
Greedy versus Curious Parent Selection for
Multi-Objective Evolutionary Algorithms

Denis Antipov1[0000−0001−7906−096X], Timo Kötzing2[0000−0002−1028−5228], and
Aishwarya Radhakrishnan2[0000−0002−5667−8780]

1 University of Adelaide, Adelaide, Australia
denis.antipov@adelaide.edu.au

2 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{timo.koetzing,aishwarya.radhakrishnan}@hpi.de

Abstract. From the literature we know that simple evolutionary multi-
objective algorithms can optimize the classic two-objective test functions
OneMinMax and CountingOnesCountingZeroes in O(n2 logn) ex-
pected time. We extend this result to any pair of generalized OneMax
functions and show that, if the optima of the two functions are d apart,
then (G)SEMO has an expected optimization time of O(dn log(n)).
In an attempt to achieve better optimization times, some algorithms
consider parent selection. We show that parent selection based on the
curiosity-based novelty search can improve the optimization time to
O(n2) on OneMinMax. By contrast, we show that greedy parent se-
lection schemes can be trapped with an incomplete Pareto front for su-
perpolynomial time.
Finally, we provide experimental results on the two-objective optimiza-
tion of linear functions.

Keywords: Evolutionary Algorithm · Multi-Objective Optimization ·
Run time analysis.

1 Introduction

While evolutionary algorithms [16] might be most famous for applications on
single-objective problems, the setting of optimizing multiple criteria at once is
particularly suitable for an approach with population-based methods, since dif-
ferent candidate solutions might be incomparable: while one solution is better
than another in terms of the first criterion, the situation is reversed in terms of
the second criterion, and so on. Thus it makes sense to retain all non-dominated
solutions (where no other solution is better in all objectives), naturally giving a
population of solutions. The analysis of the search behavior and search perfor-
mance has been the subject of significant theoretical analysis [10,11,12,17,23,28].

Core starting point of all theoretical research is the classic benchmark prob-
lem OneMax, which was extended to the setting of two objectives in two ways.
The first uses the classic OneMax function as one objective and the direct oppo-
site, minimizing the number of 1s instead of maximizing it, as the other objective.

2 D. Antipov, T. Kötzing, A. Radhakrishnan.

Using these two objectives is called OneMinMax. The second extension con-
siders less conflicting bits: While the second half of the bits stay in conflict, the
first half are shared. This is called CountingOnesCountingZeroes (COCZ).

The behavior of the classic SEMO (Simple Evolutionary Multi-Objective)
and GSEMO (Global Simple Evolutionary Multi-Objective) algorithms is well-
understood on these two problems (see [20,22,4,26]). The expected run time of
SEMO and GSEMO to cover the whole Pareto front while minimizing OneM-
inMax and COCZ is Θ(n2 log(n)) and the theoretical analyses can be found in
[20,22,4].

For the case of single-objective optimization, the broader class of linear func-
tions [14] gives an important extension of the simple OneMax function, extend-
ing it to a sizable class of functions. This was a driver for further development
of the field [27]. While OneMax as a member of this class has been analyzed
for the two-objective case, no other linear functions where considered.

With this paper, we first provide a general definition of two-objective prob-
lems where both objectives are derived from the OneMax test function; we call
this OMC, the OneMax function class. Analogously, we define LFC, the linear
function class. In Section 4 we introduce and discuss these function classes and
study some of their properties. We also include a proof of the expected run time
of (G)SEMO on two elements of OMC being O(dn log(n)) in dependence on
the distance d > 0 of the optima of the two objective functions. Note that this
shows the smooth transition of run time O(n log(n)) when using twice the same
objective and O(n2 log(n)) for complementary objectives (as in OneMinMax)
and also recovers the run time bound for COCZ.

The considered algorithms typically waste a lot of time reconsidering old
search points which are already optimal and where no more progress can be
made in the proximity. This inspires algorithms based on considering new search
points rather than reconsidering old ones. This paradigm is called novelty search
and in the literature the algorithm is known as fair evolutionary multi-objective
optimizer (FEMO) [18,22,23]. In Section 6 we consider a simple variant of such
an algorithm which maintains, for each phenotype, a counter of how often it
was considered for creating offspring. Each iteration, an individual with mini-
mal counter is considered for creating offspring. We show, in Theorem 4, that
this algorithm has an expected optimization time of O(n2) on OneMinMax,
improving over (G)SEMO.

Novelty search modifies which individuals are considered for creating off-
spring, while leaving the rest of the algorithm as is. This is called a parent
selection scheme and the literature knows a variety of other mechanisms [4,5].
These schemes typically rank all individuals of the population according to how
promising they are to create relevant offspring and then prefer more promis-
ing ones over less promising ones. In Section 7 we show that, for many ranking
schemes and too radically greedy preference of more promising points, we get
super-polynomial optimization on OneMinMax with constant probability (see
Theorem 6). We consider this as a cautionary tale that parent selection schemes

Greedy versus Curious Parent Selection for MOEAs 3

need to reconsider less promising search points from time to time, even on very
easy fitness landscapes (such as OneMinMax).

Finally, in Section 8, we provide experimental evidence for the expected run
time performance of GSEMO on two anti-aligned LFC functions without any
shared bits and GSEMO on two anti-aligned LFC functions without any con-
flicted bits. Our results hint at an asymptotic run time of O(n2 · log(n)) for
anti-aligned LFC functions without any shared bits and O(n · log(n)) for anti-
aligned LFC functions without any conflicted bits.

The remainder of this paper first gives some discussion on further related
work (see Section 2). We give important definitions in Section 3. We introduce
OMC formally (along with the extension to linear functions) in Section 4 and
analyze the run time of (G)SEMO on OMC in Section 5. We analyze novelty
search in Section 6 and greedy parent selection in Section 7. We conclude with
some experiments in Section 8. Many proofs are not included into this document,
but can be found in the supplementary material [1].

2 Related Works

In [23], a first run time analysis was conducted on the simple multi-objective
optimization algorithm (SEMO) on minimizing LeadingOnesTrailingZeros
(LOTZ). This work was extended in [22] to the fair and the greedy multi-
objective optimization algorithms (FEMO, GEMO) and the multi-start (1+1)
EA on COCZ and LOTZ.

The global simple multi-objective optimization algorithm (GSEMO) was an-
alyzed on LOTZ in [19] along with a lower bound on GSEMO for a general class
of pseudo-boolean functions. GSEMO and GSEMO with asymmetric mutation
operator on plateau functions and set cover instances were studied in [3,17].
In [18], the performance of GSEMO and Global-FEMO algorithms on plateaus,
plateaus with gap and dual path were analyzed. In [25], analysis of GSEMO with
mixed strategy (mixing selection mechanisms) on ZPLG (ZeroMax, a plateau,
and a path with little gaps) and SPG (shortest path and gaps) can be found.

The algorithms SEMO and GSEMO with crossover operators on COCZ and
minimum spanning tree (MST) problems were studied in [26]. The first analysis
of SEMO optimizing OneMinMax was given in [20]. The OneMinMax func-
tion was again analyzed in [8], but using the (µ + 1)-SIBEAD algorithm. The
decomposition-based multi-objective evolutionary algorithms (MOEAs) were in-
troduced in [24] and analyzed on COCZ and LOTZ.

