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Abstract Traditionally, the quality of orthogonal planar drawings is quantified by ei-
ther the total number of bends, or the maximum number of bends per edge. However,
this neglects that in typical applications, edges have varying importance. In this work,
we investigate an approach that allows to specify the maximum number of bends for
each edge individually, depending on its importance.

We consider a new problem called FLEXDRAW that is defined as follows. Given a
planar graph G = (V, E) on n vertices with maximum degree 4 and a function flex :
E — Ny that assigns a flexibility to each edge, does G admit a planar embedding on
the grid such that each edge e has at most flex(e) bends? Note that in our setting the
combinatorial embedding of G is not fixed. FLEXDRAW directly extends the problem
B-embeddability asking whether G can be embedded with at most B bends per edge.

We give an algorithm with running-time O(n?) solving FLEXDRAW when the
flexibility of each edge is positive. This includes 1-embeddability as a special case
and thus closes the complexity gap between 0-embeddability, which is NP-hard to
decide, and 2-embeddability, which is efficiently solvable since every planar graph
with maximum degree 4 admits a 2-embedding except for the octahedron. In addition
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to the polynomial-time algorithm we show that FLEXDRAW is N/P-hard even if the
edges with flexibility 0 induce a tree or a union of disjoint stars.

Keywords Planar graphs - Embeddings - Orthogonal drawing - Bend minimization

1 Introduction

Orthogonal graph drawing is one of the most important techniques for the human-
readable visualization of complex data. Its esthetic appeal derives from its simplicity
and straightforwardness. Since edges are required to be straight orthogonal lines—
which automatically yields good angular resolution and short links—the human eye
may easily adapt to the flow of an edge. The readability of orthogonal drawings can
be further enhanced in the absence of crossings, that is if the underlying data exhibits
a planar structure. Unfortunately, not all planar graphs have an orthogonal drawing in
which each edge is represented by a straight horizontal or vertical line. In order to be
able to visualize all planar graphs nonetheless, we allow edges to have bends. Since
bends obfuscate the readability of orthogonal drawings, however, we are interested
in minimizing the number of bends on the edges. Previous approaches to orthogo-
nal graph drawing in the presence of bends focus on the minimization of either the
maximum number of bends per edge or the total number of bends in the drawing.

In typical applications, however, edges have varying importance for the readabil-
ity depending on their semantic and their importance for the application. Thus, it is
convenient to allow some edges to have more bends than others. See Fig. 1 for an
example.

We consider the following orthogonal graph drawing problem, which we call
FLEXDRAW. Given a 4-planar graph G (i.e., G is planar and has maximum de-
gree 4), and for each edge e a non-negative integer flex(e), called the flexibility of
e, does G admit a planar embedding on the grid such that each edge e has at most
flex(e) bends? Such a drawing of G on the grid is called a flex-drawing. For a graph
with flex(e) > O for each edge e in G we say that G itself has positive flexibility.

The problem we consider generalizes a well-studied problem in orthogonal graph
drawing, namely the problem of deciding whether a given graph is B-embeddable
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Fig. 1 Two orthogonal drawings of the same graph. The thickness of edges indicates their importance.
Although, the drawing in (a) has both fewer bends and fewer bends per edge, drawing (b) is much clearer
since important edges have fewer bends
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for some non-negative integer 8. A 4-planar graph is B-embeddable if it admits an
embedding on the grid with at most 8 bends per edge.

Garg and Tamassia [6] show that it is A/P-hard to decide 0-embeddability. The
reduction crucially relies on the construction of graphs with rigid embeddings. Later,
we show that this is impossible if we allow at least one bend per edge. This is a
key observation, which forms the basis for an efficient algorithm for recognizing 1-
embeddable graphs. For special cases, namely planar graphs with maximum degree 3
and series-parallel graphs, Di Battista et al. [2] gave an algorithm that minimizes the
total number of bends and hence solves 0-embeddability. On the other hand, Biedl and
Kant [1] show that every 4-planar graph admits a drawing with at most two bends per
edge with the only exception of the octahedron, which requires an edge with three
bends. Similar results are obtained by Liu et al. [10].

Liu et al. [9] claim to have found a characterization of the planar graphs with min-
imum degree 3 and maximum degree 4 that admit an orthogonal embedding with at
most one bend per edge. They also claim that this characterization can be tested in
polynomial time. Unfortunately, their paper does not include any proofs and to the
best of our knowledge a proof of these results did not appear. Morgana et al. [12]
characterize the class of plane graphs (i.e., planar graphs with a given embedding)
that admit a 1-bend embedding on the grid by forbidden configurations. They also
present a quadratic algorithm that either detects a forbidden configuration or com-
putes a 1-bend embedding.

If the combinatorial embedding of a 4-planar graph is given, Tamassia’s flow net-
work can be used to minimize the total number of bends [13]. Note that this approach
may yield drawings with a linear number of bends for some of the edges. Given a
combinatorial embedding that admits a 1-bend drawing, however, the flow network
can be modified in a straightforward manner to minimize the total number of bends
using at most one bend per edge.

The problem we consider involves considering all embeddings of a planar graph.
Many problems of this sort are NP-hard. For instance, 0-embeddability is AP-
hard [6], even though it can be decided efficiently if we are given an embedding
since a graph with fixed embedding is 0-embeddable if and only if Tamassia’s flow
network yields a drawing without bends.

Contribution and Outline In this work we give an algorithm with running time
O (n?) that solves FLEXDRAW for graphs with positive flexibility. Since FLEXDRAW
contains the problem of 1-embeddability as a special case, this closes the complexity
gap between the NP-hardness result for 0-embeddability by Garg and Tamassia [6]
and the efficient algorithm for computing 2-embeddings by Biedl and Kant [1]. Note
that once we have found a feasible planar embedding, a corresponding drawing can
be computed in O (n?) time [13].

We present some preliminaries in Sect. 2. In Sect. 3 we study orthogonal flex-
drawings of graphs with a fixed embedding and introduce the maximum rotation
of a graph as a measure of how “flexible” it is. In Sect. 4 we show that replacing
certain subgraphs with graphs that behave similarly with respect to flexibility does
not change the maximum rotation. Based on this fact and the SPQR-tree we give
an algorithm that solves FLEXDRAW for biconnected 4-planar graphs with positive
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flexibility. In Sect. 5 we improve the running time of our algorithm to O (n?). We
extend our algorithm to arbitrary 4-planar graphs with positive flexibility in Sect. 6.
Section 7 contains considerations on the complexity of FLEXDRAW if some of the
edges are allowed to have flexibility 0. We discuss some extensions and possible
directions for future work in Sect. 8.

2 Preliminaries
In this section we introduce some notations and preliminaries.

Orthogonal Representation The orthogonal representation introduced by Ta-
massia [13] describes orthogonal drawings of plane graphs by listing the faces as se-
quences of bends. As an advantage the orthogonal representation neglects the lengths
of segments. Thus, it is possible to manipulate drawings without the need to worry
about the exact geometry. Our orthogonal representation is always normalized, that is
each edge has only bends in one direction; this slightly differs from the notion intro-
duced by Tamassia. It follows from Tamassia’s flow network [13] that an orthogonal
representation can be normalized without increasing the number of bends on edges.
More precisely, bends in different directions on a single edge translate to a circu-
lation on a 2-cycle in the flow network, which can be eliminated. Thus, assuming
orthogonal representations to be normalized is not a restriction.

The orthogonal representation of a plane graph G is defined as a set of lists R
containing a list R(f;) for each face f; of G. For each face f; the list R(f;) is
a circular list of edge descriptions containing the edges on the boundary of f; in
clockwise order (counter-clockwise if f; is the external face). Each description r €
R(f;) contains the following information: edge(r) denotes the edge represented by
r, bends(r) is an integer whose absolute value is the number of 90°-bends of edge(r),
where positive numbers represent bends to the right and negative numbers bends to
the left; see Fig. 2a. For a given edge description r € R(f;) we denote its successor

(C) 1 .
bends(r @ T:ot (rr') =1 3
ot (7 (s, t)) =

bgndb(r

|
N

bends(r) T

-1 O .. T_T
0 r 1 0 +17+1
- Tofor t
bends(r) rot(r,r’) = =2 | | n(t,s)
=2 .. —OT/ / }\ :} rot(w(t,s)) = —2

Fig. 2 Illustration of the orthogonal representation. (a) An edge with edge description r in the face f
for the cases bends(r) € {—1,...,2}. (b) The possible rotations between the edge description r and its
successor r’. (¢) An orthogonal drawing together with its orthogonal representation. The paths 7 (s, t) and
7 (t,s) are drawn as dashed lines

|
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in R(f;) by r’ and represent the angle o between edge(r) and edge(r’) in f; by their
rotation rot(r, r’) = 2 — a/90°; see Fig. 2b. The value of rot(r, r’) is also stored in
the edge description of r and thus belongs to the orthogonal representation. Every
edge has exactly two edge descriptions, if 7 is one of them, the other is denoted by 7.
Since each face forms a rectilinear polygon, every orthogonal representation R of an
orthogonal drawing has the following three properties; compare with the example in
Fig. 2c.

