
33

Optimal Orthogonal Graph Drawing with Convex Bend Costs

THOMAS BLÄSIUS, IGNAZ RUTTER, and DOROTHEA WAGNER,
Karlsruhe Institute of Technology (KIT)

Traditionally, the quality of orthogonal planar drawings is quantified by the total number of bends or the
maximum number of bends per edge. However, this neglects that, in typical applications, edges have varying
importance. We consider the problem OPTIMALFLEXDRAW that is defined as follows. Given a planar graph G
on n vertices with maximum degree 4 (4-planar graph) and for each edge e a cost function coste : N0 −→ R

defining costs depending on the number of bends e has, compute a planar orthogonal drawing of G of
minimum cost.

In this generality OPTIMALFLEXDRAW is NP-hard. We show that it can be solved efficiently if (1) the cost
function of each edge is convex and (2) the first bend on each edge does not cause any cost. Our algorithm takes
time O(n · Tflow(n)) and O(n2 · Tflow(n)) for biconnected and connected graphs, respectively, where Tflow(n)
denotes the time to compute a minimum-cost flow in a planar network with multiple sources and sinks. Our
result is the first polynomial-time bend-optimization algorithm for general 4-planar graphs optimizing over
all embeddings. Previous work considers restricted graph classes and unit costs.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; G.2.1 [Discrete Mathematics]: Combinatorics; G.2.2 [Discrete Math-
ematics]: Graph Theory

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Orthogonal graph drawing, planar embedding, efficient algorithm

ACM Reference Format:
Thomas Bläsius, Ignaz Rutter, and Dorothea Wagner. 2016. Optimal orthogonal graph drawing with convex
bend costs. ACM Trans. Algorithms 12, 3, Article 33 (April 2016), 32 pages.
DOI: http://dx.doi.org/10.1145/2838736

1. INTRODUCTION

Orthogonal graph drawing is one of the most important techniques for the human-
readable visualization of complex data. Its aesthetic appeal derives from its simplicity
and straightforwardness. Since edges are required to be straight orthogonal lines—
which automatically yields good angular resolution and short links—the human eye
may easily adapt to the flow of an edge. The readability of orthogonal drawings can
be further enhanced in the absence of crossings, that is, if the underlying data exhibit
planar structure. Unfortunately, not all planar graphs have an orthogonal drawing in
which each edge may be represented by a straight horizontal or vertical line. In order to
be able to visualize all planar graphs nonetheless, we allow edges to have bends. Since

Part of this work was done within GRADR–EUROGIGA Project No. 10-EuroGIGA-OP-003.
A preliminary version of this article has appeared as T. Bläsius, I. Rutter, D. Wagner. Optimal Orthogonal
Graph Drawing with Convex Bend Costs. In Proc. 40th International Colloquium on Automata, Languages,
and Programming (ICALP’13), Part I, pages 184–195, volume 7965 of LNCS, 2013.
Authors’ addresses: T. Bläsius, I. Rutter, and D. Wagner, Karlsruhe Institute of Technology, Faculty of
Informatics, Am Fasanengarten 5, 76131 Karlsruhe, Germany; emails: firstname.lastname@kit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1549-6325/2016/04-ART33 $15.00
DOI: http://dx.doi.org/10.1145/2838736

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

http://dx.doi.org/10.1145/2838736
http://dx.doi.org/10.1145/2838736

33:2 T. Bläsius et al.

bends obfuscate the readability of orthogonal drawings, however, we are interested in
minimizing the number of bends on the edges.

In this article, we consider the problem OPTIMALFLEXDRAW, whose input consists
of a planar graph G with maximum degree 4 and for each edge e a cost function
coste: N0 −→ R defining costs depending on the number of bends on e. We seek an
orthogonal drawing of G with minimum cost. Garg and Tamassia [2001] show that it
is NP-hard to decide whether a 4-planar graph admits an orthogonal drawing without
any bends. Note that this directly implies that OPTIMALFLEXDRAW is NP-hard in general.
For a special case, namely planar graphs with maximum degree 3 and series-parallel
graphs, Di Battista et al. [1998] give an algorithm minimizing the total number of
bends optimizing over all planar embeddings. They introduce the concept of spirality
that is similar to the rotation we use (see Section 2.3 for a definition). Bläsius et al.
[2014] show that the existence of a planar one-bend drawing can be tested efficiently.
More generally, they consider the problem FLEXDRAW, where each edge has a flexibility
specifying its allowed number of bends. For the case that all flexibilities are positive,
they give a polynomial-time algorithm for testing the existence of a valid drawing.
Moreover, there is an FPT-algorithm solving FLEXDRAW efficiently in the presence of
few edges with flexibility 0 [Bläsius et al. 2015].

As minimizing the number of bends for 4-planar orthogonal drawings is NP-hard,
many results use the topology-shape-metrics approach initially fixing the planar em-
bedding. Tamassia [1987] describes a flow network for minimizing the number of bends.
This flow network can be easily adapted to also solve OPTIMALFLEXDRAW, even for the
case where the first bend may cause cost; however, the planar embedding has to be
fixed in advanced. Biedl and Kant [1998] show that every plane graph can be embed-
ded with at most two bends per edge except for the octahedron. Morgana et al. [2004]
give a characterization of plane graphs that have an orthogonal drawing with at most
one bend per edge. Tayu et al. [2009] show that every series-parallel graph can be
drawn with at most one bend per edge. All these results and the algorithm we present
here have the requirement of maximum degree 4 in common. Although this is a strong
restriction, it is important to consider this case since algorithms dealing with higher-
degree vertices (drawing them as boxes instead of single points) rely on algorithms for
graphs with maximum degree 4 [Tamassia et al. 1988; Fößmeier and Kaufmann 1995;
Klau and Mutzel 1998].

Even though fixing an embedding allows us to efficiently minimize the total number
of bends (with this embedding), this neglects that the choice of a planar embedding
may have a huge impact on the number of bends in the resulting drawing. The result
by Bläsius et al. [2014] concerning the problem FLEXDRAW takes this into account and
additionally allows the user to control the final drawing, for example, by allowing few
bends on important edges. However, if such a drawing does not exist, the algorithm
solving FLEXDRAW does not create a drawing at all and thus it cannot be used in
a practical application. Thus, the problem OPTIMALFLEXDRAW, which generalizes the
corresponding optimization problem, is of higher practical interest, as it allows the
user to take control of the properties of the final drawing within the set of feasible
drawings. Moreover, it allows a more fine-grained control of the resulting drawing by
assigning high costs to bends on important edges.

Contribution and Outline. Our main result is the first polynomial-time bend-
optimization algorithm for general 4-planar graphs optimizing over all embeddings.
Previous work considers only restricted graph classes and unit costs. We solve
OPTIMALFLEXDRAW if (1) all cost functions are convex and (2) the first bend is for
free. We note that convexity is indeed quite natural and that without condition (2)
OPTIMALFLEXDRAW is NP-hard, as it could be used to minimize the total number of
bends over all embeddings, which is known to be NP-hard [Garg and Tamassia 2001].

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:3

Fig. 1. (a) Two parallel edges, the thin has one bend for free, every additional bend costs 1, the thick
edge has two bends for free, every additional bend costs 2. Whether embedding E1 or E2 is better depends
on the number of bends. The minimum (marked by gray boxes) yields a non-convex cost function. (b) The
non-convexity in (a) does not rely on multiple edges, the thick edge could be replaced by the shown gadget
where each edge of the gadget has one bend for free and every additional bend costs 2. (c) This example has
a non-convex cost function even if every edge has one bend for free and each additional bend costs 1.

In fact, the problem is already NP-hard if the edges that cause cost on the first bend
form a simple structure, for example, a matching [Bläsius et al. 2015].

In particular, our algorithm allows us to efficiently minimize the total number of
bends over all planar embeddings, where one bend per edge is free. Note that this is
an optimization version of FLEXDRAW where each edges has flexibility 1, as a drawing
with cost 0 exists if and only if FLEXDRAW has a valid solution. Moreover, as it is known
that every 4-planar graph has an orthogonal representation with at most two bends
per edge [Biedl and Kant 1998], our result can also be used to create such a drawing
minimizing the number of edges having two bends by setting the costs for three or
more bends to ∞.

To derive the algorithm for OPTIMALFLEXDRAW, we show the existence of an optimal
solution with at most three bends per edge except for a single edge per block with up
to four bends, confirming a conjecture of Rutter [2011].

Our strategy for solving OPTIMALFLEXDRAW for biconnected graphs optimizing over
all planar embedding is the following. We use dynamic programming on the SPQR-
tree of the graph, which is a data structure representing all planar embeddings of a
biconnected graph. Every node in the SPQR-tree corresponds to a split component and
we compute cost functions for these split components determining the cost depending
on how strongly the split component is bent. We compute such a cost function from
the cost functions of the children using a flow network similar to the one described by
Tamassia [1987]. As computing flows with minimum cost is NP-hard for non-convex
costs, we need to ensure that not only the cost functions of the edges but also the cost
functions of the split components we compute are convex. However, this is not true at
all; see Figure 1 for an example. This is not even true if every edge can have a single
bend for free and then has to pay cost 1 for every additional bend; see Figure 1(c). To
solve this problem, we essentially show that it is sufficient to compute the cost functions
on the small interval [0, 3]. We can then show that the cost functions we compute are
always convex on this interval.

We start with some preliminaries in Section 2. Afterwards, we first consider the
decision problem FLEXDRAW for the case that the planar embedding is fixed in Section 3.
In this restricted setting we are able to prove the existence of valid drawings with
special properties. Bläsius et al. [2014] show that “rigid” graphs do not exist in this
setting in the sense that a drawing that is bent strongly can be unwound under the
assumption that the flexibility of every edge is at least 1. In other words this shows that
graphs with positive flexibility behave similar to single edges with positive flexibility.
We present a more elegant proof yielding a stronger result that can then be used to
reduce the number of bends of every edge down to three (at least for biconnected graphs
and except for a single edge on the outer face). In Section 4 we extend the term “bends,”

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:4 T. Bläsius et al.

originally defined for edges, to split components and show that in a biconnected graph
the split components corresponding to the nodes in its SPQR-tree can be assumed to
have only up to three bends. In Section 5 we show that these results for the decision
problem FLEXDRAW can be extended to the optimization problem OPTIMALFLEXDRAW.
With this result we are able to drop the fixed planar embedding (Section 6). We first
consider biconnected graphs in Section 6.1 and compute cost functions on the interval
[0, 3], which can be shown to be convex on that interval, bottom up in the SPQR-tree. In
Section 6.2 we extend this result to connected graphs using the BC-tree (see Section 2.2
for a definition).

2. PRELIMINARIES

In this section we introduce some notations and preliminaries.

2.1. FlexDraw

The original FLEXDRAW problem asks for a given 4-planar graph G = (V, E) with a func-
tion flex: E −→ N0 ∪ {∞} assigning a flexibility to every edge whether an orthogonal
drawing of G exists such that every edge e ∈ E has at most flex(e) bends. Such a draw-
ing is called a valid drawing of the FLEXDRAW instance. The problem OPTIMALFLEXDRAW

is the optimization problem corresponding to the decision problem FLEXDRAW and is
defined as follows. Let G = (V, E) be a 4-planar graph together with a cost function
coste : N0 −→ R ∪ {∞} associated with every edge e ∈ E having the interpretation that
ρ bends on the edge e cause coste(ρ) cost. Then the cost of an orthogonal drawing of
G is the total cost summing over all edges. A drawing is optimal if it has the mini-
mum cost among all orthogonal drawings of G. The task of the optimization problem
OPTIMALFLEXDRAW is to find an optimal drawing of G.

Since OPTIMALFLEXDRAW contains the NP-hard problem FLEXDRAW, it is NP-hard itself.
However, FLEXDRAW is efficiently solvable for instances with positive flexibility, that is,
instances in which the flexibility of every edge is at least 1. To obtain a similar result
for OPTIMALFLEXDRAW we have to restrict the possible cost functions slightly.

For a cost function coste(·) we define the difference function � coste(·) to be � coste(ρ) =
coste(ρ + 1) − coste(ρ). A cost function is monotone if its difference function is greater
or equal to 0. We say that the base cost of the edge e with monotone cost function
is be = coste(0). The flexibility of an edge e with monotone cost function is defined
to be the largest possible number of bends ρ for which coste(ρ) = be. As before, we
say that an instance G of OPTIMALFLEXDRAW has positive flexibility if all cost functions
are monotone and the flexibility of every edge is positive. Unfortunately, we have to
restrict the cost functions further to be able to solve OPTIMALFLEXDRAW efficiently. The
cost function coste(·) is convex if its difference function is monotone. We call an instance
of OPTIMALFLEXDRAW positive-convex, if every edge has positive flexibility and each cost
function is convex. Note that this implies that the cost functions are monotone. We
provide an efficient algorithm solving OPTIMALFLEXDRAW for positive-convex instances.

2.2. Connectivity, BC-Tree and SPQR-Tree

A graph is connected if there exists a path between any pair of vertices. A separating
k-set is a set of k vertices whose removal disconnects the graph. Separating 1-sets
and 2-sets are cutvertices and separation pairs, respectively. A connected graph is
biconnected if it does not have any cut vertex and triconnected if it does not have any
separation pair. The maximal biconnected components of a graph are called blocks. The
cut components with respect to a separation k-set S are the maximal subgraphs that
are not disconnected by removing S.

