
Parameterized Analogues of Probabilistic Computation

Ankit Chauhan and B.V. Raghavendra Rao

Department of Computer Science and Engineering,
Indian Institute of Technology Madras,

Chennai, India
{ankitch,bvrr}@cse.iitm.ac.in

Abstract. We study structural aspects of randomized parameterized computa-
tion. We introduce a new class W[P]-PFPT as a natural parameterized analogue
of PP. Our definition uses the machine based characterization of the parame-
terized complexity class W[P] obtained by Chen et.al [TCS 2005]. We translate
most of the structural properties and characterizations of the class PP to the new
class W[P]-PFPT.

We study a parameterization of the polynomial identity testing problem based
on the degree of the polynomial computed by the arithmetic circuit. We obtain
a parameterized analogue of the well known Schwartz-Zippel lemma [Schwartz,
JACM 80 and Zippel, EUROSAM 79].

Additionally, we introduce a parameterized variant of permanent, and prove
its #W [1] completeness.

1 Introduction

Parameterized Complexity Theory provides a formal framework for finer complexity
analysis of problems by allowing a parameter along with the input. It was pioneered
by Downey and Fellows [11,10] two decades ago. Since then, it has revolutionized
algorithmic research [20], and led to the development of several important algorithmic
techniques.

Fixed Parameter Tractability (FPT) forms the central notion of tractability in Param-
eterized Complexity Theory. Here, any problem that is decidable in deterministic time
f(k)poly(n) is deemed to be tractable, where k is the parameter and f any computable
function. Several NP hard problems including the vertex cover problem are known to
be tractable under this notion [14].

The W-hierarchy serves as the basis for all intractable problems in the parameterized
world. W[1], the smallest member of W-hierarchy, consists of problems that are FPT
equivalent to the p-clique problem [14]. The limit of W-hierarchy, W[P] encapsulates
all problems solvable in non-deterministic f(k)poly(n) time using at most g(k) logn
non-deterministic bits [7,14], where f and g are arbitrary computable functions.

There have been significant efforts towards understanding the structure of parame-
terized complexity classes in the last two decades. Specifically exact characterizations
of the W-hierarchy and other related hierarchies are known [12]. (See also [14,11].)

Apart from non-deterministic computation, probabilistic computation serves as one
of the crucial building blocks of Complexity Theory. Probabilistic complexity classes
have been well studied in the literature and has been an active area of research for more

S. Ganguly and R. Krishnamurti (Eds.): CALDAM 2015, LNCS 8959, pp. 181–192, 2015.
c© Springer International Publishing Switzerland 2015

182 A. Chauhan and B.V. Raghavendra Rao

than three decades. There are a significant number of parameterized algorithms that use
randomization [11, Chapter 8]. Hence, development of randomized complexity classes
in the parameterized framework is necessary to understand the use of randomization in
the parameterized setting.

Müller [19,18] was the first to do a systematic development and study of param-
eterized randomization. He defined bounded error probabilistic parameterized classes
such as W[P]-BPFPT and W[1]-BPFPT. Further, he obtained amplification results and
conditions for derandomization of these classes. Further, Müller [19] studied several
parameterizations of the well known polynomial identity testing problem (ACIT) and
obtained several hardness results as well has upper bounds in terms of the newly defined
randomized classes.

We continue the line of research initiated by Müller [19] and study a parameterized
variant of probabilistic computation with unbounded error and establish a relationship
with the corresponding parameterized counting class.

It should be noted that almost all of the randomized FPT algorithms use randomness
of the same magnitude as their running times. However, such an algorithm cannot be
visualized as a non-deterministic algorithm with f(k) logn random bits, where f(k) is
an arbitrary computable function. This is in stark contrast to the classical setting, where
every randomized algorithm with bounded error probability can also be seen as a non-
deterministic algorithm with the same time bound. So it is desirable to have randomized
FPT algorithms that use at most O(f(k) logn) random bits instead of f(k)poly(n)
random bits. As a first step towards this we obtain such an algorithm for a suitable
parameterization of ACIT.

Finally, following the recent developments in the parameterized complexity theory
of counting problems [5,8,9], we develop a parameterized variants of the problems of
computing permanent and determinant of a matrix.

Our Results. We make an attempt at understanding the relations between counting and
probabilistic classes. We focus on a probabilistic analogue of the class W[P]. Using
the notion of k-restricted Turing machines [7], we introduce W[P]-PFPT as a param-
eterized variant of the probabilistic polynomial time (PP). As in the classical com-
plexity setting, we establish a close connection between W[P]-PFPT and the counting
class #W[P] (Theorem 2). Further, we show that W[P]-PFPT is closed under comple-
mentation and symmetric differences. (Theorem 3 and Lemma 3.)