A diversity-based parent selection mechanism (based on hypervolume con-
tribution) for SEMO and GSEMO was given in [4,5] and studied on minimizing
OneMinMax and LOTZ. In [12], SEMO and GSEMO were studied on optimiz-
ing the OneJumpZeroJump function. An offspring selection mechanism which
uses the total Hamming distance as a diversity measure was given in [2] and the
OneMinMax function was again analyzed in this setting.

4 D. Antipov, T. Kötzing, A. Radhakrishnan.

3 Preliminaries

In this section we give some definitions, the algorithms we analyze and some
notations which we use throughout the paper. We use the following theorem in
some of our proofs.

Theorem 1 (Multiplicative Drift Theorem [21]) Let (Xt)t∈N be a random
process over R, xmin > 0, δ > 0 and let T = min{t | Xt < xmin}. Furthermore,
suppose that

1. X0 ≥ xmin and, for all t ≤ T , it holds that Xt ≥ 0, and that
2. for all t < T , we have Xt − E[Xt+1 | X0, . . . , Xt] ≥ δXt.

Then

E[T | X0] ≤
1 + ln

(
X0

xmin

)
δ

.

We analyze the simple multi-objective optimizer (SEMO) and the global
multi-objective optimizer (GSEMO) algorithms (see Algorithm 1) on different
bi-objective functions in this paper. The only difference between SEMO and
GSEMO is the mutation step. In SEMO, at the mutation step, a bit position is
chosen uniformly at random and flipped (one bit mutation). In GSEMO, each
bit position is flipped with probability 1/n (standard bit mutation).

The initial population has only one individual chosen at random from {0, 1}n.
An individual x dominates another individual y (x ⪰ y) if and only if f1(x) ≤
f1(y) and f2(x) ≤ f2(y). Note that we use slightly different Pareto dominance
relation which prefers the offspring if the offspring has the same fitness as any
of the other individuals existing in the population. We use the term genotype to
refer to the individuals in the input domain and the term phenotype to refer to
the fitness vector.

Algorithm 1: (Global) Simple Evolutionary Multi-objective Optimizer
((G)SEMO) minimizing f = (f1, f2).
1 x← choose u.a.r from {0, 1}n, P ← {x};
2 while termination criteria not met do
3 select parent x from P u.a.r;
4 x′ ← mutate(x);
5 P ← P \ {z ∈ P | x′ ⪰ z};
6 if ∄z ∈ P s.t (z ⪰ x′) then P ← P ∪ {x′};

When discussing greedy parent selection schemes, we use the following (sim-
plified) definition of the hypervolume contribution for 2 objectives, usually used
in minimization problems.

Greedy versus Curious Parent Selection for MOEAs 5

Definition 1. Consider a bi-objective function f = (f1, f2) and a population of
points P = (x1, . . . , xµ) which do not dominate each other (in terms of f) and
are sorted in the ascending order of their f1 value. Let r = (r1, r2) be a reference
point such that r1 ≥ f1(xµ) and r2 ≥ f2(x1). For all i ∈ [1..µ] let ai = f1(xi)
and let bi = f2(xi). Let also aµ+1 = r1 and b0 = r2. Then for all i ∈ [1..µ] the
hypervolume contribution (HVC) of point xi ∈ P is (ai+1 − ai) · (bi−1 − bi).

4 Linear Multi-Objective Functions

In this section we analyze two classes of functions: first, the OneMax function
class, where each fitness function measures the Hamming distance to some op-
timal bit string. Second, the linear function class, where each bit has a weight
and fitness is the sum of the weights of incorrect bits.

Formally, for each a ∈ {0, 1}n, we let

OMa : {0, 1}n → R, x 7→ H(a, x),

where H is the Hamming distance between two bit strings. We define the One-
Max class as

OMC = {OMa | a ∈ {0, 1}n} .
Note that the OneMax class has been studied before in the context of black-box
optimization [7,13,15]. The most famous example from OMC is OM := OM1n

which is minimal at 1n. For two-objective optimization, we also care for the exact
opposite, ZeroMax, denoted as ZM := OM0n .

Similarly, we can define the linear function class LFC as follows. For each
w ∈ Rn+1, we let

fw : {0, 1}n → R, x 7→ wn+1 +

n∑
i=1

wi xi.

Note that we use the constant wn+1 (a) as an offset, so that all function values
are non-negative and can be more nicely depicted in a diagram; and (b) so that
it is formally true that each OneMax function is a linear function, which they
intuitively are (for example, for a = 1n we need ∀i ∈ [1..n] : wi = −1 and
wn+1 = n).

In the literature we frequently find the additional restrictions wn+1 = 0 and
∀i ≤ n : wi > 0; or even ∀i < n : wi > wi+1 > 0. These can be assumed
without loss of generality to simplify the exposition or the proof in the context
of single objective optimization. However, in the context of optimizing two such
functions simultaneously, and with the algorithm potentially making decisions
not just based on the ranking of search points (but, for example, also based on
hypervolume covered), we prefer this more general definition here.

We define the linear function class as

LFC =
{
fw | w ∈ Rn+1

}
.

We have the following theorem about the two function classes and the proof
can be found in the supplementary material [1].

6 D. Antipov, T. Kötzing, A. Radhakrishnan.

Theorem 2 We have OMC ⊆ LFC, and both OMC and LFC are closed under
isomorphisms of the hypercube.

We use the following definition to talk about the fitness landscape of two
linear fitness functions.

Definition 2. Let two linear functions fw, fv be given. We call the set I =
{i ∈ [n] | wi · vi ≥ 0} the shared bits, since there is a bit setting which is optimal
for both fw and fv. We call [n] \ I the conflicted bits. We call the number of
conflicted bits the Pareto dimension, since all elements on the Pareto front agree
on the shared bits and only differ on conflicted bits (discarding the case of weights
of 0). We frequently denote the Pareto dimension by d.

If all n bits are conflicted, then we call fw and fv complementary (since their
unique global optima are complementary).

We call fw and fv anti-aligned if ordering the bits descendingly according
to |wi|-value leads to an an ascending ordering according to |vi|-value. In other
words: the more significant bit positions of w are, the less significant bit positions
of v (and vice versa).

5 SEMO and GSEMO on OMC

Here we give a generalization of the OneMinMax and COCZ analysis to the
situation where the optima can share any number of bits (rather than either 0
bits as for OneMinMax or n/2 bits as in COCZ). Let log+(x) = max{log(x), 1}.

Theorem 3 Let a, b ∈ {0, 1}n, a ̸= b, let d = dH(a, b) and 0 < d < n. Then
(G)SEMO minimizing (OMa,OMb) takes O(dn log(n)) function evaluations in
expectation to discover the full Pareto front of size d+ 1.

Proof. First we show that the expected time for (G)SEMO to find an individual
on the Pareto front is O(dn log+(n − d)) using the multiplicative drift theorem
(see Theorem 1).