The block-cutvertex tree (BC-tree) B of a connected graph is a tree whose nodes are
the blocks and cutvertices of the graph, called B-nodes and C-nodes, respectively. In

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:5

Fig. 2. The unrooted SPQR-tree of a biconnected planar graph. The nodes μ1, μ3, and μ5 are P-nodes, μ2 is
an R-node, and μ4 is an S-node. The Q-nodes are not shown explicitly.

the BC-tree, a block B and a cutvertex v are joined by an edge if v belongs to B. If
an embedding is chosen for each block, then these embeddings can be combined to an
embedding of the whole graph if and only if B can be rooted at a B-node such that the
parent of every other block B in B, which is a cutvertex, lies on the outer face of B.

We use the SPQR-tree introduced by Di Battista and Tamassia [1996a, 1996b] to
represent all planar embeddings of a biconnected planar graph G. The SPQR-tree T of
G is a decomposition of G into its triconnected components along its split pairs where
a split pair is either a separation pair or an edge. We first define the SPQR-tree to be
unrooted, representing embeddings on the sphere, that is, planar embeddings without
a designated outer face. Let {s, t} be a split pair and let H1 and H2 be two subgraphs
of G such that H1 ∪ H2 = G and H1 ∩ H2 = {s, t}. Consider the tree containing the two
nodes μ1 and μ2 associated with the graphs H1+{s, t} and H2+{s, t}, respectively. These
graphs are called skeletons of the nodes μi, denoted by skel(μi), and the special edge
{s, t} is said to be a virtual edge. The two nodes μ1 and μ2 are connected by an edge,
or, more precisely, the occurrence of the virtual edges {s, t} in both skeletons are linked
by this edge. Now a combinatorial embedding of G uniquely induces a combinatorial
embedding of skel(μ1) and skel(μ2). Furthermore, arbitrary and independently chosen
embeddings for the two skeletons determine an embedding of G, thus the resulting tree
can be used to represent all embeddings of G by the combination of all embeddings of
two smaller planar graphs. This replacement can of course be applied iteratively to the
skeletons yielding a tree with more nodes but smaller skeletons associated with the
nodes. Applying this kind of decomposition in a systematic way yields the SPQR-tree
as introduced by Di Battista and Tamassia [1996a, 1996b], which can be characterized
by the following properties. The SPQR-tree T of a biconnected planar graph G contains
four types of nodes. First, the P-nodes having a bundle of at least three parallel edges as
skeleton and a combinatorial embedding is given by any ordering of these edges. Second,
the skeleton of an R-node is triconnected, thus having exactly two embeddings [Whitney
1932], and, third, S-nodes have a simple cycle as a skeleton without any choice for the
embedding. Finally, every edge in a skeleton representing only a single edge in the
original graph G is formally also considered to be a virtual edge linked to a Q-node in T
representing this single edge. Note that all leaves of the SPQR-tree T are Q-nodes. In
the SPQR-tree, a pair of adjacent P-nodes or a pair of adjacent S-nodes are not allowed.
Aside from being a nice way to represent all embeddings of a biconnected planar graph,
the SPQR-tree has only size linear in G and Gutwenger and Mutzel [2001] showed how
to compute it in linear time. Figure 2 shows a biconnected planar graph together with
its SPQR-tree.

Often the SPQR-tree T of a biconnected planar graph G is assumed to be rooted
at a Q-node representing all planar embeddings with the corresponding edge on the
outer face. In contrast to previous results, we assume the SPQR-tree T to be rooted at
some node τ , which may be a Q-node or an inner node. In the following we describe the

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:6 T. Bläsius et al.

interpretation of the SPQR-tree with root τ . Every node μ, apart form τ itself, has a
unique parent and thus its skeleton skel(μ) contains a virtual edge corresponding to
this parent. We refer to this virtual edge as the parent edge. A planar embedding E of
G is represented by T with root τ if the embedding induced on the skeleton skel(μ) of
every node μ �= τ has the parent edge on the outer face. The embedding of skel(τ) is
not restricted, and thus the choice of the outer face makes a difference for the root.

For every node μ in the SPQR-tree T apart from the root τ we define the pertinent
graph of μ, denoted by pert(μ), as follows. The pertinent graph of a Q-node is the edge
associated to it. The pertinent graph of an inner node μ is recursively defined to be
the graph obtained by replacing all virtual edges apart from the parent edge by the
pertinent graphs of the corresponding children in T . The expansion graph of a virtual
edge ε in skel(μ) is the pertinent graph of μ′ where μ′ is the child of μ corresponding
to the virtual edge ε with respect to the root μ.

2.3. Orthogonal Representation

Two orthogonal drawings of a 4-planar graph G are equivalent if they have the same
topology, that is, the same planar embedding, and the same shape in the sense that
the sequence of right and left turns is the same in both drawings when traversing the
faces of G. To make this precise, we define orthogonal representations, originally intro-
duced by Tamassia [1987], as equivalence classes of this equivalence relation between
orthogonal drawings. To ease the notation, we first only consider the biconnected case.

Let � be an orthogonal drawing of a biconnected 4-planar graph G. In the planar
embedding E induced by �, every edge e is incident to two different faces; let f be one
of them. When traversing f in clockwise order (counterclockwise if f is the outer face),
e may have some bends to the right and some bends to the left. We define the rotation
of e in the face f to be the number of bends to the right minus the number of bends to
the left and denote the resulting value by rot(e f). Similarly, every vertex v is incident
to several faces; let f be one of them. Then we define the rotation of v in f , denoted
by rot(v f), to be 1, −1, and 0 if there is a turn to the right, a turn to the left, and no
turn, respectively, when traversing f in the clockwise direction (counterclockwise if
f is the outer face). The orthogonal representation R belonging to � consists of the
planar embedding E of G and all rotation values of edges and vertices, respectively. It
is easy to see that every orthogonal representation has the following properties.

(I) For every edge e incident to the faces f1 and f2 the equation rot(e f1) = − rot(e f2)
holds.

(II) The sum over all rotations in a face is 4 for inner faces and −4 for the outer face.
(III) The sum of rotations around a vertex v is 2 · (deg(v) − 2).

Tamassia [1987] showed that the converse is also true, that is, R is an orthogonal
representation representing a class of orthogonal drawings if the rotation values satisfy
the above properties. He moreover describes a flow network such that every flow in the
flow network corresponds to an orthogonal representation. A modification of this flow
network can also be used to solve OPTIMALFLEXDRAW but only for the case that the
planar embedding is fixed. In some cases, we also write rotR(·) instead of rot(·) to make
clear to which orthogonal representation we refer. Moreover, the face in the index is
sometimes omitted if it is clear which face is meant.

When extending the term orthogonal representation to not necessarily biconnected
graphs there are two differences. First, a vertex v with deg(v) = 1 may exist. Then v
is incident to a single face f and we define the rotation rot(v f) to be −2. Note that the
rotations around every vertex v still sum up to 2 · (deg(v) − 2). The second difference
is that the notation introduced above is ambiguous since edges and vertices may occur
several times along the boundary of the same face. For example, a bridge e is incident

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:7

Fig. 3. On the left three tight orthogonal drawings are stacked together. This is not possible on the right
side, since the black vertices have angles larger than 90◦ in internal faces.

to the face f twice, and thus it is not clear which rotation is meant by rot(e f). However,
it will always be clear from the context which incidence to the face f is meant by
the index f . Thus, we use for connected graphs the same notation as for biconnected
graphs.

Let G be a 4-planar graph with orthogonal representation R and two vertices s and t
incident to a common face f . We define π f (s, t) to be the unique shortest path from s to
t along the boundary of f when traversing f in a clockwise direction (counterclockwise
if f is the outer face). Let s = v1, . . . , vk = t be the vertices on the path π f (s, t). The
rotation of π (s, t) is defined as

rot(π (s, t)) =
k−1∑

i=1

rot({vi, vi+1}) +
k−1∑

i=2

rot(vi) ,

where all rotations are with respect to the face f .
Note that it does not depend on the particular drawing of a graph G how many

bends each edge has but only on the orthogonal representation. Thus we can continue
searching for valid and optimal orthogonal representations instead of drawings to solve
FLEXDRAW and OPTIMALFLEXDRAW, respectively.

Let G be a 4-planar graph with positive flexibility and valid orthogonal representa-
tion R and let {s, t} be a split pair. Let, further, H be a split component with respect to
{s, t} such that the orthogonal representation S of H induced by R has {s, t} on the outer
face f . The orthogonal representation S of H is called tight with respect to the vertices
s and t if the rotations of s and t in internal faces are 1, that is, s and t form 90◦ angles
in internal faces of H. Bläsius et al. [2014, Lemma 2] show that S can be made tight
with respect to s and t; that is, there exists a valid tight orthogonal representation of H
that is tight. Moreover, this tight orthogonal representation can be plugged back into
the orthogonal representation of the whole graph G. We call an orthogonal represen-
tation R of the whole graph G tight if every split component having the corresponding
split pair on its outer face is tight with respect to its split pair. It follows that we can
assume without loss of generality that every valid orthogonal representation is tight.
This has two major advantages. First, if we have, for example, a chain of graphs and
orthogonal representations of each graph in the chain, we can combine these orthog-
onal representations by simply stacking them together; see Figure 3. Note that this
may not be possible if the orthogonal representations are not tight. Second, the shape
of the outer face f of a split component with split pair {s, t} is completely determined
by the rotation of π f (s, t) and the degrees of s and t, since the rotation at the vertices s
and t in the outer face only depends on their degrees. In the following we assume every
orthogonal representation to be tight.

2.4. Flow Network

A cost flow network (or flow network for short) is a tuple N = (V, A, COST, dem)
where (V, A) is a directed (multi-)graph, COST is a set containing a cost function
costa : N0 −→ R ∪ {∞} for each arc a ∈ A, and dem : V −→ Z is the demand of the
vertices. A flow in N is a function φ : A −→ N0 assigning a certain amount of flow to
each arc. A flow φ is feasible if the difference of incoming and outgoing flow at each

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:8 T. Bläsius et al.

vertex equals its demand, that is,

dem(v) =
∑

(u,v)∈A

φ(u, v) −
∑

(v,u)∈A

φ(v, u) for all v ∈ V .

The cost of a given flow φ is the total cost of the arcs caused by the flow φ, that is

cost(φ) =
∑

a∈A

costa(φ(a)).

A feasible flow φ in N is called optimal if cost(φ) ≤ cost(φ′) holds for every feasible
flow φ′.

If the cost function of an arc a is 0 on an interval [0, c] and ∞ on (c,∞), then we say
that a has capacity c.

A flow network N is called convex if the cost functions on its arcs are convex. In the
flow networks we consider, every arc a ∈ A has a corresponding arc a′ ∈ A between
the same vertices pointing in the opposite direction. A flow φ is normalized if φ(a) = 0
or φ(a′) = 0 for each of these pairs. Since we only consider convex flow networks, a
normalized optimal flow does always exist. Thus we assume without loss of generality
that all flows are normalized. We simplify the notation as follows. If we talk about an
amount of flow on the arc a that is negative, then we instead mean the same positive
amount of flow on the opposite arc a′. In many cases, minimum-cost flow networks are
only considered for linear cost functions; that is, each unit of flow on an arc causes a
constant cost defined for that arc. Note that the cost functions in a convex flow network
N are piecewise linear and convex according to our definition. Thus, it can be easily
formulated as a flow network with linear costs by splitting every arc into multiple
arcs, each having linear costs. It is well known that flow networks of this kind can
be solved in polynomial time. The best-known running time depends on additional
properties that N may satisfy. We use an algorithm computing a minimum-cost flow
in the network N as black box and denote the necessary running time by Tflow(|N|). In
Section 6.3 we have a closer look at which algorithm to use.

Let u, v ∈ V be two nodes of the convex flow network N with demands dem(u) and
dem(v). The parameterized flow network with respect to the nodes u and v is defined
the same as N but with a parameterized demand of dem(u) − ρ for u and dem(v) + ρ for
v where ρ is a parameter. The cost function costN(ρ) of the parameterized flow network
N is defined to be cost(φ) of an optimal flow φ in N with respect to the parameterized
demands determined by ρ. Note that increasing ρ by 1 can be seen as pushing one
unit of flow from u to v. We define the optimal parameter ρ0 to be the parameter for
which the cost function is minimal among all possible parameters. The correctness of
the minimum weight path augmentation method to compute flows with minimum costs
implies the following theorem [Edmonds and Karp 1972].

THEOREM 2.1. The cost function of a parameterized flow network is convex on the
interval [ρ0,∞], where ρ0 is the optimal parameter.

PROOF. Let N = (V, A, COST, dem) be a parameterized flow network and let φ0 be a
minimum-cost flow in N with respect to the optimal parameter ρ0. To simplify notation,
we assume ρ0 = 0. The residual network R0 with respect to φ0 is the graph (V, A) with
a constant cost cost0(a) assigned to every arc a such that cost0(a) is the amount of
cost in N that has to be paid to push an additional unit of flow along a, with respect
to the given flow φ0. Note that this cost may be negative. It is well known that an
optimal flow φ1 with respect to the parameter 1 can be computed by pushing one unit
of flow along a path from u to v with minimum weight in R0 [Edmonds and Karp 1972].
Moreover, we can continue and compute an optimal flow φk+1 by augmenting φk along a

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:9

minimum weight path in the residual network Rk with respect to the flow φk. Assume
we augment φk along the path πk causing cost costk(πk) to obtain an optimal flow φk+1
with respect to the parameter k + 1 and then we augment along a path πk+1 in Rk+1
with cost costk+1(πk+1) to obtain an optimal flow φk+2 with respect to the parameter
k + 2. To obtain the claimed convexity we have to show that costk(πk) ≤ costk+1(πk+1)
holds.

