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Abstract. We consider the problem of creating plane orthogonal draw-
ings of 4-planar graphs (planar graphs with maximum degree 4) with
constraints on the number of bends per edge. More precisely, we have a
flexibility function assigning to each edge e a natural number flex(e), its
flexibility. The problem FlexDraw asks whether there exists an orthog-
onal drawing such that each edge e has at most flex(e) bends. It is known
that FlexDraw is NP-hard if flex(e) = 0 for every edge e [7]. On the
other hand, FlexDraw can be solved efficiently if flex(e) ≥ 1 [2] and is
trivial if flex(e) ≥ 2 [1] for every edge e.

To close the gap between the NP-hardness for flex(e) = 0 and the
efficient algorithm for flex(e) ≥ 1, we investigate the computational com-
plexity of FlexDraw in case only few edges are inflexible (i.e., have
flexibility 0). We show that for any ε > 0 FlexDraw is NP-complete
for instances with O(nε) inflexible edges with pairwise distance Ω(n1−ε)
(including the case where they induce a matching). On the other hand,
we give an FPT-algorithm with running time O(2k · n · Tflow(n)), where
Tflow(n) is the time necessary to compute a maximum flow in a planar
flow network with multiple sources and sinks, and k is the number of
inflexible edges having at least one endpoint of degree 4.

1 Introduction

Bend minimization in orthogonal drawings is a classical problem in the field of
graph drawing. We consider the following problem called OptimalFlexDraw.
The input is a 4-planar graph G (from now on all graphs are 4-planar) together
with a cost function coste : N → R∪{∞} assigned to each edge. We want to find
an orthogonal drawing Γ of G such that

∑
coste(βe) is minimal, where βe is the

number of bends of e in Γ . The basic underlying decision problem FlexDraw
restricts the cost function of every edge e to coste(β) = 0 for β ∈ [0,flex(e)]
and coste(β) = ∞ otherwise, and asks whether there exists a valid drawing
(i.e., a drawing with finite cost). The value flex(e) is called the flexibility of e.
Edges with flexibility 0 are called inflexible. Note that FlexDraw represents
the important base case of testing for the existence of a drawing with cost 0 that
is included in solving OptimalFlexDraw.

Garg and Tamassia [7] show that FlexDraw is NP-hard in this generality, by
showing that it is NP-hard if every edge is inflexible. For special cases, namely

Partially supported by grant WA 654/21-1 of the German Research Foundation
(DFG).

c© Springer International Publishing Switzerland 2015
V.Th. Paschos and P. Widmayer (Eds.): CIAC 2015, LNCS 9079, pp. 61–73, 2015.
DOI: 10.1007/978-3-319-18173-8 4



62 T. Bläsius et al.

planar graphs with maximum degree 3 and series-parallel graphs, Di Battista
et al. [5] give an algorithm minimizing the total number of bends, which solves
OptimalFlexDraw with coste(β) = β for each edge e. Their approach can be
used to solve FlexDraw, as edges with higher flexibility can be modeled by
a path of inflexible edges. Biedl and Kant [1] show that every 4-planar graph
(except for the octahedron) admits an orthogonal drawing with at most two
bends per edge. Thus, FlexDraw is trivial if the flexibility of every edge is
at least 2. Bläsius et al. [2,3] tackle the NP-hard problems FlexDraw and
OptimalFlexDraw by not counting the first bend on every edge. They give a
polynomial time algorithm solving FlexDraw if the flexibility of every edge is
at least 1 [2]. Moreover, they show how to efficiently solve OptimalFlexDraw
if the cost function of every edge is convex and allows the first bend for free [3].

When restricting the allowed drawings to those with a specific planar embed-
ding, the problem OptimalFlexDraw becomes significantly easier. Tamas-
sia [9] shows how to find a drawing with as few bends as possible by computing
a flow in a planar flow network. This flow network directly extends to a solution
of OptimalFlexDraw with fixed planar embedding, if all cost functions are
convex. Cornelsen and Karrenbauer [4] recently showed, that this kind of flow
network can be solved in O(n3/2) time.

