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ABSTRACT
We consider the dynamic behavior of several variants of
the Network Creation Game, introduced by Fabrikant et
al. [PODC’03]. Equilibrium networks in these models have
desirable properties like low social cost and small diame-
ter, which makes them attractive for the decentralized cre-
ation of overlay-networks. Unfortunately, due to the non-
constructiveness of the Nash equilibrium, no distributed al-
gorithm for finding such networks is known. We treat these
games as sequential-move games and analyze if (uncoordi-
nated) selfish play eventually converges to an equilibrium.
Thus, we shed light on one of the most natural algorithms
for this problem: distributed local search, where in each step
some agent performs a myopic selfish improving move.

We show that fast convergence is guaranteed for all ver-
sions of Swap Games, introduced by Alon et al. [SPAA’10],
if the initial network is a tree. Furthermore, we prove that
this process can be sped up to an almost optimal number of
moves by employing a very natural move policy. Unfortu-
nately, these positive results are no longer true if the initial
network has cycles and we show the surprising result that
even one non-tree edge suffices to destroy the convergence
guarantee. This answers an open problem from Ehsani et
al. [SPAA’11] in the negative. Moreover, we show that on
non-tree networks no move policy can enforce convergence.
We extend our negative results to the well-studied original
version, where agents are allowed to buy and delete edges as
well. For this model we prove that there is no convergence
guarantee – even if all agents play optimally. Even worse,
if played on a non-complete host-graph, then there are in-
stances where no sequence of improving moves leads to a sta-
ble network. Furthermore, we analyze whether cost-sharing
has positive impact on the convergence behavior. For this
we consider a version by Corbo and Parkes [PODC’05] where
bilateral consent is needed for the creation of an edge and
where edge-costs are shared among the involved agents. We
show that employing such a cost-sharing rule yields even
worse dynamic behavior.
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Finally, we contrast our mostly negative theoretical results
by a careful empirical study. Our simulations indicate two
positive facts: (1) The non-convergent behavior seems to
be confined to a small set of pathological instances and is
unlikely to show up in practice. (2) In all our simulations
we observed a remarkably fast convergence towards a stable
network in O(n) steps, where n is the number of agents.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and
Problems; G.2.2 [Mathematics of Computing]: Discrete
Mathematics—Graph Theory, Network Problems

General Terms
Algorithms, Design, Theory, Experimentation

Keywords
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1. INTRODUCTION
Understanding Internet-like networks and their implica-

tions on our life is a recent endeavor undertaken by re-
searchers from different research communities. Such net-
works are difficult to analyze since they are created by a
multitude of selfish entities (e.g. Internet Service Providers)
which modify the infrastructure of parts of the network (e.g.
their Autonomous Systems) to improve their service qual-
ity. The classical field of Game Theory provides the tools
for analyzing such decentralized processes and from this per-
spective the Internet can be seen as an equilibrium state of
an underlying game played by selfish agents.

Within the last decade several such games have been pro-
posed and analyzed. We will focus on the line of works which
consider Network Creation Games, as introduced by Fab-
rikant et al. [11]. These games are very simple but they con-
tain an interesting trade-off between an agent’s investment
in infrastructure and her obtained usage quality. Agents
aim to invest as little as possible but at the same time they
want to achieve a good connection to all other agents in
the network. Network Creation Games and several variants
have been studied intensively, but, to the best of our knowl-
edge, almost all these works exclusively focus on properties
of the equilibrium states of the game. With this focus, the
game is usually considered to be a one-shot simultaneous-
move game. However, the Internet was not created in “one



shot”. It has rather evolved from an initial network, the
ARPANET, into its current shape by repeated infrastruc-
tural changes performed by selfish agents who entered or
left the stage at some time in the process. For this rea-
son, we focus on a more dynamic point of view: We analyze
the properties of the network creation processes induced by
the sequential-move version of the known models of selfish
network creation.

It is well-known that Network Creation Games have low
price of anarchy, which implies that the social cost of the
worst stable states arising from selfish behavior is close to
the cost of the social optimum. Therefore these games are
appealing for the decentralized and selfish creation of net-
works which optimize the service quality for all agents at low
infrastructural cost, e.g. overlay networks created by selfish
peers. But, to the best of our knowledge, it is not known
how a group of agents can collectively find such a desirable
stable state. Analyzing the game dynamics of Network Cre-
ation Games is equivalent to analyzing a very natural search
strategy: (uncoordinated) distributed local search, where in
every step some agent myopically modifies the network in-
frastructure to better suit her needs. Clearly, if at some
step in the process no agent wants to modify her part of the
network, then a stable network has emerged.

1.1 Models and Definitions
We consider several versions of a network creation pro-

cess performed by n selfish agents. In all versions we con-
sider networks, where every node corresponds to an agent
and undirected links connect nodes in the network. The
creation process is based on an underlying Network Cre-
ation Game (NCG) and can be understood as a dynamic
process where agents sequentially perform strategy-changes
in the NCG. In such games, the strategies of the agents
determine which links are present in the network and any
strategy-profile, which is a vector of the strategies of all n
agents, determines the induced network. But this also works
the other way round: Given some network G = (V,E, o),
where V is the set of n vertices, E is the set of edges and
o : E → V is the ownership-function, which assigns the
ownership of an edge to one of its endpoints, then G com-
pletely determines the current strategies of all n agents of the
NCG. Starting from a network G0, any sequence of strategy-
changes by agents can thus be seen as a sequence of networks
G0, G1, G2, . . . , where the network Gi+1 arises from the net-
work Gi by the strategy-change of exactly one agent. In the
following, we will write xy or yx for the undirected edge
{x, y} ∈ E. In figures we will indicate edge-ownership by
directing edges away from their owner.