We consider the polynomial identity testing problems (ACIT) with the syntactic de-
gree (See Section 2 for a definition) as a parameter. Using the construction of hitting
set generators by Shpilka and Volkovich [22], we obtain what can be called as a param-
eterized analogue of the celebrated Schwartz-Zippel Lemma [21,24]. (Theorem 4.)

Finally, we introduce a parameterized variant of the permanent function p-perm and
prove that it characterizes the class #W[1]. (Theorem 6.) Analogously, a variant of the
determinant function (p-det) and show that it is Fixed Parameter Tractable (Theorem 5).

2 Preliminaries

We include some of the definitions from Parameterized Complexity theory and Com-
plexity theory here. For Parameterized Complexity, the notations in [11,14] are fol-
lowed. Definitions of complexity classes can be found in e.g., [13,4].

Parameterized Analogues of Probabilistic Computation 183

A parameterized language is a set P ⊆ Σ∗ × N, where Σ is a finite alphabet. If
(x, k) ∈ Σ∗ × N is an input instance of a parameterized language, then x is referred to
as the input and k as the parameter.

A parameterized counting problem is a pair (f, k), where f : Σ∗ → N is a counting
function and k is the parameter and Σ is a finite alphabet. For notational convenience,
we will denote a parameterized counting problem as a function f : Σ∗×N → N, where
the second argument to f is considered as the parameter.

A parameterized language P ⊆ Σ∗ × N is said to be fixed-parameter tractable if
there is an algorithm that given a pair (x, k) ∈ Σ∗ × N , decides if (x, k) ∈ P in at
most O(f(k)|x|c) steps, where f : N → N is a computable function and c ∈ N is a
constant.

Definition 1. FPT denotes the class of all parameterized languages that are fixed pa-
rameterized tractable.

A parameterized language L is said to be in RFPT (Randomized FPT) if there is a
f(k)poly(n) time bounded randomized machine accepting L with bounded one-sided
error probability. See [14,11] for more details.

Definition 2. A k-restricted machine is a non-deterministic g(k)poly(n) time bounded
Random Access Machine (RAM) that uses at most f(k) non-deterministic words, where
f and g are arbitrary computable functions. Here we assume that the word size is
O(log n), where n is the length of the input.

A k-restricted Turing machine is a non-deterministic g(k)poly(n) time Turing ma-
chine that makes at most f(k) logn non-deterministic moves, where f and g are arbi-
trary computable functions.

Definition 3. A tail non-deterministic machine is a k-restricted machine in which all
non-deterministic steps are among last f(k) steps.

W[P] is the class of all parameterized problems (Q, k) that can be decided by a k-
restricted non-deterministic machine (for more details see chapter 3 in [14]). W[1] is the
class of all parameterized problems (Q, k) that can be decided by tail non-deterministic
machine (for more details see [7]).

For a non-deterministic machine M , let #accM (x, k) and #rejM (x, k) respectively
denote the number of accepting and rejecting paths of M on input (x, k). Define
gapM (x, k)=#accM (x, k)−#rejM (x, k).

Definition 4. [14] A parameterized counting function (f, k) over the alphabet Σ is in
#W[P] if there is a k-restricted non-deterministic machine M such that f(x, k) =
#accM (x, k).

Definition 5. A probabilistic k-restricted machine is a probabilistic g(k)poly(n) time
bounded RAM that make at most f(k) probabilistic moves, where f and g are some
computable functions. Here we assume that one probabilistic move involves choosing a
random word of O(log n) bits.

A language L is said to be in W[P]-RFPT [19] if there is a k-restricted probabilistic
machine such that (x, k) ∈ L =⇒ Pr[M accepts (x, k)] ≥ 2/3 ; and x /∈ L =⇒

184 A. Chauhan and B.V. Raghavendra Rao

Pr[M rejects (x, k)] = 0. It should be noted that for a langauage in RFPT the number
of random bits can be a big as f(k)poly(n) whereas for languages in W[P]-RFPT it is
bounded by O(f(k) log n.

An arithmetic circuit C is a directed acyclic graph with labelling on the vertices as
follows. Nodes of in-degree zero are called input gates and are labelled from {−1, 1}∪
{x1, . . . , xn} where x1, . . . , xn are the input variables. The remaining gates are labelled
× or +. An arithmetic circuit has exactly one gate of zero out-degree called the output
gate. Every gate v in an arithmetic circuit can naturally be associated with a polyno-
mial pv ∈ Z[x1, . . . , xn], where the polynomials associated at input nodes are either
constants or variables. If v = v1 + v2 then pv = pv1 + pv2 and if v = v1 × v2 then
pv = pv1×pv2 . The polynomial computed by the circuit C is the polynomial associated
with its only output gate and is denoted by pC . The size of an arithmetic circuit is the
number of gates in it and is denoted by size(C).