Let T1 be the time taken by (G)SEMO to find an individual on the Pareto
front, and let I be the set of all shared bits, i.e., I = {i ∈ [n] | ai = bi}. Since
d = dH(a, b), |I| = n−d. Also, an individual x is on the Pareto front if and only
if all shared bits of a and b (elements of I) are set correctly, i.e.,

∑
i∈I |ai−xi| =∑

i∈I |bi − xi| = 0.
For any t > 0, let P t be the parent population at iteration t. For any t < T1,

let Xt = argminx∈P t{
∑

i∈I |ai − xi|}. Then we claim that, Xt ≥ Xt+1, i.e.,
an individual with less correct shared bits will not dominate an individual with
more correct shared bits. If an individual x has 1 < i ≤ n more shared bits
set correctly than another individual y, then for y to dominate x the individual
y should have i more conflicted (non-shared) bits (than x) set correctly with
respect to a and i more conflicted bits set correctly with respect to b. This is not
possible, since setting a conflicted bit correctly with respect to a implies that

Greedy versus Curious Parent Selection for MOEAs 7

this conflicted bit is set incorrectly with respect to b. Therefore, for all t we have,
Xt ≥ Xt+1.

We claim that at any time t, the population P t has at most d+1 individuals.
Since there are only d conflicted bits, if there are d + 2 individuals in the pop-
ulation then, by the pigeonhole principle, there is an i ∈ [0..d] such that there
are two distinct individuals in the population in which i conflicted bits are set
correctly with respect to a. Since both the individuals exist in the population,
their fitness is different. Therefore, one of them has more shared bits set cor-
rectly than the other, which implies that one individual dominates the other.
This contradicts the definition of (G)SEMO since it only stores non-dominated
individuals in its population.

Now we claim that Pr
(
Xt −Xt+1 = 1 | Xt

)
≥ Xt

e(d+1)n . As the maximum size
of the population is d + 1 and the mutation operator can choose an individual
contributing to the potential Xt and flip exactly one of the Xt positions where
ai ̸= xt with probability 1

n in the case of SEMO and with probability at least
1
en in the case of GSEMO.

By the multiplicative drift theorem (Theorem 1) and since we have X0 ≤
n−d, the expected time taken by (G)SEMO to find an individual on the Pareto
front E[T1] is O(dn log+(n− d)).

Next, we show that the expected time to cover the Pareto front after the
algorithm finds an individual on the Pareto front is O(dn ln(d)). At time T1,
when the algorithm finds an individual xT on the Pareto front for the first time,
the fitness of this first individual cannot be more than d in both objectives, since,
as we mentioned before, an individual is on the Pareto front if and only if all
shared bits of a and b are set correctly. Let the fitness of this first individual be
(i, d− i), where 0 ≤ i ≤ d.

Let Yt = −1, if all fitness vectors from (0, d) to (i, d− i) are in population P t,
and let it be the maximum j < i such that we do not have fitness (j, d − j) in
population P t otherwise. Similarly, let Zt be d+ 1, if we have all fitness vectors
from (i, d−i) to (d, 0) in the population P t, and let it be the minimum k > i such
that (k, d−k) is not in P t otherwise. Then the Pareto front is covered, iff Yt = −1
and Zt = d + 1. Consider first time T ′

2 until Yt reaches −1. If Yt = j, then to
decrease it we can choose an individual with fitness (j+1, d−j−1) (which exists
in the population) with probability at least 1

d+1 and flip exactly one one-bit in
it with probability j+1

n or j+1
en for SEMO or GSEMO respectively. Since for each

value of j we decrease Yt only once, the total expected time until we have Yt = −1

is at most E[T ′
2] ≤

∑i−1
j=0

en(d+1)
j+1 = O(nd log+(i)). Similarly, we can show that

the expected time T ′′
2 until Zt reaches d + 1 is at most O(nd log+(d − i)). We

then have that T2 ≤ T ′
2 + T ′′

2 and therefore, it is at most O(nd log(d)).

Overall, (G)SEMO takes O(dn log+(n− d) + dn log(d)) = O(dn log(n)) iter-
ations in expectation while minimizing (OMa,OMb) to discover the full Pareto
front of size d+ 1. ⊓⊔

8 D. Antipov, T. Kötzing, A. Radhakrishnan.

6 Novelty Search

Consider as an order scheme the ranking of all individuals by how often they have
been considered for creating offspring since entering the population, from least
to most frequently considered. In a sense, we want to explore under-explored
parts of the search space, and we want to find novel areas. This can lead to
speed-ups in exploration of the Pareto front, as the next theorem shows.

We distinguish two cases for novelty search: resetting the offspring counter
when an individual was replaced by one with the exact same phenotype, and
not doing such a reset. That is, when we reset the counter, we actually counting
the number of times the genotype has been selected as a parent, and when we
do not reset the counter, we count the number of such times for the phenotype.
The following theorem shows a speed-up of the latter approach on OneMinMax
compared to the standard parent selection. We believe that resetting the counter
when replacing individuals with the same phenotype leads to a behavior much
like uniform parent selection, which is not interesting for us.

Theorem 4 (G)SEMO paired with the the novelty ranking without resets which
always chooses a parent that has been considered the smallest number of times
finds the whole Pareto-front on OneMinMax in O(n2) expected iterations.

Proof. All individuals are on the Pareto-front, since more 1s contribute positively
to minimize the objective ZM and negatively to the objective OM and vice
versa in the case of more 0s. Any two individuals x, y ∈ {0, 1}n either have the
same number of 1s, which leads to the same fitness, or one of them has more
1s than the other, which implies that neither x dominates y nor y dominates x.
Therefore, the set {(i, n− i) | 0 ≤ i ≤ n} is the set of all possible fitness values
which corresponds to n+ 1 individuals on the Pareto-front.

For reasons of space, in the rest of this proof we consider SEMO. The proof
for GSEMO uses the same arguments, but has slightly different constants.

We break down the total run time into time taken for the following events to
happen. For any 0 ≤ i ≤ n− 1, let Xi be the random variable which denotes the
time taken to find an individual x with fitness (i+1, n−i−1) after the algorithm
has found an individual with fitness (i, n− i) and the algorithm has chosen this
individual at least n times for offspring creation. For any 1 ≤ i ≤ n, let Yi be
the random variable which denotes the time taken to find an individual y with
fitness (i− 1, n− i+ 1) after the algorithm has found an individual with fitness
(i, n− i) and has chosen this individual at least n times for offspring creation. At
any given iteration, when individual with fitness (i, n− i) is chosen as a parent,
this individual has either not yet been selected for offspring selection n times
or the algorithm tries to find a new individual in the Pareto front which is not
in the population by mutation. Therefore, the expected time T to find all the
elements on the Pareto-front is

E[T] ≤
n−1∑
i=0

(E[Xi] + n) +

n∑
i=1

(E[Yi] + n) ≤
n−1∑
i=0

E[Xi] +

n∑
i=1

E[Yi] + 2n2. (1)