If πk and πk+1 contain an arc a in the same direction, then costk(a) ≤ costk+1(a) holds
by the convexity of the cost function of a. If πk contains the arc a and πk+1 contains the
arc a′ in the opposite direction, then costk(a) = − costk+1(a′) holds. Assume πk and πk+1
share such an arc in the opposite direction. Then we remove this arc in both directions,
splitting each of the paths πk and πk+1 into two subpaths. We define two new paths
π and π ′ by concatenating the first part of πk with the second part of πk+1 and vice
versa, respectively. This can be done iteratively; thus we can assume that π and π ′
do not share arcs in the opposite direction. We consider the cost of π and π ′ in the
residual network Rk. Obviously, for an arc a that is exclusively contained either in π
or in π ′ we have costk(a) = costk+1(a). For an arc that is contained in π and π ′, we
have costk(a) ≤ costk+1(a). Moreover, for every pair of arcs a and a′ that was removed
we have costk(a) = − costk+1(a′). This yields the inequality costk(πk) + costk+1(πk+1) ≥
costk(π) + costk(π ′). Since πk was a path with smallest possible weight in Rk, we have
costk(πk) ≤ costk(π) and costk(πk) ≤ costk(π ′). With the above inequality this yields
costk+1(πk+1) ≥ costk(πk).

3. VALID DRAWINGS WITH FIXED PLANAR EMBEDDING

In this section we consider the problem FLEXDRAW for the case where the planar embed-
ding is fixed. We show that the existence of a valid orthogonal representation implies
the existence of a valid orthogonal representation with special properties. We first
show the following. Given a biconnected 4-planar graph with positive flexibility and
an orthogonal representation R such that two vertices s and t lie on the outer face f ,
then the rotation of π f (s, t) can be reduced by 1 if it is at least 0. This result is a key
observation for the algorithm solving the decision problem FLEXDRAW [Bläsius et al.
2014]. It in a sense shows that “rigid” graphs that have to bent strongly do not exist.
This kind of graphs play an important role in the NP-hardness proof of 0-embeddability
by Garg and Tamassia [2001]. Moreover, we show the existence of a valid orthogonal
representation R′ inducing the same planar embedding and having the same angles
around vertices as R such that every edge has at most three bends in R′, except for a
single edge on the outer face with up to five bends. If we allow the embedding to change
slightly, this special edge has only up to four bends.

Let G be a 4-planar graph with positive flexibility and valid orthogonal represen-
tation R, and let e be an edge. If the number of bends of e equals its flexibility, then
we orient e such that its bends are right bends. Otherwise, e remains undirected.
We define a path π = (v1, . . . , vk) in G to be a directed path if the edge {vi, vi+1} (for
i ∈ {1, . . . , k−1}) is either undirected or directed from vi to vi+1. A path containing only
undirected edges can be seen as directed path for both possible directions. The path π
is strictly directed if it is directed and does not contain undirected edges. These terms
directly extend to (strictly) directed cycles. Given a (strictly) directed cycle C the terms
left(C) and right(C) denote the set of edges and vertices of G lying to the left and right
of C, respectively, with respect to the orientation of C. A cut (U, V \U) is said to be
directed from U to V \U if every edge {u, v} with u ∈ U and v ∈ V \U is either directed
from u to v or undirected. According to the above definitions a cut is strictly directed
from U to V \U if it is directed and contains no undirected edges. Before we show how
to unwind an orthogonal representation that is bent strongly we need the following
technical lemma.

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:10 T. Bläsius et al.

Fig. 4. Since a strictly directed path from t to s has a lower bound for its rotation this yields upper bounds
for paths from s to t (Lemma 3.1).

LEMMA 3.1. Let G be a graph with positive flexibility and vertices s and t such that
G + st is biconnected and 4-planar. Let further R be a valid orthogonal representation
with s and t incident to the common face f such that π f (t, s) is strictly directed from t
to s. Then the following holds:

(1) rotR(π f (s, t)) ≤ −3 if f is the outer face and G does not consist of a single path
(2) rotR(π f (s, t)) ≤ −1 if f is the outer face
(3) rotR(π f (s, t)) ≤ 5

PROOF. We first consider the case where f is the outer face (Figure 4(a)), that is,
cases (1) and (2). Due to the fact that π f (t, s) is strictly directed from t to s and the
flexibility of every edge is positive, each edge on π f (t, s) has rotation at least 1. Moreover,
the rotations at vertices along the path π f (t, s) are at least −1 since π f (t, s) is simple
as G + st is biconnected. Since the number of internal vertices on a path is one less
than the number of edges, this yields rot(π f (t, s)) ≥ 1; see Figure 4(b). If G consists of
a single path, then this directly yields rot(π f (s, t)) ≤ −1 and thus concludes case (2).
For case (1), first assume that the degrees of s and t are not 1 (Figure 4(b)), that is,
rot(sf), rot(tf) ∈ {−1, 0, 1} holds. Since f is the outer face, the equation rot(π f (s, t)) +
rot(tf) + rot(π f (t, s)) + rot(sf) = −4 holds and directly implies the desired inequality
rot(π f (s, t)) ≤ −3. In the case that, for example, t has degree 1 (and deg(s) > 0), we
have rot(tf) = −2 and rot(sf) ∈ {−1, 0, 1}, and thus the considerations above only yield
rot(π f (s, t)) ≤ −2. However, in this case there necessarily exists a vertex t′ where the
paths π f (s, t) and π f (t, s) split, as illustrated in Figure 4(c). More precisely, let t′ be the
first vertex on π f (s, t) that also belongs to π f (t, s). Obviously, the degree of t′ is at least 3
and thus rot(t′

f) (with respect to the path π f (t, s)) is at least 0. Hence we obtain the
stronger inequality rot(π f (t, s)) ≥ 2 yielding the desired inequality rot(π f (s, t)) ≤ −3. If
s and t both have degree 1, then we cannot only find the vertex t′ but also the vertex s′
where the paths π f (s, t) and π f (t, s) split. Since G+st is biconnected, these two vertices
are distinct and the estimation above works, finally yielding rot(π f (s, t)) ≤ −3.

If f is an internal face (Figure 4(d)), that is, case (3) applies, then we start with
the equation rot(π f (s, t)) + rot(tf) + rot(π f (t, s)) + rot(sf) = 4. First, we consider the
case that neither t nor s have degree 1. Thus, rot(tf), rot(sf) ∈ {−1, 0, 1}. With the
same argument as above, we obtain rot(π f (t, s)) ≥ 1 and, hence, rot(π f (s, t)) ≤ 5; see
Figure 4(e). Now assume that t has degree 1 and s has larger degree. Then rot(tf) = −2
holds and the above estimation does not work anymore. Again, at some vertex t′ the
paths π f (t, s) and π f (s, t) split as illustrated in Figure 4(f). Obviously, the degree of t′
needs to be greater than 2, and thus rot(t′

f) is at least 0. This yields rot(π f (t, s)) ≥ 2
in the case that deg(t) = 1, compensating rot(tf) = −2 (instead of rot(tf) ≥ −1 in the
other case). To sum up, we obtain the desired inequality rot(π f (s, t)) ≤ 5. The case
deg(s) = deg(t) = 1 works analogously.

The flex graph G×
R of G with respect to a valid orthogonal representation R is defined

to be the dual graph of G such that the dual edge e	 is undirected if e is undirected;
otherwise, it is directed from the face right of e to the face left of e. Figure 5(a) shows

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:11

Fig. 5. (a) An orthogonal representation and the corresponding flex graph where every edge has flexibility 1.
((b), (c), and (d)) Illustration of Lemma 3.2.

an example graph with an orthogonal drawing together with the corresponding flex
graph. Assume we have a simple directed cycle C in the flex graph. Then bending along
this cycle yields a new valid orthogonal representation R′ which is defined as follows.
Let e	 = (f1, f2) be an edge contained in C dual to e. Then we decrease rot(e f1) and
increase rot(e f2) by 1. It can be easily seen that the necessary properties for R′ to be an
orthogonal representation are satisfied. Obviously, rotR′(e f1) = − rotR′(e f2) holds and
rotations at vertices did not change. Moreover, the rotation around a face f does not
change since f is either not contained in C or it is contained in C, but then it has
exactly one incoming and exactly one outgoing edge. Note that bending along a cycle in
the flex graph preserves the planar embedding of G and for every vertex the rotations
in all incident faces. The following lemma shows that a high rotation of a path π f (s, t)
for two vertices s and t sharing the face f can be reduced by 1 using a directed cycle in
the flex graph.

LEMMA 3.2. Let G be a biconnected 4-planar graph with positive flexibility, a valid
orthogonal representation R, and s and t on a common face f . The flex graph G×

R
contains a directed cycle C such that f ∈ C, s ∈ left(C) and t ∈ right(C) if one of the
following conditions holds:

(1) rotR(π f (s, t)) ≥ −2, f is the outer face and π f (s, t) is not strictly directed from t to s
(2) rotR(π f (s, t)) ≥ 0 and f is the outer face
(3) rotR(π f (s, t)) ≥ 6

PROOF. Figure 5(b) shows the path π f (s, t) together with the desired cycle C. Due to
the duality of a cycle in the dual and a cut in the primal graph, a directed cycle C in G×

R
having s and t to the left and to the right of C, respectively, induces a directed cut in G
that is directed from s to t and vice versa. Recall that directed cycles and cuts may also
contain undirected edges. Assume for contradiction that such a cycle C does not exist.

CLAIM 1. The graph G contains a strictly directed path π from t to s.

Every cut (S, T) with T = V \S, s ∈ S and t ∈ T separating s from t must contain an
edge that is directed from T to S; otherwise, this cut would correspond to a cycle C in
the flex graph that does not exist by assumption. Let T be the set of vertices in G that
can be reached by strictly directed paths from t. If T contains s, then we found the path
π strictly directed from t to s. Otherwise, (S, T) with S = V \T is a cut separating S
from T , and there cannot be an edge that is directed from a vertex in T to a vertex in
S that is a contradiction, and thus the path π strictly directed from t to s exists, which
concludes the proof of the claim.

Let G′ be the subgraph of G induced by the paths π and π f (s, t) together with the
orthogonal representation R′ induced by R.

We first consider case (1). Let f ′ be the outer face of the orthogonal representation
R′. Obviously, π f ′(s, t) = π f (s, t) and π = π f ′ (t, s) holds, see Figure 5(c). Moreover, the
graph G′ + st is biconnected and G′ does not consist of a single path since π f ′(s, t)

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:12 T. Bläsius et al.

and π f ′(t, s) differ due to the assumption that π f (s, t) is not strictly directed from t
to s. Since π f ′(t, s) is strictly directed from t to s, we can use Lemma 3.1(1) yielding
rotR′(π f ′ (s, t)) ≤ −3 and thus rotR(π f (s, t)) ≤ −3, which is a contradiction.

For case (2), exactly the same argument holds except for the case where the strictly
directed path π is the path π f (s, t) strictly directed from t to s. In this case, we have to
use Lemma 3.1(2) instead of Lemma 3.1(1) yielding rotR(π f (s, t)) ≤ −1, which is, again,
a contradiction.

In case (3), the subgraph G′ of G induced by the two paths π and π f (s, t) again
contains s and t on a common face f ′, which may be the outer or an inner face, see
Figure 5(c) and Figure 5(d), respectively. In both cases, we obtain rotR(π f (s, t)) ≤ 5 due
to Lemma 3.1(3), which is a contradiction.

Lemma 3.2 directly yields the following corollary, showing that graphs with positive
flexibility behave very similar to single edges with positive flexibility.

COROLLARY 3.3. Let G be a graph with positive flexibility and vertices s and t such that
G + st is biconnected and 4-planar. Let further R be a valid orthogonal representation
with s and t on the outer face f such that ρ = rotR(π f (s, t)) ≥ 0. For every rotation
ρ ′ ∈ [−1, ρ] there exists a valid orthogonal representation R′ with rotR′(π f (s, t)) = ρ ′.

PROOF. For the case that G itself is biconnected, the claim follows directly from
Lemma 3.2(2), since we can reduce the rotation of π f (s, t) stepwise by 1, starting with
the orthogonal representation R, until we reach a rotation of −1. For the case that G
itself is not biconnected, we add the edge {s, t} to the orthogonal representation R such
that the path π f (s, t) does not change; that is, π f (t, s) consists of the new edge {s, t}.
Again, Lemma 3.2(2) can be used to reduce the rotation stepwise down to −1.

As edges with many bends imply the existence of paths with high rotation, we can
use Lemma 3.2 to successively reduce the number of bends of every edge down to 3,
except for a single edge on the outer face. Since we only bend along cycles in the flex
graph, neither the embedding nor the angles around vertices are changed.

THEOREM 3.4. Let G be a biconnected 4-planar graph with positive flexibility, having
a valid orthogonal representation. Then G has a valid orthogonal representation with
the same planar embedding, the same angles around vertices, and at most three bends
per edge, except for at most one edge on the outer face with up to five bends.

PROOF. In the following, we essentially pick an edge with more than three bends,
reduce the number of bends by 1, and continue with the next edge. After each of these
reduction steps we set the flexibility of every edge down to max{ρ, 1}, where ρ is the
number of bends it currently has. This ensures that in the next step the number of
bends of each edge either is decreased, remains as it is, or is increased from zero to 1.