We associate a number called the syntactic degree (syntdeg)1 with every gate of
an arithmetic circuit C. For a leaf node v, syntdeg(v) = 1. If v = v1 + v2 then
syntdeg(v) = max{syntdeg(v1), syntdeg(v2)} and if v = v1 × v2 then deg(v) =
syntdeg(v1) + syntdeg(v2). It should be noted that the degree of the polynomial com-
puted by a circuit is bounded by its syntactic degree.

Remark 1. the parameter d× introduced in [19] is closely related to syntdeg, in fact
syntdeg ≤ 2d× ≤ 2syntdeg.

In [3], Alon obtained a characterization for multivariate polynomials that are not iden-
tically zero known as the Combinatorial Nullstellensatz:

Proposition 1 (Combinatorial Nullstellensatz, [3]). Let P ∈ K[x1, . . . , xn] be a
polynomial where for every i ∈ [n], the degree of xi is bounded by t. Let S ⊆ K be a
finite set of size at least t+ 1, and A = Sn. Then P ≡ 0 ⇐⇒ P (a) = 0, ∀a ∈ A.

3 Probabilistic Computation

In this section, we develop a parameterized analogue of the classical complexity class
PP. Our definition of W[P]-PFPT is based on k-restricted probabilistic Turing ma-
chines.

Throughout this section unless otherwise stated, f(k) denotes an arbitrary com-
putable function, and P (n, k) = f(k) logn. For an input x, we denote n = |x|.
Definition 6. A parameterized languageL is said to be in the class W[P]-PFPT if there
is a k-restricted probabilistic Turing machine M such that for any (x, k) ∈ Σ∗ ×N we
have,

(x, k) ∈ L ⇒ Pr[M accepts (x, k)] >
1

2

(x, k) /∈ L ⇒ Pr[M accepts (x, k)] ≤ 1

2

where the probabilities are over the random choices made by M .

1 Syntactic degree is also known as the formal degree [16] and is a standard parameter for
arithmetic circuits.

Parameterized Analogues of Probabilistic Computation 185

Without loss of generality, we assume Σ = {0, 1}.
In the classical setting, PP is known to have several characterizations based on, 1)

difference between two #P functions [15], 2) difference between the number of ac-
cepting and rejecting paths of a polynomial time bounded non-deterministic Turing
machine [15], 3) logics based on majority quantifiers [17] and 4) large fan-in circuits
with threshold gates [2]. We observe that all of the characterizations except (3) hold for
W[P]-PFPT. However, it is not clear if the majority quantifier logical characterization
of PP [17] translates to the parameterized setting.

Definition 7 (Diff-FPT, Gap-FPT). A parameterized function f : Σ∗ × N → Z is
said to be in Diff-FPT if there are two functions g, h ∈ #W[P] such that f(x, k) =
g(x, k)− h(x, k).

f is said to be in Gap-FPT if there is a k-restricted TM M such that f(x, k) =
#accM (x, k) −#rejM (x, k), ∀(x, k) ∈ Σ∗ × N.

Firstly, we observe that the two classes Gap-FPT and Diff-FPT coincide.

Lemma 1. Gap-FPT = Diff-FPT

Proof. To show Gap-FPT ⊆ Diff-FPT: Let f ∈ Gap-FPT, then there is a k-restricted
M with f(x, k) = #accM (x, k) −#rejM (x, k). Let M ′ be a new machine that sim-
ulates M on input (x, k) and accepts if and only if M rejects (x, k). Then we have
f(x, k) = #accM (x, k)−#accM ′(x, k). For the converse inclusion, let f ∈ Diff-FPT,
and M1,M2 be such that f(x, k) = #accM1(x, k) −#accM2(x, k). Let M be a new
machine: on input (x, k), Guess a non-deterministic bit b ∈ {0, 1}. Run M1 if b = 0,
M2 otherwise. If b = 0 and M1 accepts then accept. If b = 1, and M2 accepts then re-
ject. In all other cases guess another non-deterministic bit b′ and accept if b′ = 1 and re-
ject otherwise. Then #accM (x, k)−#rejM (x, k) = #accM1(x, k)−#accM2(x, k) =
f(x, k)

Lemma 2. Gap-FPT is closed under taking p-bounded summations and products, i.e.,
if g1, . . . , gt(k) ∈ Gap-FPT, then so are g1 + g2 · · ·+ gt(k) and g1 × g2 × · · · × gt(k),
where t is any computable function.

Proof. The arguments here are straightforward adaptations of proofs from classical
complexity. We include it here for completeness. For summation, we can construct a
new machine M that first guesses i ∈ [1, t(k)] and and runs the k-restricted machine
for gi on (x, k).

