensionality reduction techniques are supported by
all the features available in MCAS. Currently, PyYMM can
only access local storage devices, which caps the capacity to
how many Optane-PM drives can fit inside a single machine.
Fully-fledged MCAS on the other hand provides a network
abstraction, allowing memory to be shared across multiple
machines. This would enable our algorithms to scale-out
across nodes and process datasets currently only possible by
large Hadoop clusters.

Our last avenue of future work is to utilize GPU resources.
By transferring data between persistent memory and GPU
memory, we can further accelerate our algorithms either in
down stream tasks like using the lower-dimensional datasets
for learning, or by using GPU resources in our algorithms
to speed up calculations. CXL-attached GPU and FPGA
accelerators combined with persistent memory might also be
an interesting direction for future research.

VII. CONCLUSION

In conclusion, we have demonstrated that MCAS and
PyMM provide a suitable framework to implement data inten-
sive algorithms such as GMRA. While persistent memory has
higher latency than DRAM when the dataset fits into DRAM,
PyMM-GMRA still provides competitive runtimes. When data
does not fit into DRAM, PyYMM-GMRA is the only implemen-
tation which can process this data. We demonstrate that with
PyMM, data intensive algorithms have new opportunities to
escape the classical restrictions of von-Neumann architectures
and can be used more effectively in the world of big data.

REFERENCES

[1] L. Van Der Maaten, E. Postma, J. Van den Herik et al., “Dimensionality
reduction: a comparative,” J Mach Learn Res, vol. 10, no. 66-71, p. 13,
2009.

[2] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with
nonlinear dimensionality reduction,” in Proceedings of the MLSDA 2014
2nd workshop on machine learning for sensory data analysis, 2014, pp.
4-11.

[3] S. Tsuge, M. Shishibori, S. Kuroiwa, and K. Kita, “Dimensionality
reduction using non-negative matrix factorization for information re-
trieval,” in 2001 IEEE International Conference on Systems, Man and
Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.
No. 01CH37236), vol. 2. 1EEE, 2001, pp. 960-965.

[4] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski, “Information
retrieval perspective to nonlinear dimensionality reduction for data
visualization.” Journal of Machine Learning Research, vol. 11, no. 2,
2010.

[51 G. J. Kowalski, Information retrieval systems: theory and implementa-
tion. Springer, 2007, vol. 1.

[6] G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” in Linear algebra. Springer, 1971, pp. 134-151.

[71 M. Ringnér, “What is principal component analysis?” Nature biotech-
nology, vol. 26, no. 3, pp. 303-304, 2008.

[8] M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum, V. de Silva,
and J. C. Langford, “The isomap algorithm and topological stability,”
Science, vol. 295, no. 5552, pp. 7-7, 2002.

[91 W. K. Allard, G. Chen, and M. Maggioni, “Multi-scale geometric
methods for data sets ii: Geometric multi-resolution analysis,” Applied
and Computational Harmonic Analysis, vol. 32, no. 3, pp. 435462,
2012.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.

[11] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[12] J. Thickstun, Z. Harchaoui, D. P. Foster, and S. M. Kakade, “Invariances
and data augmentation for supervised music transcription,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2018, pp. 2241-2245.

[13] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. F.
Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal, “Deep
complex networks,” arXiv preprint arXiv:1705.09792, 2017.

[14] A. Axelrod, X. He, and J. Gao, “Domain adaptation via pseudo in-
domain data selection,” in Proceedings of the 2011 conference on
empirical methods in natural language processing, 2011, pp. 355-362.

[15] (2020) Spectra - Digital Data Outlook 2020. https://spectralogic.com/
wp-content/uploads/digital_data_storage_outlook_2020.pdf.

[16] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent memory

module,” CoRR, vol. abs/1903.05714, 2019. [Online]. Available:
http://arxiv.org/abs/1903.05714
[17] “Sap hana: Intel optane™ persistent memory and sap hana

platform configuration,” https://www.intel.com/content/www/us/en/big-

data/partners/sap/sap-hana-and-intel-optane-configuration-guide.html.
[18] D. Waddington, C. Dickey, M. Hershcovitch, and S. Seshadri, “An

architecture for memory centric active storage (MCAS),” 2021.

https://spectralogic.com/wp-content/uploads/digital_data_storage_outlook_2020.pdf
https://spectralogic.com/wp-content/uploads/digital_data_storage_outlook_2020.pdf
http://arxiv.org/abs/1903.05714

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

(28]

[29]

[30]

[31]

(32]

Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

S. Rachakonda, R. F. Silva, J. Liu, and V. D. Calhoun, “Memory efficient
pca methods for large group ica,” Frontiers in neuroscience, vol. 10,
p. 17, 2016.

S. Huang, B. D. Hoskins, M. W. Daniels, M. D. Stiles, and G. C. Adam,
“Memory-efficient training with streaming dimensionality reduction,”
arXiv preprint arXiv:2004.12041, 2020.

I. Mitliagkas, C. Caramanis, and P. Jain, “Memory limited, streaming
pea,” arXiv preprint arXiv:1307.0032, 2013.

M. Ghashami, E. Liberty, J. M. Phillips, and D. P. Woodruff, “Frequent
directions: Simple and deterministic matrix sketching,” arXiv preprint
arXiv:1501.01711, 2015.

“Intel corporation. Persistent Memory Development Kit.” http://pmem.
io/pmdk/, 2020.

“Pynvm: A python interface to pmdk,” URL: hitps://github.
com/pybind/pybindl 1.

J. J. DiCarlo, D. Zoccolan, and N. C. Rust, “How does the brain solve
visual object recognition?”” Neuron, vol. 73, no. 3, pp. 415-434, 2012.
D. N. Tran and S. P. Chin, “Geometric multi-resolution analysis based
classification for high dimensional data,” in Cyber Sensing 2014, vol.
9097. International Society for Optics and Photonics, 2014, p. 90970L.
G. Chen, M. Iwen, S. Chin, and M. Maggioni, “A fast multiscale
framework for data in high-dimensions: Measure estimation, anomaly
detection, and compressive measurements,” in 2012 Visual Communica-
tions and Image Processing. 1EEE, 2012, pp. 1-6.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359-392, 1998.

A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” in Proceedings of the 23rd international conference on
Machine learning, 2006, pp. 97-104.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026-8037, 2019.

W. Jakob, J. Rhinelander, and D. Moldovan, “pybindll-seamless
operability between c++ 11 and python,” URL: https://github.
com/pybind/pybindl 1, 2017.

 http://pmem.io/pmdk/
 http://pmem.io/pmdk/

	Introduction
	Background and Related Work
	MCAS: Memory Centric Active Storage
	PyMM: Python Micro-MCAS
	Geometric Multi-Scale Resolution Analysis (GMRA)

	Our Approach
	GMRA Implementation

	Experiments
	Results and Discussion
	Future Work
	Conclusion
	References