(I) Each edge description r is consistent with 7, i.e., bends(r) = — bends(r).
(II) The interior bends of any face f sum up to 4 and the exterior bends to —4:

—4, if f is the external face,
+4, if f is an internal face.

Z (bends(r) +rot(r, r')) =
reR(S)

(IIT) The angles around every node sum up to 360°.

Given an orthogonal representation R of a graph, a corresponding orthogonal draw-
ing can be computed efficiently [13]. Hence, it is sufficient to work with orthogonal
representations. An orthogonal representation is valid for a given flexibility function
flex if | bends(r)| < flex(edge(r)) for each edge description r.

For a planar graph G = (V, E) with orthogonal representation R and two vertices
s and t on the outer face f1, we denote by 7 (s, ¢) the unique shortest path in R(f1)
that connects s and ¢ in counter-clockwise direction. Note that we define 7w (s, t) to
be the shortest path since the path on the outer face is not unique if s or ¢ are cutver-
tices. Such a path w = R (s, t) consists of consecutive edge descriptions ry, ..., rg.
We define the rotation of m as

k k—1
rotr (w) = Zbends(r,-) + Zrot(r,-, Tigtl).
i=1 i=1
Moreover, for the vertex s we denote by rotg (s) the rotation value of the angle be-
tween wR (s, t) and R (f,s) at s. We define rot (¢) analogously. As a single edge
description r can be interpreted as a path of length 1, the equation rot (r) = bends(r)
holds. If it is clear from the context which orthogonal representation is meant, we
omit the subscripts of 7 (s, t) and rot. The concept of rotation is similar to the spiral-
ity defined by Di Battista et al. [2].

The value rot(z (s, t)) describes the shape of the path 7 (s, ) in the orthogonal
representation in terms of the angle between the first segment of the first edge and the
last segment of the last edge of 7 (s, 7). Fixing the rotation of 7 (s, t), 7 (¢, s) and the
outer angles at s and ¢ in a sense determines the shape of the outer face. In Sect. 4,
we will exploit this by replacing certain subgraphs of G with simpler graphs whose
outer faces have the same shapes.

Flows and Tamassia’s Flow Network A flow network is atuple N = (V, A, ¢, u, q)
where (V, A) is a directed (multi-)graph, £ : A — Np and u : A —> Ny U {oo} are
lower and upper bounds for the amount of flow along the arcs in A with £(a) <
u(a) for all a € A. Finally, g : V — Z defines a demand for each vertex. Note that
demands can be positive or negative.
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A flow is a function ¢ : A —> Ny that maps a certain amount of flow to each
arc such that £(a) < ¢(a) < u(a) holds for all arcs a € A. A flow ¢ is feasible, if
in addition the difference of incoming and outgoing flow at each vertex equals its
demand, that is

q= Y ¢wwv)— Y ¢wu) forallveV.

(u,v)eA (v,u)eA

The residual network Ny of N with respect to the flow ¢ is obtained from N by
reducing for each arc a = (u, v) € A its capacity by ¢(a) and adding an edge (v, u)
with capacity ¢ (a) in the opposite direction.

The defect of a node v with respect to a flow ¢ is defined as

defp()= Y pu,v)— Y ¢, u)—q).
(u,v)eA (v,u)eA
The defect of a flow ¢ is defined as def(¢) =) .y |defs(v)]. Clearly, a flow has
defect O if and only if it is feasible.

Let G = (V, E) be a 4-planar graph together with a planar embedding £ and let
F ={f1,..., fx} be the set of faces of G with respect to embedding £, where f] is
the outer face. Further let n; be the number of vertices that are incident to f;.

Tamassia’s flow network consists of nodes V U F with g(v) = —4 for all v €
V,q(fi) =2n; —4 for i > 2 and g(f1) =2n; + 4. The flow network contains the
following arcs. For each node v, let F, be the set of faces incident to v. Then, for
each face f € F), there is an arc a from v to f with £(a) = 1 and u(a) = 4. Further,
for each edge e of G with incident faces g and % there is an arc a; from g to 4 and
an arc ap from h to g with £(ay) = £(az) = 0 and u(a;) = u(az) = oo. The demands
and capacities essentially represent the distribution of 90°-angles around vertices and
faces. Tamassia showed that there is a bijection between feasible flows in the network
and orthogonal representations of G with embedding £ [13]. FLEXDRAW with fixed
embedding can easily be handled by setting the upper bound of the arcs stemming
from an edge e to flex(e) for all edges e € E. Note that this still works if edges are
allowed to have flexibility 0.

Let e be an edge of G with incident faces g and % and let a; and a; be the two
arcs stemming from e such that a; is directed from g to 4 and a5 is directed from 4 to
g. Note that for a flow ¢, by eliminating 2-cycles with positive flow, we may assume
that either ¢(a;) = 0 or ¢ (az) = 0 holds. For ease of notation, we therefore identify
these two arcs with e and write ¢, (g, h) for the amount of flow from g to 4 via the
arcs stemming from e. Note that this value can be negative if there is flow from % to
g and we have ¢, (g, h) = —¢.(h, g).

Connectivity, st-Graphs and the SPOR-Tree A graph is connected if there exists a
path between any pair of vertices. A separating k-set is a set of k vertices whose
removal disconnects the graph. Separating 1-sets and 2-sets are cutvertices and sep-
aration pairs, respectively. A connected graph is biconnected if it does not have a
cutvertex and triconnected if it does not have a separation pair. The maximal bicon-
nected components of a graph are called blocks. The cut components with respect to
a separation k-set S are the maximal subgraphs that are not disconnected by remov-
ing S.
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The block-cutvertex tree of a connected graph is a tree whose nodes are the blocks
and cutvertices of the graph. In the block-cutvertex tree a block B and a cutvertex v
are joined by an edge if v belongs to B.

A weak st-graph is a 4-planar graph G = (V, E) with two designated vertices s
and ¢ such that the graph G + st is planar and has maximum degree 4. An st-graph is
a weak st-graph such that G + st is biconnected. An orthogonal representation R of
a (weak) st-graph with positive flexibility is valid if each edge e has at most flex(e)
bends and s and ¢ are embedded on the outer face. A valid orthogonal representation
of a (weak) st-graph is tight if all the angles at s and ¢ in inner faces are 90°.

An st-graph is of Type (1,1) if deg(s) = deg(¢) = 1, it is of Type (1,2) if one of
them has degree 1 and the other one has degree 2 and it is of Type (2,2) if deg(s) =
deg(¢) =2.

We use the SPQR-tree introduced by Di Battista and Tamassia [3, 4] to represent
all planar embeddings of a biconnected planar graph G. The SPQR-tree 7 of G is
a decomposition of G into its triconnected components along its split pairs where a
split pair is either a separation pair or an edge. We first define the SPQR-tree to be
unrooted, representing embeddings on the sphere, that is planar embeddings without
a designated outer face. Let {s,7} be a split pair and let H; and H> be two sub-
graphs of G such that Hy U H, = G and H; N Hy = {s, t}. Consider the following
tree containing the two nodes w1 and u; associated with the graphs H; + st and
Hj + st, respectively. These graphs are called skelefons of the nodes u;, denoted
by skel(u;) and the special edge st is said to be a virtual edge. The two nodes 11
and pu, are connected by an edge, or more precisely, the occurrence of the virtual
edges st in both skeletons are linked by this edge. A combinatorial embedding of G
uniquely induces a combinatorial embedding of skel(1) and skel(u,). Furthermore,
arbitrary and independently chosen embeddings for the two skeletons determine an
embedding of G, thus the resulting tree can be used to represent all embeddings of
G by the combination of all embeddings of two smaller planar graphs. This replace-
ment can of course be applied iteratively to the skeletons yielding a tree with more
nodes but smaller skeletons associated with the nodes. Applying this kind of decom-
position in a systematic way yields the SPQR-tree as introduced by Di Battista and
Tamassia [3, 4]. The SPQR-tree 7 of a biconnected planar graph G contains four
types of nodes. First, the P-nodes having a bundle of at least three parallel edges
as skeleton and a combinatorial embedding is given by any order of these edges.
Second, the skeleton of an R-node is triconnected, thus having a unique embedding
up to a flip (yielding exactly two embeddings) [14], and third, S-nodes have a sim-
ple cycle as skeleton without any choice for the embedding. Finally, every edge in
a skeleton representing only a single edge in the original graph G is formally also
considered to be a virtual edge linked to a Q-node in 7 representing this single
edge. Note that all leaves of the SPQR-tree 7 are Q-nodes. Besides from being a
nice way to represent all embeddings of a biconnected planar graph, the SPQR-tree
has only size linear in G and Gutwenger and Mutzel showed how to compute it in
linear time [7]. Figure 3 shows a biconnected planar graph together with its SPQR-
tree.