The creation process starts in an initial state G0, which
we call the initial network. A step from state Gi to state
Gi+1 consists of a move by one agent. A move of agent
u in state Gi is the replacement of agent u’s pure strategy
in Gi by another admissible pure strategy of agent u. The
induced network after this strategy-change by agent u then
corresponds to the state Gi+1. We consider only improving
moves, that is, strategy-changes which strictly decrease the
moving agent’s cost. The cost of an agent in Gi depends on
the structure of Gi and it will be defined formally below. If
agent u in state Gi has an admissible new strategy which
yields a strict cost decrease for her, then we call agent u
unhappy in network Gi and we let Ui denote the set of all
unhappy agents in state Gi. Only one agent can actually

move in a state of the process and this agent u ∈ Ui, whose
move transforms Gi into Gi+1, is called the moving agent
in network Gi. In any state of the process the move policy
determines which agent is the moving agent. The process
stops in some state Gj if no agent wants to perform a move,
that is, if Uj = ∅, and we call the resulting networks stable.
Clearly, stable networks correspond to pure Nash equilibria
of the underlying NCG.

Depending on what strategies are admissible for an agent
in the current state, there are several variants of this process,
which we call game types:

• In the Swap Game (SG), introduced as“Basic Network
Creation Game” by Alon et al. [2], the strategy Su of
an agent u in the network Gi is the set of neighbors
of vertex u in Gi. The new strategy S∗u is admissible
for agent u in state Gi, if |Su| = |S∗u| and |Su ∩ S∗u| =
|Su|−1. Intuitively, admissible strategies in the SG are
strategies which replace one neighbor x of u by another
vertex y. Note, that this corresponds to“swapping”the
edge ux from x towards y, which is the replacement of
edge ux by edge uy. Furthermore, observe, that in any
state both endpoints of an edge are allowed to swap
this edge. Technically, this means that the ownership
of an edge has no influence on the agents’ strategies or
costs.

• The Asymmetric Swap Game (ASG), recently intro-
duced by Mihalák and Schlegel [16], is similar to the
SG, but here the ownership of an edge plays a crucial
role. Only the owner of an edge is allowed to swap
the edge in any state of the process. The strategy Su
of agent u in state Gi is the set of neighbors in Gi
to which u owns an edge and the strategy S∗u is ad-
missible for agent u in state Gi, if |Su| = |S∗u| and
|Su ∩ S∗u| = |Su| − 1. Hence, in the ASG the moving
agents are allowed to swap one own edge.

• In the Greedy Buy Game (GBG), recently introduced
by us [14], agents have more freedom to act. In any
state, an agent is allowed to buy or to delete or to
swap one own edge. Hence, the GBG can be seen as
an extension of the ASG. The strategy Su of agent
u in state Gi is defined as in the ASG, but the set
of admissible strategies is larger: S∗u is admissible for
agent u in state Gi if (1) |S∗u| = |Su|+1 and Su ⊂ S∗u or
(2) if |S∗u| = |Su| − 1 and S∗u ⊂ Su or (3) if |Su| = |S∗u|
and |Su ∩ S∗u| = |Su| − 1.

• The Buy Game (BG), which is the original version of
an NCG and which was introduced by Fabrikant et
al. [11], is the most general version. Here agents can
perform arbitrary strategy-changes, that is, agents are
allowed to perform any combination of buying, delet-
ing and swapping of own edges. The strategy Su of
agent u in Gi is defined as in the ASG, but an admis-
sible strategy for agent u is any set S∗u ⊆ V \ {u}.

The cost of an agent u in network Gi has the form cGi(u) =
eGi(u) + δGi(u), where eGi(u) denotes the edge-cost and
δGi(u) denotes the distance-cost of agent u in the network
Gi. Each edge has cost α > 0, which is a fixed constant,
and this cost has to be paid fully by the owner, if not stated
otherwise. Hence, if agent u owns k edges in the network



Gi, then eGi(u) = αk. In the (A)SG we simply omit the
edge-cost term in the cost function.

There are two variants of distance-cost functions captur-
ing the focus on average or worst-case connection quality.
In the Sum-version, we have δGi(u) =

∑
v∈V (Gi)

dGi(u, v),

if the network Gi is connected and δGi(u) = ∞, otherwise.
In the Max-version, we have δGi(u) = maxv∈V (Gi) dGi(u, v),
if Gi is connected and δGi(u) =∞, otherwise. In both cases
dGi(u, v) denotes the shortest path distance between vertex
u and v in the undirected graph Gi.

The move policy specifies for any state of the process,
which of the unhappy agents is allowed to perform a move.
From a mechanism design perspective, the move policy is a
way to enforce coordination and to guide the process towards
a stable state. We will focus on the max cost policy, where
the agent having the highest cost is allowed to move and
ties among such agents are broken arbitrarily. Sometimes
we will assume that an adversary chooses the worst possible
moving agent. Note, that the move policy only specifies
who is allowed to move, not which specific move has to be
performed. We do not consider such strong policies since we
do not want to restrict the agents’ freedom to act.

Any combination of the four game types, the two distance
functions and some move policy together with an initial net-
work completely specifies a network creation process. We
will abbreviate names, e.g. by calling the Buy Game with
the Sum-version of the distance-cost the Sum-BG. If not
stated otherwise, edge-costs cannot be shared.

A cyclic sequence of networks C1, . . . , Cj , where network
Ci+1 mod j arises from network Ci mod j by an improving
move of one agent is called a better response cycle. If ev-
ery move in such a cycle is a best response move, which is a
strategy-change towards an admissible strategy which yields
the largest cost decrease for the moving agent, then we call
such a cycle a best response cycle. Clearly, a best response
cycle is a better response cycle, but the existence of a bet-
ter response cycle does not imply the existence of a best
response cycle.

1.2 Classifying Games According to their Dy-
namics

Analyzing the convergence processes of games is a very
rich and diverse research area. We will briefly introduce
two well-known classes of finite strategic games: games hav-
ing the finite improvement property (FIPG) [17] and weakly
acyclic games (WAG) [20].

