
Theoretical Computer Science 983 (2024) 114288

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Partitioning subclasses of chordal graphs with few deletions ✩,✩✩

Satyabrata Jana a, Souvik Saha a,∗, Abhishek Sahu b, Saket Saurabh a,c, Shaily Verma a

a The Institute of Mathematical Sciences, HBNI, Chennai, India
b National Institute of Science, Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar, India
c University of Bergen, Norway

A R T I C L E I N F O A B S T R A C T

Communicated by F.V. Fomin

Keywords:

Chordal graphs

FPT

Interval graphs

Circular-arc graphs

Permutation graphs

In the (VERTEX) 𝑘-WAY CUT problem, input is an undirected graph 𝐺, an integer 𝑠, and the goal
is to find a subset 𝑆 of edges (vertices) of size at most 𝑠, such that 𝐺 − 𝑆 has at least 𝑘 connected
components. Downey et al. [Electr. Notes Theor. Comput. Sci. 2003] showed that 𝑘-WAY CUT is
W[1]-hard parameterized by 𝑘. However, Kawarabayashi and Thorup [FOCS 2011] showed that
the problem is fixed-parameter tractable (FPT) in general graphs with respect to the parameter
𝑠 and provided a (𝑠𝑠(𝑠)𝑛2) time algorithm, where 𝑛 denotes the number of vertices in 𝐺. The
best-known algorithm for this problem runs in time 𝑠(𝑠)𝑛(1) given by Lokshtanov et al. [ACM
Tran. of Algo. 2021]. On the other hand, VERTEX 𝑘-WAY CUT is W[1]-hard with respect to either
of the parameters, 𝑘 or 𝑠 or 𝑘 + 𝑠. These algorithmic results motivate us to look at the problems
on special classes of graphs. In this paper, we consider the (VERTEX) 𝑘-WAY CUT problem on
subclasses of chordal graphs and obtain the following results.

• We first give a sub-exponential FPT algorithm for 𝑘-WAY CUT running in time 2(
√
𝑠 log 𝑠)𝑛(1)

on chordal graphs.

• It is “known” that VERTEX 𝑘-WAY CUT is W[1]-hard on chordal graphs, in fact on split graphs,
parameterized by 𝑘 + 𝑠. We complement this hardness result by designing polynomial-time
algorithms for VERTEX 𝑘-WAY CUT on interval graphs, circular-arc graphs and permutation
graphs.

1. Introduction

Graph partitioning problems have been extensively studied because of their applications in VLSI design, parallel supercomputing,
image processing, and clustering [1,12,23]. In this paper, we consider one of the classical graph partitioning problems, namely, the

(VERTEX) 𝑘-WAY CUT problem. In this problem the objective is to partition the graph into 𝑘 components by deleting as few (vertices)
edges as possible. Formally, the problems we study are defined as follows.

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
✩✩ A preliminary version of this paper appeared in the 13th International Symposium on Algorithms and Complexity (CIAC 2023).

* Corresponding author.

E-mail addresses: satyamtma@gmail.com (S. Jana), souviks@imsc.res.in (S. Saha), asahuiitkgp@gmail.com (A. Sahu), saket@imsc.res.in (S. Saurabh),
Available online 10 November 2023
0304-3975/© 2023 Elsevier B.V. All rights reserved.

shailyverma@imsc.res.in (S. Verma).

https://doi.org/10.1016/j.tcs.2023.114288

Received 6 April 2023; Accepted 31 October 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:satyamtma@gmail.com
mailto:souviks@imsc.res.in
mailto:asahuiitkgp@gmail.com
mailto:saket@imsc.res.in
mailto:shailyverma@imsc.res.in
https://doi.org/10.1016/j.tcs.2023.114288
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.114288&domain=pdf
https://doi.org/10.1016/j.tcs.2023.114288

Theoretical Computer Science 983 (2024) 114288S. Jana, S. Saha, A. Sahu et al.

Table 1

Complexity of the problems for different parameterizations.

Problems Parameter(s)

𝑘 𝑠 𝑘+ 𝑠

VERTEX 𝑘-WAY CUT W[1]-hard [5] W[1]-hard [18] W[1]-hard [18]

𝑘-WAY CUT W[1]-hard [5] FPT [14] FPT [4]

𝑘-WAY CUT

Input: A graph 𝐺 = (𝑉 , 𝐸) and two integers 𝑠 and 𝑘.
Parameter: 𝑠

Question: Does there exist a set 𝑆 ⊆𝐸 of size at most 𝑠, such that 𝐺 −𝑆 has at least 𝑘 connected components?

VERTEX 𝑘-WAY CUT

Input: A graph 𝐺 = (𝑉 , 𝐸) and two integers 𝑠 and 𝑘.
Parameter: 𝑠

Question: Does there exist a set 𝑆 ⊆ 𝑉 of size at most 𝑠, such that 𝐺 −𝑆 has at least 𝑘 connected components?

These problems are decision versions of natural generalization of the GLOBAL MIN CUT problem, which seeks to delete a set
of edges of minimum cardinality such that the graph gets partitioned into two parts (𝑘 = 2). In other words, the graph becomes
disconnected. We first give a brief account of the history of known results on the problem to set the context of our study.

Algorithmic History of the Problem. There is a rich algorithmic study of (VERTEX) 𝑘-WAY CUT problem. In 1996, Goldschmidt
and Hochbaum [6] showed that the 𝑘-WAY CUT problem is NP-hard for arbitrary 𝑘, but polynomial-time solvable when 𝑘 is fixed
and gave a (𝑛(1∕2−𝑜(1))𝑘2) time algorithm, where 𝑛 is the number of vertices in the graph. Later, Karger and Stein [11] gave an
edge contraction based randomized algorithm with running time ̃(𝑛(2𝑘−1)). The notation ̃ hides the poly-logarithimic factor in the
running time. Recently, Li [15] obtained an improved randomized algorithm with running time ̃(𝑛(1.981+𝑜(1))𝑘). In a series of papers
[10,22,2], several deterministic exact algorithms have been designed. To date, the best known deterministic exact algorithm is given
by Chekuri et al. [2] which runs in (𝑚𝑛(2𝑘−3)) time.

In terms of approximation algorithms, several approximation algorithms are known for the 𝑘-WAY CUT problem with approx-

imation factor (2 − 𝑜(1)), that run in time polynomial in 𝑛 and 𝑘 [21,19,20,26,25]. Recently, Manurangsi [17] proved that the
approximation factor cannot be improved to (2 − 𝜖) for every 𝜖 > 0, assuming small set expansion hypothesis. Lately, this problem
has received significant attention from the perspective of parameterized approximation as well. Gupta et al. [8] gave the first FPT
approximation algorithm for the problem with approximation factor 1.9997 which runs in time 2(𝑘6)𝑛(1). The same set of authors
[9] also gave an (1 + 𝜖)-approximation algorithm with running time (𝑘∕𝜖)(𝑘)𝑛𝑘+(1), and an approximation algorithm with a factor
1.81 running in time 2(𝑘2)𝑛(1). Later, Kawarabayashi and Lin [13] gave a (5∕3 + 𝜖)-approximation algorithm for the problem with
running time 2(𝑘2 log𝑘)𝑛(1). Recently, Lokshtanov et al. [16] designed (1 + 𝜖)-approximation algorithm for every 𝜖 > 0, running in
time (𝑘∕𝜖)(𝑘)𝑛(1) improving upon the previous result (Table 1).