Greedy versus Curious Parent Selection for MOEAs 9

Now we calculate upper bounds on the expectation of the random variables
Xi and Yi for a given i. The probability that an individual with fitness (i, n− i)
does not lead to an offspring with fitness (i+1, n−i−1) after being chosen n times
is (1− n−i

n)n ≤ ei−n and the probability that an individual with fitness (i, n− i)
does not lead to an offspring with fitness (i − 1, n − i + 1) after being chosen
n times is (1 − i

n)
n ≤ e−i. The number of function evaluations needed for an

individual with fitness (i, n−i) to produce an offspring with fitness (i+1, n−i−1)
by flipping exactly one bit follows the Geo(n−i

n) geometric distribution and each
failure costs at most n function evaluations since every other individual in the
population must be selected at least as many times as this desired individual for
offspring selection before this individual can be selected again. We note that if
a new fitness appears in the population at this stage, then we can wait for more
than n iterations before we chose our individual with fitness (i, n − i) again,
however those iterations when we choose an individual with this new fitness do
not go to the cost of our mistake, but to the n iterations which are allocated for
that new fitness in the corresponding term in eq. (1) or they go to the price of our
previous mistakes. Similarly, the number of function evaluations needed for an
individual with fitness (i, n−i) to produce an offspring with fitness (i−1, n−i+1)
by flipping exactly one bit follows the Geo(i

n) with the cost of at most n function
evaluations for each failure. Therefore, for 0 ≤ i ≤ n− 1, Xi ≤ nei−n ·Geo(n−i

n)

and for 1 ≤ i ≤ n, Yi ≤ ne−i ·Geo(i
n). Thus, from eq. (1) we have

E[T] ≤
n−1∑
i=0

E

[
nei−n ·Geo

(
n− i

n

)]
+

n∑
i=1

E

[
ne−i ·Geo

(
i

n

)]
+ 2n2

= n2
n−1∑
i=0

1

(n− i)(en−i)
+ n2

n∑
i=1

1

iei
+ 2n2 = O(n2).

⊓⊔

We have the following corollary on strictly monotone increasing functions
and the proof can be found in the supplementary material [1].

Corollary 5 Let f, g : R → R be strictly monotone increasing. Then the novelty
ranking paired without reset which always chooses an individual that has been
considered least number of times (top individual) leads to a run time of O(n2)
on minimizing (f(OM), g(ZM)).

7 Counter-example for Phenotype-based Methods

In this section we show that the parent selection methods which are based on
the phenotype of the points in the population might be decisive even on very
simple problems. We consider GSEMO with an exaggerated greedy phenotype-
based parent selection: it always chooses one of the two points with the largest

10 D. Antipov, T. Kötzing, A. Radhakrishnan.

HVC (Definition 1) as a parent, each with probability 1
2 . We call this algorithm

GSEMO2 for brevity.
We study this algorithm on OneMinMax with a reference point (2n, 2n), so

that the largest HVC is always yielded by the two edge points in the population
(the points with the largest and the smallest numbers of one-bits), and therefore
one of them is always chosen as a parent. The main result of this section is the
following theorem, which demonstrates an ineffectiveness of the GSEMO2.

Theorem 6 With probability Ω(1) the GSEMO2 optimizing OneMinMax with
reference point (2n, 2n) does not find all points in the Pareto front in polynomial
time.

We split the proof of Theorem 6 into three stages. The first stage of the proof
shows that a run of the algorithm with high probability occurs in a particular
initial state, where the two edge points are in linear distance from each other
(in phenotype space), but they are still not too far away from the initial search
point. In the second stage we show that starting from the initial state, we are
very likely to create a hole in the population, when we get an edge point in
distance at least two (again, in the phenotype space) from the nearest other
point in the population. In the last stage we show that once we get a hole, with
constant probability it stays in the population for a super-polynomial time. For
reasons of space, we omit the analysis of the first two stages, but it can be found
in supplementary material [1].

Theorem 6 resembles Theorem 8.1 in [5], where a similar result was proven
for the GSEMO with a similar (but artificially modified) greedy parent selection
on LOTZ. The main difference of our result is that we use a much more simple
function, for which all points in the search space are Pareto optimal, thus we
do not need to modify the selection mechanism as in [5]. Another significant
difference is that in the third stage of our proof extending the front is less likely
than covering the hole, while for LOTZ these events are equally likely. Despite
this, the hole is also likely to stay on OneMinMax.

We use the following notation. By xt we denote the individual in the popula-
tion with the maximum OneMax value after iteration t, and by yt the one with
the minimum OneMax value. Note that in iteration t+1 we always choose as a
parent either xt or yt, since they are the edge points. In our proofs we also use an
arbitrary small constant ε, which can be any value in (0, 1

10). For simplicity we
also assume that n is even and εn is an integer. We start the proof with several
auxiliary results.

Lemma 7 Let ωt, t ∈ N, be a sequence of random experiments. Let also At and
Bt be sequences of events over the corresponding probabilistic spaces. Let Ct be
another sequence of events such that Ct = ∩t−1

j=1Aj (that is, Ct is the event that
Aj did not occur before time t) and let τ be the first time when At occurs, that
is, τ = min{t | ωt ∈ At} and assume that Pr[τ = +∞] = 0.

(a) If there exists p such that, for all t ∈ N, we have Pr [Bt | At ∩ Ct] ≤ p, then
Pr[Bτ] ≤ p.

Greedy versus Curious Parent Selection for MOEAs 11

(b) If there exists q such that, for all t ∈ N, we have Pr [Bt | At ∩ Ct] ≥ q, then
Pr[Bτ] ≥ q.

Proof. We prove only (a), since the proof of (b) is analogous. Event τ = t occurs,
iff At occurs and all Aj for j ∈ [1..t−1] do not occur, that is, it is equal to event

At ∩

t−1⋂
j=1

Aj

 = At ∩ Ct,

hence by condition we have Pr[Bt | τ = t] ≤ p.
Since Pr[τ = +∞] = 0, we can use the law of total probability.

Pr[Bτ] =

+∞∑
t=1

Pr[τ = t] Pr[Bt | τ = t] ≤
+∞∑
t=1

Pr[τ = t] · p = p. ⊓⊔

We now show that if we create a hole in our population, which is not too far
from, but also not too close to the center of the Pareto front, then with at least
a constant probability we move our edge points in a linear distance from this
hole before we fill it.

Lemma 8 Consider a run of the GSEMO2 on OneMinMax. Assume that at
some iteration t0 we have some i ∈ [n2 + 2εn..n2 + 4εn] such that

(1) we do not have fitness (i, n− i) in population,
(2) OM(xt0−1) > i, and
(3) OM(yt0−1) < i− εn.

Then with at least a constant (that is, Ω(1)) probability we get xt > i+εn before
we generate an offspring with i one-bits.

Without proof we note that such iteration t0 exists with probability 1 −
e−Ω(n), which is shown in the supplementary material [1].