FIPG have the most desirable form of dynamic behavior:
Starting from any initial state, every sequence of improving
moves must eventually converge to an equilibrium state of
the game, that is, such a sequence must have finite length.
Thus, in such games distributed local search is guaranteed to
succeed. It was shown by Monderer and Shapley [17] that a
finite game is a FIPG if and only if there exists a generalized
ordinal potential function Φ, which maps strategy-profiles to
real numbers and has the property that if the moving agent’s
cost decreases, then the potential function value decreases as
well. Stated in our terminology, this means that Φ : Gn → R,
where Gn is the set of all networks on n nodes, and we have

cGi(u)− cGi+1(u) > 0⇒ Φ(Gi)− Φ(Gi+1) > 0,

if agent u is the moving agent in the network Gi. Clearly, no
FIPG can admit a better response cycle. An especially nice
subclass of FIPG are games that are guaranteed to converge

to a stable state in a number of steps which is polynomial
in the size of the game. We call this subclass poly-FIPG.

Weakly acyclic games are a super-class of FIPG. Here it is
not necessarily true that any sequence of improving moves
must converge to an equilibrium but we have that from any
initial state there exists some sequence of improving moves
which enforces convergence. Thus, with some additional co-
ordination distributed local search may indeed lead to stable
states for such games. A subclass of WAG are games where
from any initial state there exists a sequence of best response
moves, which leads to an equilibrium. We call those games
weakly acyclic under best response, BR-WAG for short. Ob-
serve, that if a game is not weakly acyclic, then there is
no way of enforcing convergence if agents stick to playing
improving moves.

The above mentioned classes of finite strategic games are
related as follows:

poly-FIPG ⊂ FIPG ⊂ BR-WAG ⊂WAG.

The story does not end here. Very recently, Apt and Si-
mon [3] have classified WAG in much more detail by in-
troducing a “scheduler”, which is a moderating super-player
who guides the agents towards an equilibrium.

1.3 Related Work
The original model of Network Creation Games, which we

call the Sum-BG, was introduced a decade ago by Fabrikant
et al. [11]. Their motivation was to understand the creation
of Internet-like networks by selfish agents without central
coordination. In the following years, several variants were
proposed: The Max-BG [9], the Sum-SG and the Max-
SG [2], the Sum-ASG and the Max-ASG [16], the Sum-GBG
and the Max-GBG [14], a bounded budget version [10], an
edge-restricted version [8, 4], a version with bilateral equal-
split cost-sharing [6] and a version considering points in a
metric space using a different distance measure [18]. All
these works focus on properties of stable networks or on
the complexity of computing an agent’s best response. To
the best of our knowledge, the dynamic behavior of most
of these variants, including best response dynamics in the
well-studied original model, has not yet been analyzed.

Previous work, e.g. [11, 1, 9, 15], has shown that the price
of anarchy for the Sum-BG and the Max-BG is constant

for a wide range of α and in 2O(
√
logn) in general. For the

Sum-(A)SG the best upper bound is in 2O(
√
logn) as well [2,

16], whereas the Max-SG has a lower bound of Ω(
√
n) [2].

Interestingly, if played on trees, then the Sum-SG and the
Max-SG have constant price of anarchy [2], whereas the
Sum-ASG and the bounded budget version on trees has price
of anarchy in Θ(logn) [10, 16]. Moreover, it is easy to show
that the Max-ASG on trees has price of anarchy in Θ(n).
Thus, we have the desirable property that selfish behavior
leads to a relatively small deterioration in social welfare for
most of the proposed versions.

In earlier work [13] we studied the game dynamics of the
Sum-SG and showed that if the initial network G0 is a tree
on n nodes, then the network creation process is guaranteed
to converge in O(n3) steps. By employing the max cost
policy, this process can be sped up significantly to O(n)
steps, which is asymptotically optimal. For the Sum-SG on
general networks we showed that there exists a best response
cycle, which implies that the Sum-SG on arbitrary initial
networks is not a FIPG.



Very recently, Cord-Landwehr et al. [7] studied a variant
of the Max-SG, where agents have communication interests,
and showed that this variant admits a best response cycle
on a tree network as initial network. Hence the restricted-
interest variant of the Max-SG is not a FIPG – even on
trees.

Brandes et al. [5] were the first to observe that the Sum-
BG is not a FIPG and they prove this by providing a better
response cycle. Very recently, Bilò et al. [4] gave a better re-
sponse cycle for the Max-BG which implies the same state-
ment for this version. Note, that both proofs contain agents
who perform a sub-optimal move at some step in the better
response cycle. Hence, these two results do not address the
convergence behavior if agents play optimally.

1.4 Our Contribution
In this work, we study Network Creation Games, as pro-

posed by Fabrikant et al. [11], and several natural variants
of this model from a new perspective. Instead of analyzing
properties of equilibrium states, we apply a more construc-
tive point of view by asking if and how fast such desirable
states can be found by selfish agents. For this, we turn the
original model and its variants, which are originally formu-
lated as one-shot simultaneous-move games, into more algo-
rithmic models, where moves are performed sequentially.

For the Max Swap Game on trees, we show that the pro-
cess must converge in O(n3) steps, where n is the number
of agents. Furthermore, by introducing a natural way of
coordination we obtain a significant speed-up to Θ(n logn)
steps, which is almost optimal. We show that these results,
combined with results from our earlier work [13], give the
same bounds for the Asymmetric Swap Game on trees in
both the Sum- and the Max-version.

These positive results for initial networks which are trees
are contrasted by several strong negative results on general
networks. We show that the Max-SG, the Sum-ASG and
the Max-ASG on general networks are not guaranteed to
converge if agents repeatedly perform best possible improv-
ing moves and, even worse, that no move policy can en-
force convergence. We show that these games are not in
FIPG, which implies that there cannot exist a generalized
ordinal potential function which “guides” the way towards
an equilibrium state. For the Sum-ASG we show the even
stronger negative result that it can happen that no sequence
of best response moves may enforce convergence, that is, the
Sum-ASG is not even weakly acyclic under best response. If
not all possible edges can be created, that is if we have a
non-complete host graph [8, 4], then we show that the Sum-
ASG and the Max-ASG on non-tree networks is not weakly
acyclic. Moreover, we map the boundary between conver-
gence and non-convergence in ASGs and show the surprising
result that cyclic behavior can already occur in n-vertex net-
works which have n edges. That is, even one non-tree edge
suffices to completely change the dynamic behavior of these
games. In our constructions we have that every agent owns
exactly one edge, which is equivalent to the uniform-budget
case introduced by Ehsani et al. [10]. In their paper [10]
the authors raise the open problem of determining the con-
vergence speed for the bounded-budget version. Thus, our
results answer this open problem – even for the simplest ver-
sion of these games – in the negative, since we show that no
convergence guarantee exists.