In this paper, we consider the rooted version of the SPQR-tree since this deter-
mines which face is the outer face (a crucial choice for our algorithm). More precisely,
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Fig. 3 The unrooted SPQR-tree of a biconnected planar graph. The nodes 1, u3 and ps are P-nodes,
12 is an R-node and ji4 is an S-node. The Q-nodes are not shown explicitly

we choose one of the Q-nodes to be the root of the SPQR-tree 7 of the biconnected
planar graph G. We call the edge associated with this Q-node the reference edge and
denote it by eref. Then in the skeleton skel(u) of each node u there is exactly one vir-
tual edge associated with the parent of . Now 7 represents all planar embeddings
of G with the edge et on the outer face by restricting the planar embeddings of the
skeletons to those where the virtual edges associated with the parents are on the outer
face. The pertinent graph of a Q-node is defined to be the edge associated with it.
The pertinent graph of an inner node p, denoted by pert(w), is recursively defined to
be the graph that is obtained from skel(x) by replacing all virtual edges in skel(u)
by the pertinent graphs of the corresponding children of w. Note that this definition
depends on the root chosen for the SPQR-tree 7. A similar term not depending on
the root is the so called expansion graph of a virtual edge ¢ in skel(r). Assume 7 to
be rooted at p and let i’ be the child of u corresponding to the virtual edge ¢. Then
the expansion graph of ¢ is defined to be the pertinent graph of ' with respect to the
root L.

Our Approach 'We now briefly sketch how our algorithm deciding FLEXDRAW for
graphs with positive flexibility works. We start out with an observation. Let G be a
4-planar graph with positive flexibility and let {s, ¢t} be a split pair of G that splits
G into two subgraphs G, G, and let err be an edge of G;. Let p be the maxi-
mum rotation of (s, ) over all embeddings of G, where s and ¢ are on the outer
face.

If G2 is of Type (1,1), then obviously the following holds. If G admits a valid
orthogonal drawing with the given flexibility such that et is embedded on the outer
face, then also the graph G’ that is obtained from G by replacing G, by the single
edge st with flexibility p admits such a drawing. Thus, we can substitute graphs of
Type (1,1) with single edges to obtain a new graph G’ with the property that G’ has a
valid drawing if G has one. We show that the converse is also true, that is if the graph
G’ admits such an embedding then also G does. Graphs of Type (1,2) and (2,2) allow
for similar substitutions.

We then exploit this characterization algorithmically, using the SPQR-tree of G
to successively replace subgraphs of G by simpler graphs. This substantially reduces
the number of planar embeddings we need to consider, yielding a polynomial-time
algorithm.

@ Springer



Algorithmica (2014) 68:859-885 867

Fig.4 An st-graph with flexibility 1 for all edges, rot(7 (s, #)) = 1, and its flex graph G* (a), after removal
of bridge e (b), and removal of edge e; (c)

3 The Maximum Rotation with a Fixed Embedding

The goal of this section is to derive a description of the valid orthogonal representa-
tions of a given (weak) st-graph with positive flexibility and a fixed embedding. To
this end, we prove that the values that can be obtained for rot(s (s, t)) form an interval
for these graphs, namely, we show that if there exists a valid orthogonal representa-
tion R with rotg (7 (s, t)) > 0 then there exists an orthogonal representation R’ with
rotr/(mw(s,t)) =rotr (mw(s,t)) — 1, which can be obtained from R by only altering
the number of bends on certain edges.

To model the possible changes of an orthogonal representation R of a (weak) st-
graph G that can be performed by only varying the number of bends on edges (i.e.,
without changing the angles at vertices), we introduce the flex graph G* of G with
respect to R, which is based on the bidirected dual graph of G. Thus, the flex graph
is a directed multigraph; see Fig. 4a for an illustration. We start out by adding to G
the edge st and embed it into the outer face of G, thus splitting the outer face into
two faces fy and f;, where f; is bounded by 7 (s, t) and the new edge st and f
is bounded by 7(z, s) and sz. We denote this graph by G and its dual graph by G*.
We set V> = V(G*) and we define E* as follows. For each edge ¢ of G denote its
incident faces in G by f, and f, and let r, and r, be the edge descriptions of e in
R(fu) and R(f,), respectively. We add the edge (fy, f,) if flex(e) > bends(r,) and,
analogously, we add (fy, f,) if flex(e) > bends(r,). Consider an edge (f,, fy) of
G* and let r, and r,, be the edge descriptions of the corresponding edge e in G. The
fact that (f,, fy) € E* indicates that it is possible to decrease bends(r,) (and thus
increase bends(r,)) by at least 1 without violating the flexibility of e.

Assume that there exists a simple directed path from f; to f. in G*. Let
fe= f1, f2,-.., fr = f be this path. We construct a new orthogonal representa-
tion R’ from R as follows. For each edge f; fir1,i=1,...,k — 1, let ¢; be the
corresponding edge of G and let r; € R(f;),ri € R(fi+1) be its edge descriptions.
We obtain R’ from R by decreasing bends(r;) by 1 and increasing bends(#;) by 1,
fori =1,...,k — 1. First, it is clear that R’ satisfies Properties I and III since we
increase and decrease the number of bends consistently and we do not change any
angles at vertices. Property II holds since each face of G has either none of its edge
descriptions changed or exactly one of them is increased by 1 and exactly one of
them is decreased by 1. Moreover, since the path starts at f, and ends at f, we
have that rotg/ (7 (s, 1)) =rotr (1 (s, t)) — 1. We now show that such a path exists if
rot(m (s, t)) > 0.
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Lemma 1 Let G be a weak st-graph with positive flexibility and let R be a valid
orthogonal representation of G with rotR (7w (s, t)) > 0. Then the flex graph G* con-
tains a directed path from f; to f.

Proof First, we show that in G* there exists at least one edge starting from f.

Let m(s,t) be composed of the edge descriptions ry, ..., r, in R(f), where f is
the outer face of G. Then, by assumption we have rot(z (s, 1)) = Zle bends(r;) +
Zf‘;ll rot(ri, ri+1) = 0. Since rot(rj,riy1) <1 fori =1,...,k — 1 we have that

Zle bends(r;) > —k + 1 and hence there is at least one r; with bends(r;) > 0.
Hence, G* contains an edge corresponding to edge(r;) that starts at f;. This shows
that there always exists an edge (f¢, f,) in G*. For the case that G is a path, this
immediately implies the claim of the lemma, as in this case f;, = f;. This will serve
as the base case for an induction on the size of G.

Let G and R be as in the statement of the lemma, and assume that the lemma
holds for all smaller graphs. As argued above, the flex graph G* contains an edge
(fe, fu) and we distinguish three types of edges (f¢, fu). If fu = f» then (fe, f) is
the desired path in G*.

If f, = fi, the corresponding edge e of G is a bridge whose removal does not
disconnect s and ¢, see the changes between Fig. 4a and Fig. 4b. Then, let H be the
connected component of G — e containing s and ¢ and let S be the restriction of R
to H. For the outer face of H we have that rotg (i (s, t)) + rots(s) + rotg(w (¢, s)) +
rotg(t) = —4. Since R (t,s) = ws(t, s) we have that rotg (7 (¢, s)) =rotr (7w (¢, s)).
Moreover, since we only remove edges, the angles at s and ¢ (and thus their rotations)
do not decrease, that is we have rots () < rotg (¢) and rots(s) < rot (s). Hence, we
have that rotg(w (s, 1)) > —4 — rotr (7w (t,s)) — rotr (s) — rotr (t) = rotr (7w (s, t))
> 0. Since H has fewer edges than G its flex graph H* contains a path from f,
to f,. The claim follows since H* is a subgraph of G*.

Otherwise, f, is an internal face of G; see Fig. 4b and Fig. 4c. Let e be the cor-
responding edge of G. Let H = G — ¢ and let S be the orthogonal representation
R restricted to H. Note that the flex graph H* of H can be obtained from G* by
removing all edges between f; and f,, and merging f; and f, into a single node f;.
As above we obtain that rots (7 (s, )) > 0 and hence by induction there exists a path
from f/ to f, in H*. The corresponding path in G* (after undoing the contraction
of fy, and f,) either starts at f; or at f, and ends at f,. In the former case we have
found our path, in the latter case the path together with the edge ( fe, f,) forms the
desired path. g

Recall that a valid orthogonal representation of a (weak) st-graph is tight if the
inner angles at s and ¢ are 90°. We show that a valid orthogonal representation can
be made tight without decreasing rot(; (s, ¢)) or rot(mw (¢, s)). The proof is illustrated
in Fig. 5.

Lemma 2 Let G be a weak st-graph with positive flexibility and let R be a valid or-
thogonal representation. Then there exists a valid orthogonal representation R’ of G
with the same planar embedding such that R’ is tight, rotgr/ (7 (s, 1)) > rotR (w (s, 1))
and rotg/ (7w (t,s)) >rotr (7 (t,s)).
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Fig. 5 Orthogonal representation that is not tight since s has an angle of 180° in f, (a). Splitting s into s
and s, yields the path (s, s) with rotation at least 4 (b), hence the rotation can be reduced (c¢). Merging
s1 and s back into s yields a tight orthogonal representation (d)

Proof Let f] be the outer face and assume that f; is an inner face incident to s whose
inner angle at s is larger than 90°. We show how to decrease this angle by 90° by only
changing the number of bends on certain edges. Hence, by applying the described
operation iteratively, we can reduce all internal angles at inner faces incident to s and
t to 90°.