From the parameterized perspective, Downey et al. [5] proved that the 𝑘-WAY CUT and VERTEX 𝑘-WAY CUT problems are W[1]-

hard when parameterized by 𝑘. On the other hand, when parameterized by the cut size 𝑠, it is known that finding a VERTEX 𝑘-WAY
CUT of size 𝑠 is also W[1]-hard [18]; however finding a 𝑘-WAY CUT of size 𝑠 is FPT [14]. Kawarabayashi and Thorup [14] gave a
(𝑠𝑠(𝑠) ⋅𝑛2) time FPT algorithm for the 𝑘-WAY CUT problem. Recently, Lokshtanov et al. [4] designed a faster algorithm with running
time 𝑠(𝑠)𝑛(1). These tractable and intractable results are a starting point of our work. That is, we address the following question:
What is the complexity of (VERTEX) 𝑘-WAY CUT problem on well-known graph classes?

Our Results. In this paper, we consider the (VERTEX) 𝑘-WAY CUT problem and obtain the following results.

• We first give a sub-exponential-FPT algorithm for 𝑘-WAY CUT running in time 2(
√
𝑠 log 𝑠)𝑛(1) on chordal graphs. We design a dy-

namic programming algorithm using clique tree decomposition of chordal graphs, which runs in time 2(
√
𝑠 log 𝑠)𝑛(1) (Section 3).

The followings observations remain the driving force behind our algorithm. While the solution does not intersect with large
cliques, we can efficiently guess its intersection with small cliques. The cliques that are neither big nor small have an interesting
property that all but a few vertices belong to the same component in the final graph of the 𝑘-WAY CUT problem. With these
choices, we can design an FPT algorithm on chordal graphs that is truly sub-exponential. We remark that while we present a
sub-exponential FPT algorithm for 𝑘-WAY CUT on chordal graphs, we are not able to show whether the problem is NP-hard. We
conjecture that it is so and leave this as an interesting open question.

• It is “known” that VERTEX 𝑘-WAY CUT is W[1]-hard on chordal graphs, in fact on split graphs, parameterized by 𝑘 + 𝑠. We
complement this hardness result by designing polynomial-time algorithms for VERTEX 𝑘-WAY CUT on interval graphs, circular-

arc graphs, and permutation graphs (Section 4). We design a dynamic programming algorithm where instead of basing the
algorithm on the left to right interval representation of vertices, we base it on the interval spread of each component in the final
2

graph. Extending this idea, we obtain similar algorithms for the other graph classes.

Theoretical Computer Science 983 (2024) 114288S. Jana, S. Saha, A. Sahu et al.

2. Preliminaries

All graphs considered in this paper are finite, simple, and undirected. We use the standard notation and terminology that can
be found in the book of graph theory [24]. We use [𝑛] to denote the set of first 𝑛 positive integers {1, 2, 3, … , 𝑛}. For a graph 𝐺, we
denote the set of vertices of the graph by 𝑉 (𝐺) and the set of edges of the graph by 𝐸(𝐺). We denote |𝑉 (𝐺)| and |𝐸(𝐺)| by 𝑛 and 𝑚
respectively, where the graph is clear from context. We abbreviate an edge (𝑢, 𝑣) as 𝑢𝑣 sometimes. For a set 𝑆 ⊆ 𝑉 (𝐺), the subgraph
of 𝐺 induced by 𝑆 is denoted by 𝐺[𝑆] and it is defined as the subgraph of 𝐺 with vertex set 𝑆 and edge set {(𝑢, 𝑣) ∈𝐸(𝐺) ∶ 𝑢, 𝑣 ∈ 𝑆}
and the subgraph obtained after deleting 𝑆 (and the edges incident to the vertices in 𝑆) is denoted by 𝐺 − 𝑆. For 𝑣 ∈ 𝑉 (𝐺), we will
use 𝐺 − 𝑣 to denote 𝐺 − {𝑣} for ease of notation. All vertices adjacent to a vertex 𝑣 are called neighbours of 𝑣 and the set of all such
vertices is called the open neighbourhood of 𝑣, denoted by 𝑁𝐺(𝑣). For a set of vertices 𝑆 ⊆ 𝑉 (𝐺), we define 𝑁𝐺(𝑆) = (∪𝑣∈𝑆𝑁(𝑣) ⧵ 𝑆).
We define the closed neighbourhood of a vertex 𝑣 in the graph G to be 𝑁𝐺[𝑣] ∶=𝑁𝐺(𝑣) ∪ {𝑣} and closed neighbourhood of a set
of vertices 𝑆 ⊆ 𝑉 (𝐺) to be 𝑁𝐺[𝑆] ∶=𝑁𝐺(𝑆) ∪ 𝑆. We drop the subscript 𝐺 when the graph is clear from the context. For 𝐶 ⊆ 𝑉 (𝐺),
if 𝐺[𝐶] is connected and 𝑁(𝐶) = ∅, then we say that 𝐺[𝐶] is a connected component of 𝐺. For both the problems 𝑘-WAY CUT and

VERTEX 𝑘-WAY CUT, in the given instance, we assume that 𝑘 > 1, otherwise the input itself is an optimal solution with zero cut size.
A partition of 𝐺 into 𝑘 components is a partition of 𝑉 (𝐺) into 𝑘 sets 𝑉1, … , 𝑉𝑘 such that each 𝐺[𝑉𝑖] is connected. We say a partition
is non-trivial when 𝑘 > 1.

Definition 1. A tree-decomposition of a connected graph 𝐺 is a pair (𝑇 , 𝛽), where 𝑇 is a tree and 𝛽 ∶ 𝑉 (𝑇) → 2𝑉 (𝐺) such that

•
⋃
𝑥∈𝑉 (𝑇) 𝛽(𝑥) = 𝑉 (𝐺), we call 𝛽(𝑥) as the bag of 𝑥,

• for every edge (𝑢, 𝑣) ∈𝐸(𝐺), there exists 𝑥 ∈ 𝑉 (𝑇) such that {𝑢, 𝑣} ⊆ 𝛽(𝑥), and

• for every vertex 𝑣 ∈ 𝑉 (𝐺), the subgraph of 𝑇 induced by the set 𝛽−1(𝑣) ∶= {𝑥∶ 𝑣 ∈ 𝛽(𝑥)} is connected.

Chordal Graphs: A graph 𝐺 is a chordal graph if every cycle in 𝐺 of length at least 4 has a chord i.e., an edge joining two
non-consecutive vertices of the cycle. A clique-tree of 𝐺 is a tree-decomposition of 𝐺 where every bag is a maximal clique. We further
insist that every bag of the clique-tree is distinct. There are several ways to obtain a clique-tree decomposition of 𝐺; one way is by
using perfect elimination ordering (PEO) of 𝐺 [3]. The following lemma shows that the class of chordal graphs is exactly the class of
graphs that have a clique-tree.

Lemma 2 ([7]). A connected graph 𝐺 is a chordal graph if and only if 𝐺 has a clique-tree.