Proof. Assume that, at some iteration t′, we have OM(xt−1) = i + k for some
k ∈ [1..εn]. For all t ≥ t′ let At be an event that we either have OM(xt) > i+ k
or we generate an offspring with exactly i one-bits in generation t. Let Bt be an
event that we have OM(xt) > i+ k. Let also Ct be

⋂t−1
j=t′ Aj . Then by Lemma 7

and since Bt is a sub-event of At, the probability pk that we get OM(xt) > i+k
before we cover the fitness value (i, n− i) is at least

Pr[Bt | At ∩ Ct] =
Pr[Bt | Ct]

Pr[At | Ct]
=

Pr[Bt | Ct]

Pr[Bt ∪ (At \Bt) | Ct]

=
Pr[Bt | Ct]

Pr[Bt | Ct] + Pr[At \Bt | Ct]
=

1

1 + Pr[At\Bt|Ct]
Pr[Bt|Ct]

.

Event At\Bt conditional on Ct is the event when we create an individual with
exactly i one-bits. If we chose yt−1 as a parent, then to do this we would need to

12 D. Antipov, T. Kötzing, A. Radhakrishnan.

flip at least εn bits, the probability of which is e−Ω(n) by Chernoff bounds. If we
choose xt−1 as a parent, then we need to flip at least k one-bits, the probability
of which is at most

(
i+k
k

)
(1n)

k by Lemma 1.10.37 in [6]. Consequently, we have

Pr[At \Bt | Ct] ≤
1

2
· e−Ω(n) +

1

2
·
(
i+ k

k

)(
1

n

)k

≤
e−Ω(n) + nk

k!nk

2
=

e−Ω(n) + 1
k!

2
.

The probability of Bt conditional on Ct is at least the probability that we chose
xt−1 as a parent and flip only one zero-bit in it, that is,

Pr[Bt | Ct] ≥
1

2
· n− i− k

n

(
1− 1

n

)n−1

≥
n− n

2 − 5εn

2en
=

1− 10ε

2e
.

Hence, we have

Pr[Bt | At ∩ Ct] ≥
1

1 +
e−Ω(n)+ 1

k!

2 · 2e
1−10ε

=
1

1 + c
(
e−Ω(n) + 1

k!

) ,
where c = e

1−10ε = Ω(1), if ε < 1
10 .

The probability that we reach OM(xt) > i+εn before we cover the hole is at
least the probability that for each OneMax value visited by xt we increase this
value before we cover the hole. By the law of total probability used inductively
over all values of k from 1 to εn, this probability is at least

εn∏
k=1

1

1 + c
(
e−Ω(n) + 1

k!

) =
1

exp
(
ln
∏εn

k=1

(
1 + c

(
e−Ω(n) + 1

k!

)))
=

1

exp
(∑εn

k=1 ln
(
1 + c

(
e−Ω(n) + 1

k!

)))
≥ 1

exp
(∑εn

k=1 c
(
e−Ω(n) + 1

k!

))
≥ 1

exp
(
cεne−Ω(n) + ce

) =
1

ece+o(1)
= Ω(1).

⊓⊔
We are now in position to prove the main result of this section, Theorem 6.

Proof (Proof of Theorem 6). By Lemma 8, assuming that with high probability
its conditions are satisfied at some iteration t0, with probability at least Ω(1),
a run of GSEMO2 is in a situation where there is some fitness value (i, n − i)
which is not present in the population, OM(xt) > i+ εn and OM(yt) < i− εn.
Therefore, in all consequent iterations, to generate an individual with exactly i
one-bits we need to flip at least εn bits in the parent (independently on which
edge point we chose), the probability of which by the Chernoff bound is e−Ω(n).
Hence, the expected time until we cover the whole Pareto front is at least eΩ(n).
Since this happens with at least a constant probability, the total expected run
time of the GSEMO2 is also eΩ(n), that is, it is super-polynomial.

Greedy versus Curious Parent Selection for MOEAs 13

8 Anti-Aligned LFC

We use experimental results to extend our analyses to anti-aligned fitness func-
tions from LFC. For the OMC, many individuals on the Pareto front have many
neighbors on the Pareto front, so the exploration of the Pareto front is efficient.
For anti-aligned fitness functions from LFC, we are only guaranteed a single
neighbor (in each possible direction).

We start our analyses with two anti-aligned LFC functions without any
shared bits. We assume, without loss of generality, that the optimum (mini-
mum) of fw is 1n and that the weights are sorted based on the absolute value in
descending order and thus the optimum of fv is 0n and the weights are sorted
in ascending order. The lemma below is about how an individual on the Pareto-
front looks like while optimizing anti-aligned LFC functions without any shared
bits and the proof can be found in the supplementary material [1].

Proposition 9 Let w, v ∈ Rn be such that w has only negative values, v has
only positive values and the values are in ascending order. Then the Pareto
dimension of the multi-objective function (fw, fv) is n and the Pareto front is
{1i0n−i | 0 ≤ i ≤ n}.

(a) Average run time (b) Average run time normalized by
n2 · ln(n)

Fig. 1: Average run time of GSEMO on anti-aligned LFC functions with no shared
bits.

We now empirically analyze the performance of GSEMO on minimizing two
different types of anti-aligned LFC functions. First, we look at (fw, fv), where
fw, fv are two anti-aligned LFC functions without any shared bits. That is,
the optimum of fw and the optimum of fv differ in each bit position. Let n
be the length of the bit string. The values of the weight vectors w and v are
randomly chosen from (−1, 0) and (0, 1), respectively and are sorted in ascending
order. We consider the mean of 100 independent runs of GSEMO on (fw, fv).
In Figure 1(a), for each n, we have the mean and the standard deviation of
total number of iterations required by the each run of GSEMO to cover the
whole Pareto front and in Figure 1(b) this value is divided by n2 · ln(n). We

14 D. Antipov, T. Kötzing, A. Radhakrishnan.

can observe from the Figure 1(b), since the mean of the run time is almost a
constant line, that GSEMO minimizing two anti-aligned LFC functions without
any shared bits appears to have an expected run time of O(n2 · log(n)).

We next look at (fw, fv), where fw, fv are two anti-aligned LFC functions
without any conflicted bits. That is, fw and fv have the same global optimum.
The values of the weight vectors w and v are randomly chosen from (0, 1). With-
out loss of generality, let the weights be positive and the weight vector w be
sorted in descending order and the weight vector v be sorted in ascending or-
der. Note that the Pareto front is {0n}. In the case of SEMO, the optimization
process is similar to the random local search algorithm optimizing the ZeroMax
function. Since in each iteration only one bit is flipped, the offspring gets rejected
if a 0 bit is flipped to 1 and the offspring replaces the parent if a 1 bit is flipped
to 0. This guarantees that SEMO has exactly one individual in the population
at each iteration. However, in the case of GSEMO, the population size could be
more than one, and the individuals in the population need not have the same
number of 0s. We are interested in whether these possibilities slow down search
compared with the run time required for the single objective optimization of any
of these fitness functions.

(a) Average run time (b) Average run time of GSEMO and
(1+1) EA on fw normalized by n · ln(n)

Fig. 2: Average run time of GSEMO on anti-aligned LFC functions with no con-
flicted bits.

We empirically analyze the performance of GSEMO minimizing (fw, fv) by
considering the mean of 100 independent runs. In Figure 2(a), for each n, we
have the mean and standard deviation of total number of iterations required by
each run of GSEMO to cover the whole Pareto front and in Figure 2(b) this
value is divided by n · ln(n). In Figure 2(b), we also have the average run time
of the (1+1) EA on minimizing fw, one of the objectives of the two objectives
considered for GSEMO. We can observe from the Figure 2(b), that GSEMO on
two anti-aligned LFC functions without any conflicted bits appears to have an
expected run time of O(n · log(n)), while being a constant factor slower than just
on one of the two functions.