We start with an edge e = {s, t} that is incident to two faces f1 and f2 and has more
than three bends. Due to the fact that we traverse inner faces in the clockwise direction
and the outer face in the counterclockwise direction, the edge e forms in one of the two
faces the path from s to t and in the other face the path from t to s. Assume, without
loss of generality, that π f1 (t, s) and π f2 (s, t) are the paths along the boundary of f1 and
f2, respectively, that consist of e. Note that rot(π f1 (t, s)) = − rot(π f2 (s, t)) holds, and we
assume that rot(π f1 (t, s)) is not positive. As e was assumed to have more than three
bends, the inequality rot(π f1 (t, s)) ≤ −4 holds. We distinguish between the two cases
that f1 is an inner or the outer face. We first consider the case that f1 is an inner
face; Figure 6(a) illustrates this situation for the case where e has four bends. Then
the rotations around the face f1 sum up to 4. As the rotations at the vertices s and
t can be at most 1, we obtain rot(π f1 (s, t)) ≥ 6. Thus we can apply Lemma 3.2(3) to
reduce the rotation of π f1 (s, t) by bending along a cycle in the flex graph that contains

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:13

Fig. 6. Reducing the number of bends on edges (Theorem 3.4).

f1 and separates s from t. Obviously, this increases the rotation of π f1 (t, s) by 1 and
thus reduces the number of bends of e by 1.

For the case where f1 is the outer face, we first ignore the case where e has four
or five bends and show how to reduce the number of bends to five; Figure 6(b) shows
the case where e has six bends. Thus, the inequality rot(π f1 (t, s)) ≤ −6 holds. As the
rotations around the outer face f1 sum up to −4 and the rotations at the vertices s
and t are at most 1, the rotation of π f1 (s, t) must be at least 0. Thus, we can apply
Lemma 3.2(2) to reduce the rotation of π f1 (s, t) by 1, increasing the rotation of π f1 (t, s),
and thus reducing the number of bends of e by 1.

Finally, we obtain an orthogonal representation having at most three bends per
edge except for some edges on the outer face with four or five bends having their
negative rotation in the outer face. If there is only one of these edges left, then we
are done. Otherwise, let e = {s, t} be one of the edges with rot(π f (t, s)) ∈ {−5,−4},
where f is the outer face. Then the inequality rot(π f (s, t)) ≥ −2 holds by the same
argument as before, and we can apply Lemma 3.2(1) to reduce the rotation if we can
ensure that π f (s, t) is not strictly directed from t to s. To show that, we make use of
the fact that π f (s, t) contains an edge e′ = {u, v} with at least four bends due to the
assumption that e was not the only edge with more than three bends. Assume without
loss of generality that u occurs before v on π f (s, t), and thus π f (s, t) splits into the
three parts π f (s, u), π f (u, v), and π f (v, t). Recall that rot(π f (s, t)) ≥ −2 holds and thus
rot(π f (s, u)) + rot(u) + rot(π f (u, v)) + rot(v) + rot(π f (v, t)) ≥ −2. As the rotation at the
vertices u and v is at most 1 and the rotation of π f (u, v) at most −4, it follows that
rot(π f (s, u)) + rot(π f (v, t)) ≥ 0. Figure 6(c) illustrates the situation for the case where e
and e′ have four bends and rot(π f (s, u)) = rot(π f (v, t)) = 0. Note that at least one of the
two paths is not degenerate in the sense that s �= u or v �= t; otherwise, the total rotation
around the outer face would be at most −6, which is a contradiction. Assume without
loss of generality that rot(π f (s, u)) ≥ 0. It follows that π f (s, u) cannot be strictly directed
from u to s and since π f (s, u) is a subpath of π f (s, t), the path π f (s, t) cannot be strictly
directed from t to s. This finally shows that we can use part (1) of Lemma 3.2, implying
that we can find a valid orthogonal representation such that at most a single edge with
four or five bends remains, whereas all other edges have at most three bends.

If we allow the embedding to be changed slightly, then we obtain an even stronger
result. Assume the edge e lying on the outer face has more than three bends. If e has
five bends, then we can reroute it in the opposite direction around the rest of the graph;
that is, we can choose the internal face incident to e to be the new outer face. In the
resulting drawing, e has obviously only three bends. Thus, the following result directly
follows from Theorem 3.4.

COROLLARY 3.5. Let G be a biconnected 4-planar graph with positive flexibility having
a valid orthogonal representation. Then G has a valid orthogonal representation with
at most three bends per edge except for possibly a single edge on the outer face with four
bends.

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:14 T. Bläsius et al.

Fig. 7. An instance of FLEXDRAW requiring linearly many edges to have four bends. Flexibilites are 1 except
for the thick edges with flexibility 4.

Note that Corollary 3.5 is restricted to biconnected graphs. For general graphs it
implies that each block contains at most a single edge with up to four bends. Figure 7
illustrates an instance of FLEXDRAW with linearly many blocks and linearly many edges
that are required to have four bends, showing that Corollary 3.5 is tight.

Theorem 3.4 implies that it is sufficient to consider the flexibility of every edge to
be at most 5, or in terms of costs we want to optimize, it is sufficient to store the cost
function of an edge only in the interval [0, 5]. However, there are two reasons why we
need a stronger result. First, we want to compute cost functions of split components
and thus we have to limit the number of “bends” they can have (see the next section
for a precise definition of bends for split components). Second, as mentioned in the
introduction (see Figure 1) the cost function of a split component may already be non-
convex on the interval [0, 5]. Fortunately, the second reason is not really a problem
since there may be at most a single edge with up to five bends, all remaining edges
have at most three bends and thus we only need to consider their cost functions on the
interval [0, 3].

In the following section we focus on dealing with the first problem and strengthen
the results so far presented by extending the limitation on the number of bends to split
components. Note that a split pair inside an inner face of G with a split component H
having a rotation less than −3 on its outer face implies a rotation of at least 6 in some
inner face of G. Thus, we can again apply Lemma 3.2(3) to reduce the rotation showing
that split components and single edges can be handled similarly. However, by reducing
the rotation for one split component, we cannot avoid that the rotation of some other
split component is increased. For single edges we did that by reducing the flexibility
to the current number of bends. In the following section we extend this technique by
defining a flexibility not only for edges but also for split components. We essentially
show that all results we presented so far still apply if we allow this kind of extended
flexibilities.

4. FLEXIBILITY OF SPLIT COMPONENTS AND NICE DRAWINGS

Let G be a biconnected 4-planar graph with SPQR-tree T and let T be rooted at some
node τ . Recall that we do not require τ to be a Q-node. Let μ be a node of T that is
not the root τ . Then μ has a unique parent and skel(μ) contains a unique virtual edge
ε = {s, t} that is associated with this parent. We call the split-pair {s, t} a principal
split pair and the pertinent graph pert(μ) with respect to the chosen root a principal
split component. The vertices s and t are the poles of this split component. Note that
a single edge is also a principal split component except for the case that its Q-node is
chosen to be the root. A planar embedding of G is represented by T with the root τ if
the embedding of each skeleton has the edge associated with the parent on the outer
face.

Let R be a valid orthogonal representation of G such that the planar embedding
of R is represented by T rooted at τ . Consider a principal split component H with
respect to the split pair {s, t} and let S be the orthogonal representation of H induced
by R. Note that the poles s and t are on the outer face f of S. We define the number
of bends of the split component H to be max{| rotS (π f (s, t))|, | rotS (π f (t, s))|}. Note that

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:15

Fig. 8. Augmentation of G by the safety edges eH (s, t) and eH (t, s).

this is a straightforward extension of the term bends as it is used for edges. With this
terminology we can assign a flexibility flex(H) to a principal split component H and
we define the orthogonal representation R of G to be valid if and only if H has at
most flex(H) bends. We say that the graph G has positive flexibility if the flexibility of
every principal split component is at least 1, which is a straightforward extension of
the original notion.

We define a valid orthogonal representation of G to be nice with respect to a root
τ of the SPQR-tree if it is tight, if every principal split component has at most three
bends, and if the edge corresponding to τ in the case that τ is a Q-node has at most
five bends. We say that the orthogonal representation is nice if there is a root τ of the
SPQR-tree such that it is nice with respect to τ . The main result of this section will be
the following theorem, which directly extends Theorem 3.4.

THEOREM 4.1. Every biconnected 4-planar graph with positive flexibility having a
valid orthogonal representation has an orthogonal representation with the same planar
embedding and the same angles around vertices that is nice.

Before we prove Theorem 4.1, we need to make some additional considerations.
In particular, we need to extend the flex-graph such that it takes the flexibilities of
principal split components into account. The extended version of the flex graph can
then be used to obtain a result similar to Lemma 3.2, which was the main tool to
prove Theorem 3.4. Another difficulty is that it depends on the chosen root which split
components are principal split components. For the moment, we avoid this problem by
choosing an arbitrary Q-node to be the root of the SPQR-tree T . Thus we only have to
care about the flexibilities of the principal split components with respect to the chosen
root. One might hope that the considerations we make for the flex-graph in the case
of a fixed root still work, if we consider the principal split components with respect to
all possible roots at the same time. However, this fails as we will see later, making it
necessary to consider internal vertices as the root.

Assume that the SPQR-tree T of G is rooted at the Q-node corresponding to an
arbitrarily chosen edge. Let H be a principal split component with respect to the
chosen root with the poles s and t. In the embedding of G, the outer face f of H splits
into two faces f1 and f2, where the path π f (s, t) is assumed to lie in f1 and π f (t, s)
is assumed to lie in f2, that is, π f1 (s, t) = π f (s, t) and π f2 (t, s) = π f (t, s). We augment
G by inserting the edge {s, t} twice, embedding one of them in f1 and the other in f2.
We denote the edge {s, t} inserted into the face f1 by eH(s, t) and the edge inserted
into f2 by eH(t, s). Figure 8 illustrates this process and shows how the dual graph
of G changes. We call the new edges eH(s, t) and eH(t, s) safety edges and define the
extended flex graph G× as before, ignoring that some edges have a special meaning. To
simplify notation we often use the term flex graph, although we refer to the extended
flex graph. Note that every cycle in the flex graph that separates s from t and thus
crosses π (s, t) and π (t, s) needs to also cross the safety edges eH(s, t) and eH(t, s). Thus

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:16 T. Bläsius et al.

we can use the safety edges to ensure that the flex graph respects the flexibility of H
by orienting them if necessary. More precisely, we orient the safety edge eH(s, t) from t
to s if rot(π (s, t)) = − flex(H) and, similarly, eH(t, s) from s to t if rot(π (t, s)) = − flex(H).
This ensures that the rotations of π (s, t) and π (t, s) cannot be reduced below − flex(H)
by bending along a cycle in the flex graph. Moreover, rot(π (s, t)) cannot be increased
above flex(H) as otherwise rot(π (t, s)) has to be below − flex(H) and vice versa. To sum
up, we insert the safety edges next to the principal split component H and orient them
if necessary to ensure that bending along a cycle in the flex graph respects not only the
flexibilities of single edges but also the flexibility of the principal split component H.

Since adding the safety edges for the graph H is just a technique to respect the
flexibility of H by bending along a cycle in the flex graph, we do not draw them. Note
that the augmented graph does not have maximum degree 4 anymore, but this is not
a problem since we do not draw the safety edges. However, we formally assign an
orthogonal representation to the safety edges by essentially giving them the shape of
the paths they “supervise.” More precisely, the edges eH(s, t) and eH(t, s) have the same
rotations as the paths π (s, t) and π (t, s) on the outer face of H, respectively. Moreover,
the angles at the vertices s and t are also assumed to be the same as for these two
paths.

As we do not want to respect the flexibility of only a single split component, we add
the safety edges for each of the principal split components at the same time. Note that
the augmented graph remains planar as we only add the safety edges for the principal
split components with respect to a single root. It follows directly that the considerations
above still work, which would fail if the augmented graph were non-planar. This is the
reason why we cannot consider the principal split components with respect to all roots
at the same time. The following lemma directly extends Lemma 3.2 to the case where
the extended flex graph is considered.

LEMMA 4.2. Let G be a biconnected 4-planar graph with positive flexibility, a valid
orthogonal representation R, and s and t on a common face f . The extended flex graph
G×

R contains a directed cycle C such that f ∈ C, s ∈ left(C) and t ∈ right(C) if one of the
following conditions holds:

(1) rotR(π f (s, t)) ≥ −2, f is the outer face and π f (s, t) is not strictly directed from t to s
(2) rotR(π f (s, t)) ≥ 0 and f is the outer face
(3) rotR(π f (s, t)) ≥ 6

PROOF. As in the proof of Lemma 3.2, we assume for contradiction that the cycle C
does not exist, yielding a strictly directed path from t to s in G. This directly yields
the claim if we can apply Lemma 3.1 as before. The only difference to the situation
before is that the directed path from t to s may contain some of the safety edges.
However, by definition a safety edge eH(u, v) is directed from v to u if and only if
rot(π (u, v)) = − flex(H). As flex(H) is positive, rot(π (u, v)) has to be negative and thus
the rotation along eH(u, v) when traversing it from v to u is at least 1. Thus, it does not
make a difference whether the directed path from t to s consists of normal edges or may
contain safety edges. Hence, Lemma 3.1 extends to the augmented graph containing
the safety edges, which concludes the proof.

Now we are ready to prove Theorem 4.1. To improve readability we state it again.

THEOREM 4.1. Every biconnected 4-planar graph with positive flexibility having a
valid orthogonal representation has an orthogonal representation with the same planar
embedding and the same angles around vertices that is nice.