Let e; and e, be the two edges incident to s such that e; occurs before e; when
traversing the boundary of f, clockwise starting from s. The degree of s is at most 3
since the angle at s in f> is at least 180°. Thus, one of the two edges e; and e; is
incident to the outer face fij. We assume that ¢; is incident to fi (the case in which
only ej is incident to f] can be treated analogously).

We split s into two vertices s; and so. We attach e to s; and we attach to s;
the remaining edges incident to s. Let H be the resulting graph and let S be the
orthogonal representation of H induced by R. Since f> is an internal face its total
rotation in R is 4 and since the angle at s was either 180° or 270°, we have that
rots (7 (s1, 52)) is either 4 or 5. By Lemma 1 the flex graph H* of H contains a simple
path that can be used to reduce the rotation along 7 (sy, s2) by 1. This path either
contains an edge stemming from an edge of (s, ) or an edge of 7 (z, s1). It hence
either increases rots (7 (s2, ¢)) or rots(m (¢, s1)) by 1, whereas the other one remains
unchanged. We obtain R’ by merging s and s, back into s. Since rotg (7 (s, 52)) was
decreased we increase the rotation at s in f, by 1 without decreasing rotg (7 (s, 1)) =
rotR (w(s2,t)) or rotr (w(z, s)) = rotr (;w (¢, s1)). Note that aside from changing the
number of bends on certain edges we did only change angles incident to s. g

Let G be an st-graph with positive flexibility and a fixed planar embedding &.
Lemma 1 shows that the attainable values of rot(z (s, ¢)) for a given st-graph with
a fixed embedding form an interval. Hence, the set of possible rotations can be de-
scribed by the boundaries of this interval and we define the maximum rotation of
G with respect to £ as maxrote (G) = maxRcg rotr (7 (s, t)), where §2 contains all
valid orthogonal representations of G whose embedding is £. For the case that G
does not admit any valid orthogonal representation respecting the embedding &, that
is £2 = (J, we formally set maxrotg (G) = —o0.

The following theorem states that indeed the maximum rotation describes the or-
thogonal representations of st-graphs with fixed embedding and positive flexibility.
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Fig. 6 If rot(r) is maximized,
rot(rr (s, 1)) is also maximized
and the angles at s and 7 in fy
are both 90°

Theorem 1 Let G be an st-graph with positive flexibility and fixed embedding &.
Then for each p € {—1, ..., maxrotg(G)} there exists a valid and tight orthogonal
representation R of G with planar embedding £ such that rotg (7w (s, 1)) = p.

Proof Let p € {—1, ..., maxrotg(G)}. We show how to construct an orthogonal rep-
resentation R with rot( (s, 7)) = p. Let S be an orthogonal representation of G with
embedding £ such that rotg(m (s, t)) = maxrote (G). By Lemma 2 we can make &
tight while preserving its embedding and rot(s (s, ¢)). We then apply Lemma 1 to re-
duce rot(m (s, t)) to p. Note that the representation remains tight as the angles around
vertices are not changed by this operation. g

Before we show how to compute the maximum rotation for st-graphs with a fixed
embedding, we need the following technical lemma.

Lemma 3 Let G be an st-graph with orthogonal representation R and let S be an
orthogonal representation of G + st such that S induces R on G and the outer face
of G + st is bounded by st and 7w (¢, s). Let r be the edge description of st in the outer
face. Then rot(rz (s, t)) > rot(r) 4 2 holds. Moreover, equality holds if S is tight.

Proof Let f. and f; be the external and internal face incident to st, respectively,
and let 7 be the edge description of st in f;; see Fig. 6. We first consider the case
where S is tight. Then, the vertices s and ¢ form 90° angles in fy, yielding a rota-
tion of 1 between st and the path 7 (s, t) for both vertices. Since the total rotation
around the face fy is 4, this yields rot(s (s, t)) + rot(r) + 2 = 4, which is equiva-
lent to rot(; (s, t)) =rot(r) + 2. Increasing the angles at s or ¢ decreases the rotation
between st and 7 (s, t) yielding the inequality rot(s (s, t)) + rot(r) 4+ 2 > 4, which
concludes the proof. g

Using a variant of Tamassia’s flow network [13] the maximum rotation can be
computed efficiently for st-graphs with a fixed embedding.

Theorem 2 Given an st-graph G = (V, E) with fixed embedding £ and with s and
t on the outer face, one can either compute maxrotg (G) or decide that G does not
admit a valid orthogonal representation with embedding & in O (n>/?) time.

Proof We use the flow network of Tamassia [13] to check whether G admits a valid
orthogonal representation with its given embedding. Since this flow network is planar
and the in- and out-flow of each sink and source is fixed this can be done in O (n3/?)
time [11].
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We add to G the edge st and embed it into the outer face such that we split the
outer face of G into two parts f; and f, where f; is bounded by 7 (s, ) and st and
fr is the outer face of G + st. Let r be the edge description of st in f;; see Fig. 6.
We claim that maxrotg (G) can be obtained by finding an orthogonal representation of
G + st that maximizes rot(r). More precisely, we claim that maxrotg (G) = rot(r) +2
holds.

The equation maxrotg (G) > rot(r) + 2 follows directly from Lemma 3. Con-
versely, by Lemma 2 there exists a tight orthogonal representation R of G with
embedding £ such that rot( (s, t)) = maxrote(G). Since R is tight, both vertices
s and ¢ have a free incidence in the outer face. Thus, the edge st can be added to R
such that the angles in the new internal face are 90°, yielding a tight orthogonal rep-
resentation of G + st. Due to Lemma 3, the edge st has rotation maxrotg (G) — 2 in
the outer face. Thus, in an orthogonal representation maximizing rot() the inequality
maxrotg (G) — 2 < rot(r) holds. This shows the claim.

Now it remains to show that we can maximize rot(r) efficiently. We first use the
flow network of Tamassia [13] to compute an arbitrary valid orthogonal representa-
tion of G + st. To maximize rot(r) we wish to modify the corresponding flow ¢ in
the flow network of Tamassia such that the flow on the edge (f;, f¢) is maximized
while the flow on (f¢, f;) is 0, which corresponds to maximizing bends(). This can
be done by computing a maximum flow from f; to f; in the residual graph of Tamas-
sia’s flow network with respect to ¢ after removing the edges dual to sz. Since this
network is planar and the source and the sink lie on the same face a maximum flow
can be computed in linear time [8]. Il

4 Biconnected Graphs

Until now the planar embedding of our input graph was fixed. Now, we assume that
the embedding is variable. Following the approach of the previous section, we define
the maximum rotation of a (weak) st-graph G as maxrot(G) = maxgcy maxrote (G)
where ¥ contains all planar embeddings of G such that s and ¢ are embedded on the
outer face.

In this section we show that maxrot(G) essentially describes all valid orthogonal
representations of G in the sense that substituting a subgraph H of G with a different
graph H’ with maxrot(H) = maxrot(H’) does not change maxrot(G). We use this
substitution to give an algorithm that computes maxrot(G) by successively reducing
the size of the graph. To handle the different possible planar embeddings of G we use
the SPQR-tree and we substitute subgraphs of G with smaller graphs that have only
one embedding. We need the following technical lemma.

Lemma 4 Let G be an st-graph with deg(s), deg(t) <2 and let R be a tight orthog-
onal representation of G. Then rot(m (s, t)) + rot(mw (¢, s)) = —x where x is 0,1 and 2

for graphs of Type (1,1), (1,2) and (2,2), respectively.

Proof By Property II we have rot(rr (s, t)) 4 rot(t) + rot(mw (¢, s)) +rot(s) = —4. If s
has degree 1, we have rot(s) = —2. If deg(s) = 2 holds, then s is incident to exactly
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one inner face and by assumption it has an angle of 90° in this face. Hence, in the
outer face there is an angle of 270° and thus rot(s) = —1. As the same analysis holds
for ¢, the claim follows. U

The following theorem shows that indeed the maximum rotation describes all pos-
sible rotation values of an st-graph.

Theorem 3 Let G be an st-graph with deg(s), deg(t) < 2 and positive flexibility and
let p be an integer. Then there exists a tight orthogonal representation R of G with
rot(w (s, 1)) = p if and only if —maxrot(G) — x < p < maxrot(G), where x =0, 1,2
for G being of Type (1,1), (1,2) and (2,2), respectively.

Proof We first show the only if part. Let R be any orthogonal representation of G.
By the definition of maxrot(G) we clearly have that rotg (7 (s, t)) < maxrot(G). By
definition we also have that rotg (7 (¢, s)) < maxrot(G) (otherwise by mirroring we
could obtain an orthogonal representation R’ with rotg, (7 (s, t)) > maxrot(G)) and
hence with Lemma 4 we obtain — rot(7 (s, t)) — x < maxrot(G).