Let ℱ be a non-empty family of sets. A graph 𝐺 is called an intersection graph for ℱ if there is a one-to-one correspondence
between ℱ and 𝑉 (𝐺) where two sets in ℱ have nonempty intersection if and only if their corresponding vertices in 𝐺 are adjacent.
We call ℱ an intersection model of 𝐺 and we use 𝐺(ℱ) to denote the intersection graph for ℱ. If ℱ is a family of intervals on a real
line, then 𝐺(ℱ) is called an interval graph for ℱ. A proper interval graph is an interval graph that has an intersection model in which
no interval properly contains another. If ℱ is a family of arcs on a circle in the plane, then 𝐺(ℱ) is called an circular-arc graph for
ℱ. If ℱ is a family of line segments in the plane whose endpoints lie on two parallel lines, then the intersection graph of ℱ is called
the permutation graph for ℱ.

3. Sub-exponential FPT algorithm on chordal graphs

Chordal graphs belong to the class of perfect graphs that contains several other graph classes such as split graphs, interval graphs,
threshold graphs, and block graphs. A graph 𝐺 is a chordal graph if every cycle in 𝐺 of length at least 4 has a chord i.e., an edge joining
two non-consecutive vertices of the cycle. Chordal graphs are also characterized as the intersection graph of sub-trees of a tree. Every
chordal graph has a tree-decomposition where every bag induces a clique. In this section, we obtain a sub-exponential FPT algorithm
for the 𝑘-WAY CUT problem in chordal graphs parameterized by 𝑠, the number of cut edges. We first give a characterization of the

𝑘-WAY CUT on a clique in Lemma 4. Later, we use this characterization to design our algorithm.

Lemma 3. Let 𝕂 be a clique and 𝑠 be an integer. Then we can not partition the clique into more than one component by deleting 𝑠 edges if
one of the following conditions holds.

(i) |𝕂| > (𝑠 + 1),
(ii) |𝕂| > (2

√
𝑠+ 1), and size of every component in the partition is at most

√
𝑠.

Proof. (i) If |𝕂| > (𝑠 + 1), the size of min-cut of 𝕂 is at least 𝑠 + 1 and hence we cannot partition 𝕂 by deleting 𝑠 edges. (ii) In the
second condition, the size of every component in the partition is at most

√
𝑠 and hence every vertex 𝑣 in any component must be

disconnected from at least 2
√
𝑠 + 2 −

√
𝑠 =

√
𝑠 + 2 vertices that are in other components. Thus the total number of edges that needs

to be deleted is at least (2
√
𝑠+ 2)(

√
𝑠+ 2)∕2 > 𝑠. Hence the clique can not be partitioned by deleting 𝑠 edges. □

Lemma 4. Let 𝕂 be a clique and 𝑠 be an integer such that (2
√
𝑠+ 1) < |𝕂| < (𝑠 + 2), then any non-trivial partition of 𝕂 obtained by deleting √
3

at most 𝑠 edges, has a component of size at least (|𝕂| − 𝑠).

Theoretical Computer Science 983 (2024) 114288S. Jana, S. Saha, A. Sahu et al.

Proof. Let 𝕂 be a clique such that (2
√
𝑠+1) < |𝕂| < (𝑠 +2) and we have to partition the clique into 𝑘 components by deleting at most

𝑠 edges. Let 𝛾 be the size of the largest component in the partition.

|𝐸(𝕂)| = |𝐸(Largest component)|+ |E(other components)|+ |cut edges|
⟹

(|𝕂|
2

)
≤

(
𝛾

2

)
+
(|𝕂|− 𝛾

2

)
+ |cut edges|

⟹
(|𝕂|

2

)
≤

(
𝛾

2

)
+
(|𝕂|− 𝛾

2

)
+ 𝑠

⟹ |𝕂|(|𝕂|− 1) ≤ 𝛾(𝛾 − 1) + (|𝕂|− 𝛾)(|𝕂|− 𝛾 − 1) + 2𝑠

⟹ 0 ≤ 𝛾2 − 𝛾|𝕂|+ 𝑠
Therefore, either 𝛾 ≤ |𝕂|−√|𝕂|2−4𝑠

2 , or 𝛾 ≥ |𝕂|+√|𝕂|2−4𝑠
2 holds. If the first inequality holds, then it implies 𝛾 ≤ |𝕂|−√|𝕂|2+√4𝑠

2 (by using
the inequality

√
𝑎 −

√
𝑏 ≤

√
𝑎− 𝑏 for 0 < 𝑏 ≤ 𝑎). It follows that 𝛾 ≤

√
𝑠. However, Lemma 3 implies that if 𝛾 ≤

√
𝑠 and |𝕂| > 2

√
𝑠 + 1,

then there is no non-trivial partition of 𝕂. Thus in this case, 𝕂 has no non-trivial partition. If the second inequality holds, then
𝛾 ≥

|𝕂|+√|𝕂|2−4𝑠
2 , which implies that 𝛾 ≥ (|𝕂| −√

𝑠). Hence any non-trivial partition of 𝕂, obtained by deleting at most 𝑠 edges, has a
component of size at least (|𝕂| −√

𝑠). □

Lemma 5. There are 2(
√
𝑠 log 𝑠) many possible choices for any non-trivial partition of a clique 𝕂 obtained by deleting at most 𝑠 edges.

Proof. We have the following three cases depending on the size of 𝕂.

Case 1. |𝕂| ≥ (𝑠 + 2).
In this case, no non-trivial partition exists by Lemma 3.

Case 2. |𝕂| ≤ (2
√
𝑠+ 1).

In this case, there are 𝑘2
√
𝑠+1 ways of partitioning the clique into 𝑘 components. Since 𝑘 ≤ (𝑠 + 1), 𝑘2

√
𝑠+1 ≤ 2(

√
𝑠 log 𝑠).

Case 3. (2
√
𝑠+ 1) < |𝕂| < (𝑠 + 2).

From Lemma 4, in a partition of 𝕂 into 𝑘 components, there exists a component with at least (|𝕂| −√
𝑠) many vertices. So, we guess

(|𝕂| −√
𝑠) many vertices in a component. Now, the rest

√
𝑠 vertices are partitioned into 𝑘 components. The total number of choices for

such a partition of 𝕂 is bounded by
(|𝕂||𝕂|−√𝑠) ⋅𝑘√𝑠 ⋅𝑘. Since both 𝑘 and |𝕂| are bounded by (𝑠 +1), we have |𝕂|√𝑠 ⋅𝑘√𝑠 ⋅𝑘 ≤ 2(

√
𝑠 log 𝑠). □

Now we prove the following theorem.

Theorem 6. 𝑘-WAY CUT problem on a chordal graph with 𝑛 vertices can be solved in time 2(
√
𝑠 log 𝑠)𝑛(1).

To prove Theorem 6, we design a dynamic-programming algorithm for the 𝑘-WAY CUT problem on chordal graphs, which exploits
its clique-tree decomposition. Let 𝐺 be a chordal graph and 𝜏 = (𝑇 , {𝐾𝑡}𝑡∈𝑉 (𝑡)) be its clique-tree decomposition.

Let 𝑇 be a clique-tree of 𝐺 rooted at some node 𝑟. For a node 𝑡 of 𝑇 , 𝐾𝑡 is the set of vertices contained in 𝑡 and let 𝑉𝑡 be the set of all
vertices of the sub-tree of 𝑇 rooted at 𝑡. The parent node of 𝑡 is denoted by parent(𝑡). We follow a bottom-up dynamic-programming
approach on 𝑇 to design our algorithm.