Contribution and Outline. In this work we consider OptimalFlexDraw for
instances that may contain inflexible edges, closing the gap between the general
NP-hardness result [7] and the polynomial-time algorithms in the absence of
inflexible edges [2,3]. After presenting some preliminaries in Section 2, we show
in Section 3 that FlexDraw remains NP-hard even for instances with only
O(nε) (for any ε > 0) inflexible edges that are distributed evenly over the graph,
i.e., they have pairwise distance Ω(n1−ε). This includes the cases where the
inflexible edges are restricted to form very simple structures such as a matching.

On the positive side, we describe a general algorithm that can be used to
solve OptimalFlexDraw by solving smaller subproblems (Section 4). This
provides a framework for the unified description of bend minimization algo-
rithms which covers both, previous work and results presented in this paper. We
use this framework in Section 5 to solve OptimalFlexDraw for series-parallel
graphs with monotone cost functions. This extends the algorithm by Di Battista
et al. [5] to non-biconnected series-parallel graphs and thus solves one of their
open problems. Moreover, we allow a significantly larger set of cost functions (in
particular, the cost functions may be non-convex).

In Section 6, we present our main result, which is an FPT-algorithm with
running time O(2k ·n·Tflow(n)), where k is the number of inflexible edges incident
to degree-4 vertices, and Tflow(n) is the time necessary to compute a maximum
flow in a planar flow network of size n with multiple sources and sinks. Note
that we can allow an arbitrary number of edges whose endpoints both have
degree at most 3 to be inflexible without increasing the running time. Thus, our
algorithm can also test the existence of a 0-bend drawing (all edges are inflexible)
in FPT-time with respect to the number of degree-4 nodes. This partially solves
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another open problem of Di Battista et al. [5]. We conclude with open questions
in Section 7.

Due to space constraints, we omit or only sketch several proofs. A full version
with detailed proofs is available [3].

2 Preliminaries

Connectivity and the Composition of Graphs. A graph G is connected if
there exists a path between every pair of vertices. A separating k-set S is a subset
of vertices of G such that G − S is not connected. Separating 1-sets are called
cutvertices and separating 2-sets separation pairs. A connected graph without
cutvertices is biconnected and a biconnected graph without separation pairs is
triconnected. The blocks of a connected graph are its maximal (with respect to
inclusion) biconnected subgraphs.

An st-graph G is a graph with two designated vertices s and t, its poles, such
that G + st is biconnected and planar. Let G1 and G2 be two st-graphs with
poles s1, t1 and s2, t2, respectively. The series composition G of G1 and G2 is
the union of G1 and G2 where t1 is identified with s2. Clearly, G is again an
st-graph with the poles s1 and t2. In the parallel composition G of G1 and G2

the vertices s1 and s2 and the vertices t1 and t2 are identified with each other
and form the poles of G. An st-graph is series-parallel, if it is a single edge or
the series or parallel composition of two series-parallel graphs.

To be able to compose all st-graphs, we need a third composition. Let
G1, . . . , G� be a set of st-graphs with poles si and ti associated with Gi. Let
H be an st-graph with poles s and t such that H + st is triconnected and let
e1, . . . , e� be the edges of H. The rigid composition G with respect to the so-
called skeleton H is obtained by replacing each edge ei of H by the graph Gi,
identifying the endpoints of ei with the poles of Gi. It follows from the theory
of SPQR-trees that every st-graph is either a single edge or the series, parallel
or rigid composition of st-graphs [6].

Orthogonal Representation. To handle orthogonal drawings of a graph G, we
use the abstract concept of orthogonal representations neglecting distances in a
drawing. Orthogonal representations were introduced by Tamassia [9], however,
we use a slight modification that makes it easier to work with, as bends of edges
and bends at vertices are handled the same. Let Γ be a normalized orthogonal
drawing of G, i.e., every edge has only bends in one direction. If additional
bends cannot improve the drawing (i.e., costs are monotonically increasing), a
normalized optimal drawing exists [9]. All orthogonal drawings we consider are
normalized. We assume that G is biconnected. This simplifies the description, as
each edge and vertex has at most one incidence to a face. All definitions extend
to connected graphs.