It remains to show that, for any given p in the range, we can find a valid orthog-
onal representation such that rot(w (s, t)) = p. If —1 < p < maxrot(G), let £ be a
planar embedding of G with maxrotg (G) = maxrot(G). Then the desired orthogonal
representation exists due to Theorem 1.

If p < —2 holds, by Lemma 4 we need to find a valid orthogonal representa-
tion R with rotg ((¢,s)) = —p — x =: p’. Note that, by the definitions of p and
x, we have that 0 < p’ < maxrot(G). A valid orthogonal embedding R’ of G with
rotr/ (7 (s, t)) = p’ can be found as above. We obtain R by mirroring R’. Il

Note that if s (or ¢) has degree 1, then its incident edge allows for three different
rotations and hence the range of valid rotations contains at least three integers. This
observation together with the theorem yields the following.

Corollary 1 Let G be an st-graph with positive flexibility. If G admits a valid or-
thogonal representation, then maxrot(G) > 1 if G is of Type (1,1) or (1,2) and
maxrot(G) > —1 if G is of Type (2,2).

Theorem 3 shows that an st-graph G with deg(s) = deg(¢) = 1 essentially behaves
like a single edge st with flexibility maxrot(G). The following lemma shows that we
can replace any st-graph with deg(s), deg(t) <2 in a graph G by a different st-graph
of the same type and with the same maximum rotation without changing maxrot(G).
Figure 7 illustrates the lemma and its proof.

Lemma 5 Let G = (V, E) be an st-graph with positive flexibility and let {u, v} be a
split pair of G that splits G into two components G~ and H such that G~ contains
s and t and H is an st-graph of Type (1,1), Type (1,2) or Type (2,2) (with respect to
vertices u and v). Let H' be an st-graph with designated vertices u’,v' of the same
type as H with maxrot(H") = maxrot(H ), deg(u) = deg(u’) and deg(v) = deg(v’).
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Fig. 7 Illustration of Lemma 5, st-graph G with split pair {u, v} splitting off H (left), replacement
of H with a tight orthogonal representation (middle) and replacement of H with a graph H' with
maxrot(H) = maxrot(H') = 3 (right)

Then G admits a valid orthogonal representation R with rotr (7w (s, t)) = p if and
only if the graph G', which is obtained from G by replacing H with H', admits a
valid orthogonal representation R’ with rotg: (7 (s, 1)) = p.

Proof Given a valid orthogonal representation R of G we wish to find a valid or-
thogonal representation R’ of G’ such that rotg (7 (s, t)) = rotg/ (7 (s, 1)). The other
direction is symmetric.

We first treat the case that H is of Type (1,1). Let S be the restriction of R
to H. By Theorem 3 we have that — maxrot(H) < rots(mw(u, v)) < maxrot(H) and
hence, again by Theorem 3, there exists a valid orthogonal representation S” of H’
with rot(w (u’, v")) = rot(s (u, v)). Since H is of Type (1,1) we have that rots/ (u") =
rotg (u), rots: (v') =rotg(v), rots (7w (u’, v')) =rotg (7 (u, v)) and rotg (7w (v, u')) =
rots (7 (v, u)). Hence by plugging S’ into the restriction of the orthogonal represen-
tation R to G~ we obtain the desired representation R’ of G’.

In case H is of Type (1,2), we can assume that u has degree 2 and deg(v) = 1.
Then the angle at # in f; is 90° or 180° where f; is the inner face of H incident to u.
If this angle is 90°, that is S is tight, we replace it by a corresponding tight embedding
of H' with the same rotation, which exists by Theorem 3. For the case that we have an
angle of 180° at u in f;, we show how to construct an orthogonal representation R” of
G having the same planar embedding as R such that rotg/ (7 (s, t)) = rotr (7w (s, 1))
and the angle at u in f; is 90°. Then R’ can be constructed from R as above.

By Theorem 3 there exists a valid and tight orthogonal representation S” of H
with either rotgr (7 (#, v)) = rotg (7 (u, v)) or rotg, (7w (v, u)) =rotg(mw (v, u)). With-
out loss of generality assume the former, the other case is symmetric. Since we
have increased the outer angle at # we have that rots»(#) = rots(x) — 1 and hence
rotgr (w (v, u)) =rots(mw (v, u))+1.Let f; and f; be the faces in G whose boundaries
contain 7 (u, v) and 7 (v, u), respectively. Then we obtain R” by plugging S” into
the restriction of R to G~ such that the angle at u in f; is increased by 90° to 180°.
Since the angle at u in f; was decreased by 90° the sum of angles around u# remains
360°. Additionally, by increasing the angle at u in f;, its rotation is decreased by 1,
which compensates the increased rotation along 7 (v, u). Hence R” is the claimed or-
thogonal representation. This finishes the treatment of graphs of Type (1,2). Graphs
of Type (2,2) can be treated analogously. O

We now present three especially simple families of replacement graphs, called
gadgets, for st-graphs of Types (1,1), (1,2) and (2,2), respectively; see Fig. 8. Let p
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Fig. 8 Gadgets for st-graphs (a) G, & (b) G2, 8 (c) G2,
with maximum rotation p ' “Tp ’
vO
1
L o Ay p+2 |,

be a positive integer. The graph G'f’ | is an edge st with flex(st) = p. The graph Gf,z
has three vertices s, v, t and two edges between ¢ and v, both with flexibility 1, and
the edge vs with flexibility p. The gadget Ggyz consists of two parallel edges between
s and ¢, both with flexibility p + 2. Note that by Corollary 1 all edges of our gadgets
have positive flexibility and that maxrot(G’f , D= maxrot(G’f ’2) = maxrot(Ggyz) =p.
Moreover, each of these graphs has a unique embedding with s and ¢ on the outer
face.

We now describe an algorithm that computes maxrot(G) for a given st-graph G
with positive flexibility or decides that G does not admit any valid orthogonal repre-
sentation. We use the SPQR-tree 7 of G + s¢, rooted at the Q-node corresponding to
st to represent all planar embeddings of G with s and ¢ on the outer face. Our algo-
rithm processes the nodes of 7 in a bottom-up fashion and computes the maximum
rotation of each pertinent graph from the maximum rotations of the pertinent graphs
of its children. For each node © we maintain a variable maxrot(u). We will prove
later that, after processing a node w, we have that maxrot(x) = maxrot(pert(u)).
For each Q-node p we initialize maxrot(u) to be the flexibility of the corresponding
edge. We now show how to compute maxrot(u) from the maximum rotations of its
children. We make a case distinction based on the type of u.

If u is an R-node, then let w1, ..., ug be the children of w. Each virtual edge in
skel(u) represents at least one incidence of an edge of G to its poles. Since skel(u) is
3-connected, each node has degree at least 3 and hence no virtual edge can represent
more than two incidences, that is the poles of u; have degree at most 2 in the pertinent
graph of u;, for 1 <i <k. As we already know the maximum rotations of these per-
tinent graphs, we can simply replace each of them by a corresponding gadget; we call
the resulting graph G,. As the only possible embedding choice for each of the gad-
gets consists of reordering a pair of parallel edges with the same flexibility, the em-
beddings of the gadgets can be assumed to be fixed. Thus, it is sufficient to compute
the maximum rotations of G, for the only two embeddings £; and &, induced by the
embeddings of skel(u). We set maxrot(u) = max{maxrotg, (G ), maxrotg, (G )} if
one of them admits a valid representation. Otherwise we stop and return “infeasible”.

If p is a P-node, then we treat p similar as in the case where u is an R-node.
Again, each pole has degree at least 3 in skel(x) and hence no virtual edge can rep-
resent more than two edge incidences. We replace each virtual edge with the corre-
sponding gadget and try all possible embeddings of skel(x), which are at most six,
and store the maximum rotation or stop if none of the embeddings admits a valid
representation.

If u is an S-node, then let (11, ..., i be the children of u. We set maxrot(u) =
Zle maxrot(u;) +k — 1.

Theorem 4 Given an st-graph G = (V, E) with positive flexibility it can be checked

in O(n3/?) time whether G admits a valid orthogonal representation. In the positive
case maxrot(G) can be computed within the same time complexity.
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Proof We prove that after the algorithm has processed node w the invariant
maxrot(u) = maxrot(pert(u)) holds. The proof is by induction on the height 4 of
the SPQR-tree 7 of G + st. Let u be the node of 7 whose parent corresponds to st.

If h =1, then G — st is a single edge e and p its corresponding Q-node. Since
maxrot(G) equals flex(e) the claim holds. For & > 1, let 1, ..., ug be the children
of . By induction we have that maxrot(u;) = maxrot(pert(u;)) fori =1,..., k. We
make a case distinction based on the type of u.

If 4 is an R- or a P-node, then by Lemma 5 we have that maxrot(G,) =
maxrot(pert(i)) and since the gadgets have a unique embedding we consider all
relevant embeddings of G. If none of the embeddings admits a valid orthogonal
representation, then obviously also pert(t) and thus G do not admit valid orthogonal
representations.