For a set of vertices 𝑈 , we use 𝙿(𝑈) to denote a partition {𝐴1, 𝐴2, … , 𝐴𝑘} of 𝑈 where each 𝐴𝑖 is a set in the partition. Given
the partitions of two sets 𝑈1, 𝑈2 ⊆ 𝑉 (𝐺), say 𝙿(𝑈1) = {𝐴1, 𝐴2, … , 𝐴𝑘} and 𝙿(𝑈2) = {𝐵1, 𝐵2, … , 𝐵𝑘}, we call these partitions mutually
compatible, if for each vertex 𝑢 in 𝑈1 ∩𝑈2, 𝑢 ∈𝐴𝑖 if and only if 𝑢 ∈ 𝐵𝑖 for some 𝑖 ∈ [𝑘]. We denote the mutually compatible relation by
⟂. For any node 𝑡, a partition 𝙿(𝐾𝑡) and an integer 𝑤 where 0 ≤𝑤 ≤ (𝑘 − 1), a feasible solution for (𝑡, 𝙿(𝐾𝑡), 𝑤) is a 𝑘-way cut in 𝐺[𝑉𝑡]
with the following properties: (𝙿(𝑉𝑡) is the partition induced on 𝑉𝑡 by the above 𝑘-way cut).

∙ 𝙿(𝐾𝑡) ⟂ 𝙿(𝑉𝑡),
∙ Exactly 𝑤 components in 𝙿(𝑉𝑡) contain no vertex from 𝐾𝑡, that is, these 𝑤 components are completely contained inside 𝐺[𝑉𝑡 ⧵𝐾𝑡].

Next, we define the dynamic-programming table whose entry is denoted by 𝑀[𝑡; 𝙿(𝐾𝑡), 𝑤] for a node 𝑡 and integer 𝑤, 0 ≤𝑤 ≤ 𝑘.
The entry 𝑀[𝑡; 𝙿(𝐾𝑡), 𝑤] stores the size of the smallest such feasible solution. From Lemma 5, the number of sub-problems (or number
of entries that we have to compute) for each node in the tree is bounded by 2(

√
𝑠 log 𝑠) as each node is a clique. Below we give a

recurrence relation to compute 𝑀[𝑡; 𝙿(𝐾𝑡), 𝑤] for each tuple (𝑡, 𝙿(𝐾𝑡), 𝑤). The case where 𝑡 is a leaf, corresponds to the base case of
the recurrence, whereas the values of 𝑀[𝑡; ., .] for a non-leaf node 𝑡 depends on the value of 𝑀[𝑡′, .] for each child 𝑡′ of node 𝑡 (which
have already been computed). By applying the formula in a bottom-up manner on 𝑇 , we compute 𝑀(𝑟; 𝙿(𝐾𝑟), 𝑘 −1) for the root node
𝑟. Note that the value of 𝑀(𝑟; 𝙿(𝐾𝑟), 𝑘 − 1) is exactly the size of an optimal solution for our problem, because in any optimal solution
there are exactly 𝑘 − 1 components that are completely contained in 𝐺 − 𝐾𝑟. Here without loss of generality, we can assume that
𝐾𝑟 contains exactly one vertex of 𝐺. For a partition 𝙿(𝑈) of 𝑈 , we define CUT(𝙿(𝑈)) as the set of edges whose endpoints belong to
4

different sets in the partition. Now, we describe the recursive formulas to compute the value of 𝑀[𝑡; ., .], for each node 𝑡.

Theoretical Computer Science 983 (2024) 114288S. Jana, S. Saha, A. Sahu et al.

Leaf node. Let 𝑡 be a leaf node. Then for each partition 𝙿(𝐾𝑡), we define

𝑀[𝑡;𝙿(𝐾𝑡),𝑤] =

{|CUT(𝙿(𝐾𝑡))| if 𝑤 = 0,
+∞ otherwise.

Non-leaf node. Let 𝑡 be a non-leaf node. Assume that the node 𝑡 has 𝓁 children 𝑡1, … , 𝑡𝓁 . For a pair of distinct vertices 𝑢, 𝑣 in 𝐾𝑡,
let Child_Pair(𝑡; 𝑢, 𝑣) denote the number of children of 𝑡 containing both the vertices 𝑢 and 𝑣. For a partition 𝙿(𝐾𝑡), let Child(𝙿(𝐾𝑡))
denote the sum of the number of occurrences (with repetitions) of the edges from CUT(𝙿(𝐾𝑡)) in all the children nodes of 𝑡, that is,
Child(𝙿(𝐾𝑡)) =

∑
(𝑢,𝑣)∈CUT(𝙿(𝐾𝑡)) Child_Pair(𝑡; 𝑢, 𝑣). Let 𝜓(𝙿(𝐾𝑡)) denote the number of sets in 𝙿(𝐾𝑡) that have no common vertex

with the parent node of 𝑡. Therefore, the recurrence relation for computing 𝑀(𝑡; ., .) for 𝑡 is as follows:

𝑀[𝑡;𝙿(𝐾𝑡),𝑤] = |CUT(𝙿(𝐾𝑡))|− Child(𝙿(𝐾𝑡))+

min
∀(𝙿(𝐾𝑡𝑖),𝑤𝑖)∶
𝙿(𝐾𝑡𝑖)⟂𝙿(𝐾𝑡)

𝑤=
∑
𝑖

(𝑤𝑖+𝜓(𝙿(𝐾𝑡𝑖)))

𝓁∑
𝑖=1
𝑀[𝑡𝑖;𝙿(𝐾𝑡𝑖),𝑤𝑖].

Next, we prove the correctness of the above recurrence relation.

Correctness Let 𝑅 denote the value of the right side expression above. To prove the recurrence relation, first we show 𝑀[𝑡; 𝙿(𝐾𝑡), 𝑤] ≤
𝑅 and then 𝑀[𝑡; 𝙿(𝐾𝑡), 𝑤] ≥ 𝑅. Let 𝑡 be a node in 𝑇 having 𝓁 children 𝑡1, 𝑡2, … , 𝑡𝓁 . Any set of 𝓁 compatible partitions, one for each
child of 𝑡 together with 𝙿(𝐾𝑡) leads to a feasible solution for (𝑡, 𝙿(𝐾𝑡), 𝑤) if 𝑤 = ∑

𝑖(𝑤𝑖 + 𝜓(𝙿(𝐾𝑡𝑖))). Now for each child node 𝑡𝑖 of
𝑡 and for any pair of vertices 𝑢, 𝑣 in 𝐾𝑡, if the vertices 𝑢 and 𝑣 are in different sets in each of the partitions 𝙿(𝐾𝑡) and 𝙿(𝐾𝑡𝑖),
then the (to be deleted) edge (𝑢, 𝑣) is counted twice, once in CUT(𝙿(𝐾𝑡)) and once in 𝑀[𝑡𝑖; 𝙿(𝐾𝑡𝑖), 𝑤𝑖]. Now if the edge (𝑢, 𝑣) is

present in 𝑐 many children of 𝑡, then in the entry
𝓁∑
𝑖=1
𝑀[𝑡𝑖; 𝙿(𝐾𝑡𝑖), 𝑤𝑖] this edge gets counted 𝑐 times. To avoid over-counting of the

edge (𝑢, 𝑣) in 𝑀[𝑡𝑖; ., .], we must consider the edge (𝑢, 𝑣) exactly once and for this purpose we use Child(𝙿(𝐾𝑡)) in the recurrence
relation. Considering this over counting, the set of edges corresponding to 𝑀[𝑡1; 𝙿(𝐾𝑡1), 𝑤1], 𝑀[𝑡2; 𝙿(𝐾𝑡2), 𝑤2], … , 𝑀[𝑡𝓁 ; 𝙿(𝐾𝑡𝓁), 𝑤𝓁]

with size
𝓁∑
𝑖=1
𝑀[𝑡𝑖; 𝙿(𝐾𝑡𝑖), 𝑤𝑖] − Child(𝙿(𝐾𝑡)), together with the edges corresponding to CUT(𝙿(𝐾𝑡)) gives us a feasible solution for