Let e be an edge in G that has β bends in Γ and let f be a face incident to e.
We define the rotation of e in f as rot(ef ) = β and rot(ef ) = −β if the bends of
e form 90◦ and 270◦ angles in f , respectively. For a vertex v forming the angle
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α in the face f , we define rot(vf ) = 2 − α/90◦. Note that, when traversing a
face of G in clockwise (counter-clockwise for the outer face) direction, the right
and left bends correspond to rotations of 1 and −1, respectively (we may have
two left bends at once at vertices of degree 1). The values for the rotations we
obtain from a drawing Γ satisfy the following properties; see Fig. 1a.

(1) The sum over all rotations in a face is 4 (−4 for the outer face).
(2) For every edge e with incident faces f� and fr we have rot(ef�

)+rot(efr
) = 0.

(3) The sum of rotations around a vertex v is 2 · deg(v) − 4.
(4) The rotations at vertices lie in the range [−2, 1].

Let R be a structure consisting of an embedding of G plus a set of values fixing
the rotation for every vertex-face and edge-face incidence. We call R an ortho-
gonal representation of G if the rotation values satisfy the above properties (1)–
(4). Given an orthogonal representation R, a drawing inducing the specified
rotation values exists and can be computed efficiently [9].

Orthogonal Representations and Bends of st-Graphs. We extend the notion of
rotation to paths; conceptually this is very similar to spirality [5]. Let π be a
path from vertex u to vertex v. We define the rotation of π (denoted by rot(π))
to be the number of bends to the right minus the number of bends to the left
when traversing π from u to v.

There are two special paths in an st-graph G. Let s and t be the poles of
G and let R be an orthogonal representation with s and t on the outer face.
Then π(s, t) denotes the path from s to t when traversing the outer face of
G in counter-clockwise direction. Similarly, π(t, s) is the path from t to s. We
define the number of bends of R to be max{| rot(π(s, t))|, | rot(π(t, s))|}. Note
that a single edge e = st is also an st-graph. Note further that the notions of
the number of bends of the edge e and the number of bends of the st-graph e
coincide. Thus, the above definition is consistent.

When considering orthogonal representations of st-graphs, we always require
the poles s and t to be on the outer face. We say that the vertex s has σ occupied
incidences if rot(sf ) = σ − 3 where f is the outer face. We also say that s has
4−σ free incidences in the outer face. If the poles s and t have σ and τ occupied
incidences in R, respectively, we say that R is a (σ, τ)-orthogonal representation;
see Fig. 1b.

Note that rot(π(s, t)) and rot(π(t, s)) together with the number of occupied
incidences σ and τ basically describe the outer shape of G and thus how it has to
be treated if it is a subgraph of some larger graph. Using the bends of R instead
of the rotations of π(s, t) and π(t, s) implicitly allows to mirror the orthogonal
representation (and thus exchanging π(s, t) and π(t, s)).

Thick Edges. In the basic formulation of an orthogonal representation, every
edge occupies exactly one incidence at each of its endpoints. We introduce thick
edges that may occupy more than one incidence at each endpoint to represent
larger subgraphs. Let e = st be an edge in G. We say that e is a (σ, τ)-edge if e is
defined to occupy σ and τ incidences at s and t, respectively. Note that the total
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Fig. 1. (a) An orthogonal drawing together with its orthogonal representation given
by the rotation values. (b) A (2, 3)-orthogonal representation (s and t have 2 and 1
free incidences, respectively). (c) An orthogonal representation with thick edges e1 and
e2. The gray boxes indicate how many attachments the thick edges occupy, i.e., e1 is a
(2, 3)-edge and e2 is a (2, 2)-edge. Both thick edges have two bends.

amount of occupied incidences of a vertex in G must not exceed 4. With this
extended notion of edges, we define a structure R consisting of an embedding of
G plus a set of values for all rotations to be an orthogonal representation if it
satisfies the following (slightly extended) properties; see Fig. 1c.

(1) The sum over all rotations in a face is 4 (−4 for the outer face).
(2) For every (σ, τ)-edge e with incident faces f� and fr we have rot(ef�

) +
rot(efr

) = 2 − (σ + τ).
(3) The sum of rotations around a vertex v with incident edges e1, . . . , e� occu-

pying σ1, . . . , σ� incidences of v is
∑

(σi + 1) − 4
(4) The rotations at vertices lie in the range [−2, 1].