Greedy versus Curious Parent Selection for MOEAs 15

References

1. Antipov, D., Kötzing, T., Radhakrishnan, A.: Supplementary material - greedy
versus curious parent selection for multi-objective evolutionary algorithms (Apr
2024), https://zenodo.org/records/10990807

2. Antipov, D., Neumann, A., Neumann, F.: Rigorous runtime analysis of diversity op-
timization with GSEMO on OneMinMax. In: Foundations of Genetic Algorithms,
FOGA 2023. p. 3–14. ACM (2023)

3. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler,
E.: Do additional objectives make a problem harder? In: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation GECCO 2007. p.
765–772. ACM (2007)

4. Covantes Osuna, E., Gao, W., Neumann, F., Sudholt, D.: Speeding up evolutionary
multi-objective optimisation through diversity-based parent selection. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference GECCO 2017. p.
553–560. ACM (2017)

5. Covantes Osuna, E., Gao, W., Neumann, F., Sudholt, D.: Design and analysis
of diversity-based parent selection schemes for speeding up evolutionary multi-
objective optimisation. Theor. Comput. Sci. 832, 123–142 (2018)

6. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuris-
tics. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation -
Recent Developments in Discrete Optimization, pp. 1–87. Natural Computing Se-
ries, Springer (2020)

7. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theoretical Computer Science 567, 87–104 (2015)

8. Doerr, B., Gao, W., Neumann, F.: Runtime analysis of evolutionary diversity max-
imization for oneminmax. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference 2016 GECCO 2016. p. 557–564. ACM (2016)

9. Doerr, B., Kötzing, T.: Lower bounds from fitness levels made easy. Algorithmica
86(2), 367–395 (2024)

10. Doerr, B., Qu, Z.: A first runtime analysis of the NSGA-II on a multimodal prob-
lem. IEEE Trans. Evol. Comput. 27(5), 1288–1297 (2023)

11. Doerr, B., Qu, Z.: Runtime analysis for the NSGA-II: provable speed-ups from
crossover. In: Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI
2023. pp. 12399–12407. AAAI Press (2023)

12. Doerr, B., Zheng, W.: Theoretical analyses of multi-objective evolutionary algo-
rithms on multi-modal objectives: (hot-off-the-press track at gecco 2021). In: Pro-
ceedings of the 2021 Annual Conference on Genetic and Evolutionary Computation
GECCO 2021. p. 25–26. ACM (2021)

13. Doerr, C., Lengler, J.: Onemax in black-box models with several restrictions. In:
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Compu-
tation GECCO 2015. p. 1431–1438. ACM (2015)

14. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276(1-2), 51–81 (2002)

15. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theory Comput. Syst. 39(4), 525–544 (2006)

16. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, Second Edi-
tion. Natural Computing Series, Springer (2015)

17. Friedrich, T., Hebbinghaus, N., Neumann, F.: Plateaus can be harder in multi-
objective optimization. In: 2007 IEEE Congress on Evolutionary Computation
CEC. pp. 2622–2629 (2007)

https://zenodo.org/records/10990807

16 D. Antipov, T. Kötzing, A. Radhakrishnan.

18. Friedrich, T., Horoba, C., Neumann, F.: Illustration of fairness in evolutionary
multi-objective optimization. Theor. Comput. Sci. 412(17), 1546–1556 (2011)

19. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm.
In: The 2003 Congress on Evolutionary Computation CEC. vol. 3, pp. 1918–1925
Vol.3 (2003)

20. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimization. In: Proceedings of the 8th Annual Conference on Genetic and Evo-
lutionary Computation GECCO 2006. p. 651–658. ACM (2006)

21. Kötzing, T., Krejca, M.S.: First-hitting times under drift. Theoretical Computer
Science 796, 51–69 (2019)

22. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Transactions on Evo-
lutionary Computation 8(2), 170–182 (2004)

23. Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., Deb, K.: Running time analysis of
multi-objective evolutionary algorithms on a simple discrete optimization problem.
In: Proceedings of the 7th International Conference on Parallel Problem Solving
from Nature PPSN 2002. p. 44–53. Springer-Verlag (2002)

24. Li, Y.L., Zhou, Y.R., Zhan, Z.H., Zhang, J.: A primary theoretical study on
decomposition-based multiobjective evolutionary algorithms. IEEE Transactions
on Evolutionary Computation 20(4), 563–576 (2016)

25. Qian, C., Tang, K., Zhou, Z.H.: Selection hyper-heuristics can provably be helpful
in evolutionary multi-objective optimization. In: Parallel Problem Solving from
Nature PPSN 2016. Springer (2016)

26. Qian, C., Yu, Y., Zhou, Z.H.: An analysis on recombination in multi-objective evo-
lutionary optimization. In: Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation GECCO 2011. p. 2051–2058. ACM (2011)

27. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Combinatorics, Probability and Computing 22(2), 294–318
(2013)

28. Zheng, W., Doerr, B.: Mathematical runtime analysis for the non-dominated sort-
ing genetic algorithm II (NSGA-II). Artif. Intell. 325, 104016 (2023)

Greedy versus Curious Parent Selection for MOEAs 17

A Omitted proofs from Section 4

Theorem 10 We have OMC ⊆ LFC, and both OMC and LFC are closed under
isomorphisms of the hypercube.

Proof (Proof of Theorem 2 in the paper). For a class C to be closed under
isomorphisms of the hypercube means: (a) for f ∈ C and π : {0, 1}n → {0, 1}n
a permutation of the bit positions, we have f ◦ π ∈ C; and (b) for z ∈ {0, 1}n
and ⊕ the bit-wise XOR, we have that x 7→ f(x ⊕ z) is in C. For both classes
mentioned it is easy to check that these properties hold.

Regarding OMC ⊆ LFC: Given a ∈ {0, 1}n, and let A = {i ∈ [n] | ai = 0}
and B = {i ∈ [n] | ai = 1} we let wn+1 = |a|1 = |B| and, for all i ≤ n, wi = 1
if i ∈ A and wi = −1 otherwise. Using the indicator function 1 we have, for all
x ∈ {0, 1}n,

OMa(x) = H(a, x) =
∑
i∈[n]

1[xi ̸= ai]

=
∑
i∈A

1[xi = 1] +
∑
i∈B

1[xi = 0]

=
∑
i∈A

1 · xi +
∑
i∈B

(1− xi)

= |B|+
∑
i∈A

1 · xi +
∑
i∈B

(−1) · xi

= wn+1 +
∑
i∈A

wi · xi +
∑
i∈B

wi · xi

= fw(x).

B Omitted proofs from Section 6

Corollary 11 Let f, g : R → R be strictly monotone increasing. Then the nov-
elty ranking paired without reset which always chooses an individual that has been
considered least number of times (top individual) leads to a run time of O(n2)
on minimizing (f(OM), g(ZM)).