(𝑡, 𝙿(𝐾𝑡), 𝑤). Hence, 𝑀[𝑡; 𝙿(𝐾𝑡), 𝑤] ≤ |CUT(𝙿(𝐾𝑡))| − Child(𝙿(𝐾𝑡)) +
𝓁∑
𝑖=1
𝑀[𝑡𝑖; 𝙿(𝐾𝑡𝑖), 𝑤𝑖], where 𝙿(𝐾𝑡) ⟂ 𝙿(𝐾𝑡𝑖) for each 𝑖 ∈ [𝓁] and 𝑤 =∑

𝑖(𝑤𝑖 +𝜓(𝙿(𝐾𝑡𝑖)).
Next, we show that 𝑀[𝑡; 𝙿(𝐾𝑡), 𝑤] ≥ 𝑅. Let 𝑌 be a set of cut edges corresponding to the entry 𝑀[𝑡; 𝙿(𝐾𝑡), 𝑤]. Let 𝑌 ′ ⊆ 𝑌 be the

set of edges that are not present in 𝐾𝑡. So 𝑌 ⧵ 𝑌 ′ determines the partition in 𝐾𝑡. Let 𝑌 ′ = 𝑌1 ∪ … ∪ 𝑌𝓁 , where each 𝑌𝑖 is the set of
edges for 𝐺[𝑉 (𝑡𝑖)]. Let 𝑋1 ∪… ∪𝑋𝓁 ⊆ (𝑌 ⧵ 𝑌 ′), where 𝑋𝑖 = (𝑌 ⧵ 𝑌 ′) ∩𝐸(𝐾(𝑡𝑖)). Now it is easy to see that 𝑌𝑖 ∪𝑋𝑖 is a feasible solution
for (𝑡𝑖, 𝙿(𝐾𝑡𝑖), 𝑤𝑖), where 𝙿(𝐾𝑡) ⟂ 𝙿(𝐾𝑡𝑖) for each 𝑖 ∈ [𝓁] and 𝑤 =∑

𝑖(𝑤𝑖 + 𝜓(𝙿(𝐾𝑡𝑖)). Since 𝑌 ⧵ 𝑌 ′ determines the partition only in 𝐾𝑡,

|𝑌 ⧵ 𝑌 ′| = |CUT(𝙿(𝐾𝑡))|. Thus, we get 𝑀[𝑡; 𝙿(𝐾𝑡), 𝑤] − |CUT(𝙿(𝐾𝑡))| + Child(𝙿(𝐾𝑡)) ≥
𝓁∑
𝑖=1
𝑀[𝑡𝑖; 𝙿(𝐾𝑡𝑖), 𝑤𝑖]. Hence the correctness of the

recurrence relation follows.

Time complexity There are (𝑛) many nodes in the clique tree of the given graph 𝐺. The number of entries 𝑀[.; ., .] for any node
can be upper bounded by 𝑘2(

√
𝑠 log 𝑠) (from Lemma 5). To compute one such entry, we look at the entries with the compatible

partitions in the children nodes. Now, we describe how we compute 𝑀[𝑡; 𝙿(𝐾𝑡), 𝑤] in a node for a fixed partition 𝙿(𝐾𝑡) and a
fixed integer 𝑤 ≤ 𝑘. We apply an incremental procedure to find this. Consider an ordering 𝑡1 ≺ 𝑡2 ≺… ≺ 𝑡𝓁 of child nodes of 𝑡. In
the dynamic-programming, we store the entries 𝑀[𝑡𝑖; 𝙿(𝐾𝑡𝑖), 𝑤𝑖] for each 𝙿(𝐾𝑡𝑖) ⟂ 𝙿(𝐾𝑡) and 𝑤𝑖 ≤ 𝑘. For each 𝑡𝑖, we compute the
entries 𝐷𝑖(𝑧) for 0 ≤ 𝑧 ≤ 𝑘, where 𝐷𝑖(𝑧) = min

𝑧
{𝑀[𝑡𝑖; 𝙿(𝐾𝑡𝑖), 𝑤

∗] ∶ 𝙿(𝐾𝑡𝑖) ⟂ 𝙿(𝐾𝑡), 𝑧 = 𝑤∗ + 𝜓(𝙿(𝐾𝑡𝑖), 𝑤
∗ ≤ 𝑘}. Next we create a set

of entries for 𝐷, defined by 𝐷(1, 2, … , 𝑖; 𝑧) = min
𝑧=𝑧1+𝑧2

{𝐷(1, 2, … , 𝑖 − 1; 𝑧1) + 𝐷𝑖(𝑧2)}, for 𝑖 ∈ [𝓁]. 𝐷(1; 𝑧) = 𝐷1(𝑧), ∀𝑧 (the base case). It

takes (𝓁𝑘3) time to compute all the entries of the table 𝐷. Now using the entries of the table 𝐷, we compute 𝑀[𝑡; 𝙿(𝐾𝑡), 𝑤], i.e.
𝑀[𝑡; 𝙿(𝐾𝑡), 𝑧] = |CUT(𝙿(𝐾𝑡))| − Child(𝙿(𝐾𝑡)) +𝐷(1, 2, … , 𝓁; 𝑧).
Since there are 2(

√
𝑠 log 𝑠) many partitions of each node 𝑡, computing all DP table entries at each node takes 2(

√
𝑠 log 𝑠)(𝓁𝑘3) time.

Because 𝓁, 𝑘 ≤ 𝑛, and there are (𝑛) many nodes in the clique tree, the total running time is upper-bounded by 2(
√
𝑠 log 𝑠)𝑛(1).

4. Polynomial time algorithmic results

In this section, we obtain polynomial-time algorithms for the optimization version of the VERTEX 𝑘-WAY CUT on interval graphs,
5

circular-arc graphs, and permutation graphs.

Theoretical Computer Science 983 (2024) 114288S. Jana, S. Saha, A. Sahu et al.