For product, we will show for the case when t(k) = 2. Let f1, f2 ∈ Gap-FPT.
Let M1 and M2 as the k-restricted machines such that fi(x, k) = #accMi(x, k) −
#rejMi

(x, k), 1 ≤ i ≤ 2. Let Mi be the machine that flips the answers of Mi. Let
M be k-restricted machine defined as follows: On input (x, k) first simulate M1 on
(x, k). If M1 accepts then run M2 on (x, k) and accept if and only if M2 does so. If M1

rejects then run M2 on (x, k) and accept if and only if M2 does so. It can be seen that
f1(x, k)f2(x, k) = #accM (x, k) −#rejM (x, k).

The above argument can be generalized to the case t(k) ≥ 2.

186 A. Chauhan and B.V. Raghavendra Rao

Theorem 1. Let L be a parameterized language. The following are equivalent:

1. L ∈ W[P]-PFPT.
2. There is a k−restricted Turing machine M such that,

(x, k) ∈ L ⇐⇒ #acceptM (x, k)−#rejectM (x, k) > 0 .
3. There is a function f ∈ Gap-FPT such that (x, k) ∈ L ⇐⇒ f(x, k) > 0
4. There is a B ∈ FPT and P (n, k) = f(k) logn such that (x, k) ∈ L if and only if

|{y ∈ {0, 1}P (n,k) | (x, y, k) ∈ B}| ≥ 2P (n,k)−1 + 1.

Proof (Theorem 1). (1 ⇒ 2) LetL ∈ W[P]-PFPT. Let M be a k-restricted probabilistic
machine for L. Then,

(x, k) ∈ L ⇒ Pr[M accept(x, k)] >
1

2
⇒ #acceptM (x, k)

#acceptM (x, k) + #rejectM (x, k)
>

1

2

⇒ #acceptM (x, k)−#rejectM (x, k) > 0

(2 ⇒ 3) This directly follows from the definition of Gap-FPT.
(3 ⇒ 4) Let f ∈ Gap-FPT with (x, k) ∈ L ⇐⇒ f(x, k) > 0, and M be

a k-restricted machine with f(x, k) = gapM (x, k). Let P (n, k) be the number of
non-deterministic bits used by M on an input of length n with parameter k. Then
gapM (x, k) > 0 =⇒ #accM (x, k) > 2P (n,k)/2 = 2P (n,k)−1. Let

B = {〈x, y, k〉 | M on the non-deterministic path defined by y accepts x.}
Clearly, B ∈ FPT and #accM (x, k) = |{y ∈ {0, 1}P (n,k) | 〈x, y, k〉 ∈ B}|. Thus
(x, k) ∈ L =⇒ |{y ∈ {0, 1}P (n,k) | 〈x, y, k〉 ∈ B}| > 2P (n,k)−1.

(4 ⇒ 1) Let L as given in 4. Let M be k-restricted machine that on input (x, k)
guesses a string y ∈ {0, 1}P (n,k) and accepts if and only if 〈x, y, k〉 ∈ B. Then we
have x ∈ L ⇐⇒ #accM (x, k) > 2P (n,k)−1 ⇐⇒ Pr[M accepts (x, k)] > 1/2.

Similar to the case of PP, we observe that an FPT machine with oracle access to a
function in #W [P] is equivalent to an FPT machine with a language in W[P]-PFPT as
an oracle.

Theorem 2. FPT#W[P] = FPTW[P]-PFPT

Proof (Theorem 2). We show the containment in both the directions. We start with the
easier direction, i.e., we show FPTW[P]-PFPT ⊆ FPT#W[P].

Let L ∈ FPTW[P]-PFPT and M be a deterministic oracle Turing machine that runs
in time f(k)poly(n) and A ∈ W[P]-PFPT with L = L(MA). We need to show that
L ∈ FPT#W [P]. By Theorem 1, there are two parameterized functions g, h : {0, 1}∗×
k → N with g, h ∈ #W[P] such that

(x, k) ∈ A ⇐⇒ g(x, k)− h(x, k) > 0. (1)

Let γ : {0, 1}∗ × k → N where γ(0x, k) = g(x, k), and γ(1x, k) = h(x, k), ∀x ∈
{0, 1}∗. On strings of length 0 and 1, γ can be defined arbitrarily. We have γ ∈ #W[P],
since on input y = ax, with a ∈ {0, 1}, the machine would run the machine for g if
a = 0 and machine for h if a = 1.

Parameterized Analogues of Probabilistic Computation 187

We can simulate a query (y, k′) made by the machine M to A by two queries to the
function γ: (1) Query (0y, k′) and (2) (1y, k′), compute the difference of the values
obtained and use (1) to decide the membership of (y, k′) in A. Thus we can conclude
L ∈ FPT#W[P].