PROOF. Let R be a valid orthogonal representation of G. We assume, without loss of
generality, that R is tight. Since the operations we apply to R in the following do not

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:17

affect the angles around vertices, the resulting orthogonal representation is also tight.
Thus, it remains to enforce the more interesting condition for orthogonal representa-
tions to be nice, that is, reduce the number of bends of principal split components down
to three. As mentioned before, the SPQR-tree T of G is initially rooted at an arbitrary
Q-node. Let eref be the corresponding edge. As in the proof of Theorem 3.4 we start
with an arbitrary principal split component H with more than three bends. Then one
of the two paths in the outer face of H has rotation less than −3 and we have the same
situation as for a single edge; that is, we can apply Lemma 4.2 to reduce the rotation of
the opposite site and thus reduce the number of bends of H by 1. Afterwards, we can set
the flexibility of H down to the new number of bends, ensuring that it is not increased
later. However, this only works if the negative rotation of the split component H lies in
an inner face of G. On the outer face, we can only increase to a rotation of −5, yielding
an orthogonal representation such that every principal split component has at most
three bends, or maybe four or five bends, if it has its negative rotation in the outer face.
Note that this is essentially the same situation we also had in the proof of Theorem 3.4.
In the following, we show, similarly, that the number of bends can be reduced further,
until either a unique innermost principal split component (where innermost means
minimal with respect to inclusion) or the reference edge eref may have more than three
bends.

First, assume that eref has more than three, that is, four or five, bends and that
there is a principal split component H with more than three bends having its negative
rotation in the outer face. Let {s, t} be the corresponding split pair and let, without loss
of generality, π f (t, s) be the path along H with rotation less than −3 where f is the outer
face. Then the path π f (s, t) contains the edge eref = {u, v}; otherwise, H would not be
a principal split component. Moreover, rot(π f (t, s)) ≤ −4 implies that rot(π f (s, t)) ≥ −2
holds. As in the proof of Theorem 3.4 (compare with Figure 6(c)), the path π f (s, t) splits
into the paths π f (s, u), π f (u, v), and π f (v, t). Since π f (u, v) consists of the single edge
eref with more than three bends, rot(π f (u, v)) ≤ −4 holds, implying that the rotation
of π f (s, u) or π f (v, t) is greater or equal to 0. This shows that π f (s, t) cannot be strictly
directed from t to s and thus we can apply Lemma 4.2(1) to reduce the number of bends
H has. Eventually, there is no principal split component with more than three bends
left and the reference edge eref has at most five bends, which concludes this case.

In the second case, eref has at most three bends. We show that if there is more than one
principal split component with more than three bends, then they hierarchically contain
each other. Assume that the number of bends of no principal split component that has
more than three bends can be reduced further. Assume, further, that there are two
principal split components, H1 and H2, with respect to the split pairs {s1, t1} and {s2, t2}
that do not contain each other, that is, without loss of generality the vertices t1, s1, t2, and
s2 occur in this order around the outer face f when traversing it in the counterclockwise
direction and π f (t1, s1) and π f (t2, s2) belong to H1 and H2, respectively. Analogously to
the case where eref has more than three bends, we can show that Lemma 4.2(1) can
be applied to reduce the number of bends of H1, which is a contradiction. Thus, either
H1 is contained in H2, or it is the other way round. This shows that there is a unique
principal split component H that is minimal with respect to inclusion having more than
three bends. Due to the inclusion property, all nodes in the SPQR-tree corresponding
to the principal split components with more than three bends lie on the path between
the current root and the node corresponding to H. We denote the node corresponding
to H by τ and choose τ to be the new root of the SPQR-tree T . Since the principal
split components depend on the root chosen for T some split components may no
longer be principal and some may become principal due to rerooting. Our claim is
that all principal split components with more than three bends are no longer principal
after rerooting and, furthermore, that all split components becoming principal can be
enforced to have at most three bends.

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:18 T. Bläsius et al.

Fig. 9. The path between the new and the old root in the SPQR-tree containing μ (left). The whole graph G
containing the principal split component H′ corresponding to μ with respect to the new root and the principal
split component H of the new root with respect to the old root (right).

First note that the principal split component corresponding to a node μ in the SPQR-
tree changes if and only if μ lies on the path between the old and the new root, that is,
between τ and the Q-node corresponding to eref . Since all principal split components
(with respect to the old root) that have more than three bends also lie on this path,
all these split components are no longer principal (with respect to the new root). It
remains to deal with the new principal split components corresponding to the nodes on
this path. Note that the new root τ itself has no principal split component associated
with it. Let μ �= τ be a node on the path between the new and the old root and let H′
be the new principal split component corresponding to μ with the poles s′ and t′. Recall
that H is the former principal split component corresponding to the new root τ with the
poles s and t. Note that H of course is still a split component, although it is not principal
anymore. Figure 9 illustrates this situation. Now assume that H′ has more than three
bends. Then there are two possibilities: It has its negative rotation either in the outer
face or in some inner face. If only the latter case arises we can easily reduce the number
of bends down to three as we did before. In the remaining part of the proof we show
that the former case cannot arise due to the assumption that the number of bends of
H cannot be reduced anymore. Assume H′ has its negative rotation in the outer face
f , that is, without loss of generality the path π f (t, s) belongs to H′ and has rotation at
most −4. Thus we have again the situation that the two split components H′ and H both
have a rotation of at most −4 in the outer face. Moreover, these two split components
do not contain or overlap each other since s and t are not contained in H′ as τ is the new
root and H does not contain s′ or t′ since μ is an ancestor of τ with respect to the old root.
Thus we could have reduced the number of bends of H before we changed the root, which
is a contradiction to the assumption we made that the number of bends of principal split
components with more than three bends cannot be reduced anymore. Hence, all new
principal split components either have at most three bends or they have their negative
rotation in some inner face. Finally, we obtain a valid orthogonal representation with
at most three bends per principal split component with respect to τ .

5. OPTIMAL DRAWINGS WITH FIXED PLANAR EMBEDDING

All results from the previous sections deal with the case where we are only interested in
the decision problem of whether a given graph has a valid drawing. More precisely, we
always assumed to have a valid orthogonal representation of an instance of FLEXDRAW

and showed that this implies that there exists another valid orthogonal representation
with certain properties. In this section, we consider positive-convex instances of the
optimization problem OPTIMALFLEXDRAW. The following generic theorem shows that the
results for FLEXDRAW that we presented so far can be extended to OPTIMALFLEXDRAW.

THEOREM 5.1. If the existence of a valid orthogonal representation of an in-
stance of FLEXDRAW with positive flexibility implies the existence of a valid orthogonal
representation with property P, then every positive-convex instance of OPTIMALFLEXDRAW

has an optimal drawing with property P.

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:19

PROOF. Let G be a positive-convex instance of OPTIMALFLEXDRAW. Let further R be an
optimal orthogonal representation. We can reinterpret G as an instance of FLEXDRAW

with positive flexibility by setting the flexibility of an edge with ρ bends in R to
max{ρ, 1}. Then R is obviously a valid orthogonal representation of G with respect to
these flexibilities. Thus there exists another valid orthogonal representation R′ having
property P. It remains to show that cost(R′) ≤ cost(R) holds when going back to
the optimization problem OPTIMALFLEXDRAW. However, this is clear for the following
reason. Every edge e has at most as many bends in R′ as in R except for the case
where e has one bend in R′ and zero bends in R. In the former case, the monotony
of coste(·) implies that the cost did not increase. In the latter case e causes the same
amount of cost in R as in R′ since coste(0) = coste(1) = be holds for positive-convex
instances of OPTIMALFLEXDRAW. Note that this proof still works if the cost functions are
only monotone but not convex.

From the above theorem, it follows that we can apply Theorem 4.1 to the optimization
problem OPTIMALFLEXDRAW, which implies that every positive-convex 4-planar graph
has an optimal drawing that is nice. Thus, it is sufficient to consider only nice drawings
when searching for an optimal solution, as there exists a nice optimal solution. This is
a fact that we crucially exploit in the next section since although the cost function of
a principal split component may be non-convex, we can show that it is convex in the
interval that is of interest when only considering nice drawings.

6. OPTIMAL DRAWINGS WITH VARIABLE PLANAR EMBEDDING

All results we presented so far were based on a fixed planar embedding of the input
graph G. In this section, we present an algorithm that computes an optimal drawing
of G in polynomial time, optimizing over all planar embeddings of G. Our algorithm
crucially relies on the existence of a nice drawing among all optimal drawings of G. For
biconnected graphs (Section 6.1), we present a dynamic program that computes the
cost function of all principal split components bottom-up in the SPQR-tree with respect
to a chosen root. To compute the optimal drawing among all drawings that are nice
with respect to the chosen root, it remains to consider the embeddings of the root itself.
If we choose every node to be the root once, then this directly yields an optimal drawing
of G taking all planar embeddings into account. In Section 6.2 we extend our results to
connected graphs that are not necessarily biconnected. To this end, we first modify the
algorithm for biconnected graphs such that it can compute an optimal drawing with
the additional requirement that a specific vertex lies on the outer face. Then we can use
the BC-tree to solve OPTIMALFLEXDRAW for connected graphs. We use the computation
of a minimum-cost flow in a network of size n as a subroutine and denote the consumed
running time by Tflow(n). In Section 6.3, we consider which running time we actually
need.

6.1. Biconnected Graphs

In this section, we always assume G to be a biconnected 4-planar graph forming a
positive-convex instance of OPTIMALFLEXDRAW. Let T be the SPQR-tree of G. As de-
fined before, an orthogonal representation is optimal if it has the smallest possible
cost. We call an orthogonal representation τ -optimal if it has the smallest possible
cost among all orthogonal representation that are nice with respect to the root τ .
We say that it is (τ, E)-optimal if it has the smallest possible amount of cost among all
orthogonal representations that are nice with respect to τ and induce the planar embed-
ding E on skel(τ). In this section we concentrate on finding a (τ, E)-optimal orthogonal
representation with respect to a root τ and a given planar embedding E of skel(τ). Then
a τ -optimal representation can be computed by choosing every possible embedding of

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:20 T. Bläsius et al.

Fig. 10. Split components with as few bends as possible.

skel(τ). An optimal solution can then be computed by choosing every node in T to be
the root once.

In Section 4 we extended the terms “bends” and “flexibility,” which were originally
defined for single edges, to arbitrary principal split components with respect to the
chosen root. We start out by making precise what we mean with the cost function
costH(·) of a principal split component H with poles s and t. Recall that the number
of bends of H with respect to an orthogonal representation S with s and t on the
outer face f is defined to be max{| rotS (π f (s, t))|, | rotS (π f (t, s))|}. Assume S is the nice
orthogonal representation of H that has the smallest possible cost among all nice
orthogonal representations with ρ bends. Then we essentially define costH(ρ) to be the
cost of S. However, with this definition the cost function of H is not defined for all
ρ ∈ N0 since H does not have an orthogonal representation with zero bends at all, if
deg(s) > 1 or deg(t) > 1, as at least one of the paths π f (s, t) and π f (t, s) has negative
rotation in this case. More precisely, if deg(s) + deg(t) > 2, then H has at least one
bend, and if deg(s)+deg(t) > 4, then H has at least two bends. Figure 10 shows for each
combination of degrees a small example with the smallest possible number of bends. In
these two cases we formally set costH(0) = costH(1) and costH(0), costH(1) = costH(2),
respectively. Thus, we only need to compute the cost functions for bend numbers larger
or equal to �(deg(s) + deg(t) − 2)/2
. We denote this lower bound by
H = �(deg(s) +
deg(t) − 2)/2
. Hence, it remains to compute the cost function costH(ρ) for ρ ∈ [
H, 3].
For more than three bends we formally set the cost to ∞. Note that the definition of
the cost function only considers nice orthogonal representations (including that they
are tight). As a result of this restriction the cost for an orthogonal representation with
ρ bends might be less than costH(ρ). However, due to Theorem 4.1 in combination
with Theorem 5.1, we know that optimizing over nice orthogonal representations is
sufficient to find an optimal solution.

As for single edges, we define the base cost bH of the principal split component H to
be costH(0). We will see that the cost function costH(·) is monotone and even convex
in the interval [0, 3] (except for a special case) and thus the base cost is the smallest
possible amount of cost that has to be paid for every orthogonal drawing of H. The
only exception is the case where deg(s) = deg(t) = 3. In this case, H has at least two
bends and thus the cost function costH(·) needs to be considered only on the interval
[2, 3]. However, it may happen that costH(2) > costH(3) holds in this case. Then we set
the base cost bH to costH(3) such that the base cost bH is really the smallest possible
amount of cost that needs to be paid for every orthogonal representation of H. We
obtain the following theorem.

THEOREM 6.1. If the poles of a principal split component do not both have degree 3,
then its cost function is convex on the interval [0, 3].

Before showing Theorem 6.1, we just assume that it holds and, moreover, we assume
that the cost function of every principal split component is already computed. We first
show how these cost functions can then be used to compute an optimal drawing. To
this end, we define a flow network on the skeleton of the root τ of the SPQR-tree,
similarly to Tamassia’s flow network [Tamassia 1987]. The cost functions computed for
the children of τ will be used as cost functions on arcs in the flow network. As we can

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:21

Fig. 11. A single vertex can be replaced by a split component with three bends.

only solve flow networks with convex costs we somehow have to deal with potentially
non-convex cost functions for the case that both endvertices of a virtual edge have
degree 3 in its expansion graph. Our strategy is to simply ignore these subgraphs by
contracting them into single vertices. Note that the resulting vertices have degree 2
since the poles of graphs with non-convex cost functions have degree 3. The process
of replacing the single vertex in the resulting drawing by the contracted component is
illustrated in Figure 11. The following lemma justifies this strategy.

LEMMA 6.2. Let G be a biconnected positive-convex instance of OPTIMALFLEXDRAW with
τ -optimal orthogonal representation R and let H be a principal split component with
non-convex cost function and base cost bH. Let, further, G′ be the graph obtained from G
by contracting H into a single vertex and let R′ be a τ -optimal orthogonal representation
of G′. Then cost(R) = cost(R′) + bH holds.