Fig. 1. Blue-colored intervals represent the components 𝐺[𝐼𝑥′ ,𝑦′] and 𝐺[𝐼𝑥,𝑦]. Purple and green-colored intervals are associated with the entry 𝑇 [𝑖 − 1; 𝑥′ , 𝑦′] and with
the set (|𝐼<𝑦 ∩ 𝐼⩾𝑦′ | − |𝐼𝑥,𝑦|), respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4.1. Interval graphs

Here, we design a dynamic-programming algorithm for the optimization version of the VERTEX 𝑘-WAY CUT on interval graphs.
Let 𝐺 be an interval graph with vertex set 𝑉 (𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛}. Since 𝐺 is an interval graph, there exists a corresponding geometric
intersection representation of 𝐺, where each vertex 𝑣𝑖 ∈ 𝑉 (𝐺) is associated with an interval 𝐼𝑖 = (𝓁(𝐼𝑖), 𝑟(𝐼𝑖)) in the real line, where
𝓁(𝐼𝑖) and 𝑟(𝐼𝑖) denote left and right endpoints, respectively in 𝐼𝑖. Two vertices 𝑣𝑖 and 𝑣𝑗 are adjacent in 𝐺 if and only if their
corresponding intervals 𝐼𝑖 and 𝐼𝑗 intersect with each other. Without loss of generality we can assume that along with the graph, we
are also given the corresponding underlying intervals on the real line. We use  to denote the set {𝐼𝑖 ∶ 𝑣𝑖 ∈ 𝑉 } of intervals and 𝑃 to
denote the set of all endpoints of these intervals, i.e., 𝑃 = ∪𝐼∈{𝓁(𝐼), 𝑟(𝐼)}. In the remaining section, we use 𝑣𝑖 and 𝐼𝑖 interchangeably.
For a pair of points 𝑎 and 𝑏 on the real line with 𝑎 ≤ 𝑏 (we say 𝑎 ≤ 𝑏 when 𝑥-coordinate of 𝑎 is not greater than 𝑥-coordinate of 𝑏),
we define 𝐼𝑎,𝑏 to denote the intervals which are properly contained in [𝑎, 𝑏], formally 𝐼𝑎,𝑏 = {𝐼 ∈  ∶ 𝑎 ≤ 𝓁(𝐼) ≤ 𝑟(𝐼) ≤ 𝑏}. Let 𝐼⩾𝑏 be
the set of intervals whose left endpoints are greater than 𝑏 and 𝐼<𝑏 be the set of intervals whose left endpoint is strictly less than 𝑏,
formally 𝐼⩾𝑏 = {𝐼 ∈  ∶ 𝓁(𝐼) ≥ 𝑏} and 𝐼<𝑏 = {𝐼 ∈  ∶ 𝓁(𝐼) < 𝑏}.

We now define a table for dynamic-programming algorithm (for an illustration see Fig. 1). For every tuple (𝑖, 𝑥, 𝑦), where 1 ≤ 𝑖 ≤ 𝑘
and 𝑥, 𝑦 ∈ 𝑃 with 𝑥 < 𝑦, any cut where 𝐺[𝐼𝑥,𝑦] is the 𝑖-th component with respect to the cut in 𝐺[𝐼<𝑦] is a feasible cut for the
tuple (𝑖, 𝑥, 𝑦) and 𝑇 [𝑖; 𝑥, 𝑦] stores the minimum size among all such feasible cuts for the tuple (𝑖, 𝑥, 𝑦). Notice that any two connected
components do not intersect. Hence we can order the components from left to right. In particular, for a pair of components 𝐶𝑗 and
𝐶𝑗′ , we say 𝐶𝑗 ≺ 𝐶𝑗′ if for any pair of intervals 𝐼 ∈ 𝐶𝑗 and 𝐼 ′ ∈ 𝐶𝑗′ the condition 𝑟(𝐼) < 𝓁(𝐼 ′) holds. In the base case, we compute the
values for 𝑇 [1; 𝑥, 𝑦] for each possible pair 𝑥, 𝑦 in 𝑃 where 𝑥 < 𝑦. 𝑇 [1; 𝑥, 𝑦] stores the number of intervals in 𝐺[𝐼<𝑦] that have either left
endpoint strictly less than 𝑥 or right endpoint strictly greater than 𝑦, formally 𝑇 [1; 𝑥, 𝑦] = |𝐼<𝑦| − |𝐼𝑥,𝑦|.

In the next lemma, we give a recursive formula for computing the values 𝑇 [𝑖; 𝑥, 𝑦] for 𝑖 > 1.

Lemma 7. For every integer 𝑖 and every pair of points 𝑥, 𝑦 in 𝑃 where 2 ≤ 𝑖 ≤ 𝑘 and 𝑥 < 𝑦, the following holds:

𝑇 [𝑖; 𝑥, 𝑦] = min
𝑥′ ,𝑦′∈𝑃
𝑥′<𝑦′<𝑥

{𝑇 [𝑖 − 1; 𝑥′, 𝑦′] + |𝐼<𝑦 ∩ 𝐼⩾𝑦′ | − |𝐼𝑥,𝑦|}.

Proof. We prove the recurrence relation by showing inequalities in both directions. In one direction, let (𝐶1, 𝐶2, … , 𝐶𝑖) be a feasible
cut corresponding to the entry 𝑇 [𝑖; 𝑥, 𝑦]. Here 𝐶𝑖 = 𝐺[𝐼𝑥,𝑦]. Let 𝑥′ and 𝑦′ be the left endpoint and right endpoint of the component
𝐶𝑖−1, so 𝐶𝑖−1 ⊆ 𝐺[𝐼𝑥′ ,𝑦′]. Clearly, 𝑥′ < 𝑦′ < 𝑥 < 𝑦. Now the intervals of the set (𝐼<𝑦 ∩ 𝐼⩾𝑦′) ⧵ 𝐼𝑥,𝑦 are part of cut vertices corresponding
to the entry 𝑇 [𝑖; 𝑥, 𝑦]. Here we can get a set of (𝑖 − 1) components 𝐶1, 𝐶2, … , 𝐶𝑖−1 in the graph 𝐺[𝐼<𝑦′] with 𝐶𝑖−1 =𝐺[𝐼𝑥′ ,𝑦′] and cut of
size at most 𝑇 [𝑖; 𝑥, 𝑦] − (|𝐼<𝑦 ∩ 𝐼>𝑦′ | − |𝐼𝑥,𝑦|). Therefore, by the definition of 𝑇 [𝑖; 𝑥, 𝑦], 𝑇 [𝑖 − 1; 𝑥′, 𝑦′] ≤ 𝑇 [𝑖; 𝑥, 𝑦] − (|𝐼<𝑦 ∩ 𝐼>𝑦′ | − |𝐼𝑥,𝑦|).

In the other direction, let (𝐶 ′
1, 𝐶

′
2, … , 𝐶 ′

𝑖−1) be a feasible cut corresponding to the entry 𝑇 [𝑖 − 1; 𝑥′, 𝑦′], where 𝑥′ < 𝑦′ < 𝑥 < 𝑦 and
𝐶𝑖−1 =𝐺[𝐼𝑥′ ,𝑦′]. Now the component induced by 𝐼𝑥,𝑦 together with 𝐶 ′

1, 𝐶
′
2, … , 𝐶 ′

𝑖−1 produces a feasible cut for 𝑇 [𝑖; 𝑥, 𝑦]. Therefore, the
cut corresponding to 𝑇 [𝑖 − 1; 𝑥′, 𝑦′] together with (𝐼<𝑦 ∩ 𝐼⩾𝑦′) ⧵ 𝐼𝑥,𝑦 gives a cut with the components 𝐶 ′

1, … , 𝐶 ′
𝑖−1, 𝐶

′
𝑖
= 𝐺[𝐼𝑥,𝑦]. Hence,

𝑇 [𝑖 − 1; 𝑥′, 𝑦′] + |𝐼<𝑦 ∩ 𝐼⩾𝑦′ | − |𝐼𝑥,𝑦| ≥ 𝑇 [𝑖; 𝑥, 𝑦]. This completes the proof of the lemma. □

With the insight of Lemma 7, we can now state the following theorem.