Note that requiring every edge to be a (1, 1)-edge in this definition of an orthog-
onal representation exactly yields the previous definition without thick edges.
The number of bends of a (thick) edge e incident to the faces f� and fr is
max{| rot(ef�

)|, | rot(efr
)|}. Note that this is again consistent with the definition

of number of bends of st-graphs and normal edges. Unsurprisingly, replacing a
(σ, τ)-edge with β bends in an orthogonal representation by a (σ, τ)-orthogonal
representation with β bends of an arbitrary st-graph yields a valid orthogonal
representation [2, Lemma 5].

3 A Matching of Inflexible Edges

In this section, we show that FlexDraw is NP-complete even if the inflexible
edges form a matching. In fact, we show the stronger result of NP-hardness
of instances with O(nε) inflexible edges (for ε > 0) even if these edges are
distributed evenly over the graph, i.e., they have pairwise distance Ω(n1−ε).

We adapt the proof of NP-hardness by Garg and Tamassia [7] for the case that
all edges of an instance of FlexDraw are inflexible. For a given instance of Nae-
3Sat (Not All Equal 3SAT) they show how to construct a graph G that admits an
orthogonal representation without bends if and only if the instance of Nae-3Sat
is satisfiable. The graph G is obtained by first constructing a graph F that has a
unique planar embedding [7, Lemma 5.1] and replacing the edges of F by larger
st-graphs. These graphs have degree-1 poles and their embedding is fixed up to a
flip, which implies the following lemma.
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Fig. 2. The bold edges are inflexible; dashed edges have flexibility 2; all other edges
have flexibility 1. (a) The wheel W4. (b) The bend gadget B1,2. (c) The gadget W ′

3 for
replacing degree-3 vertices. The marked subgraphs are bend gadgets.

Lemma 1 (Garg and Tamassia [7]). FlexDraw is NP-hard, even if the
order of edges around each vertex is fixed up to reversal.

We assume that our instances do not contain degree-2 vertices; their incident
edges can be replaced by a single edge with higher flexibility. In the following,
we first show how to replace vertices of degree 3 by graphs of constant size such
that each inflexible edge is incident to two vertices of degree 4. Afterwards, we
can replace degree-4 vertices by smaller subgraphs with positive flexibility, which
increases the distance between the inflexible edges.

The shape of the outer face of the wheel W4 (with flexibility 1 on each edge)
is the same in every valid orthogonal representation [2]; see Fig. 2a. It follows
directly that the st-graph in Fig. 2b, which we call bend gadget and denote by
B1,2, has either one or two bends in each orthogonal representation. This ensures
that replacing a degree-3 vertex by the construction W ′

3 (which is basically an
enhanced wheel of size 3) shown in Fig. 2c results in an equivalent instance of
FlexDraw. Note that, after replacing each degree-3 vertex by a copy of W ′

3, all
endpoints of inflexible edges have degree 4. We obtain the following lemma.

Lemma 2. FlexDraw is NP-hard, even if the endpoints of each inflexible edge
have degree 4 and if the order of edges around each vertex is fixed up to reversal.

Similarly, replacing the vertices incident to inflexible edges by copies of W4

(whose edges have flexibility 1), increases the distance between any pair of inflex-
ible edges by at least 1. Note that this does not increase the number of inflexible
edges. Iterative replacement yields the following theorem.

Theorem 1. FlexDraw is NP-complete even for instances of size n with O(nε)
inflexible edges with pairwise distance Ω(n1−ε).

The instances described above may contain edges with flexibility larger than 1.
By iteratively replacing an edge e with flexibility flex(e) > 1 by a chain consisting
of an edge with flexibility 1, the wheel W4, and an edge with flexibility flex(e) − 1,
we obtain an equivalent instance where all edges have flexibility 1 or 0.
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4 The General Algorithm

In this section we describe a general algorithm that can be used to solveOptimal-
FlexDraw by solving smaller subproblems for the different types of graph com-
positions. To this end, we start with the definition of cost functions for subgraphs.
The cost function cost(·) of an st-graph G is defined such that cost(β) is the mini-
mum cost of all orthogonal representations of G with β bends. The (σ, τ)-cost func-
tion costσ

τ (·) of G is defined analogously by setting costσ
τ (β) to the minimum cost

of all (σ, τ)-orthogonal representations of G with β bends. Clearly, σ, τ ∈ {1, . . . 4},
though, forafixedgraphG, notall valuesmaybepossible. If for exampledeg(s) = 1,
thenσ is 1 for every orthogonal representation ofG.Note that there is a lowerbound
on the number of bends depending onσ and τ . For example, a (2, 2)-orthogonal rep-
resentation has at least one bend and thus cost22(0) is undefined. We formally set
undefined values to ∞.