PROOF. Assume we have a τ -optimal orthogonal representation R of G inducing
the orthogonal representation S on H. As H has either two or three bends we can
simply contract it yielding an orthogonal representation R′ of G with cost(R′) =
cost(R) − cost(S) ≤ cost(R) − bH . The opposite direction is more complicated. Assume
we have an orthogonal representation R′ of G′; then we want to construct an orthogonal
representation R of G with cost(R) = cost(R′) + bH . Let S be an orthogonal representa-
tion of H causing only bH cost. Since costH(·) was assumed to be non-convex, S needs
to have three bends. It is easy to see that R′ and S (or S ′ obtained from S by mirroring
the drawing) can be combined to an orthogonal representation of G if the two edges
incident to the vertex v in G′ corresponding to H have an angle of 90◦ between them.
However, this can always be ensured without increasing the costs of R′. Let e1 and e2
be the edges incident to v and assume they have an angle of 180◦ between them in both
faces incident to v. If neither e1 nor e2 has a bend, then the flex graph contains the
cycle around v due to the fact that e1 and e2 have positive flexibilities. Bending along
this cycle introduces a bend to each of the edges, thus we can assume without loss of
generality that e1 has a bend in R′. Moving v along the edge e1 until it reaches this
bend decreases the number of bends on e1 by one and ensures that v has an angle of
90◦ in one of its incident faces. Thus we can replace v by the split component H with
orthogonal representation S having cost bH yielding an orthogonal representation R of
G with cost(R) = cost(R′) + bH .

When computing a (τ, E)-optimal orthogonal representation of G we make use of
Lemma 6.2 in the following way. If the expansion graph H corresponding to a virtual
edge ε in skel(τ) has a non-convex cost function, then we simply contract this virtual
edge in skel(τ). Note that this is equivalent to contracting H in G. We can then make
use of the fact that all remaining expansion graphs have convex cost functions to
compute a (τ, E)-optimal orthogonal representation of the resulting graph yielding a
(τ, E)-optimal orthogonal representation of the original graph G since the contracted
expansion graphs can be inserted due to Lemma 6.2. Note that expansion graphs with
non-convex cost functions can only appear if the root is a Q- or an S-node. In the
skeletons of P- and R-nodes, every vertex has degree at least three, thus the poles of
an expansion graph cannot have degree 3 since G has maximum degree 4.

Now we are ready to define the flow network NE on skel(τ) with respect to the fixed
embedding E of skel(τ); see Figure 12(a) for an example. For each vertex v, each virtual

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:22 T. Bläsius et al.

Fig. 12. (a) The structure of the flow network NE for the case that τ is an R-node with skel(τ) = K4. The
outer face is split into several gray boxes to improve readability. (b) A flow together with the corresponding
orthogonal representation. The numbers indicate the amount of flow on the arcs. Undirected edges imply 0
flow, directed arcs without a number have flow 1.

edge ε and each face f in skel(τ) the flow network NE contains the nodes v, ε, and f ,
called vertex node, edge node, and face node, respectively. The network NE contains the
arcs (v, f) and (f, v) with capacity 1, called vertex-face arcs, if the vertex v and the face
f are incident in skel(τ). For every virtual edge ε we add edge-face arcs (ε, f) and (f, ε)
if f is incident to ε. We use costH(·)−bH as cost function of the arc (f, ε), where H is the
expansion graph of the virtual edge ε. The edge-face arcs (ε, f) in the opposite direction
have infinite capacity with 0 cost. It remains to define the demand of every node in
NE . Every inner face has a demand of 4, and the outer face has a demand of −4. An
edge node ε stemming from the edge ε = {s, t} with expansion graph H has a demand
of degH(s) + degH(t) − 2, where degH(v) denotes the degree of v in H. The demand of a
vertex node v is 4 − degG(v) − degskel(τ)(v).

In the flow network NE the flow entering a face node f using a vertex-face arc or
an edge-face arc is interpreted as the rotation at the corresponding vertex or along
the path between the poles of the corresponding child, respectively; see Figure 12(b)
for an example. Incoming flow is positive rotation and outgoing flow negative rotation.
Let bH1 , . . . , bHk be the base costs of the expansion graphs corresponding to virtual
edges in skel(τ). We define the total base costs of τ to be bτ = ∑

i bHi . Note that the
total base costs of τ are a lower bound for the costs that have to be paid for every
orthogonal representation of G. We show that an optimal flow φ in NE corresponds to a
(τ, E)-optimal orthogonal representation R of G. Since the base costs do not appear in
the flow network, the costs of the flow and its corresponding orthogonal representation
differ by the total base costs bτ , that is, cost(R) = cost(φ) + bτ . We obtain the following
lemma.

LEMMA 6.3. Let G be a biconnected positive-convex instance of OPTIMALFLEXDRAW, let
T be its SPQR-tree with root τ and let E be an embedding of skel(τ). If the cost function
of every principal split component is known, a (τ, E)-optimal solution can be computed
in O(Tflow(| skel(τ)|)) time.

PROOF. As mentioned before, we want to use the flow network NE to compute an
optimal orthogonal representation. To this end we show two directions. First, given
a (τ, E)-optimal orthogonal representation R, we obtain a feasible flow φ in NE such
that cost(φ) = cost(R) − bτ , where bτ are the total base costs. Conversely, given an
optimal flow φ in NE , we show how to construct an orthogonal representation R such
that cost(R) = cost(φ) + bτ . As the flow network NE has size O(| skel(τ)|), the claimed
running time follows immediately.

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:23

Fig. 13. (a) Illustration of the demand of virtual edges. (b) Rotation of poles in the outer face, depending on
the degree.

Let R be a (τ, E)-optimal orthogonal representation of G. As we only consider nice
and thus only tight drawings, we can assume the orthogonal representation R to be
tight. Recall that being tight implies that the poles of the expansion graph of every
virtual edge have a rotation of 1 in the internal faces. We first show how to assign
flow to the arcs in NE . It can then be shown that the resulting flow is feasible and
causes cost(R) − bτ cost. For every pair of vertex-face arcs (f, v) and (v, f) in NE

there exists a corresponding face f in the orthogonal representation R of G and we
set φ((v, f)) = rot(v f). Let ε = {s, t} be a virtual edge in skel(μ) incident to the two
faces f1 and f2. Without loss of generality let π f1 (s, t) be the path belonging to the
expansion graph of ε. Then π f2 (t, s) also belongs to H. We set φ((ε, f1)) = rotR(π f1 (s, t))
and φ((ε, f2)) = rotR(π f2 (t, s)). For the resulting flow φ, we need to show that the
capacity of every arc is respected, that the demand of every vertex is satisfied, and that
cost(φ) = cost(R) − bτ holds.

First note that the flow on the vertex-face arcs does not exceed the capacities of 1
since every vertex has degree at least 2. Since no other arc has a capacity, it remains
to deal with the demands and the costs.

For the demands we consider each vertex type separately. Let f be a face node. The
total incoming flow entering f is obviously equal to the rotation in R around the face
f . As R is an orthogonal representation this rotation equals to 4 (−4 for the outer face),
which is exactly the demand of f . Let ε be an edge node corresponding to the expansion
graph H with poles s and t. Recall that dem(ε) = degH(s) + degH(t) − 2 is the demand
of ε. Figure 13(a) illustrates the demand of a virtual edge. Let S be the orthogonal
representation induced on H by R and let f be the outer face of S. Clearly, the flow
leaving ε is equal to rotR(π f1 (s, t)) + rotR(π f2 (t, s)) = rotS (π f (s, t)) + rotS (π f (t, s)). Since
f is the outer face of H, the total rotation around this face sums up to −4. The rotation
of the pole s in the outer face f is degH(s) − 3, see Figures 13(b), and the same holds
for t. Thus we have rotS (π f (s, t)) + rotS (π f (t, s)) + degH(s) − 3 + degH(t) − 3 = −4.
This yields for the outgoing flow rotS (π f (s, t)) + rotS (π f (t, s)) = 2 − degH(s) − degH(t),
which is exactly the negative demand of ε. It remains to consider the vertex nodes.
Let v be a vertex node, and recall that dem(v) = 4 − degG(v) − degskel(τ)(v) holds. The
outgoing flow leaving v is equal to the summed rotation of v in faces not belonging
to expansion graphs of virtual edges in skel(τ). As R is an orthogonal representation,
the total rotation around every vertex v is 2 · (degG(v) − 2). Moreover, v is incident to
degskel(τ)(v) faces that are not contained in expansion graphs of virtual edges of skel(τ).
Thus, there are degG(v)−degskel(τ)(v) faces incident to v belonging to expansion graphs.
As we assumed that the orthogonal representation of every expansion graph is tight,
the rotation of v in each of these faces is 1. Thus, the rotation of v in the remaining
faces not belonging to expansion graphs is 2 · (degG(v) − 2) − (degG(v) − degskel(τ)(v)).
Rearrangement yields a rotation, and thus an outgoing flow, of degG(v) + degskel(τ)(v)−4,
which is the negative demand of v.

To show that cost(φ) = cost(R) − bτ holds it suffices to consider the flow on the
edge-face arcs as no other arc causes cost. Let ε be a virtual edge and let f1 and f2
be the two incident faces. The flow entering f1 or f2 does not cause any cost, as (ε, f1)
and (ε, f2) have infinite capacity with 0 cost. Thus only flow entering ε over the arcs

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:24 T. Bläsius et al.

(f1, ε) and (f2, ε) may cause cost. Assume without loss of generality that the number of
bends ρ the expansion graph H of ε has is determined by the rotation of π f1 (s, t), that is,
ρ = − rotR(π f1 (s, t)). Let ρ ′ = − rotR(π f2 (t, s)) be the negative rotation of the path π f2 (t, s)
in the face f2. Note that φ((f1, ε)) = ρ and φ((f2, ε)) = ρ ′. Obviously, the flow on (f1, ε)
causes the cost costH(ρ) − bH . We show that the cost caused by the flow on (f2, ε) is 0.
If ρ ′ ≤ 0, then this is obviously true, as there is no flow on the edge (f2, ε). Otherwise,
0 < ρ ′ ≤ ρ holds. Thus, the smallest possible number of bends
H every orthogonal
representation of H has lies between ρ ′ and ρ. It follows from the definition of costH(·)
and from the fact that all cost functions are convex that costH(ρ ′) = bH . To summarize,
the total cost on edge-face arcs incident to the virtual edge ε is equal to the cost caused
by its expansion graph H with respect to the orthogonal representation R minus the
base cost bH . As neither φ nor R have additional cost we obtain cost(φ) = cost(R) − bτ .

It remains to show the opposite direction, that is, given an optimal flow φ in NE , we
can construct an orthogonal representation R of G such that cost(R) = cost(φ) + bτ .
This can be done by reversing the construction above. The flow on edge-face arcs de-
termines the number of bends for the expansion graphs of each virtual edge. The cost
functions of these expansion graphs guarantee the existence of orthogonal representa-
tions with the desired rotations of the paths between the poles, thus we can assume
to have orthogonal representations for all children. We combine these orthogonal rep-
resentations by setting the rotations between them at common poles as specified by
the flow on vertex-face arcs. It can be easily verified that this yields an orthogonal
representation of the whole graph G by applying the above computation in the opposite
direction.

The above results rely on the fact that the cost functions of principal split components
are convex as stated in Theorem 6.1 and that they can be computed efficiently. In the
following we show that Theorem 6.1 really holds with the help of a structural induction
over the SPQR-tree. More precisely, the cost functions of principal split components
corresponding to the leaves of T are the cost functions of the edges and thus they are
convex. For an inner node μ, we assume that the pertinent graphs of the children of
μ have convex cost functions and show that H = pert(μ) itself also has a convex cost
function. The proof is constructive in the sense that it directly yields an algorithm to
compute these cost functions bottom up in the SPQR-tree.

Note that we can again apply Lemma 6.2 in the case that the cost function of the
expansion graph of one of the virtual edges in skel(μ) is not convex due to the fact
that both of its poles have degree 3. This means that we can simply contract such a
virtual edge (corresponding to a contraction of the expansion graph in H), compute the
cost function for the remaining graph instead of H, and plug the contracted expansion
graph into the resulting orthogonal representations. Thus, we can assume that the cost
function of each of the expansion graphs is convex, without any exceptions.

The flow network NE that was introduced to compute an optimal orthogonal repre-
sentation in the root of the SPQR-tree can be adapted to compute the cost function of
the principal split component H corresponding to a non-root node μ. To this end we
have to deal with the parent edge, which does not occur in the root of T , and we consider
a parameterization of NE to compute several optimal orthogonal representations with
a prescribed number of bends, depending on the parameter in the flow network. Before
we describe the changes in the flow network we need to make some considerations
about the cost function. By the definition of the cost function it explicitly optimizes
over all planar embeddings of skel(μ). Moreover, as the cost function costH(ρ) depends
on the number of bends ρ a graph H has, it implicitly allows us to flip the embedding of
H since the number of bends is defined as max{| rot(π (s, t))|, | rot(π (t, s))|}. However, the
flow network NE can only be used to compute the cost function for a fixed embedding.

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:25

Thus, we define the partial cost function costEH(ρ) of H with respect to the planar em-
bedding E of skel(μ) to be the smallest possible cost of an orthogonal representation
inducing the planar embedding E on skel(μ) with ρ bends such that the number of
bends is determined by π f (s, t), that is, rot(π f (s, t)) = −ρ, where f is the outer face.
Note that the minimum over the partial cost functions costEH(·) and costE

′
H(·), where E ′

is obtained by flipping the embedding E of skel(μ) yields a function describing the costs
of H with respect to the embedding E of skel(μ) depending on the number of bends
H has (and not on the rotation of π f (s, t) as the partial cost function does). Obviously,
minimizing over all partial cost functions yields the cost function of H.