Theorem 8. VERTEX 𝑘-WAY CUT in interval graphs with 𝑛 vertices can be solved in (𝑘𝑛4) time.

Proof. Let 𝐺 be a given graph with  as an interval representation where 𝑃 denotes the set of endpoints of all the intervals. In the
pre-processing step, we do the following: (i) for every point 𝑝 ∈ 𝑃 , we construct 𝐼<𝑝 and 𝐼⩾𝑝, (ii) for every pair of points 𝑝, 𝑞 in 𝑃 ,
we compute |𝐼𝑝,𝑞| and |𝐼<𝑝 ∩ 𝐼⩾𝑞|. It will take (𝑛2) time to perform both these pre-processing steps. Now in the recurrence formula,
to obtain 𝑇 [𝑖; 𝑥, 𝑦], we use the already computed values 𝑇 [𝑖; 𝑥′, 𝑦′] for each possible pair 𝑥′, 𝑦′ ∈ 𝑃 with 𝑥′ < 𝑦′ < 𝑥 < 𝑦. Computing
any entry takes (𝑛2) time. Since 𝑖 ranges from 1 to 𝑘, we can compute all the values 𝑇 [𝑖; 𝑥, 𝑦] in (𝑘𝑛4) time. Notice that the entry
𝑇 [𝑘; ., .] with minimum value gives us the size of a minimum vertex 𝑘-way cut in 𝐺. Hence, the theorem holds. □

4.2. Proper interval graphs

In this subsection, we design a dynamic-programming algorithm for the optimization version of the VERTEX 𝑘-WAY CUT on
6

proper interval graphs. In proper interval graphs, each vertex is associated with an interval in the real line such that no interval

Theoretical Computer Science 983 (2024) 114288S. Jana, S. Saha, A. Sahu et al.

is completely contained in another interval. We use the notations , 𝐼𝑖, 𝓁(𝐼𝑖), 𝑟(𝐼𝑖) and 𝑃 with the same definitions as used in the
previous subsection. Let  be the set of all intervals with ordering 𝐼1 < 𝐼2 <… < 𝐼𝑛 according to their left endpoints. Observe that for
proper interval graphs, the ordering of intervals with respect to their left endpoints is same as with respect to their right endpoints.
More explicitly, for any two intervals 𝐼𝑖 and 𝐼𝑗 where 𝓁(𝐼𝑖) < 𝓁(𝐼𝑗), 𝑟(𝐼𝑖) must be less than 𝑟(𝐼𝑗). Let 𝑖 = {𝐼1, 𝐼2, … , 𝐼𝑖} and 𝐺[𝑖]
denote the subgraph of 𝐺 induced by 𝑖. Also for an interval 𝐼𝑖, 𝐼𝓁𝑖 denotes the interval in  which has leftmost left endpoint among
all the intervals containing 𝓁(𝐼𝑖), formally, 𝐼𝓁

𝑖
= 𝐼𝑐 , where 𝑐 =min{𝑗; 𝐼𝑗 ∈ , 𝓁(𝐼𝑗) < 𝓁(𝐼𝑖) < 𝑟(𝐼𝑗)}.

We now define a table for dynamic-programming algorithm. For every pair (𝑖, 𝑡), where 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑡 ≤ 𝑘, we define two
entries. 𝑇 [∈; 𝑖, 𝑡] and 𝑇 [∉; 𝑖, 𝑡]. For every tuple (∈, 𝑖, 𝑡), any cut where the interval 𝐼𝑖 lies in one of the 𝑡 components with respect to
the cut in 𝐺[𝑖] is a feasible cut for the tuple (∈, 𝑖, 𝑡) and 𝑇 [∈; 𝑖, 𝑡] stores the minimum size among all such feasible cuts for the tuple
(∈, 𝑖, 𝑡). For every tuple (∉, 𝑖, 𝑡), any cut where the interval 𝐼𝑖 does not lie in any of the 𝑡 components with respect to the cut in 𝐺[𝑖]
is a feasible cut for the tuple (∉, 𝑖, 𝑡) and 𝑇 [∉; 𝑖, 𝑡] stores the minimum size among all such feasible cuts for the tuple (∉, 𝑖, 𝑡). Similar
to interval graphs, here also we order the components from left to right. In particular, for a pair of components 𝐶𝑗 and 𝐶𝑗′ , we say
𝐶𝑗 ≺ 𝐶𝑗′ if for any pair of intervals 𝐼 ∈ 𝐶𝑗 and 𝐼 ′ ∈ 𝐶𝑗′ the condition 𝑟(𝐼) < 𝓁(𝐼 ′) holds.

In the base case, the values 𝑇 [∈; 𝑖, 1] = 0 and 𝑇 [∉; 𝑖, 1] = 1, for 𝑖 ∈ [𝑛].
In the next two lemmas, we give recursive formulas for computing the values 𝑇 [∈; 𝑖, 𝑡] and 𝑇 [∉; 𝑖, 𝑡], for 𝑖 ∈ [𝑛], 1 < 𝑡 ≤ 𝑘.

Lemma 9. For every 𝑡 and 𝑖 where 2 ≤ 𝑡 ≤ 𝑘 and 1 ≤ 𝑖 < 𝑛, the following holds:

𝑇 [∉; 𝑖 + 1, 𝑡] = 1 +min{𝑇 [∈; 𝑖, 𝑡], 𝑇 [∉; 𝑖, 𝑡]}.

Proof. We prove the given recurrence by showing inequalities in both directions. In one direction, let (𝐶1, 𝐶2, … , 𝐶𝑡) be a feasible cut
corresponding to the entry 𝑇 [∉; 𝑖 +1, 𝑡]. We distinguish the following two cases. Case 1: If 𝐼𝑖 ∈ 𝐶𝑡, then (𝐶1, 𝐶2, … , 𝐶𝑡) is a feasible cut
corresponding to the entry 𝑇 [∈; 𝑖, 𝑡]. Case 2: If 𝐼𝑖 ∉ 𝐶𝑡 then (𝐶1, 𝐶2, … , 𝐶𝑡) is a feasible cut corresponding to the entry 𝑇 [∉; 𝑖, 𝑡]. In both
these cases, the cut size is one less than a cut corresponding to 𝑇 [∉; 𝑖 +1, 𝑡]. Therefore, 𝑇 [∉; 𝑖 +1, 𝑡] −1 ≥min{𝑇 [∈; 𝑖, 𝑡], 𝑇 [∉; 𝑖, 𝑡]}.