With the cost functions of G we refer to the collection of (σ, τ)-cost functions
of G for all possible combinations of σ and τ . Let G be the composition of two or
more (for a rigid composition) graphs G1, . . . , G�. Computing the cost functions
of G assuming that the cost functions of G1, . . . , G� are known is called computing
cost functions of a composition. The following theorem states that the ability to
compute cost functions of compositions suffices to solve OptimalFlexDraw.
The terms TS , TP and TR(
) denote the time for computing the cost functions of
a series, a parallel, and a rigid composition with skeleton of size 
, respectively.

Theorem 2. Let G be an st-graph containing the edge st. An optimal (σ, τ)-
orthogonal representation of G with st on the outer face can be computed in
O(nTS + nTP + TR(n)) time.

Applying Theorem 2 for each pair of adjacent nodes as poles in a given
instance of OptimalFlexDraw yields the following corollary.

Corollary 1. OptimalFlexDraw can be solved in O(n ·(nTS +nTP +TR(n)))
time for biconnected graphs.

In the following, we extend this result to the case where G may contain
cutvertices. The extension is straightforward, however, there is one pitfall. Given
two blocks B1 and B2 sharing a cutvertex v such that v has degree 2 in B1 and B2,
we have to ensure for both blocks that v does not form an angle of 180◦. Thus, for
a given graph G, we get for each block a list of vertices and we restrict the set of
all orthogonal representations of G to those where these vertices form 90◦ angles.
We call these orthogonal representations restricted orthogonal representations.
Moreover, we call the resulting cost functions restricted cost functions. We use the
terms T r

S , T r
P and T r

R(
) to denote the time necessary to compute the restricted
cost functions of a series, a parallel, and a rigid composition, respectively. We
get the following theorem.

Theorem 3. OptimalFlexDraw is O(n ·(nT r
S +nT r

P +T r
R(n)))-time solvable.
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Note that Theorem 3 provides a framework for uniform treatment of bend
minimization over all planar embeddings in orthogonal drawings. In particular,
the polynomial-time algorithm for FlexDraw with positive flexibility [2] can
be expressed in this way. There, all resulting cost functions of st-graphs are 0 on
a non-empty interval containing 0 (with one minor exception) and ∞, otherwise.
Thus, the cost functions of the compositions can be computed using Tamassia’s
flow network. The results on OptimalFlexDraw [3] can be expressed simi-
larly. When restricting the number of bends of each st-graph occurring in the
composition to 3, all resulting cost functions are convex (with one minor excep-
tion). Thus, Tamassia’s flow network can again be used to compute the cost
functions of the compositions. The overall optimality follows from the fact that
there exists an optimal solution that can be composed in such a way. In the
following sections we see two further applications of this framework.

5 Series-Parallel Graphs

In this section we show that the cost functions of a series composition (Lemma 3)
and a parallel composition (Lemma 4) can be computed efficiently. Using our
framework, this leads to a polynomial-time algorithm for OptimalFlexDraw
for series-parallel graphs with monotone cost functions (Theorem 4). We note
that this is only a slight extension to the results by Di Battista et al. [5]. However,
it shows the easy applicability of the above framework before diving into the more
complicated FPT-algorithm in the following section.

To get the running time claimed in Theorem 4, it is necessary to bound the
maximum number 
 of bends of an st-graph. Using Tamassia’s flow network it
can be seen that 
 ∈ O(n).

Lemma 3. If the (restricted) cost functions of two st-graphs are ∞ for bend
numbers larger than 
, the (restricted) cost functions of their series composition
can be computed in O(
2) time.