The flow network NE is defined as before with the following modifications. The parent
edge of skel(μ) does not have a corresponding edge node. Let f1 and f2 be the faces in
skel(μ) incident to the parent edge. These two faces together form the outer face f of H,
thus we could merge them into a single face node. However, not merging them has the
advantage that the incoming flow in f1 and f2 corresponds to the rotations of π f (s, t)
and π f (t, s), respectively (it might be the other way around, but we can assume this
situation without loss of generality). Thus, we do not merge f1 and f2, which enables
us to control the number of bends of H by setting the demands of f1 and f2. This is also
the reason why we remove the vertex-face arcs between the poles and the two faces f1
and f2. Before we describe how to set the demands of f1 and f2, we fit the demands
of the poles to the new situation. As we only consider tight orthogonal representations
we know that the rotation at the poles s and t in all inner faces is 1. Thus, we set
dem(s) = 2 − degskel(μ)(s) and dem(t) = 2 − degskel(μ)(t) as this is the number of faces
incident to s and t, respectively, after removing the vertex-face arcs to f1 and f2. With
these modifications the only flow entering f1 and f2 comes from the paths π f (s, t) and
π f (t, s), respectively. As the total rotation around the outer face is −4 and the rotation
at the vertices s and t is degH(s) − 3 and degH(t) − 3, respectively, we have to ensure
that dem(f1)+dem(f2) = 2−degH(s)−degH(t). As mentioned before, we assume without
loss of generality that π f (s, t) belongs to the face f1 and π f (t, s) belongs to f2. Then the
incoming flow entering f1 corresponds to rot(π f (s, t)) of an orthogonal representation.
We parameterize NE with respect to the faces f1 and f2 starting with dem(f1) = 0 and
dem(f2) = 2 − degH(s) − degH(t). It obviously follows that an optimal flow in NE with
respect to the parameter ρ corresponds to an optimal orthogonal representation of H
that induces E on skel(μ) and has a rotation of −ρ along π f (s, t). Thus, up to the total
base costs bμ, the cost function of the flow network equals the partial cost function of H
on the interval [
H, 3], that is, costNE (ρ) + bμ = costEH(ρ) for
H ≤ ρ ≤ 3. To obtain the
following lemma, it remains to show two things for the case that deg(s) + deg(t) < 6.
First, costNE (ρ) and thus each partial cost function is convex for
H ≤ ρ ≤ 3. Second,
the minimum over these partial cost functions is convex.

LEMMA 6.4. If Theorem 6.1 holds for each principal split component corresponding to
a child of the node μ in the SPQR-tree, then it also holds for pert(μ).

PROOF. As mentioned before, we can use the flow network NE to compute the partial
cost function costEH(ρ) for
H ≤ ρ ≤ 3 since costEH(ρ) = costNE (ρ) + bμ holds on this
interval. In the following we only consider the case where degH(s) + degH(t) < 6 holds
for the poles s and t. For the case degH(s) = degH(t) = 3, we do not need to show
anything. To show that the partial cost function is convex we do the following. First, we
show that costEH(ρ) is minimal for ρ =
H . This implies that the cost function costNE (ρ)
of the flow network is minimal for ρ = ρ0 ≤
H . Then Theorem 2.1 can be applied
showing that costNE (ρ) is convex for ρ ∈ [ρ0,∞] yielding that the partial cost function
costEH(ρ) is convex for ρ ∈ [
H, 3]. Thus, it remains to show that costEH(ρ) is minimal for
ρ =
H to obtain convexity for the partial cost functions.

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:26 T. Bläsius et al.

Let S be an orthogonal representation of H with ρ ∈ [
H, 3] bends such that π f (s, t)
determines the number of bends, that is, rotS (π f (s, t)) = −ρ, where f is the outer face of
H. We show the existence of an orthogonal representation S′ with rotS ′(π f (s, t)) = −
H
and cost(S′) ≤ cost(S). Since we assume S to be tight, the rotations at the poles rotS (sf)
and rotS (tf) only depend on the degree of s and t. More precisely, we have rotS (sf) =
degH(s) − 3 and the same holds for t. Since the total rotation around the outer face f
is −4 the following equation holds:

rotS (π f (t, s)) = ρ + 2 − degH(s) − degH(t). (1)

In the following we show that rotS (π f (t, s)) ≥ 0 holds if the number of bends ρ exceeds

H . Then Corollary 3.3 in combination with Theorem 5.1 can be used to reduce the
rotation of π f (t, s) and thus reduce the number of bends by 1, yielding eventually an
orthogonal representation with
H bends determined by π f (s, t). Recall that the lower
bound for the number of bends was defined as
H = �(deg(s) + deg(t) − 2)/2
. First
consider the case that degH(s) + degH(t) is even (and, of course, less than 6). Then
Equation (1) yields rotS (π f (t, s)) = ρ − 2
H . If ρ is greater than
H , then this yields
rotS (π f (t, s)) > −
H . Since
H is at most 1 in the case that deg(s) + deg(t) is even and
less than 6, this yields rotS (π f (t, s)) > −1. The case that degH(s) + degH(t) is odd works
similarly. Then Equation (1) yields rotS (π f (t, s)) = ρ − 2
H + 1. As before ρ is assumed
to be greater than
H yielding rotS (π f (t, s)) > −
H + 1. As
H is at most 2 we again
obtain rotS (π f (t, s)) > −1, which concludes the proof that the partial cost functions are
convex.

It remains to show that the minimum over the partial cost functions is convex. First
assume that μ is an R-node. Then its skeleton has only two embeddings E and E ′ where
E ′ is obtained by flipping E . We have to show that the minimum over the two partial cost
functions costEH(·) and costE

′
H(·) remains convex. For the case that deg(s) + deg(t) = 5

the equation
H = 2 holds and thus we only have to show convexity on the interval
[2, 3]. Obviously, costH(·) is convex on this interval if and only if costH(2) ≤ costH(3).
As this is the case for both partial cost functions, it is also true for the minimum. For
deg(s) + deg(t) < 5 we first show that costEH(
H) = costE

′
H(
H) holds. For the case that

deg(s)+deg(t) is even this is clear since mirroring an orthogonal representation S with
rotS (π f (s, t)) = −
H inducing E on skel(μ) yields an orthogonal representation S ′ with
rotS ′(π f (s, t)) = −
H inducing E ′ on skel(μ). For the case where deg(s) + deg(t) = 3,
the orthogonal representation S with rotation −1 along π f (s, t) can also be mirrored
yielding S ′ with rotation 0 along π f (s, t). By Corollary 3.3, this rotation can be reduced
to −1 without causing any additional cost. As this construction also works in the
opposite direction we have costEH(
H) = costE

′
H(
H) for all cases. Moreover, costEH(0) =

costEH(1) holds by definition, if deg(s) + deg(t) > 2. If deg(s) = deg(t) = 1, then this
equation is also true as the rotation of π f (s, t) in an orthogonal representation can be
reduced by 1 if it is 0, again due to Corollary 3.3. Thus it remains to show that the
cost function costH(·) defined as the minimum of costEH(·) and costE

′
H(·) is convex on the

interval [1, 3].
Assume for a contradiction that costH(ρ) is not convex for ρ ∈ [1, 3], that is,

� costH(1) > � costH(2). Assume without loss of generality that costH(3) = costEH(3)
holds. As we showed before costH(1) = costEH(1) also holds. Since costH(2) is the mini-
mum over costEH(2) and costE

′
H(2) we additionally have costH(2) ≤ costEH(2). This implies

that the inequalities � costEH(1) ≥ � costH(1) and � costEH(2) ≤ � costH(2) hold, yielding
that the partial cost function costEH(ρ) is not convex for ρ ∈ [1, 3], which is a contradic-
tion. Thus costH(·) is convex.

The case that μ is a P-node works similar to the case that μ is an R-node. If μ has
only two children, then its skeleton has only two embeddings, E and E ′, obtained from

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:27

one another by flipping. Thus the same argument as for R-nodes applies. If μ has three
children, then deg(s) = deg(t) = 3 holds, and thus we do not have to show convexity.
Note that in the case deg(s) = deg(t) = 3 the resulting cost function can be computed
by taking the minimum over the partial cost functions with respect to all embeddings
of skel(μ), although it may be non-convex. If μ is an S-node, then we have a unique
embedding, and thus the partial cost function with respect to this embedding is already
the cost function of H. Note that considering only the rotation of π f (s, t) for the partial
cost function is not a restriction, as S-nodes are completely symmetric.

Lemma 6.4 together with the fact that the cost function of every edge is convex shows
that Theorem 6.1 holds, that is, the cost functions of all principal split components are
convex on the interesting interval [0, 3] except for the special case where both poles
have degree 3. However, this special case is easy to handle as principal split components
of this type with non-convex cost functions can be simply contracted to a single vertex
by Lemma 6.2. Moreover, the proof is constructive in the sense that it shows how the
cost functions can be computed efficiently bottom up in the SPQR-tree. For each node μ
we have to solve a constant number of minimum-cost flow problems in a flow network
of size O(| skel(μ)|). As the total size of all skeletons in T is linear in the number n
of vertices in G, we obtain an overall O(Tflow(n)) running time to compute the cost
functions with respect to the root τ . Finally, Lemma 6.3 can be applied to compute an
optimal orthogonal representation with respect to a fixed root and a fixed embedding of
the root’s skeleton in O(Tflow(| skel(τ)|)) time. To compute an overall optimal solution,
we have to compute a (τ, E)-optimal solution for every root τ and every embedding E
of skel(τ). The number of embeddings of skel(τ) is linear in the size of skel(τ) (since
P-nodes have at most degree 4) and the total size of all skeletons is linear in n. We
obtain the following theorem.

THEOREM 6.5. OPTIMALFLEXDRAW can be solved in O(n · Tflow(n)) time for positive-convex
biconnected instances.

6.2. Connected Graphs

In this section we extend the result obtained in Section 6.1 to the case that the input
graph G contains cutvertices. Let B be the BC-tree of G rooted at some B-node β.
Then every block except for β has a unique cutvertex as parent and we need to find
optimal orthogonal representations with the restriction that this cutvertex lies on the
outer face. We claim that we can then combine these orthogonal representations of the
blocks without additional cost.

Unfortunately, with the so far presented results we cannot compute the optimal
orthogonal representation of a biconnected graph considering only embeddings where a
specific vertex v lies on the outer face. We may restrict the embeddings of the skeletons
we consider when traversing the SPQR-tree bottom up to those who have v on the
outer face. However, we can then no longer assume that the cost functions we obtain
are symmetric. To deal with this problem, we present a modification of the SPQR-tree
that can be used to represent exactly the planar embeddings that have v on the outer
face and are represented by the SPQR-tree rooted at a node τ .

Let τ be the root of the SPQR-tree T . If v is a vertex of skel(τ), then restricting the
embeddings of skel(τ) to those who have v on the outer face of skel(τ) forces v to be
on the outer face of the resulting embedding of G. Otherwise, v is contained in the
expansion graph of a unique virtual edge ε in skel(τ), we say that v is contained in ε.
Obviously, ε has to be on the outer face of the embedding of skel(τ). However, this is not
sufficient and it depends on the child μ of τ corresponding to ε whether v lies on the
outer face of the resulting embedding of G. Let Eτ be an embedding of skel(τ) having ε
on the outer face and let s and t be the endpoints of ε. Then there are two possibilities:

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:28 T. Bläsius et al.

Fig. 14. (a) Splitting a P-node into two P-nodes, the vertex v fixed to the outer face is contained in the thick
edges. (b) Contracting the path from the root to the node containing v in its skeleton.

ε = {s, t} has the outer face either to the left or to the right, where the terms “left” and
“right” are with respect to an orientation from t to s. Assume without loss of generality
that the outer face lies to the right of ε and consider the child μ of τ corresponding to ε.
As T is rooted, we consider only embeddings of skel(μ) that have the parent edge {s, t}
on the outer face. As the choice of the outer face of skel(μ) does not have any effect on
the resulting embedding, we can assume that {s, t} lies to the left of skel(μ), that is, the
inner face incident to {s, t} lies to the right of {s, t} with respect to an orientation from t
to s. A vertex contained in skel(μ) then lies obviously on the outer face of the resulting
embedding of G if and only if it lies on the outer face of the embedding of skel(μ). Thus,
if v is contained in skel(μ), restricting the embedding choices such that v lies on the
outer face of skel(μ) forces v to be on the outer face of G. Note that in this case μ is
either an R- or an S-node. For S-nodes there is no embedding choice and every vertex in
skel(μ) lies on the outer face in this embedding. If μ is an R-node, then there are only
two embeddings and either v lies on the outer face of exactly one of them or in none of
them. In the latter case the SPQR-tree with respect to the root τ does not represent an
embedding of G with v on the outer face at all.

Assume that v is not contained in skel(μ). Then it is again contained in a single
virtual edge ε′ and it is necessary that ε′ lies on the outer face of the embedding of
skel(μ). Moreover, it depends on the child of μ corresponding to ε′ whether v really
lies on the outer face. Note that fixing ε′ on the outer face completely determines the
embedding of skel(μ) if it is not a P-node. If μ is a P-node, then the virtual edge ε′ has to
be the rightmost, whereas the order of all other virtual edges can be chosen arbitrarily.
If this is the case, then we split the P-node into two parts, one representing the fixed
embedding of ε′ and the other representing the choices for the remaining edges; see
Figure 14(a). More precisely, we split μ into two P-nodes, the first one containing the
parent edge {s, t}, the edge ε′, and a new virtual edge corresponding to the second P-
node, which is inserted as child. The skeleton of the second P-node contains a parent
edge corresponding to the first P-node and the remaining virtual edges that were
contained in skel(μ) but are not contained in the first P-node. The children of μ are
attached to the two P-nodes depending on where the corresponding virtual edges are.
Note that by splitting the P-node μ, the virtual edge ε′ can no longer be in between
two other virtual edges in μ. However, this is a required restriction, thus we do not
loose embeddings that we want to represent. Moreover, the new P-node containing the
virtual edge ε′ that needs to be fixed to the outer face contains only two virtual edges
(plus the parent edge) and thus the embedding of its skeleton is completely fixed by
requiring ε′ to be on the outer face.