For the reverse containment, given a Turing machine M , let LM be the language
defined as : LM = {((x, k, y) ∈ Σ∗ × N× N |#accM (x, k) > y}
Claim. Let M be a k-restricted Turing machine, then LM ∈ W[P]-PFPT.

Proof (Claim). Let M ′ be a Turing machine runs in FPT time computing function
t(x, k, y), that on input (x, k, y), produces exactly y accepting paths, where y is repre-
sented in binary, and y ∈ [0, 2P (n,k)]. Clearly, M ′ is a k-restricted Turing machine,
since it needs to use only P (n, k) many non-deterministic bits. Thus the function
t(x, k, y) = y is in #W[P]. Let fM (x, k, y) = #accM (x, k) − y. Then by Lemma 1
fM is in gapW[P] and the claim now follows from Theorem 1. ��
Let L ∈ FPT#W[P], then there is a deterministic oracle Turing machine M ′ that runs
FPT time, and a function g ∈ #W[P] such that L = M ′g. Let M be a k-restricted
Turing machine that uses at most f(k) logn non-deterministic steps such that g(x, k) =
#accM (x, k). We use the standard binary search technique to show that g(x, k) can be
computed using O(kn) many queries to the language LM .

Input (x, k), oracle access to LM . Output g(x, k).
1. Initialize p = P (|x|, k), y = 2p.
2. Repeat steps 3 & 4 until p ≥ 0
3. Query (x, k, y) to the oracle; If YES, then set bp = 1 and y = y + 2p−1; Else set

bp = 0.
4. Set p = p− 1
5. Return a = binary(bpbp−1 . . . b0).

In the above binary(bpbp−1 . . . b0) =
∑p

i=0 2
ibi. Clearly, the algorithm above runs in

time f(k)poly(n), and hence computing g can be done in FPT with oracle access to
LM ∈ W[P]-PFPT. This concludes the inclusion in the converse direction. ��
Theorem 3. W[P]-PFPT is closed under complementation.

Proof can be found in the complete version of paper [6].

Lemma 3. W[P]-PFPT is closed under symmetric difference.

Proof. The proof essentially follows the ideas in the classical setting [2]. Let L1, L2 ∈
W[P]-PFPT. By Theorem 1, we have B1, B2 ∈ FPT and P (n, k) = f(k) logn such
that for any x ∈ {0, 1}∗, k ∈ N and i ∈ {1, 2},

(x, k) ∈ Li ⇐⇒ |{yi ∈ {0, 1}P (n,k)|(x, k, yi) ∈ Bi}| ≥ 2P (n,k)−1 + 1

Using a construction similar to the one used in the proof of Theorem 3, we get parame-
terized languages B′

1 and B′
2, and a function P ′(n, k) = f ′(k) logn with the following

property for 1 ≤ i ≤ 2:

(x, k) ∈ Li =⇒ |{yi ∈ {0, 1}P ′(n,k)|(x, k, yi) ∈ B′
i}| ≥ 2P

′(n,k)−1 + 1; and

(x, k) /∈ Li =⇒ |{yi ∈ {0, 1}P ′(n,k)|(x, k, yi) ∈ B′
i}| ≤ 2P

′(n,k)−1 − 1.

188 A. Chauhan and B.V. Raghavendra Rao

Let a1(x), a2(x) ∈ Z such that |{y ∈ {0, 1}P (n,k) | 〈x, y〉 ∈ B′
i}| = 2P (n,k)−1+ai(x)

for 1 ≤ i ≤ 2. Thus |{y ∈ {0, 1}P (n,k) | 〈x, y〉 /∈ B′
i}| = 2P (n,k)−1 − ai(x). For

x ∈ Σ∗, let

�(x, k)
�
= |S(x, k)|
= |(2P ′(n,k)−1 + a1)(2

P ′(n,k)−1 − a2)

+ (2P
′(n,k)−1 − a1)(2

P ′(n,k)−1 + a2)|
= (22P

′(n,k)−1 − a1a2),

where S(x, k) = {〈y1, y2〉 | (< x, y1 >∈ B1 ∧ 〈x, y2〉 /∈ B2) ∨ (〈x, y1〉 /∈ B1 ∧
〈x, y2〉 ∈ B2)}. Now, if x ∈ L1 � L2 then either (a1 ≥ 1 and a2 < 0) or (a1 <
0 and a2 ≥ 1) then � > 22P (n,k)−1 and if x /∈ L1 � L2 then either both a1 and a2 are
greater than equal to 1 or both are less than 1, and in both the cases � ≤ 22P (n,k)−1. Let
M ′ be a k-restricted Turing machine that on input (x, k) guesses two strings y1 and y2
of length P ′(n, k) each, and queries (x, k, yi) to B′

i, 1 ≤ i ≤ 2, accepts if and only if
exactly one of the oracle answers is YES. It can be seen that #accM ′(x, k) = �(x, k).
We conclude L1 � L2 ∈ W[P]-PFPT.