If 1 is an S-node and the pertinent graphs of its children admit a valid orthogonal
representation, then there always exists a valid orthogonal representation of pert(u).
Let Hy, ..., Hy be the pertinent graphs of the children of u and let vy, ..., vi41 be the
vertices in skel(w) such that v; and v;41 are the poles of H;. By Theorem 3 there exist
tight orthogonal representations Ry, ..., Ry of Hy,..., Hy with rot(w (v;, vit+1)) =
maxrot(u;). We put these orthogonal representations together such that the angles at
the nodes vy, ..., vg on w(vy, vk4+1) are 90°. Hence we get an orthogonal representa-
tion of pert(n) with rot(mw (vy, vg+1)) = Zf;l maxrot(u;) + k — 1. On the other hand
if we had an orthogonal representation of pert(x) with a higher rotation, then at least
one of its children p; would need to have a rotation that is bigger than maxrot(u;),
because the rotation at vertices can be at most 1.

This proves the correctness of the algorithm. For the running time note that the
SPQR-tree can be computed in linear time [7]. Computing maxrot(u) for a given
node u from the maximum rotations of its children takes O(|skel(w)|?/?) time by
Theorem 2 since skel(x) has only a constant number of embeddings. The overall
running-time follows from the fact that the total size of all skeletons is linear. g

This theorem can be used to solve FLEXDRAW for biconnected 4-planar graphs
with positive flexibility. Each such graph G admits a valid orthogonal representation
if and only if one of the graphs G — e, e € E(G) (which is an st-graph with respect
to the endpoints of e¢) admits a valid orthogonal representation such that e can be
added to this representation. We claim that this is possible if and only if maxrot(G —
e) + flex(e) > 2. Let s and ¢ be the endpoints of e. To show necessity, assume G
admits a valid orthogonal representation R with e on the outer face. Possibly after
mirroring S, we can assume without loss of generality that the outer face of R is
bounded by e and 7 (¢, s). Let r denote the edge description of e in the outer face.
Due to Theorem 1 we can reduce rot(r) to be at most 0, then e has — rot(r) bends. As
the rotation along the path 7 (s, ¢) in G — e is at most maxrot(G — e) and —rot(r) <
flex(e) since R is a valid orthogonal representation, the necessity of the inequality
maxrot(G — e) + flex(e) > 2 follows from Lemma 3.

On the other hand, let S be a tight orthogonal representation of G — e such
that rot(;r (s, t)) = min{maxrot(G — e), 2}, which exists due to the definition of
maxrot(G — e) and Theorem 1. Since S is tight, we can add e to S such that
e and m(t,s) form the new outer face and the resulting orthogonal representation
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is tight. Let r be the edge description of e in the outer face. Due to Lemma 3
we have rot(r) = rot(sw(s,t)) — 2. Since this is at most 0, we have that e¢ has
—rot(r) = —rot(w (s, t)) + 2 bends. If the inequality maxrot(G — e) + flex(e) > 2
holds, then this yields that e has at most flex(e) bends, which shows sufficiency.

If flex(e) < 3, we get maxrot(G) > 2 —flex(e) > —1, and thus using Theorem 1 we
can find a tight orthogonal representation with rot(rr (s, 1)) =2 — flex(e). We add e to
this orthogonal representation in such a way that the new internal face bounded by e
and 7 (s, t) has a total rotation of 4, and thus forms a valid orthogonal representation
of G. Then e has exactly flex(e) bends. We obtain the following theorem; the running
time is due to O (n) applications of the algorithm for st-graphs.

Theorem 5 FLEXDRAW can be solved in time O(n>/?) for biconnected 4-planar
graphs with positive flexibility.

5 Quadratic-Time Implementation

In this section we improve the running time of the algorithm for the biconnected case
to O (n?). In the previous section we have shown that checking whether a biconnected
4-planar graph G admits a valid orthogonal representation with a given edge e on the
external face can be done in O (n3/2) time. Recall that the running time stems from
the fact that, for each embedding £ of the skeleton of each node u of the SPQR-tree,
we have to compute the maximum rotation of its pertinent graph with respect to this
embedding. For a graph with a fixed embedding, this is done by a two-step process,
as in Theorem 2. We first compute in O (| skel(u) 13/2) time an arbitrary feasible flow
in an instance of Tamassia’s flow network for the skeleton where some of the edges
are replaced by gadgets. We call this a base flow. In a second step, we compute a
maximum flow in the residual network with respect to the base flow in O (] skel(u)|)
time. The running time is hence dominated by the computation of base flows.

To obtain an algorithm for the case of biconnected graphs, we simply try every
edge as the reference edge that has to lie on the external face, resulting in O (n)
applications of the above algorithm. However, when we choose a new root of the
SPQR-tree and perform the traversal of the SPQR-tree, a lot of information that was
already acquired in previous iterations is recomputed. In this section we show that
the information computed in different traversals of the SPQR-tree can be reused to
improve the time that is required to compute base flows to O (n?) total time, which
improves the running time of the algorithm for the biconnected case to O (n?).

Let G be a biconnected 4-planar graph with a positive flexibility function flex and
let u be a node of the SPQR-tree of G with an arbitrary embedding £ of skel(u).
Note that in this section we consider two embeddings to be equal if they differ only
by the choice of the external face. Let further e be the reference edge of skel(w), that
is the edge that p shares with its parent. Recall that the expansion graph of a virtual
edge ¢ in skel(u) is the subgraph of G represented by this edge. Let G(u, &, e)
be the skeleton of u with embedding £, where all edges except for e are replaced
by the corresponding gadget according to the maximum rotation of their expansion
graphs, as used by the algorithm of the previous section. Our goal is to reuse flow
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information that was computed for G (i, £, ¢) when processing G(u, £, €), where ¢’
is a different edge of skel(u) serving as the reference edge. To this end, we define a set
of operations on such graphs that allow us to transform G(u, &, e) into G(u, &, €')
in O(|skel(w)|) time. We show that, while performing these operations, a flow ¢
in the flow network of G(u, &€, ¢) can be updated to a flow ¢ in the flow network
of G(u, &, ¢€') such that the defects of ¢ and ¢’ differ only by a constant. We will
then use ¢’ as a starting point to quickly check feasibility of the flow network of
G(u, &, ¢e).

We first show that given a flow network, the knowledge of a flow with small defect
in the network allows to quickly check whether a feasible flow exists and that a flow
with minimum defect in an instance of Tamassia’s flow network can be computed in
time that is quadratic in the size of the network.

Lemma 6 Given a flow network N = (V, A, £, u, q) together with a flow ¢, a flow ¢’
of N with minimum defect can be computed in O (|N|def(¢)) time.

Proof We apply the algorithm of Ford and Fulkerson [5]. We iteratively augment
the flow with augmenting paths from a vertex with positive defect to a vertex with
negative defect. A single path of this type can be computed in O(|N|) time. The
algorithm stops when no such path exists. Since each such path decreases the defect
of the current flow by 2 the algorithm takes at most def(¢) iterations. g

Corollary 2 Let G = (V, E) be a 4-planar graph with n vertices and a fixed embed-
ding. A flow with minimum defect in the corresponding flow network of Tamassia can
be computed in O (n?) time.

Proof For each vertex v, denote the set of incident faces by F,. We define an initial
flow ¢ by setting ¢ (v, f) = 1 for each v and each f € F,. All other arcs receive a
flow of 0. As the total amount of demands for Tamassia’s flow network is in O (n),
the claim follows from Lemma 6. g

Next we define the operations that allow us to transform Tamassia’s flow network
for G(u, £, e) into Tamassia’s flow network for G(u, £, ') where e and ¢’ are dif-
ferent virtual edges in skel(u). The operations allow to preserve a flow with small
defect. Let G be a planar graph, let e = uv be an edge of G with incident faces g and
h and let ¢ be a flow in Tamassia’s flow network of G. We introduce the following
basic operations on G, respectively on ¢. For an illustration see Fig. 9.

Setting the flow along an edge ¢ with flow at most 4 to 0.

Subdividing an edge uv with flow 0 into uw and vw.

Doubling an edge with flow 0.

Removing a subdivision vertex and inserting an edge with capacity co between its
two neighbors.

5. Removing one edge of a pair of double edges and setting the capacity of the re-
maining edge to co.

NS
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=

(a) Reducing flow along an
edge with ¢e(g,h) < 4 cre-
ates a defect of at most 8.
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O

(b) Subdividing an edge e
with ¢e(g, h) = 0 does not
increase the defect.
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(c) Doubling an edge with-
out flow increases the de-
fect by at most 4.
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(e) Replacing a double edge by a single

edge with capacity oo does not increase
the defect.

(d) Removing a subdivision vertex and in-
serting an edge with capacity oo between
its neighbors does not increase the defect.

Fig. 9 Manipulation of a graph, the corresponding flow network of Tamassia and its flow. Edges of the
flow network whose flow changes are shown in black. The labels indicate the amount of flow on these
edges

Lemma 7 Let G be a planar graph with fixed embedding £ and let ¢ be a flow in
Tamassia’s flow network of G with respect to E. Let G' be the graph resulting from
G by applying Operation i. Then a flow ¢ in Tamassia’s flow network of G' with
def(¢’) < def(¢) + def; can be computed in linear time, where def; = 8,0, 4,0, 0 for
Operations 1-5.