Proof (Proof of Corollary 5 in the paper).
We argue that the optimization process of the algorithm on the function

(f(OM), g(ZM)) is no different than the algorithm optimizing OneMinMax
function. At any time t, let P t be the population. Then an offspring y created by
mutating a parent individual will always get accepted in both OneMinMax and
(f(OM), g(ZM)) case. The reason is the following, suppose ∀x ∈ P t, |y|1 ̸= |x|1.
Then y be will get accepted because (|y|1, n− |y|1) and (f(|y|1), (n− |y|1)) will
not be dominated by any other individual in the population, while optimizing
OneMinMax and (f(OM), g(ZM)), respectively. Suppose ∀x ∈ P t, |y|1 ̸= |x|1

18 D. Antipov, T. Kötzing, A. Radhakrishnan.

is not true and ∃x ∈ P t, such that |y|1 = |x|1. Then y replaces one of the indi-
viduals in the population which has the same fitness (since the algorithm always
prefers the new individual) in both OneMinMax and (f(OM), g(ZM)) case.

We showed that the algorithm takes O(n2) to find all the individuals on the
Pareto front while optimizing OneMinMax and because of the above mentioned
reasons, the same proof follows for (f(OM), g(ZM)). ⊓⊔

C Omitted proofs from Section 8

Proposition 12 Let w, v ∈ Rn be such that w has only negative values, v has
only positive values and the values are in ascending order. Then the Pareto
dimension of the multi-objective function (fw, fv) is n and the Pareto front is
{1i0n−i | 0 ≤ i ≤ n}.

Proof (Proof of Proposition 9 in the paper). Let S = {1i0n−i | 0 ≤ i ≤ n}.
To show that the set S is the Pareto front, we need to show that S has only
incomparable individuals and every individual in {0, 1}n \S is dominated by an
individual in S.

First we show that S has only incomparable individuals. Let x, y be any two
distinct individuals in S and without loss of generality, let |x|1 > |y|1. Since w
has only negative values, more 1s in x lead to less fw function value, therefore
fw(x) < fw(y). Similarly, since v has only positive values, more 1s in x lead to
more fv function value, which in turn implies fv(x) > fv(y). Thus x and y are
not comparable and S has only incomparable individuals.

Let z ∈ {0, 1}n \ S and z′ = 1|z|10|z|0 . We claim that, z is dominated by the
individual z′ ∈ S. Since the weights of fw are negative and ordered based on the
absolute value in descending order more 1s in the beginning bit positions of the
individual are beneficial. Similarly, since fv has only positive weights and the
weights are in ascending order, more 0s in the tail bit positions of the individual
are beneficial. Note that z and z′ have same number of 1s but z has non-leading
1s, which implies fw(z) > fw(z

′) and z also has non-trailing 0s, which implies
fv(z) > fv(z

′). Therefore z′ dominates z. ⊓⊔

D Omitted proofs from Section 7

In the results shown in this section we use the following auxiliary lemma.

Lemma 13 (Improvement probability) Let z be a bit string with exactly i
one-bits and let X be a random variable following a binomial distribution Bin(n−
i, 1

n). Then, for any k ∈ N, the probability that the standard bit mutation applied
to z creates a bit string with at least i + k one-bits is at least 1

e Pr[X = k] and

at most (k+1)(1− 1
n)

k+ i−1
n

Pr[X = k].

Proof. To show the lower bound we simply argue that flipping exactly k zero-bits
and no one-bits gives us a bit string with exactly i+k one-bits, and therefore, it

Greedy versus Curious Parent Selection for MOEAs 19

is a sub-event of getting a bit string with at least i+ k one-bits. The probability
of it is (

n− i

k

)(
1

n

)k (
1− 1

n

)n−i−k

·
(
1− 1

n

)i

≥ Pr[X = k] · 1
e
.

To show the upper bound, we follow exactly the same arguments as in
Lemma 12 in [9] and show that for all ℓ ≥ k the probability to get a bit string
with exactly i + ℓ one-bits is at most Pr[X = ℓ]. By the union bound over all
ℓ ≥ k we conclude that the probability to get a bit string with at least i + k
one-bits is at most Pr[X ≥ k]. Finally, by Lemma 1.10.38 in [6] we get that this
is at most (k+1)(1− 1

n)

k+ i−1
n

Pr[X = k]. ⊓⊔

The following Lemmas 14 and 16 show that with probability at least 1 −
e−Ω(n) conditions of Lemma 8 are satisfied at some iteration of the GSEMO2.

Lemma 14 Consider a run of the GSEMO2 on OneMinMax. For an arbitrary
small constant ε > 0, with probability 1 − e−Ω(n), at some iteration τ we get a
population in which

(a) OM(xτ)− OM(yτ) ≥ εn and
(b) OM(xτ) ≤ n

2 + 3εn.

Proof. Let x0 be the initial search point, which is generated uniformly at random.
By the definition of the GSEMO2, the fitness of x0 will always stay in the pop-
ulation, hence we will always have OM(yt) ≤ OM(x0) ≤ OM(xt). By Chernoff
bounds (see, e.g., Theorem 1.10.1 in [6]), we have that n

2−εn ≤ OM(x0) ≤ n
2+εn

with probability 1− e−Ω(n). We now condition on this event.
Let τ be the first iteration where we have OM(xτ) ≥ n

2 +2εn (note that the
probability that there is no such iteration is zero). Then we have

OM(xτ)− OM(yτ) ≥ OM(xτ)− OM(x0) ≥
(n
2
+ 2εn

)
−
(n
2
+ εn

)
= εn,

hence at iteration τ condition (a) is satisfied.
To estimate the probability that OM(xτ) ≤ n

2 +3εn, we use Lemma 7, where
At is the event that in iteration t we generate an offspring zt with OM(zt) ≥
n
2 + 2εn, and Bt is the event that zt is such that OM(zt) ≥ n

2 + 3εn. Hence, to
use Lemma 7 we need to find an upper bound over all t on the probability of Bt

conditional on At and all Aj with j ∈ [1..t− 1], that is, on At ∩ Ct.
Consider some arbitrary iteration t and let m be the number of one-bits in

the individual chosen as a parent in this iteration. Condition ∩t−1
j=1Aj implies

that m < n
2 + 2εn. By the law of total probability we have

Pr[Bt | At ∩ Ct] =

⌈n
2 +2εn⌉−1∑

i=0

Pr[m = i] Pr[Bt | At ∩ Ct ∩ (m = i)]

20 D. Antipov, T. Kötzing, A. Radhakrishnan.

≤ max
ℓ<n

2 +2εn
Pr[Bt | At ∩ Ct ∩ (m = i)]

= max
ℓ<n

2 +2εn
Pr[Bt | At ∩ (m = i)],

since (m = i) is a sub-event of Ct for all i < n
2 + 2εn. Since Bt is a sub-event of

At, we have

Pr[Bt | At ∩ (m = i)] =
Pr[Bt ∩At | m = i]

Pr[At | m = i]
=

Pr
[
OM(zt) ≥ n

2 + 3εn | m = i
]

Pr
[
OM(zt) ≥ n

2 + 2εn | m = i
] .