We provide best response cycles for all versions of the Buy

Game, which implies that these games have no convergence
guarantee – even if agents have the computational resources
to repeatedly compute best response strategies. To the best
of our knowledge, the existence of best response cycles for all
these versions was not known before. Furthermore, we inves-
tigate the version where bilateral consent is needed for edge-
creation and where the edge-cost is shared equally among its
endpoints. We show that this version exhibits a similar un-
desirable dynamic behavior as the unilateral version. Quite
surprisingly, we can show an even stronger negative result
in the Sum-version which implies the counter-intuitive state-
ment that cost-sharing may lead to worse dynamic behavior.
Our findings nicely contrast a result of Corbo and Parkes [6]
who show guaranteed convergence if agents repeatedly play
best response strategies against perturbations of the other
agents’ strategies. We show, that these perturbations are
necessary for achieving convergence.

Finally, we present a careful empirical study of the conver-
gence time in the ASG and in the GBG. Interestingly, our
simulations show that our negative theoretical results seem
to be confined to a small set of pathological instances. Even
more interesting may be that our simulations show a re-
markably fast convergence towards stable networks in O(n)
steps, where n is the number of agents. This indicates that
despite our negative results distributed local search may be
a suitable method for selfish agents for collectively finding
equilibrium networks.

2. MAX SWAP GAMES
In this section we focus on the game dynamics of the Max-

SG. Interestingly, we obtain results which are very similar
to the results shown in our earlier work [13] but we need
entirely different techniques to derive them. Omitted proofs
can be found in the full version [12].

2.1 Dynamics on Trees
We will analyze the network creation process in the Max-

SG when the initial network is a tree. We prove that this
process has the following desirable property:

Theorem 1. The Max-SG on trees is guaranteed to con-
verge in O(n3) steps to a stable network. That is, the Max-
SG on trees is a poly-FIPG.

Before proving Theorem 1, we analyze the impact of a single
edge-swap. Let T = (V,E) be a tree on n vertices and let
agent v be unhappy in network T . Assume that agent v
can decrease her cost by performing the edge-swap vu to
vw, for some u,w ∈ V . This swap transforms T into the
new network T ′ = (V, (E \ {vu}) ∪ {vw}). Let cT (v) =
maxx∈V (T ) dT (v, x) denote agent v’s cost in the network T .
Let cT ′(u) denote her respective cost in T ′. Let A denote
the tree of T ′′ = (V,E \ {vu}) which contains v and let B
be the tree of T ′′ which contains u and w. It is easy to
see, that we have dT (x, y) = dT ′(x, y), if x, y ∈ V (A) or if
x, y ∈ V (B).

Lemma 1. For all x ∈ V (A) there is no y ∈ V (A) such
that cT (x) = dT (x, y).

Lemma 1 directly implies the following statement:

Corollary 1. For all x ∈ V (A): cT (x) > cT ′(x).

Hence, we have that agent v’s improving move decreases the
cost for all agents in V (A). For agents in V (B) this may



not be true: The cost of an agent y ∈ V (B) can increase
by agent v’s move. Interestingly, the next result guarantees
that such an increase cannot be arbitrarily high.

Lemma 2. Let x ∈ V (A), y ∈ V (B) such that dT ′(x, y) =
cT ′(y). It holds that cT (x) > cT ′(y).

Proof. In tree T we have cT (x) = dT (x, v) + dT (u, z) +
1. Furthermore, in tree T ′ we have cT ′(y) = dT ′(x, v) +
dT ′(w, y) + 1. Since cT (v) > cT ′(v), we have dT (w, y) <
dT (u, z), where z ∈ V (B) is a vertex having maximum
distance to v in T . Hence, this implies cT (x) − cT ′(y) =
dT (u, z)− dT (w, y) > 0.

Towards a generalized ordinal potential function we will
need the following:

Definition 1. (Sorted Cost Vector and Center-Vertex) Let
G be any network on n vertices. The sorted cost vector of
G is −→cG = (γ1

G, . . . , γ
n
G), where γiG is the cost of the agent,

who has the i-th highest cost in the network G. An agent
having cost γnG is called center-vertex of G.

Lemma 3. Let T be any tree on n vertices. The sorted
cost vector of T induces a generalized ordinal potential func-
tion for the Max-SG on T .

Proof. Let v be any agent in T , who performs an edge-
swap which strictly decreases her cost and let T ′ denote the
network after agent v’s swap. We show that cT (v)−cT ′(v) >
0 implies −→cT >lex

−→cT ′ , where >lex is the lexicographic order
on Nn. The existence of a generalized ordinal potential func-
tion then follows by mapping the lexicographic order on Nn
to an isomorphic order on R.

Let the subtrees A and B be defined as above and let
cT (v) − cT ′(v) > 0. By Lemma 1 and Lemma 2, we know
that there is an agent x ∈ V (A) such that cT (x) > cT ′(y),
for all y ∈ V (B). By Lemma 1 and Corollary 1, we have
that cT (x) > cT ′(x), which implies that −→cT >lex

−→cT ′ .

In the following, a special type of paths in the network will
be important.

Definition 2. (Longest Path) Let G be any connected net-
work. Let v be any agent in G having cost cG(v) = k. Any
simple path in G, which starts at v and has length k is called
a longest path of agent v.

As we will see, center-vertices and longest paths are closely
related.

Lemma 4. Let T be any connected tree and let v∗ be a
center-vertex of T . Vertex v∗ must lie on all longest paths
of all agents in V (T ).