4 Polynomial Identity Testing

Müller [19] studied the Arithmetic Circuit Identity Testing (ACIT) problem with vari-
ous parameters and obtained upper bounds as well as hardness results for each of the
parameters considered. However none of the parameters considered in [19] seem ade-
quate for developing a complexity theory for the parameterized probabilistic and count-
ing classes along the lines of classical complexity classes.

Recall that, in ACIT we are given an arithmetic circuit C as an input and the task is
to test if the polynomial computed by C is identically zero. We consider the degree of
the polynomial computed by C as a parameter.

Problem 1 (p-acit). Input: Arithmetic circuit C, syntdeg(C) ≤ k.
Parameter: k.
Task: Test if the polynomial computed by C is identically zero.

Our main objective now is to show that p-acit ∈ W[P]-RFPT. However, it should be
noted that this does not follow directly from the Schwartz-Zippel Lemma, since it would
require O(n log k) random bits. So the challenge here is to reduce the number of ran-
dom bits required to f(k) logn. Towards this, we use a mapping defined by Shpilka
and Volkovich [22] that reduces the number of variables from n to 2k. Then we apply
Alon’s Combinatorial Nullstellensatz [3] to obtain what can be treated as a parameter-
ized version of the Schwartz-Zippel lemma.

We begin with a few observations on polynomials of degree at most k. Let S be any
finite subset of K that includes 0 ∈ K and let W k

n (S) denote the set of all vectors in Sn

with at most k non zero entries i.e, the set of all vectors of Hamming weight at most k.

Lemma 4. Let f be an n-variate polynomial of degree at most k. Then

f ≡ 0 ⇐⇒ ∀a ∈ W k
n (S) f(a) = 0,

where S ⊂ K has at least k + 1 elements.

Parameterized Analogues of Probabilistic Computation 189

Proof. For simplicity, we denote W k
n (S) by W k

n . The proof is by induction on n. For
the base case, suppose n ≤ k. Since individual degrees of each variable is bounded by
k, by Proposition 1, we have f ≡ 0 ⇐⇒ f(a) = 0 ∀ a ∈ Sn, for an S with |S| ≥ k.

For the induction step, let n > k, and f(a) = 0 ∀ a ∈ W k
n . For i ∈ {1, . . . , n},

let fi=f |xi=0, i.e., f substituted with xi = 0. Note that each of the fi is a degree k
polynomial on at most n − 1 variables, and ∀a ∈ W k

n−1 fi(a) = 0. By the induction
hypothesis, we have fi ≡ 0, and hence xi divides f . Repeating the argument for all i ∈
[1, . . . , n], we have x1x2 · · ·xn divides f , and hence deg(f) ≥ n > k, a contradiction
since deg(f) = k < n. Thus we conclude ∀a ∈ W k

n f(a) = 0 =⇒ f ≡ 0. The
converse direction is trivially true.

We need a function introduced by Shpilka and Volkovich [22], that gives a map Gk :
K[x1, . . . , xn] → K[y1, . . . , y2k] and serves as a non-identity preserving for a large
class of polynomials. We observe that Gk also functions as a non-identity preserving
map for the class of all n variate polynomials of degree at most k. We begin with the
definition of the generator Gk.

Definition 8 (Shpilka-Volkovich Hitting Set Generator, [22]). Let a1, . . . , an be dis-
tinct elements in K. Let Gi

k ∈ K[y1, . . . , yk, z1, . . . , zk] be the polynomial defined as
follows:

Gi
k(y1, . . . , yk, z1, . . . , zk) =

k∑

j=1

Li(yi)zi, where Li(x) =

∏
j �=i(x− aj)

∏
j �=i(ai − aj)

.

The generator Gk is defined as Gk
�
= (G1

k, . . . , G
n
k).

Lemma 5. For any finite set S ⊂ K, then W k
n (S) ⊆ {(G1

k(a), . . . , G
n
k (a)) | a ∈

(S ∪ {a1, . . . , an})2k}.
Proof. The proof essentially follows the arguments in [22]. We include a sketch here
for the sake of completeness. Note that,

Li(α) =

{
0 α = aj, if j �= i

1 if α = ai.

Thus if we set y� = ai, then the image of Gi
k contains zi as a summand. By ensuring

that yj , i �= j gets some a�, i �= �, we get Gi
k = zi. In this way we can obtain all vectors

of Hamming weight k, by setting yi’s and zi’s accordingly. ��
Combining Lemma 5 with Lemma 4 we have:

Lemma 6. Let f be a polynomial of degree at most k. Then f ≡ 0 ⇐⇒ f(Gk) ≡ 0.