To sum up, if skel(τ) contains v, then we simply have to choose an embedding of
skel(τ) with v on the outer face. Otherwise, we have to fix the virtual edge containing
v to the outer face and additionally have to consider the child of τ corresponding to

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:29

this virtual edge. For the child, we then have essentially the same situation. Either
v is contained in its skeleton, then the embedding is fixed to the unique embedding
having v on the outer face or v is contained in some virtual edge. However, then the
embedding of the skeleton is again completely fixed (P-nodes have to be split up first)
and we can continue with the child corresponding to the virtual edge containing v. This
yields a path of nodes starting with the root τ having a completely fixed embedding
only depending on the embedding Eτ chosen for skel(τ). As the nodes on the path do not
represent any embedding choices, we can simply contract the whole path into a single
new root node, merging the skeletons on the path, such that the embedding of the new
skeleton of the root is still fixed. This contraction is illustrated in Figure 14(b). More
precisely, let τ be the root and let ε be the edge containing v, corresponding to the child
μ. Then we merge τ and μ by replacing ε in τ by the skeleton of μ without the parent
edge. The children of μ are of course attached to the new root τ ′ since skel(τ ′) contains
the corresponding virtual edges. As mentioned before, the embedding of skel(μ) was
fixed by the requirement that v is on the outer face, and thus the new skeleton skel(τ ′)
has a unique embedding Eτ ′ inducing Eτ on skel(τ) and having v or the new virtual
edge containing v on the outer face. The procedure of merging the root with the child
corresponding to the virtual edge containing v is repeated until v is contained in the
skeleton of the root. We call the resulting tree the restricted SPQR-tree with respect to
the vertex v and to the embedding Eτ of the root.

To come back to the problem OPTIMALFLEXDRAW, we can easily apply the algorithm
presented in Section 6.1 to the restricted SPQR-tree. All nodes apart from the root
are still S-, P-, Q-, or R-nodes and thus the cost functions with respect to the corre-
sponding pertinent graphs can be computed bottom up. The root τ may have a more
complicated skeleton, however, its embedding is fixed, thus we can apply the flow al-
gorithm as before, yielding an optimal drawing with respect to the chosen root τ and
to the embedding Eτ of skel(τ) with the additional requirement that v lies on the outer
face. Since the restricted SPQR-tree can be easily computed in linear time for a chosen
root τ and a fixed embedding E of skel(τ), we can compute a (τ, E)-optimal orthogonal
representation with the additional requirement that v lies on the outer face in Tflow(n)
time, yielding the following theorem.

THEOREM 6.6. OPTIMALFLEXDRAW with the additional requirement that a specific vertex
lies on the outer face can be solved in O(n · Tflow(n)) time for positive-convex biconnected
instances.

As motivated before, we can use the BC-tree to solve OPTIMALFLEXDRAW for instances
that are not necessarily biconnected. We obtain the following theorem.

THEOREM 6.7. OPTIMALFLEXDRAW can be solved in O(n2 · Tflow(n)) time for positive-
convex instances.

PROOF. Let G be a positive-convex instance with positive flexibility of OPTIMALFLEX-
DRAW and let B be its BC-tree rooted at some B-node β. We show how to find an optimal
drawing of G, optimizing over all embeddings represented by B with respect to the
root β. Then we can simply choose every B-node in B to be the root once, solving
OPTIMALFLEXDRAW. The algorithm consumes O(n· Tflow(n)) time for each root β and thus
the overall running time is O(n2 · Tflow(n)). For the block corresponding to the root β
we use Theorem 6.5 to find the optimal orthogonal representation. For all other blocks,
we use Theorem 6.6 to find the optimal orthogonal representation with the cutvertex
corresponding to the parent in B on the outer face. It remains to stack these orthogonal
representations together without causing additional cost. This can be easily done if a
cutvertex that is forced to lie on the outer face has all free incidences in the outer face

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:30 T. Bläsius et al.

and every other cutvertex has all free incidences in a single face. The former can be
achieved as we can assume orthogonal representations to be tight. If the latter con-
dition is violated by a cutvertex v, then v has two incident edges e1 and e2 and the
rotation of v is 0 in both incident faces. If both edges e1 and e2 have zero bends, then
we bend along a cycle around v in the flex graph and thus we can assume without loss
of generality that e1 has a bend. Moving v along e1 to this bend yields an orthogonal
representation where v has both free incidences in the same face. Thus given the or-
thogonal representations for the blocks, we can simply stack them together without
causing additional cost.

6.3. Computing the Flow

In the previous sections we used Tflow(n) as placeholder for the time necessary to
compute a minimum-cost flow in a flow network of size n. Most minimum-cost flow
algorithms do not consider the case of multiple sinks and sources. However, this is
not a real problem as we can simply add a supersink connected to all sinks and a
supersource connected to all sources. Unfortunately, the resulting flow network is no
longer planar. Orlin gives a strongly polynomial time minimum-cost flow algorithm
with running time O(mlog n(m+ n log n)), where n is the number of vertices and m the
number of arcs [Orlin 1993]. Since our flow network is planar (plus supersink and
supersource) the number of arcs is linear in the number of nodes. Thus with this flow
algorithm we have Tflow(n) ∈ O(n2 log2 n).

This can be slightly improved using the algorithm by Borradaile et al. [2011] to
compute a feasible flow in a planar flow network with multiple sources and sinks,
consuming O(n log3 n) time. Afterwards, it remains to minimize the cost in the residual
network. As this network is planar the shortest path computation in the algorithm by
Orlin [1993] can be done in linear time due to Henzinger et al. [1997], yielding the
running time O(n2 log n).

Cornelsen and Karrenbauer [2012] give a minimum-cost flow algorithm for planar
flow networks with multiple sources and sinks consuming O(

√
χ n log3 n) time, where χ

is the cost of the resulting flow. Since the cost functions in an instance of OPTIMALFLEX-
DRAW may define exponentially large costs in the size of the input, we cannot use this
flow algorithm in general to obtain a polynomial time algorithm. However, in practice,
it does not really make sense to have exponentially large costs. Moreover, in several
interesting special cases an optimal solution has cost linear in the number of vertices.
We obtain the following results.

COROLLARY 6.8. A positive-convex instance G of OPTIMALFLEXDRAW can be solved in
O(n4 log n) and O(

√
χ n3 log3 n) time, where χ is the cost of an optimal solution. The

running time can be improved by a factor of O(n) for biconnected graphs.

7. CONCLUSION

We presented an efficient algorithm for the problem OPTIMALFLEXDRAW that can be seen
as the optimization problem corresponding to FLEXDRAW. As a first step, we considered
biconnected 4-planar graphs with a fixed embedding and showed that they always
admit a nice drawing, which implies at most three bends per edge except for a single
edge on the outer face with up to four bends.

Our algorithm for optimizing over all planar embeddings requires that the first bend
on every edge does not cause any cost as the problem becomes NP-hard otherwise.
Apart from that restriction, we allow the user to specify an arbitrary convex cost
function independently for each edge. This enables the user to control the resulting
drawing. For example, our algorithm can be used to minimize the total number of bends,

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

Optimal Orthogonal Graph Drawing with Convex Bend Costs 33:31

neglecting the first bend of each edge. This special case is the natural optimization
problem arising from the decision problem FLEXDRAW. As another interesting special
case, one can require every edge to have at most two bends and minimize the number
of edges having more than one bend. This enhances the algorithm by Biedl and Kant
[1998] generating drawings with at most two bends per edge with the possibility of
optimization. Note that in both special cases the cost of an optimal solution is linear in
the size of the graph, yielding a running time in O(n

7
2 log3 n) (O(n

5
2 log3 n) if the graph

is biconnected).
It is a natural open question, whether the result presented in this article can be

combined with the FPT-algorithm for FLEXDRAW with respect to the number of inflexible
edges (edges with flexibility 0) [Bläsius et al. 2015]: Is there an FPT-algorithm for
OPTIMALFLEXDRAW with respect to the number of inflexible edges (edges that cause
cost on the first bend)? To adapt the idea of the FPT-algorithm for FLEXDRAW [Bläsius
et al. 2015], one would need to show that the cost function one obtains for a split
component in the dynamic program is non-convex only if the split component contains
inflexible edges. For each node of the SPQR-tree, one could then split the non-convex
cost functions into convex pieces and try all combinations. Unfortunately, this does not
work for the following reason. The cost functions of the split components may already
be non-convex, even though they do not contain inflexible edges. The algorithm for
OPTIMALFLEXDRAW presented in this article works due to the fact that the cost functions
need to be considered only on a small interval, on which they are convex. However,
in the presence of inflexible edges, an optimal drawing may require a split component
to have more than three bends even if this split component itself does not contain
inflexible edges. Thus, extending the presented algorithm to work in the presence of
few inflexible edges is not straightforward.

ACKNOWLEDGMENTS

We thank Yahav Nussbaum for his hint concerning efficient flow computation.

REFERENCES

Therese Biedl and Goos Kant. 1998. A better heuristic for orthogonal graph drawings. Comput. Geom. 9, 3
(1998), 159–180.

Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner. 2014. Orthogonal graph drawing with
flexibility constraints. Algorithmica 68, 4 (2014), 859–885.

Thomas Bläsius, Sebastian Lehmann, and Ignaz Rutter. 2015. Orthogonal graph drawing with inflexible
edges. In Algorithms and Complexity (CIAC’15) (LNCS), Vangelis Th. Paschos and Peter Widmayer
(Eds.), Vol. 9079. Springer, Berlin, 61–73.

G. Borradaile, P. N. Klein, S. Mozes, Y. Nussbaum, and C. Wulff-Nilsen. 2011. Multiple-source multiple-sink
maximum flow in directed planar graphs in near-linear time. In Proc. Foundations of Computer Science
(FOCS’11). IEEE, Washington, DC, 170–179.

Sabine Cornelsen and Andreas Karrenbauer. 2012. Accelerated bend minimization. In Graph Drawing
(GD’11) (LNCS), Vol. 7034. Springer, Berlin, 111–122.

G. Di Battista, G. Liotta, and F. Vargiu. 1998. Spirality and optimal orthogonal drawings. SIAM J. Comput.
27, 6 (1998), 1764–1811.

G. Di Battista and R. Tamassia. 1996a. On-line maintenance of triconnected components with SPQR-trees.
Algorithmica 15, 4 (1996), 302–318.

G. Di Battista and R. Tamassia. 1996b. On-line planarity testing. SIAM J. Comput. 25, 5 (1996), 956–997.
Jack Edmonds and Richard M. Karp. 1972. Theoretical improvements in algorithmic efficiency for network

flow problems. J. ACM 19, 2 (1972), 248–264.
Ulrich Fößmeier and Michael Kaufmann. 1995. Drawing high degree graphs with low bend numbers. In

Graph Drawing (GD’95) (LNCS). Springer, Berlin, 254–266.
Ashim Garg and Roberto Tamassia. 2001. On the computational complexity of upward and rectilinear

planarity testing. SIAM J. Comput. 31, 2 (2001), 601–625.

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

33:32 T. Bläsius et al.

Carsten Gutwenger and Petra Mutzel. 2001. A linear time implementation of SPQR-trees. In Graph Drawing
(GD’00) (LNCS), Vol. 1984. Springer, Berlin, 77–90.

Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. 1997. Faster shortest-path
algorithms for planar graphs. J. Comput. Syst. Sci. 55, 1 (1997), 3–23.

Gunnar W. Klau and Petra Mutzel. 1998. Quasi-Orthogonal Drawing of Planar Graphs. Technical Report.
Max-Planck-Institut für Informatik, Saarbrücken, Germany.

Aurora Morgana, Célia Picinin de Mello, and Giovanna Sontacchi. 2004. An algorithm for 1-bend embeddings
of plane graphs in the two-dimensional grid. Discr. Appl. Math. 141, 1–3 (2004), 225–241.

James B. Orlin. 1993. A faster strongly polynomial minimum cost flow algorithm. Oper. Res. 41 (1993),
338–350. Issue 2.

Ignaz Rutter. 2011. The Many Faces of Planarity—Matching, Augmentation, and Embedding Algorithms for
Planar Graphs. Ph.D. Dissertation. Fakultät für Informatik, Karlsruher Institut für Technologie (KIT).

Roberto Tamassia. 1987. On embedding a graph in the grid with the minimum number of bends. SIAM J.
Comput. 16, 3 (1987), 421–444.

R. Tamassia, G. Di Battista, and C. Batini. 1988. Automatic graph drawing and readability of diagrams.
IEEE Trans. Syst. Man Cybern. 18, 1 (1988), 61–79.

Satoshi Tayu, Kumiko Nomura, and Shuichi Ueno. 2009. On the two-dimensional orthogonal drawing of
series-parallel graphs. Discr. Appl. Math. 157, 8 (2009), 1885–1895.

Hassler Whitney. 1932. Non-separable and planar graphs. Trans. Am. Math. Soc. 34, 2 (April 1932), 339–338.

Received August 2013; revised September 2015; accepted October 2015

ACM Transactions on Algorithms, Vol. 12, No. 3, Article 33, Publication date: April 2016.