Proof. Let Pxy denote the path from vertex x to ver-
tex y in T . We assume towards a contradiction that there
are two vertices v, w ∈ V (T ), where cT (v) = dT (v, w), and
that v∗ /∈ V (Pvw). Let z ∈ V (T ) be the only shared ver-
tex of the three paths Pvv∗ , Pwv∗ , Pvw. We have dT (v, z) <
dT (v, v∗) ≤ cT (v∗) and dT (w, z) < dT (w, v∗) ≤ cT (v∗). We
show that cT (z) < cT (v∗), which is a contradiction to v∗

being a center-vertex in T .
Assume that there is a vertex u ∈ V (T ) with dT (u, z) ≥

cT (v∗). It follows that V (Pvz) ∩ V (Pzu) = {z}, since oth-
erwise dT (v∗, u) = dT (v∗, z) + dT (z, u) > cT (v∗). But now,
since dT (z, w) < cT (v∗) ≤ dT (z, u), we have dT (v, u) >
cT (v), which clearly is a contradiction. Hence, we have
dT (z, u) < cT (v∗), for all u ∈ V (T ), which implies that
cT (z) < cT (v∗).

Lemma 4, leads to the following observation.

Observation 1. Let G be any connected network on n
nodes and let −→cG = (γ1

G, . . . , γ
n
G) be its sorted cost vector.

We have γ1
G = γ2

G and γnG =
⌈
γ1G
2

⌉
.

Now we are ready to provide the key property which will
help us upper bound the convergence time.

Lemma 5. Let T = (V,E) be a connected tree on n ver-

tices having diameter D ≥ 4. After at most nD−D2

2
moves

of the Max-SG on T one agent must perform a move which
decreases the diameter.

Proof. Let v, w ∈ V such that dT (v, w) = D ≥ 4 and
let Pvw be the path from v to w in T . Clearly, if no agent
in V (Pvw) makes an improving move, then the diameter of
the network does not change. On the other hand, if the
path Pvw is the unique path in T having length D, then
any improving move of an agent in V (Pvw) must decrease
the diameter by at least 1. The network creation process
starts from a connected tree having diameter D ≥ 4 and, by
Lemma 3, must converge to a stable tree in a finite number
of steps. Moreover, Lemma 3 guarantees that the diameter
of the network cannot increase in any step of the process.
It was shown by Alon et al. [2] that any stable tree has
diameter at most 3. Thus, after a finite number of steps the
diameter of the network must strictly decrease, that is, on
all paths of length D some agent must have performed an
improving move which reduced the length of the respective
path. We fix the path Pvw to be the path of length D in the
network which survives longest in this process.

It follows, that there are |V \V (Pvw)| = n−(D+1) agents
which can perform improving moves without decreasing the
diameter. We know from Observation 1 and Lemma 4 that
each one of those n − (D + 1) agents can decrease her cost
to at most

⌈
D
2

⌉
+ 1 and has to decrease her cost by at least

1 for each edge-swap. We show that an edge-swap of such
an agent does not increase the cost of any other agent and
use the minimum possible cost decrease per step to conclude
the desired bound.

Let u ∈ V (T )\V (Pvw) be an agent who decreases her cost
by swapping the edge ux to uy and let T ′ be the tree after
this edge-swap. Let a, b ∈ V (T ) be arbitrary agents. Clearly,
if {u, y} 6⊆ V (Pab) in T ′, then dT (a, b) = dT ′(a, b). Let A be
the tree of T ′′ = (V,E \{uy}) which contains u and let B be
the tree of T ′′ which contains y. W.l.o.g. let a ∈ V (A) and
b ∈ V (B). By Corollary 1, we have cT (z) > cT ′(z) for all
z ∈ V (A) and it follows that V (A) ∩ V (Pvw) = ∅. Hence, it
remains to analyze the change in cost of all agents in V (B).

If no vertex on the path Pab is a center-vertex in T ′, then,
by Lemma 4, we have that dT ′(a, b) < cT ′(b). It follows that
every longest path of agent b in T ′ lies entirely in subtree B
which implies that cT ′(b) ≤ cT (b).

If there is a center-vertex of T ′ on the path Pab in T ′,
then let v∗ be the last such vertex on this path. We have
assumed that the diameters of T ′ and T are equal, which
implies that Pvw is a longest path of agent v in T ′. Since,
by Lemma 4, any center-vertex of T ′ must lie on all longest
paths, it follows that v∗ is on the path Pvw and we have
v∗ ∈ V (B). W.l.o.g. let dT ′(v, b) ≥ dT ′(w, b). We have
dT ′(a, b) = dT ′(a, v

∗) + dT ′(v
∗, b) ≤ dT ′(v, v

∗) + dT ′(v
∗, b).

Hence, we have dT ′(a, b) ≤ cT ′(b). Since the path Pbv is in
subtree B, we have cT ′(b) ≤ cT (b).



Now we can easily conclude the upper bound on the num-
ber of moves which do not decrease the diameter of T . Each
of the n− (D+ 1) agents with cost at most D may decrease
their cost to

⌈
D
2

⌉
+ 1. If we assume a decrease of 1 per step,

then this yields the following bound:

(n− (D + 1))

(
D −

(⌈
D

2

⌉
+ 1

))
<
nD −D2

2
.

Proof of Theorem 1. By Lemma 3, we know there ex-
ists a generalized ordinal potential function for the Max-SG
on trees. Hence, we know that this game is a FIPG and we
are left to bound the maximum number of improving moves
needed for convergence. It was already shown by Alon et
al. [2], that the only stable trees of the Max-SG on trees are
stars or double-stars. Hence, the process must stop at the
latest when diameter 2 is reached.

Let Nn(T ) denote the maximum number of moves needed
for convergence in the Max-SG on the n-vertex tree T . Let
D(T ) be the diameter of T . Let Di,n denote the maximum
number of steps needed to decrease the diameter of any n-
vertex tree having diameter i by at least 1. Hence, we have

Nn(T ) ≤
D(T )∑
i=3

Di,n ≤
n−1∑
i=3

Di,n,

since the maximum diameter of a n-vertex tree is n − 1.
By applying Lemma 5 and adding the steps which actually
decrease the diameter, this yields

Nn(T ) ≤
n−1∑
i=3

Di,n <

n−1∑
i=3

(
ni− i2

2
+ 1

)

< n+
n

2

(
n∑
i=1

i

)
− 1

2

(
n∑
i=1

i2
)
∈ O(n3).