Proof. We first consider the case of non-restricted cost functions. Let G1 and G2

be the two st-graphs with poles s1, t1 and s2, t2, respectively, and let G be their
series composition with poles s = s1 and t = t2. For each of the constantly many
valid combinations of σ and τ , we compute the (σ, τ)-cost function separately.
Assume for the following, that σ and τ are fixed. Since G1 and G2 both have at
most 
 bends, G can only have O(
) possible values for the number of bends β.
We fix the value β and show how to compute costσ

τ (β) in O(
) time.
Let R be a (σ, τ)-orthogonal representation with β bends and let R1 and R2

be the (σ1, τ1)- and (σ2, τ2)-orthogonal representations induced for G1 and G2,
respectively. Obviously, σ1 = σ and τ2 = τ holds. However, there are the follow-
ing other parameters that may vary (although they may restrict each other). The
parameters τ1 and σ2; the number of bends β1 and β2 of R1 and R2, respectively;
the possibility that for i ∈ {1, 2} the number of bends of Ri are determined by
π(si, ti) or by π(ti, si), i.e., βi = − rot(π(si, ti)) or βi = − rot(π(ti, si)); and
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finally, the rotations at the vertex v in the outer face, where v is the vertex of
G belonging to both, G1 and G2.

Assume we fixed the parameters τ1 and σ2, the choice by which paths β1 and
β2 are determined, the rotations at the vertex v, and the number of bends β1 of
R1. Then there is no choice left for the number of bends β2 of R2, as choosing a
different value for β2 also changes the number of bends β of G, which was fixed.
As each of the parameters can have only a constant number of values except for
β1, which can have O(
) different values, there are only O(
) possible choices in
total. For each of these choices, we get a (σ, τ)-orthogonal representation of G
with β bends and cost costσ1

τ1 (β1)+costσ2
τ2 (β2). By taking the minimum cost over

all these choices we get the desired value costσ
τ (β) in O(
) time.

For restricted cost functions, we may have to restrict the angle at v. Obvi-
ously, this constraint can be easily added to the described algorithm. ��
Lemma 4. If the (restricted) cost functions of two st-graphs are ∞ for bend
numbers larger than 
, the (restricted) cost functions of their parallel composition
can be computed in O(
) time.

Theorem 4. For series-parallel graphs with monotone cost functions Opti-
malFlexDraw can be solved in O(n4) time.

6 An FPT-Algorithm for General Graphs

Let G be an instance of FlexDraw. We call an edge in G critical if it is inflexible
and at least one of its endpoints has degree 4. We call G k-critical, if it contains
exactly k critical edges. An inflexible edge that is not critical is semi-critical.
The poles s and t of an st-graph G are considered to have additional neighbors
(which comes from the fact that we usually consider st-graphs to be subgraphs of
larger graphs). Inflexible edges incident to the pole s (or t) are already critical if
deg(s) ≥ 2 (or deg(t) ≥ 2). In the following, we study cost functions of k-critical
st-graphs and give an FPT-algorithm for k-critical instances.

6.1 The Cost Functions of k-Critical Instances

Let G be an st-graph and let R be a valid orthogonal representation of G. We
define an operation that transforms R into another valid orthogonal representa-
tion of G. Let G� be the double directed dual graph of G, i.e., each edge e of G
with incident faces g and f corresponds to the two dual edges (g, f) and (f, g).
We call a dual edge e� = (g, f) of e valid if one of the following conditions holds.

(I) rot(ef ) < flex(e) (which is equivalent to − rot(eg) < flex(e)).
(II) rot(vf ) < 1 where v is an endpoint of e but not a pole.

A simple directed cycle C� in G� consisting of valid edges is called valid cycle.
Then bending along C� changes the orthogonal representation R as follows; see
Fig. 3a. Let e� = (g, f) be an edge in C� with primal edge e. If e� is valid due
to Condition (I), we reduce rot(eg) by 1 and increase rot(ef ) by 1. Otherwise, if
Condition (II) holds, we reduce rot(vg) by 1 and increase rot(vf ) by 1, where v
is the vertex incident to e with rot(vf ) < 1.
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Fig. 3. (a) An orthogonal representation (the bold edge is inflexible, other edges have
flexibility 1) and a valid cycle C� (dashed). Bending along C� increases the green and
decreases the red angles. (b) Illustration of Fact 1 for some values of σ and τ .

Lemma 5. Let G be an st-graph with a valid (σ, τ)-orthogonal representation R.
Bending along a valid cycle C� yields a valid (σ, τ)-orthogonal representation.

As mentioned in Section 4, depending on σ and τ , there is a lower bound βlow

on the number of bends of (σ, τ)-orthogonal representations; see Fig. 3b.