Proof The operations are illustrated in Fig. 9. We consider the operations one by one.
For Operation 1, assume that e is incident to faces g and 4 and that |¢, (g, )| < 4. To
obtain ¢’ from ¢ we simply set ¢, (g, h) = 0. Clearly, ¢’ is a flow as it satisfies the
lower and upper bounds on all edges. We have defy (g) < defy(g) +4 and defy (h) <
defy (h) + 4. As the operation does not change the defect of any other node we have
def(¢") < def(¢) + 8. See Fig. 9a for an illustration.

For Operation 2, we replace an edge e = uv with incident faces g and 4 by two
edges uw and wv. We set ¢’ = ¢. Note that inserting the vertex increases the demands
of g and & by 2. On the other hand, the new vertex w has four flow units. We route
two units of flow from w to /4 and two units from w to g. Hence, the resulting flow
¢’ has the same defect as ¢, see Fig. 9b.

For Operation 3, see Fig. 9c, we double the edge ¢ = uv, whose corresponding
dual arcs (g, k) and (4, g) have flow 0. Let k be the new face that is bounded by the
two parallel edges between u and v. We route one unit of flow from each of u and v
to k. This increases the defects of # and v by at most 1, each. The resulting function
is a flow, as all capacity restrictions hold. Moreover, since the demand of k is 0, its
defect is 2. All other nodes keep their defects and we have def(¢’) < def(¢) + 4.

For Operation 4, we show how to remove a subdivision vertex w and connect its
neighbors u and v by an edge with capacity oo, see Fig. 9d. Let z1 = ¢y (g, h) and
let 7o = @y (g, h) be the amounts of flow from g to & via uw and wv, respectively.
Let further x = ¢ (g, w) and y = ¢ (w, h). Note that by definition of the flow network
it is def(w) = x — y 4+ 4. We replace the path uwv by the single edge e and set
¢,(g,h) =z1 + 22 + x + 2. For g, the difference d, of incoming and outgoing flow
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with respect to ¢ can be written as dg = F, — z1 — z2 — x, where Fj is the difference
of the incoming and outgoing flow along the remaining edges. With respect to ¢’
the same difference dy is dy = Fy — z1 — 22 — x — 2. Hence dg — d, = 2. Since the
removal of w also reduces the demand of g by 2, its defect is preserved. Similarly,
for h, wehave d, = F, +z1 +z2+yandd;, = F +z1 +22+x +2.Thend;, —d; =
y —x —2 =2 — def(w). Again the removal of w decreases the demand of & by 2,
hence | defy (h)| < |def ¢ (h)| + | defy (w)]. Since w is removed, the overall defect is
not increased, that is def(¢") = def(¢).

Finally, we show how to remove a double edge, that is how to implement Oper-
ation 5; see Fig. 9e. Let e; and e, be the two edges between u and v, let k be the
face incident to both of them, and let g and % be the other faces incident to e; and
ey, respectively. Let x = ¢be, (g, k), y = e, (k, h), a = ¢ (u, k) and b = ¢ (v, k). Note
that def(k) =a + b + x — y since the demand of k is O as it has only two incident
vertices.

We replace the double edges eq, ey by a single edge e with capacity co. We
set ¢.(g,h) =x, ¢'(w,h) = ¢(u,h) +a and ¢'(v, h) = ¢ (v, h) + b. Clearly, the
defects of g, u and v do not change. For &, observe that the change of incoming
flow is y — (x +a + b) = — def, (k). Hence, | defy (h)| < |defy (h)| + | defy (k)| and
since k is removed, the total defect does not increase. O

Note that a sequence of Operations 1-5 can be used to replace a gadget by a sin-
gle edge and vice versa. The following lemma states that this replacement is always
possible while increasing the defect of a given flow only by a certain constant.

Lemma 8 Given G(u, &, e) together with a flow ¢ in its corresponding flow network
in which e has at most 4 units of flow, a flow ¢’ in the flow network of G(u, E, e')
with def(¢") < def(¢) + 28 can be computed in linear time.

Proof To transform G (i, &, e) into G(u, £, €’) we first replace e by the correspond-
ing gadget representing its expansion graph. Then we transform the gadget that rep-
resents ¢’ in G(u, £, e) into the single edge ¢'. Finally, we may have to change the
outer face. We now show that the desired flow ¢' can be computed while performing
all these operations, starting with ¢ = ¢'.

The cost of the first step depends on the Type of the expansion graph of e. If the
expansion graph of e is of Type (1,1), no change is necessary. For Type (1,2) we
reduce the flow along e (Operation 1), subdivide e (Operation 2) and double one
of the resulting edges (Operation 3). For Type (2,2) we first reduce the flow of e
(Operation 1) and then double it (Operation 3). In all cases we apply Lemma 7 for
each operation to obtain the flow ¢’. In the worst case the total increase of defect
is 12.

In the second step, we replace a gadget by the edge ¢’. If the expansion graph of
¢’ is of Type (1,1), no change is necessary. For Type (1,2), we replace the double
edge of the gadget by a single edge (Operation 5) and then remove the subdivision
vertex (Operation 4). For Type (2,2) we replace the double edge by a single edge
(Operation 5). By Lemma 7, this yields the flow ¢’ with def(¢’) < def(¢).

Both steps together thus yield a flow ¢’ with def(¢’) < def(¢) + 12. Finally, by
the definition of Tamassia’s flow network, to change the outer face to an interior face
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we decrease its demand by 8 and we increase the demand of an inner face by 8 to
make it the outer face. The defect of ¢’ in the resulting flow network is therefore at
most 28. g

We apply this lemma to save computing time when processing the graph
G(u, &, e). If we process u for the first time with embedding £ (embeddings are con-
sidered equal if they only differ by the choice of the external face), using Lemma 2,
we compute in O (|skel()|?) time a flow ¢ with minimum defect in the correspond-
ing flow network, where the flexibility of e is set to 4. We now distinguish several
cases.

If ¢ has defect 0, it is a valid solution and we have found our base flow. Moreover,
we store ¢ along with u and & for future reuse. If the defect of ¢ is greater than O
and at most 28, we know that 1 does not admit a valid orthogonal representation with
embedding £. Again, we store ¢ for future reuse. If the defect of ¢ is greater than 28,
we store the information that i does not admit a valid orthogonal representation with
embedding &, independently of the choice of the reference edge and of the outer
face. This is true since otherwise we could apply Lemma 7 to obtain a flow ¢’ for
G(u, &, e) with defect at most 28, contradicting the optimality of ¢.

Whenever we encounter i with embedding £ again, but this time with reference
edge ¢/, we can either conclude that it does not admit a valid orthogonal represen-
tation (if the embedding is marked as invalid for w), or check in O(|skel(w)|) time
whether it admits a feasible flow as follows. Let ¢ be the stored flow. By applying
Lemma 7 we can construct in O (| skel(u)|) time a flow ¢’ in the flow network of
G(u, &, €') with def(¢") < def(¢) + 28 < 56. We then apply Lemma 6 to compute a
feasible base flow in O (| skel(w)|) time, if it exists.

Since each node u has only a constant number of embeddings, the total time for
all base flow computations is bounded by O (n?). After that, checking a node x with
a given embedding can be done in O(|skel(w)|) time. Since each node is checked at
most linearly often for each embedding of its skeleton, the total running time is in
O (n?). We have proved the following theorem.

Theorem 6 FLEXDRAW can be solved in O(n?) time for biconnected 4-planar
graphs with positive flexibility.

6 Connected Graphs

In this section we generalize our results to connected 4-planar graphs that are not
necessarily biconnected. We analyze the conditions under which orthogonal repre-
sentations sharing a cutvertex can be combined and use the block-cutvertex tree to
derive an algorithm that decides whether a connected 4-planar graph with positive
flexibility admits a valid orthogonal representation.

Lemma 9 Let G be a connected 4-planar graph with positive flexibility and let v be
a cutvertex with corresponding cut components Hy, ..., H. Then G admits a valid
orthogonal representation if and only if all cut components H; have valid orthogonal
representations such that at most one of them has v not on the outer face.
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Fig. 10 A degree-2 cutvertex with 180° angles in both faces

Proof The only if part is clear since a valid orthogonal representation of G induces
valid orthogonal representations of all cut components H; such that at most one of
them does not have v on its outer face. Now let S; be valid orthogonal representations
of the cut components H; fori =1, ..., k such that at most one of them does not have
v on its outer face.

If all of them have v on their outer face, then by Lemma 2 we can assume that
these representations are tight. Then it is clear that the components Hy, ..., Hi can
be merged together in v while maintaining their representations ;.

Otherwise, one of the representations, without loss of generality S;, does not have
v on the outer face. If v has degree 1 in a cut component H;, then the incident edge is
a bridge. Clearly, all free incidences in v with respect to the orthogonal representation
S; of H; lie in the same face. Thus, for the case that v has degree at least 2 in at most
one of the cut components, this allows to merge their orthogonal representations.