The following result shows that we can speed up the conver-
gence time by employing a very natural move policy. The
speed-up is close to optimal, since it is easy to see that there
are instances in which Ω(n) steps are necessary.

Theorem 2. The Max-SG on trees with the max cost
policy converges in Θ(n logn) moves.

We prove Theorem 2, by proving the lower and the upper
bound separately, starting with the former. Since we analyze
the max cost policy, we need two additional observations.

Observation 2. An agent having maximum cost in a tree
T must be a leaf of T .

Observation 3. Let u be an unhappy agent in the tree
T = (V,E) and let u be a leaf of T and let v be u’s unique
neighbor. Let B be the tree of T ′ = (V,E \ {uv}) which
contains v. The edge-swap uv to uw, for some w ∈ V (B) is
a best possible move for agent u if w is a center-vertex of B.

Lemma 6. There is a tree T on n vertices where the Max-
SG on T with the max cost policy needs Ω(n logn) moves for
convergence.

Proof. We will consider the path on n-vertices Pn =
v1v2 . . . vn of length n−1. We apply the max cost policy and
for breaking ties we will always choose the vertex having the
smallest index among all vertices having maximum cost. If a
maximum cost vertex has more than one best response move,

then we choose the edge-swap towards the new neighbor
having the smaller index. With these assumptions and with
Observation 2 and Observation 3, we have that the center-
vertex having the smallest index will “shift” towards a higher
index, from vdn/2e to vn−2. Finally, agent vn is the unique
agent having maximum cost and her move transforms the
tree to a star.

We start by analyzing the change in costs of agent v1.
Clearly, c0 = cPn(v1) = n − 1. By Observation 3, we know
that v1’s best swap connects to the minimum index center-
vertex of the tree without vertex v1. Hence after the best
move of v1 this agent has cost c1 =

⌈
c0−1

2

⌉
+ 1 > c0

2
. When

v1 is chosen to move again, her cost can possibly decrease
to
⌈
c1−1

2

⌉
+ 1 > c0

4
. After the i-th move of v1 her cost is at

least
⌈
ci−1−1

2

⌉
+ 1 > c0

2i
. Thus, the max cost policy allows

agent v1 to move at least log c0
3

times until she is connected
to vertex vn−2, the center of the final star, where she has
cost 3.

The above implies, that the number of moves of every
agent allowed by the max cost policy only depends on the
cost of that agent when she first becomes a maximum cost
agent. Moreover, since all moving agents are leaves, no move
of an agent increases the cost of any other agent. By con-
struction, the cost of every moving agent is determined by
her distance towards vertex vn. Since agent vn does not
move until in the last step of the process, we have that
a move of agent vi does not change the cost of any other
agent vj 6= vn who moves after vi. It follows, that we can
simply add up the respective lower bounds on the number
of moves of all players, depending on the cost when they
first become maximum cost agents. It is easy to see, that
agent vi becomes a maximum cost agent, when the maxi-
mum cost is n− i. Let M(Pn) denote the number of moves
of the Max-SG on Pn with the max cost policy and the
above tie-breaking rules. This yields

M(Pn) >

4∑
c0=n−1

log
c0
3
∈ Ω(n logn).

Lemma 7. The Max-SG on a n-vertex tree T with the
max cost policy needs O(n logn) moves to converge to a sta-
ble tree.

Proof. Consider any tree T on n vertices. By Observa-
tion 2, we know that only leaf-agents are allowed to move by
the max cost policy, which implies that no move of any agent
increases the cost of any other agent. Observation 3 guar-
antees that the best possible move of a leaf-agent u having
maximum cost c decreases agent u’s cost to at most

⌈
c
2

⌉
+1.

Hence, after O(logn) moves of agent u her cost must be at
most 3. If the tree converges to a star, then agent u may
move one more time. If we sum up over all n agents, then we
have that after O(n logn) moves the tree must be stable.

2.2 Dynamics on General Networks
In this section we show that allowing cycles in the initial

network completely changes the dynamic behavior of the
Max-SG.

Theorem 3. The Max-SG on general networks admits
best response cycles. Moreover, no move policy can enforce
convergence. The first result holds even if agents are allowed
to perform multi-swaps.



3. ASYMMETRIC SWAP GAMES
In this section we consider the Sum-ASG and the Max-

ASG. Note, that now we assume that each edge has an owner
and only this owner is allowed to swap the edge. We show
that we can directly transfer the results from above and from
[13] to the asymmetric version if the initial network is a tree.
On general networks we show even stronger negative results.
Omitted proofs can be found in the full version [12].

Observe, that the instance used in the proof of Theorem 3
and the corresponding instance in [13] show that best re-
sponse cycles in the Swap Game are not necessarily best
response cycles in the Asymmetric Swap Game. We will
show the rather counter-intuitive result that this holds true
for the other direction as well.

3.1 Dynamics in ASGs on Trees
The results in this section follow from the respective the-

orems in [13] and from the results in Section 2.1 and are
therefore stated as corollaries.

Corollary 2. The Sum-ASG and the Max-ASG on n-
vertex trees are both a poly-FIPG and both must converge to
a stable tree in O(n3) steps.

Corollary 3. Using the max cost policy and assuming
a n-vertex tree as initial network, we have that
• the Sum-ASG converges in max{0, n−3} steps, if n is

even and in max{0, n + dn/2e − 5} steps, if n is odd.
Moreover, both bounds are tight and asymptotically op-
timal.

• the Max-ASG converges in Θ(n logn) steps.

3.2 Dynamics in ASGs on General Graphs
If we move from trees to general initial networks, we get

a very strong negative result for the Sum-ASG: There is no
hope to enforce convergence if agents stick to playing best
responses even if multi-swaps are allowed.