Fact 1. A (σ, τ)-orthogonal representation has at least βlow =
⌈

σ + τ

2

⌉

−1 bends.

For a valid orthogonal representation with a large number of bends, the
following lemma states that we can reduce its bends by bending along a valid
cycle. This can later be used to show that the cost function of an st-graph is 0
on a significantly large interval. Or in other words, arbitrary alterations of cost 0
and cost ∞ that are hard to handle only occur on a small interval (depending
on k). The lemma and its proof are a generalization of Lemma 1 from [2] that
incorporates inflexible edges. For σ = τ = 3 a slightly weaker result holds.

Lemma 6. Let G be a k-critical st-graph and let R be a valid (σ, τ)-orthogonal
representation with σ + τ ≤ 5. If − rot(π(t, s)) ≥ βlow + k + 1 holds, then there
exists a valid cycle C� such that bending R along C� reduces − rot(π(t, s)) by 1.

Lemma 7. Let G be a k-critical st-graph and let R be a valid (3, 3)-orthogonal
representation. If − rot(π(t, s)) ≥ βlow + k + 2 holds, then there exists a valid
cycle C� such that bending R along C� reduces − rot(π(t, s)) by 1.

The previous lemmas basically show that the existence of a valid orthogonal
representation with a lot of bends implies the existence of valid orthogonal rep-
resentations for a “large” interval of bend numbers. This is made more precise
in the following.

Let Bσ
τ be the set containing an integer β if and only if G admits a valid

(σ, τ)-orthogonal representation with β bends. Assume G admits a valid (σ, τ)-
orthogonal representation, i.e., Bσ

τ is not empty. We define the maximum bend
value βmax to be the maximum in Bσ

τ . Moreover, let β ∈ Bσ
τ be the smallest

value, such that every integer between β and βmax is contained in Bσ
τ . Then we

call the interval [βlow, β −1] the (σ, τ)-gap of G. The value β −βlow is also called
the (σ, τ)-gap of G; see Fig. 4.
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Fig. 4. A cost function with gap k

Lemma 8. The (σ, τ)-gap of a k-critical st-graph G is at most k if σ + τ ≤ 5.
The (3, 3) gap of G is at most k + 1.

The following lemma basically expresses the gap of an st-graph in terms of
the rotation along π(s, t) instead of the number of bends.

Lemma 9. Let G be an st-graph with (σ, τ)-gap k. The set {ρ | G admits a
valid (σ, τ)-orthogonal representation with rot(π(s, t)) = ρ} is the union of at
most k + 1 intervals.

6.2 Computing the Cost Functions of Compositions

Let G be a graph with fixed planar embedding. We describe a flow network,
similar to the one by Tamassia [9] that can be used to compute orthogonal
representations of graphs with thick edges. In general, we consider a flow network
to be a directed graph with a lower and an upper bound assigned to every
edge and a demand assigned to every vertex. The bounds and demands can be
negative. An assignment of flow-values to the edges is a feasible flow if it satisfies
the following properties. The flow-value of each edge is at least its lower and at
most its upper bound. For every vertex the flow on incoming edges minus the
flow on outgoing edges must equal its demand.

We define the flow network N as follows. The network N contains a node for
each vertex of G, the vertex nodes, each face of G, the face nodes, and each edge
of G, the edge nodes. Moreover, N contains arcs from each vertex to all incident
faces, the vertex-face arcs, and similarly from each edge to both incident faces,
the edge-face arcs. We interpret an orthogonal representation R of G as a flow in
N . A rotation rot(ef ) of an edge e in the face f corresponds to the same amount
of flow on the edge-face arc from e to f . Similarly, for a vertex v incident to f
the rotation rot(vf ) corresponds to the flow from v to f .

Obviously, the properties (1)–(4) of an orthogonal representation are satisfied
if and only if the following conditions hold for the flow (note that we allow G to
have thick edges).
(1) The total amount of flow on arcs incident to a face node is 4 (−4 for the

outer face).
(2) The flow on the two arcs incident to an edge node stemming from a (σ, τ)-

edge sums up to 2 − (σ + τ).
(3) The total amount of flow on arcs incident to a vertex node, corresponding

to the vertex v with incident edges e1, . . . , e� occupying σ1, . . . , σ� incidences
of v is

∑
(σi + 1) − 4.