By Lemma 13 we have

Pr
[
OM(zt) ≥

n

2
+ 3εn | m = i

]
≤
(
n
2 + 3εn− i+ 1

) (
1− 1

n

)
n
2 + 3εn− i+ i

n

· Pr
[
Bin

(
n− i,

1

n

)
=

n

2
+ 3εn− i

]
.

Denoting (n2 +3εn− i) by k (similar to the notation in Lemma 13), we note that
the fraction in front of the probability is descending in k. Since k ≥ εn = Ω(n)
by the conditions on i, we have that this fraction is at most

(k + 1)
(
1− 1

n

)
k + i

n

≤ k + 1

k
= 1 + o(1),

hence we have

Pr
[
OM(zt) ≥

n

2
+ 3εn | m = i

]
≤ (1 + o(1)) Pr

[
Bin

(
n− i,

1

n

)
=

n

2
+ 3εn− i

]
.

By Lemma 13 we also have

Pr
[
OM(zt) ≥

n

2
+ 2εn | m = i

]
≥ 1

e
Pr

[
Bin

(
n− i,

1

n

)
=

n

2
+ 2εn− i

]
.

Therefore, using the estimates for binomial coefficients from Lemma 1.4.9 in [6],
we compute the upper bound on Pr[Bt | At ∩ (m = i)] as follows.

Pr[Bt | At ∩ (m = i)] ≤ (1 + o(1))e ·
Pr
[
Bin

(
n− i, 1

n

)
= n

2 + 3εn− i
]

Pr
[
Bin

(
n− i, 1

n

)
= n

2 + 2εn− i
]

= (1 + o(1))e ·

(
n−i

n
2 +3εn−i

) (
1
n

)n
2 +3εn−i (

1− 1
n

)n
2 −3εn(

n−i
n
2 +2εn−i

) (
1
n

)n
2 +2εn−i (

1− 1
n

)n
2 −2εn

≤ (1 + o(1))e2 ·
(
1

n

)εn

·

(
e(n−i)

n
2 +3εn−i

)n
2 +3εn−i

(
n−i

n
2 +2εn−i

)n
2 +2εn−i

Greedy versus Curious Parent Selection for MOEAs 21

= (1 + o(1))e2 ·
(
n− i

n

)εn

·

(
e
(
n
2 + 2εn− i

)(
n
2 + 3εn− i

))(n
2 +3εn−i)

·

(
1(

n
2 + 2εn− i

))εn

.

Note that (n−i
n)εn ≤ (12 + 2ε)εn = e−Ω(n). To estimate the remaining two

terms we again denote k = (n2 +3εn− i) > εn, so that we need to find an upper
bound on (

e(k − εn)

k

)k

·
(

1

k − εn

)εn

.

Case 1: if k ≥ e(k− εn), then both fractions inside the brackets are at most
one and their exponents are positive, therefore, their product is also at most one.

Case 2: if k < e(k − εn), then we have k > eεn
e−1 . Since we also have k ≤ n

by the definition of k, we have(
e(k − εn)

k

)k

·
(

1

k − εn

)εn

≤ en ·
(
e− 1

εn

)εn

=

(
e(e− 1)ε

εεnε

)n

.

If n is large enough (namely, n ≥ e1/ε(e−1)
ε), then this expression is at most one.

Bringing these two cases together, we obtain that the probability Pr[Bt | At]
is at most e−Ω(n). Recalling that we start with OM(x0) ≤ n

2+εn with probability
1 − e−Ω(n), both lemma conditions (a) and (b) are satisfied at iteration τ with
probability 1− e−Ω(n). ⊓⊔

We now show that, under the conditions of Lemma 14, we are likely to
make a hole in our population, that is, to jump over one fitness value, before
we increase xt by εn. We first show a situation when such a hole occurs with
constant probability and then show that this situation is likely to happen during
a typical run of the algorithm.

Lemma 15 Consider a run of the GSEMO2 on OneMinMax. Consider some
iteration t0, which starts with OM(xt0−1) = i, where i is in [n2+2εn, n

2+4εn], and
OM(yt0−1) ≤ n

2 + εn. Let τ ≥ t0 be the first iteration when we get OM(xτ) > i.
Then with probability at least (1−8ε)2

16e − o(1) we have OM(xτ) > i+ 1.

Proof. We use Lemma 7 to prove this result. For this we define At as an event
when OM(xt) > i, and Bt as an event when OM(xt) > i + 1. Then τ in the
condition of this lemma is exactly the same as in Lemma 7. Thus, to find the
probability that OM(xτ) > i+1, we aim at bounding the conditional probability
Pr[Bt | At ∩ Ct], where Ct =

⋂t−1
j=t0

At. Similar to the proof of Lemma 14, since
Bt is a sub-event of At, we compute

Pr[Bt | At ∩ Ct] =
Pr[Bt | Ct]

Pr[At | Ct]
≥ Pr[Bt | Ct].

22 D. Antipov, T. Kötzing, A. Radhakrishnan.

Event Ct implies that in the start of iteration t we have xt−1 = i. Hence, the
probability of Bt is at least the probability that we choose xt−1 as a parent and
flip exactly 2 zero-bits in it, which is,

1

2
·
(
n− i

2

)(
1

n

)2(
1− 1

n

)n−2

≥ 1

4e
·
(n

2 − 4εn− 1

n

)2

=
(1− 8ε)2

16e
− o(1).

⊓⊔

We now show that we make make a hole before reaching xt =
n
2 + 4εn.

Lemma 16 Consider a run of the GSEMO2 on OneMinMax. Assume that we
start at iteration τ in which the conditions of Lemma 14 are satisfied. Then, with
probability 1−e−Ω(n), there exists an iteration τ ′ such that, for some i ≤ n

2 +4εn,
we have OM(xτ ′−1) < i and OM(xτ ′) > i. That is, the algorithm jumps over
the fitness value (i, n− i) in iteration τ ′.

Proof. If there is no such iteration τ ′, then for each fitness value j ∈ [i, n
2 +4εn],

when we got for the first time OM(xt) > j, it was OM(xt) = j + 1. For all
j ∈ [i, n

2 +4εn) let Aj be the event that at some iteration we have OM(xt) = j.
Then the probability that this event occurs for all j can be inductively written
as

Pr

n
2 +4εn−1⋂

j=i

Aj

 = Pr[Ai] Pr

n
2 +4εn−1⋂
j=i+1

Aj

∣∣∣∣ Ai

 =

n
2 +4εn−1∏

k=i

Pr

Ak

∣∣∣∣ k−1⋂
j=i

Aj

 .

The probability of Ak conditional on all previous Aj is the probability that when
we have xt = k− 1, the next increment of xt will be by one. By Lemma 15, this
probability for all k is at most 1− (1−8ε)2

16e + o(1), therefore, we have

Pr

n
2 +4εn−1⋂

j=i

Aj

 ≤
(
1− (1− 8ε)2

16e
+ o(1)

)εn

= e−Ω(n),

which proves the lemma. ⊓⊔

	Greedy versus Curious Parent Selection for Multi-Objective Evolutionary Algorithms