Theorem 4. The Sum-ASG on general networks is not
weakly acyclic under best response. Moreover, this result
holds true even if agents can swap multiple edges in one
step.

Proof. We give a network which induces a best response
cycle. Additionally, we show that in each step of this cy-
cle exactly one agent can decrease her cost by swapping
an edge and that the best possible swap for this agent is
unique in every step. Furthermore, we show that the mov-
ing agent cannot outperform the best possible single-swap
by a multi-swap. This implies that if agents stick to best
response moves then no best response dynamic can enforce
convergence to a stable network and allowing multi-swaps
does not alter this result.

Fig. 1 shows the best response cycle consisting of the net-
works G1, G2, G3 and G4. We begin with showing that in
G1, . . . , G4 all agents, except agent b and agent f , cannot
perform an improving strategy change even if they are al-
lowed to swap multiple edges in one step.

In G1, . . . , G4 all leaf-agents do not own any edges and
the agents c and e cannot swap an edge since otherwise
the network becomes disconnected. For the same reason,
agent d cannot move the edge towards d1. Agent d owns
three other edges, but they are optimally placed since they
are connected to the vertices having the most leaf-neighbors.
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Figure 1: The steps of a best response cycle for the
Sum-ASG on general networks. Edge directions in-
dicate edge-ownership. All edges are two-way.

It follows, that agent d cannot decrease her cost by swap-
ping one edge or by performing a multi-swap. Note, that
this holds true for all networks G1, . . . , G4, although the
networks change slightly. Agent a cannot move her edges
towards ai, for 1 ≤ i ≤ 4. On the other hand, it is easy to
see that agent a’s edge towards vertex e cannot be swapped
to obtain a strict cost decrease since the most promising
choice, which is vertex c, yields the same cost in G1 and G4

and even higher cost in G2 and G3. Trivially, no multi-swap
is possible for agent a.

Now, we consider agent b and agent f . First of all, observe
that in G1, . . . , G4 agent f owns exactly one edge which is
not a bridge. Thus, agent f cannot perform a multi-swap in
any step of the best response cycle. Agent b, although own-
ing three edges, is in a similar situation: Her edges to vertex
c and e can be considered as fixed, since swapping one or
both of them does not yield a cost decrease in G1, . . . , G4.
Hence, agent b and agent f each have one “free” edge to
operate with. In G1 agent b’s edge towards f is placed op-
timally, since swapping towards a or d does not yield a cost
decrease. In G3, agents b’s edge towards a is optimal, since
swapping towards d or f does not decrease agent b’s cost.
Analogously, agent f ’s edge towards e in G2 and her edge
towards d in G4 are optimally placed.

Last, but not least, we describe the best response cycle: In
G1 agent f can improve and her unique best possible edge-
swap in G1 is the swap from d to e, yielding a cost decrease
of 4. In G2 agent b has the swap from f to a as unique best
improvement which yields a cost decrease of 1. In G3 have
agent f being unhappy with her strategy and the unique
best swap is the one from e to d yielding an improvement of
1. In G4 it is agent b’s turn again and her unique best swap
is from a to f which decreases her cost by 3. After agent b’s
swap in G4 we arrive again at network G1, hence G1, . . . , G4

is a best response cycle where in each step exactly one agent
has a single-swap as unique best possible improvement.

Note, that the best response cycle presented in the proof of
Theorem 4 is not a best response cycle in the Sum-SG. The



swap fb to fe of agent f in G1 yields a strictly larger cost
decrease than her swap fd to fe.

Compared to Theorem 4, we show a slightly weaker neg-
ative result for the max-version.

Theorem 5. The Max-ASG on general networks admits
best response cycles. Moreover, no move policy can enforce
convergence.

If played on a non-complete host-graph, then we get the
worst possible dynamic behavior.

Corollary 4. The Sum-ASG and the Max-ASG on a
non-complete host graph are not weakly acyclic.

3.3 The Boundary between Convergence and
Non-Convergence

In this section we explore the boundary between guaran-
teed convergence and cyclic behavior. Quite surprisingly,
we can draw a sharp boundary by showing that the unde-
sired cyclic behavior can already occur in n-vertex networks
having exactly n edges. Thus, one non-tree edge suffices to
radically change the dynamic behavior of Asymmetric Swap
Games. Our constructions are such that each agent owns ex-
actly one edge, which corresponds to the uniform unit bud-
get case, recently introduced by Ehsani et al. [10]. Hence,
even if the networks are build by identical agents having a
budget the cyclic behavior may arise. This answers the open
problem raised by Ehsani et al. [10] in the negative.

Theorem 6. The Sum-ASG and the Max-ASG admit
best response cycles on a network where every agent owns
exactly one edge.

Proof of Theorem 6, Sum-version. The network in-
ducing a best response cycle and the steps of the cycle are
shown in Fig. 2. Let nk denote the number of vertices having
the form kj , for some index j.
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Figure 2: The steps of a best response cycle for the
Sum-ASG where each agent owns exactly one edge.

In the first step, depicted in Fig. 2 (1), agent a1 has only one
improving move, which is the swap from b1 to c1. This swap
reduces agent a1’s cost by 1, since nc = nb + nd + 1. After

this move, shown in Fig. 2 (2), agent b1 is no longer happy
with her edge towards d1, since by swapping towards a4 she
can decrease her cost by 2. This is a best possible move for
agent b1 (note, that a swap towards a3 yields the same cost
decrease). But now, in the network shown in Fig. 2 (3), by
swapping back towards vertex b1, agent a1 can additionally
decrease her distances to vertices a4 and a5 by 1. This yields
that agent a1’s swap from c1 to b1 decreases her cost by 1.
This is true, since all distances to cj vertices increase by
1 but all distances to bi and dl vertices and to a4 and a5
decrease by 1 and since we have nc = nb + nd + 1. Note,
that this swap is agent a1’s unique improving move. By
construction, we have that after agent a1 has swapped back
towards b1, depicted in Fig. 2 (4), agent b1’s edge towards
a4 only yields a distance decrease of 7. Hence, by swapping
back towards d1, agent b1 decreases her cost by 1, since her
sum of distances to the dj vertices decreases by 8. This
swap is the unique improving move of agent b1 in this stage.
Now the best response cycle starts over again, with agent a1
moving from b1 to c1.