The only problem that can arise is that there are exactly two components H; and
Hj, v has degree 2 in both of them, and the angles incident to v in H; are 180°.
Figure 10 illustrates how we resolve this situation. If at least one of the two edges
incident to v has a bend, we decrease its number of bends and change the angles at
v appropriately, yielding angles of 90° and 270° in the faces incident to v. If none
of the edges incident to v has a bend, we achieve the same result by increasing the
number of bends on one of the two edges. Note that the orthogonal representation
remains valid since the flexibility of every edge is a least 1. g

Now let G be a connected 4-planar graph with positive flexibility and B its block-
cutvertex tree. Let further B be a block of G that is a leaf in 5 and let v be the unique
cutvertex of B.

If B is the whole graph G, then we return “true” if and only if G admits any valid
orthogonal representation. This can be checked with the algorithm from the previous
section.

If B is not the whole graph G we check whether B admits a valid orthogonal
representation having v on its outer face. This can be done with the algorithm from
the previous section by rooting the SPQR-tree of B at all edges incident to v. If it
does admit such a representation, then by Lemma 9 G admits a valid orthogonal
representation if and only if the graph G’, which is obtained from G by removing
the block B, admits a valid orthogonal representation. We check G’ recursively. If
B does not admit such a representation, then we mark B and proceed with another
unmarked leaf. If we ever encounter another block B’ that has to be marked we return
“infeasible”, as in this case B should be embedded in the interior of B’ and vice versa,
which is obviously impossible. Checking a single block B requires O (|B|?) time by
Theorem 6. Since the total size of all blocks is linear, the total running time is 0 (n?).
This proves the following theorem, which is the main result of this paper.
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Vg

V2

Fig. 11 A graph that is almost rigid graph, even if every edge has flexibility 1

Theorem 7 FLEXDRAW can be solved in O (n?) time for 4-planar graphs with pos-
itive flexibility.

7 Complexity

In this section, we consider the complexity of FLEXDRAW for cases that lie between
0-embeddability and the case of positive flexibility. For example, it is an interesting
question, whether FLEXDRAW can still be solved efficiently, if the subgraph consist-
ing only of the edges with flexibility O has a special structure. Since 0-embeddability
can be solved in polynomial time for series-parallel graphs and graphs with maximum
degree 3 [2], one might hope for an algorithm that solves FLEXDRAW efficiently if
the edges with flexibility O form a graph in one of these classes. However, this is
unlikely; we show AP-hardness for the case where the subgraph with flexibility 0
is a collection of disjoint stars. We in fact show that the problem is NP-hard even
if the stars are required to be spanning or if the subgraph with flexibility O forms a
spanning tree. The construction relies on a basic building block, which is described
next.

Consider the wheel on five vertices, which consists of a cycle on vertices vy, .. ., V5
and the center vertex v that is connected to all other vertices; see Fig. 11a. In the fol-
lowing we assume that the flexibility of each edge of the wheel is 1. A corresponding
flex-drawing is shown in Fig. 11b. We claim that every valid orthogonal representa-
tion of the wheel has the same outer face with the same shape, i.e., with the same list
of edge descriptions associated with it. To see this, consider Tamassia’s flow network
for the wheel in the embedding shown in Fig. 11a. Since the outer face is incident to
four vertices, it has a demand of 12. On the other hand, it can receive at most 8 units
of flow from v, ..., vs and at most 4 units of flow via the incident edges. Hence,
in any feasible flow the outer face must receive two units of flow from each of its
incident vertices, and one unit of flow from each incident edge. This completely de-
scribes the outer face. The only degree of freedom is that the center vertex can be
rotated by 90 degrees to the left or to the right. Moreover, all other embeddings of the
wheel do not allow for a 1-bend embedding. Since the wheel is 3-connected, the only
embedding choice is the outer face. Up to renaming the vertices the only embedding
that is different from the embedding in Fig. 11a is shown in Fig. 11c. In Tamassia’s
flow network the outer face has a demand of 10. However, it can receive at most one
unit of flow from v, at most two units of flow from v, and vs, and at most three units
of flow via its incident edges, which adds up to a total of 8. Hence, the wheel does
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not admit a 1-bend drawing with this embedding. With these considerations it is easy
to prove the following theorem.

Theorem 8 FLEXDRAW is N'P-hard, even if the subgraph with flexibility 0 is a
spanning tree or a spanning union of disjoint stars.

Proof We reduce from 0-embeddability, which is known to be N"P-hard [6]. Let G =
(V, E) be an instance of 0-embeddability and let G’ be the graph that is obtained
from G by replacing each edge uv € E by the gadget shown in Fig. 11d, where the
two bold edges have flexibility 0 and all other edges in the gadget have flexibility 1.
As in each flex-drawing the rotation between the two vertices of degree 1 is 0, it fol-
lows that G” admits a flex-drawing if and only if G admits a 0-embedding. Obviously
the edges with flexibility 0 form a collection of disjoint stars, each having a vertex
of the original graph as its center. The only vertices that are not contained in one of
the stars are the vertices vy, vy and v4. Obviously, we can ensure that the union of
disjoint stars is spanning by simply assigning flexibility O to the edges vjv, and vivg
in each of the gadgets.

To show A/P-hardness for the case that the subgraph with flexibility O is a span-
ning tree, we first choose a spanning tree 7' in G. Then we again replace the edges in
G by the gadgets shown in Fig. 11d except for the edges contained in 7'. This yields
an equivalent instance G’ of FLEXDRAW where the edges with flexibility O form a
tree containing all vertices of G’ except for vy, v2 and vy of each gadget. However,
we can easily ensure that the tree is a spanning tree by adding the edges vivs, viva
and vjvs for each gadget. g

8 Concluding Remarks

The main result of this work is that FLEXDRAW can be solved efficiently for graphs
with positive flexibility. To prove this, we first showed that the set of possible draw-
ings of a graph with positive flexibility can be described by a single number, its
maximum rotation. The fact that subgraphs can be substituted by graphs with the
same maximum rotation without affecting the overall maximum rotation enabled us
to gradually reduce the size of the graph that needed to be considered. This directly
led to a polynomial-time algorithm, which together with a specialized out-of-the-box
flow algorithm for planar graphs resulted in a running time of O (n°/?). We then in-
troduced flows with defects to share more information between different phases of
the algorithm. Using these concepts and a careful implementation we were able to
reduce the running time to O (n?).

The efficient algorithm for FLEXDRAW with positive flexibility closes the long-
standing complexity gap between 0-embeddability and 2-embeddability. However,
the result is much more general, as it enables us to specify the maximum number of
bends for each edge, individually. This may have interesting applications in domains
such as the layout of UML diagrams, which are typically drawn with orthogonal
edges, and where certainly some of the edges are much more important than others,
and thus should have few bends, possibly at the cost of more bends at unimportant
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Fig. 12 Examples of graphs J\i
that require an edge with several

bends in a flex-drawing. The
wheel with an additional edge
shown in (a) requires an edge Y
with four bends in any drawing,
if the bold edges have a
flexibility of 1. If the embedding
is fixed, five bends are necessary
for the thin edge in (b)

(a) (b)

edges. To obtain a nice drawing, it may even be desirable to specify no upper bound at
all on the number of bends for unimportant edges. It is straightforward to generalize
the results presented in this work to positive flexibility functions flex : E — N U
{oo}, where some edges may be bent arbitrarily often.

We further explored the complexity gap between 0-embeddability and FLEX-
DRrAW with positive flexibility. We have shown that FLEXDRAW is A/P-hard, even if
the subgraph consisting of edges with flexibility O forms a tree or a union of disjoint
stars.

Open Questions We leave open two questions, which we believe to be most inter-
esting. As we have seen, FLEXDRAW remains A/P-hard, even if the edges with flex-
ibility O form a tree, or a collection of stars. However, the complexity remains open
for other graph classes such as matchings. We conjecture that FLEXDRAW remains
N'P-hard for the case that the edges with flexibility 0 form a matching.

Another interesting question stems from the problem of computing a nice flex-
drawing. In general, 4-planar graphs admit drawings with at most two bends per
edge, with the only exception of the octahedron, which requires an edge with three
bends [1]. Thus, in the absence of flexibility constraints a linear number of bends is
sufficient. Figure 12 shows that flex-drawings of graphs with positive flexibility may
require edges with four bends. How many bends may be required for a flex-drawing
of a graph with positive flexibility? Is there a constant C such that for each graph G
with positive flexibility that admits a flex-drawing there is one with at most C bends
per edge? This also has implications on the time required for actually computing a
flex-drawing since computing a drawing from an orthogonal representation requires
time that is quadratic in the number of bends [13]. If it was possible that a non-
constant number of edges would need to have a non-constant number of bends, this
would result in a total running time that is super-quadratic, and thus slower than
the algorithm for finding the embedding. We suspect that this is not the case; we
conjecture that generally C = 4, and that C =5 if the embedding is fixed.
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