Theorem 4. p-acit is in W[P]-RFPT

Proof. By Lemma 6 p-acit reduces to testing identity of 2k-variate polynomials of de-
gree O(nk) (since the polynomials Li have degree n). Now applying the Schwartz-
Zippel lemma [21,24], we obtain a randomized algorithm that uses O(2k log(nk)) ran-
dom bits and runs in time polynomial in n and k.

190 A. Chauhan and B.V. Raghavendra Rao

5 Parameterized Permanent vs Determinant

The determinant (det) permanent (perm) functions are defined as

det(A) =
∑

σ∈Sn

n∏

i=1

sgn(σ)ai,σ(i) (2)

perm(A) =
∑

σ∈Sn

n∏

i=1

ai,σ(i), (3)

where A = (ai,j)1≤i,j≤n ∈ N
n×n, Sn is the set of all permutations on n symbols and

sgn is the sign function for permutations. It is known that, given an integer matrix A,
computing A can be done in polynomial time (e.g., Gaussian Elimination method). In
his celebrated paper, Valiant [23] showed that computing perm of an integer even for
0 or 1 matrix is complete for #P. Though there are several natural counting problems
that characterize #W [1], it is desirable to have a parameterized variant of permanent
so that we get access to the algebraic properties of the permanent function.

Naturally, we expect any parameterized variant of permanent to be a function of
degree k in n2 variables, where k is the parameter. One way to achieve this would
be to restrict the summation given in (3) that move exactly k-elements. Formally, a
permutation σ ∈ Sn is said to be a k-permutation, if |{i | σ(i) �= i}| = k. Let Sn,k

denote the set of all k-permutations on n symbols.

Definition 9. Let k be a parameter. The parameterized determinant (p-det) and per-
manent (p-perm) functions of a matrix A ∈ Z

n×n are defined as follows:

p-det(A, k) =
∑

σ∈Sn,k

∏

i�=σ(i)

sgn(σ)aiσ(i)

p-perm(A, k) =
∑

σ∈Sn,k

∏

i�=σ(i)

aiσ(i),

where k is a parameter. By abusing the notation, we also let p-perm denote the problem
of computing p-perm of an n× n matrix, where k is the parameter.

Quite expectedly, p-det is FPT and p-perm can be shown to be #W [1] complete under
fpt-reductions. We start with the tractability of p-det.

Theorem 5. p-det on integer matrices is fixed parameter tractable.

Proof. Let A ∈ Z
n×n, and k be the parameter. Let A′ be the matrix obtained from A by

replacing the diagonal entries in A by zeroes. Clearly p-det(A, k) = p-det(A′, k). Let
x be a formal variable. Then det(xA′) is a univariate polynomial of degree bounded by
n, and the coefficient of xk in det(xA′) is equal to p-det(A, k). The value p-det(A, k)
be recovered using the standard interpolation of univariate polynomials. ��
Theorem 6. p-perm on matrices in N

n×n is #W [1] complete. The hardness holds even
in the case of 0-1 matrices.

Parameterized Analogues of Probabilistic Computation 191

Proof. It is known that counting k-matchings in a bipartite graph is complete for#W[1]
even in the weighted case [9]. We prove a parameter preserving equivalence between
p-perm and the problem of counting k-matchings in a bipartite graph which com-
pletes the proof. For the upper bound, we give a reduction from p-perm to counting
k-matchings in a bipartite graph. For a given matrix A ∈ N

n×n define the matrix A′ by
setting the diagonal entries of A to zero, i.e., A′[i, j] = A[i, j] if i �= j and A′[i, i] = 0,
1 ≤ i ≤ n. Note that p-perm(A) = p-perm(A′). Every k-permutation of {1, . . . , n}
corresponds to a matching of size k in the bipartite graph G′ with A′ is the bipartite
adjacency matrix. Thus p-perm(A′) =the sum of weights of k-matchings in G′.

For the hardness we give a reduction in the reverse direction, i.e., a parameter pre-
serving reduction from counting the number of k-matchings in a bipartite graph G =
(U, V,E) to computing p-perm of an integer matrix.

Let G = (U, V,E) be a bipartite graph. Without loss of generality, assume that
U = V = {1, . . . , n}. Construct a new bipartite graph G′ = (U ′, V ′, E′) with U ′ =
V ′ = {1, . . . , 2n}. For every edge of the form (i, j) ∈ E, i �= j, G′ contains the edge
(i, j) ∈ E′. For edges of the form (i, i) ∈ E, G′ contains the edge (i, n+ i) ∈ E′. Note
that the vertices n+ 1, . . . , 2n in U ′ are isolated vertices.