3.4 Empirical Study of the Bounded-Budget
Version

We have conducted extensive simulations of the conver-
gence behavior and the obtained results provide a sharp
contrast to our mostly negative theoretical results for both
versions of the ASG. Our experiments show for the bounded-
budget version a surprisingly fast convergence in at most 5n
steps under the max cost policy or by choosing the moving
agents uniformly at random. Despite millions of trials we
have not found any best response cycle in our experiments.
This indicates that our negative results may be only very
rare pathological examples. We refer to the full version [12]
for a detailed description of our simulations and results.

4. (GREEDY) BUY GAMES
We focus on the dynamic behavior of the Buy Game and

the Greedy Buy Game. Remember, that we assume, that
each edge can be created for the cost of α > 0.

4.1 Convergence Results
We show that best response cycles exist, even if arbitrary

strategy-changes are allowed. However, on the positive side,
we were not able to construct best response cycles where
only one agent is unhappy in every step. Hence, the right
move policy may have a substantial impact in (Greedy) Buy
Games. In contrast to this, we rule out this glimmer of hope
if played on a non-complete host-graph.

Theorem 7. The Sum-(G)BG and the Max-(G)BG ad-
mit best response cycles.

We sketch the proof by providing the best response cycle for
the Sum-(G)BG in Fig. 3 and for the Max-(G)BG in Fig. 4.
See the full version [12] for the complete proof.

If we restrict the set of edges which can be build, then
we get the worst possible dynamic behavior. In this case
there is no hope for convergence if agents are only willing to
perform improving moves.

Corollary 5. The Sum-(G)BG and the Max-(G)BG
on general host graphs is not weakly acyclic.
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4.2 Empirical Study of Greedy Buy Games
We give empirical results for the convergence time for both

versions of the GBG. Our focus is on the GBG, since a
best response for both versions of the GBG can be com-
puted in polynomial time [14], whereas this problem is well-
known [11, 15] to be NP-hard for the BG. Due to space con-
straints we can only sketch the setup and give a glimpse of
the results. See the full version [12] for a detailed discussion
and additional plots.

4.2.1 Experimental Setup
One run of our simulations consists of the generation of a

random initial network and then the max cost or the random
policy is employed in the GBG until the process converges to
a stable network. We measure the number of steps needed
for this convergence to happen and take the maximum over
5000 such runs for each configuration.

The initial networks are generated as follows: Starting
from an empty graph on n vertices we first generate a ran-
dom spanning tree to enforce connectedness of our networks.
Then we randomly insert edges until the desired number of
edges is present. Note, that we do not allow multi-edges.
The ownership of every edge is chosen uniformly at random
among the endpoints.

We have considered networks having n agents, where n
ranges between 10 and 100. In order to investigate the im-
pact of the density of the initial network on the convergence
time, we fix the number of edges in the initial network to
be n, 2n and 4n, respectively. The impact of the edge-cost
parameter α is investigated by setting α to n/10, n/4, n/2
and n, respectively. Demaine et al. [9] argue that this is the
most interesting range for α, since implies that the average
distance is roughly on par with the creation cost of an edge.

4.2.2 Experimental Results
We have observed a remarkably small number of steps

needed for convergence in these games, which indicates that
distributed local search is a practical method for selfishly
creating stable networks. For the Sum-GBG no run took
longer than 7n steps to converge, whereas for the Max-
version we always observed less than 8n steps until con-
vergence, see Fig. 5. It can be seen that the convergence
time grows roughly linear in n for all configurations, which
implies that these processes scale very well.

The number of edges in the initial network has an impact
on the convergence time: All curves for m = 4n are well
above the respective curves for m = n. The reason for this
may be the relatively high value for α compared to the di-
ameter of the resulting networks. We have not found any
stable network having a diameter larger than 4.

The choice of α influences the convergence time in the
Sum-version but not in the Max-version. In the former we
see that a smaller α generally yields a higher convergence
time. In the latter, there may be no influence since the
relatively high values of α yield that the edge-cost dominates
the distance-cost for most of the agents.

Moreover, as in the simulations for the ASG, despite sev-
eral millions of trials we did not encounter a cyclic instance.
This indicates that such instances are rather pathological
and may never show up in practice.
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Figure 5: Experimental results for both versions of
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initial networks having m edges and α = a.



5. BILATERAL BUY GAMES WITH COST-
SHARING

We consider “bilateral network formation”, as introduced
by Corbo and Parkes [6], which we call the bilateral equal-
split BG. This version explicitly models that bilateral con-
sent is needed in order to create an edge, which is a realistic
assumption in some settings. The cost of an edge is split
equally among its endpoints and edges are build only if both
incident agents are willing to pay half of the edge-price. This
model implicitly assumes coordination among coalitions of
size two and the corresponding solution concept is therefore
the pairwise Nash equilibrium, which can be understood as
the minimal coalitional refinement of the pure Nash equilib-
rium. The authors of [6] show that this solution concept is
equivalent to Meyerson’s proper equilibrium [19], which im-
plies guaranteed convergence if the agents repeatedly play
best response strategies against perturbations of the other
players’ strategies, where costly mistakes are made with less
probability. We show in this section that these perturbations
are necessary for achieving convergence by proving that the
bilateral equal-split BG is not weakly acyclic in the Sum-
version and that it admits best response cycles in the Max-
version. Interestingly, the first result is stronger than the re-
sult for the Sum-(G)BG, which yields the counter-intuitive
observation, that sharing the cost of edges can lead to worse
dynamic behavior.

Theorem 8. The Sum bilateral equal-split Buy Game is
not weakly acyclic.

For the Max-version, we can show a slightly weaker result.

Theorem 9. The Max bilateral equal-split Buy Game
admits best response cycles.
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