(4) The flow on vertex-face arcs lies in the range [−2, 1].
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Properties (1)–(3) are equivalent to the flow conservation requirement when set-
ting appropriate demands. Property (4) is equivalent to the capacity constraints
in a flow network when setting the lower and upper bounds of vertex-face arcs
to −2 and 1, respectively. In the following, we use this flow network to compute
the cost function of a rigid composition of graphs. The term Tflow(
) denotes the
time necessary to compute a maximal flow in a planar flow network of size 
.

Lemma 10. The (restricted) cost functions of a rigid composition of 
 graphs
can be computed in O(2k · Tflow(
)) time if the resulting graph is k-critical.

Proof (sketch). Let H be the skeleton of the rigid composition of the graphs
G1, . . . , G� and let G be the resulting graph with poles s and t. In the following,
we show that the (restricted) cost functions can be determined by computing
flows in O(2k) flow networks. We first show that, similar to the proof of Lemma 3,
the following parameters lead to only constantly many combinations: the number
of occupied incidences of the composed graphs and the graph itself; the decision
whether π(s, t) or π(t, s) determines the number of bends of G. The remaining
degrees of freedom are the number of bends β of G and for each graph Gi an
interval for its rotation along π(si, ti), where si and ti are the poles of Gi. It is not
hard to see that all these constraints can be expressed by capacity constraints
in the flow network. It remains to count the number of combinations.

Let ki be the number of critical edges in Gi. Due to Lemma 9, we get ki + 1
intervals for each of these graphs Gi leading to

∏
(ki + 1) combinations. As

critical edges in Gi remain critical in G (and the Gi are pairwise edge-disjoint),
we have

∑
ki ≤ k. One can show that with this restriction

∏
(ki + 1) ∈ O(2k).

Constructing all these flow networks for every possible number of bends β
would lead to O(βmax · 2k) flow networks. However, once the rotation intervals
for the Gi are fixed, one can compute a maximum and minimum rotation for
G with these intervals. It follows from basic flow theory that all intermediate
rotation values are also possible. Thus with two flow computations, we obtain all
possible rotation values for the chosen intervals of the Gi. This leads to O(2k)
intervals whose union describes the cost function of G. From that, an explicit
representation of the cost function of G can be computed in O(2k) time, which
yields a total running time of O(2k · Tflow(
)). ��
Lemma 11. The (restricted) cost functions of a series and a parallel composi-
tion can be computed in O(k2 + 1) time if the resulting graph is k-critical.

Theorem 5. FlexDraw for k-critical graphs is O(2k·n·Tflow(n))-time solvable.

Proof. By Theorem 3, we get an algorithm with the running time O(n · (n ·TS +
n ·TP +TR(n))), where TS , TP ∈ O(k2 +1) (Lemma 11) and TR(
) = 2k ·Tflow(
)
(Lemma 10) holds. This obviously yields the running time O((k2 + 1) · n2 + 2k ·
n · Tflow(n)) = O(2k · n · Tflow(n)). ��
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7 Conclusion

We want to conclude with the open question whether there exists an FPT-
algorithm for OptimalFlexDraw for the case where all cost functions are con-
vex and where the first bend causes cost only for k edges. One might think that
this works similar as for FlexDraw by showing that the cost functions of st-
graphs are only non-convex if they contain inflexible edges. Then, when encoun-
tering a rigid composition, one could separate these non-convex cost functions
into convex parts and consider all combinations of these convex parts. Unfortu-
nately, the cost functions of st-graphs may already be non-convex, even though
they do not contain inflexible edges. The reason why OptimalFlexDraw can
still be solved efficiently if there are no inflexible edges [3] is that, in this case,
the cost functions need to be considered only up to three bends (and for this
restricted intervals, the cost functions are convex). However, a single subgraph
with inflexible edges in a rigid composition may force arbitrary other subgraphs
in this composition to have more than three bends, potentially resulting in lin-
early many non-convex cost functions that have to be considered. Thus, although
the algorithms for FlexDraw and OptimalFlexDraw are very similar, the
latter does not seem to allow even a small number of inflexible edges.

Acknowledgments. We thank Marcus Krug for discussions on FlexDraw.
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