Note that the number of matchings in G and those in G′ of a given size k are equal.
Let A′ be the bipartite adjacency matrix of G′. Every k-permutation of [2n] that con-
tributes a non-zero value to p-perm(A′) corresponds to a matching of size k in G′.
Moreover, none of the k-matchings in G′ will have an edge of the form (i, i), i ∈ [2n].
Thus, p-perm(A′, k) = #matchings of size k in G′. This completes the proof. ��

6 Conclusions

We have studied parameterized variants of probabilistic computation. We hope that our
definition ofW[P]-PFPT leads to further developments in the structural aspects of prob-
abilistic and counting complexities in the parameterized world. Further, W[P]-PFPT
might be useful in defining a parameterized variant of the Counting Hierarchy (CH)
which could in turn have implications to parameterized complexity of numerical and al-
gebraic computation [1]. Though definition of a parameterized CH based onW[P]-PFPT
is straightforward, the usefulness of such a definition would rely on W[P]-PFPT being
closed under intersection, which is not known currently.

Further, we believe any fixed parameter tractable randomized algorithm should nat-
urally place the problem in W[P]. One way to achieve this is to obtain randomized
FPT algorithms that use at most O(f(k) log n) random bits. As a first step towards this
direction, we introduce a natural parameterization to the polynomial identity testing
for which we obtain such an algorithm. We hope our observations will lead to further
development of randomness efficient parameterized algorithms.

Acknowledgements. We thank anonymous reviewers for their comments on an earlier
version of this paper which helped in improving the presentation of the article.

192 A. Chauhan and B.V. Raghavendra Rao

References

1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the complexity of
numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)

2. Allender, E., Wagner, K.W.: Counting hierarchies: Polynomial time and constant. Bulletin of
the EATCS 40, 182–194 (1990)

3. Alon, N.: Combinatorial nullstellensatz. Combinatorics, Problem and Computing 8 (1999)
4. Arora, S., Barak, B.: Computational Complexity: A Modern approach. Cambridge Univeristy

Press (2009)
5. Bläser, M., Curticapean, R.: Weighted counting of k-matchings is #W[1]-hard. In: IPEC,

pp. 171–181 (2012)
6. Chauhan, A., Rao, B.V.R.: Parameterized analogues of probabilistic computation. CoRR,

abs/1409.7790 (2014)
7. Chen, Y., Flum, J., Grohe, M.: Machine-based methods in parameterized complexity theory.

Theor. Comput. Sci. 339(2-3), 167–199 (2005)
8. Curticapean, R.: Counting matchings of size k is �W[1]-hard. In: Fomin, F.V., Freivalds,

R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 352–363.
Springer, Heidelberg (2013)

9. Curticapean, R., Marx, D.: Complexity of counting subgraphs: only the boundedness of the
vertex-cover number counts. CoRR, abs/1407.2929 (2014); to Appear in FOCS 2014

10. Downey, R.G., Fellows, M.R.: Fixed-parameter intractability. In: Structure in Complexity
Theory Conference, pp. 36–49 (1992)

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1997)
12. Downey, R.G., Fellows, M.R., Regan, K.W.: Parameterized circuit complexity and the W

hierarchy. Theor. Comput. Sci. 191(1-2), 97–115 (1998)
13. Du, D.-Z., Ko, K.-I.: Theory of Computational Complexity. Springer (2000)
14. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2008)
15. Fortnow, L.: Counting complexity. In: Hemaspaandra, L., Selman, A. (eds.) Complexity

Theory Retrospective II, pp. 81–107 (1997)
16. Kayal, N., Saha, C., Saptharishi, R.: A super-polynomial lower bound for regular arithmetic

formulas. In: STOC, pp. 146–153 (2014)
17. Kontinen, J.: A logical characterization of the counting hierarchy. ACM Trans. Comput.

Log. 10(1) (2009)
18. Müller, M.: Parameterized derandomization. In: Grohe, M., Niedermeier, R. (eds.) IWPEC

2008. LNCS, vol. 5018, pp. 148–159. Springer, Heidelberg (2008)
19. M üller, M.: Parameterized Randomization. PhD thesis, Albert-Ludwigs-Universität Freiburg

im Breisgau (2008)
20. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-

ematics and Its Applications, vol. 31. Oxford University Press (2006)
21. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J.

ACM 27(4), 701–717 (1980)
22. Shpilka, A., Volkovich, I.: Improved polynomial identity testing for read-once formulas.

In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS,
vol. 5687, pp. 700–713. Springer, Heidelberg (2009)

23. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201
(1979)

24. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM
1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)

	Parameterized Analogues of Probabilistic Computation
	1 Introduction
	2 Preliminaries
	3 Probabilistic Computation
	4 Polynomial Identity Testing
	5 Parameterized Permanent vs Determinant
	6 Conclusions