In the other direction, let (𝐶 ′
1, 𝐶

′
2, … , 𝐶 ′

𝑡
) be a feasible cut respecting the tuple (∈, 𝑖, 𝑡), where 𝑋1 is the corresponding set of cut

vertices. Now (𝐶 ′
1, 𝐶

′
2, … , 𝐶 ′

𝑡
) is also a feasible cut for 𝑇 [∉; 𝑖 +1, 𝑡] with 𝑋1 ∪ {𝐼𝑖+1} considered as the set of cut vertices. Similarly, let

(𝐶 ′′
1 , 𝐶

′′
2 , … , 𝐶 ′′

𝑡
) be a feasible cut corresponding to the entry 𝑇 [∉; 𝑖, 𝑡], where 𝑋2 is a set of cut vertices. Now (𝐶 ′′

1 , 𝐶
′′
2 , … , 𝐶 ′′

𝑡
) is also

a feasible cut corresponding to the entry 𝑇 [∉; 𝑖 + 1, 𝑡] where 𝑋2 ∪ {𝐼𝑖+1} is a set of cut vertices. Thus, 𝑇 [∉; 𝑖 + 1, 𝑡] ≤ 1 +min{𝑇 [∈
; 𝑖, 𝑡], 𝑇 [∉; 𝑖, 𝑡]}. Hence the lemma holds. □

Lemma 10. Let 𝑑𝑖 be the number of intervals passing through 𝓁(𝐼𝑖) and 𝑖′ be the index corresponding to the interval 𝐼𝓁
𝑖

. Then for every
2 ≤ 𝑡 ≤ 𝑘 the following holds:

𝑇 [∈; 𝑖 + 1, 𝑡] =min{𝑇 [∈; 𝑖, 𝑡], 𝑇 [∉; 𝑖′, 𝑡 − 1] + 𝑑𝑖+1 − 1}.

Proof. We prove the recurrence relation by showing inequalities in both directions. In one direction, let (𝐶1, 𝐶2, … , 𝐶𝑡) be a feasible
cut corresponding to the entry 𝑇 [∈; 𝑖 +1, 𝑡]. We distinguish the following two cases. If 𝐼𝑖 ∈ 𝐶𝑡 then (𝐶1, 𝐶2, … , (𝐶𝑡 ⧵{𝐼𝑖+1})) is a feasible
cut corresponding to the entry 𝑇 [∈; 𝑖, 𝑡]. If 𝐼𝑖 ∉ 𝐶𝑡, then (𝐶1, 𝐶2, … , 𝐶𝑡−1) is a feasible cut corresponding to the entry 𝑇 [∉; 𝑖′, 𝑡 − 1],
but in this case the cut size decreases by 𝑑𝑖+1 −1. So 𝑇 [∈; 𝑖 +1, 𝑡] ≥min{𝑇 [∈; 𝑖, 𝑡], 𝑇 [∉; 𝑖′, 𝑡 −1] +𝑑𝑖+1 −1}. In the other direction, let
(𝐶 ′

1, 𝐶
′
2, … , 𝐶 ′

𝑡
) be a feasible cut corresponding to the entry 𝑇 [∈; 𝑖, 𝑡], where 𝑋1 is the set of cut vertices. Now (𝐶 ′

1, 𝐶
′
2, … , 𝐶 ′

𝑡
∪ {𝐼𝑖+1})

is also a feasible cut corresponding to the entry 𝑇 [∈; 𝑖 + 1, 𝑡] with the same cut 𝑋1. Similarly, let (𝐶 ′′
1 , 𝐶

′′
2 , … , 𝐶 ′′

𝑡−1) be a feasible cut
corresponding to the entry 𝑇 [∉; 𝑖′, 𝑡 − 1], where 𝑋2 is the set of cut vertices. Let 𝑍 denote the set of intervals containing 𝓁(𝐼𝑖+1)
except 𝐼𝑖+1. Now (𝐶 ′′

1 , 𝐶
′′
2 , … , 𝐶 ′′

𝑡−1, 𝐼𝑖+1) is also a feasible cut corresponding to the entry 𝑇 [∈; 𝑖 + 1, 𝑡] with 𝑋2 ∪ 𝑍 as a set of cut
vertices. Since |𝑍| = 𝑑𝑖+1, then 𝑇 [∈; 𝑖 + 1, 𝑡] ≤min{𝑇 [∈; 𝑖, 𝑡], 𝑇 [∉; 𝑖′, 𝑡 − 1] + 𝑑𝑖+1 − 1}. □

With the insight of Lemma 9 and Lemma 10, we can now state the following theorem.

Theorem 11. VERTEX 𝑘-WAY CUT in proper interval graph with 𝑛 vertices can be solved in (𝑘𝑛) time assuming that the interval model is
given.

Proof. Let 𝐺 be a given proper interval graph with corresponding set  of 𝑛 intervals. Let 𝑃 denote the set of all endpoints of
these intervals. Here we assume that we are given the set of intervals with the ordering based on left endpoints as an input. In
the pre-processing step, we do the following: compute 𝐼𝓁

𝑖
and 𝑑𝑖, for each interval 𝐼𝑖 ∈ . It will take (𝑛) time to perform all the

pre-processing steps. Now in the recurrence formula, to obtain 𝑇 [∉; 𝑖 + 1, 𝑡] and 𝑇 [∈; 𝑖 + 1, 𝑡], we use (1) many computations. So
computing any entry takes (1) time. Since 𝑖 ranges from 1 to up to 𝑛, and 𝑡 ≤ 𝑘, we can compute all the entries of the table in (𝑘𝑛)
time. Notice that the entry 𝑇 [.; 𝑛, 𝑘] with minimum value gives us the size of a minimum vertex 𝑘-way cut in 𝐺. Hence, the theorem
7

holds. □

Theoretical Computer Science 983 (2024) 114288S. Jana, S. Saha, A. Sahu et al.

4.3. Circular-arc graphs

A graph 𝐺 is said to be a circular-arc graph if there exists a corresponding geometric intersection representation (𝐺) of 𝐺, where
each vertex 𝑣 ∈𝐺 is associated with an arc on a fixed circle. Two vertices 𝑢 and 𝑣 are adjacent in 𝐺 if and only if the corresponding
arcs intersect each other. It is easy to observe that this graph class contains interval graphs.

Here we design a polynomial-time algorithm for the optimization version of VERTEX 𝑘-WAY CUT problem on circular-arc graphs.
Let 𝑆 be an optimal solution of VERTEX 𝑘-WAY CUT problem on 𝐺 and 𝐶 be a component in 𝐺 ⧵ 𝑆. Assume 𝐼 is the circular-arc
representation of 𝐶 in (𝐺) and 𝐼1 ∈ 𝐼 be the arc that has the last endpoint, say 𝑢, in the clockwise direction in the circular-arc
representation of 𝐺 ⧵ 𝑆 . Let 𝐼 ′ be the set of arcs in (𝐺) that intersect 𝑢, excluding 𝐼1. Since 𝑆 is a 𝑘-way cut it must contain all the
vertices corresponding to the arcs in 𝐼 ′. Now assume we cut the circle corresponding to the circular-arc representation of 𝐺 ⧵ 𝑆 at 𝑢
and convert the circular-arc to a real line to get an instance of VERTEX 𝑘-WAY CUT problem on interval graphs. We claim that 𝑆 ⧵ 𝐼 ′

is an optimal solution to the VERTEX 𝑘-WAY CUT problem on the interval graph instance that we construct.

Claim 1. 𝑆 ⧵ 𝐼 ′ is a solution to the VERTEX 𝑘-WAY CUT problem on the interval graph instance 𝐺 ⧵ 𝐼 ′.

Proof. Let 𝑆′ be an optimal solution on the VERTEX 𝑘-WAY CUT problem on the interval graph induced by 𝐺 ⧵ 𝐼 ′. If |𝑆′| = |𝑆 ⧵ 𝐼 ′|,
we are done. Else, |𝑆′| < |𝑆 ⧵ 𝐼 ′| then 𝑆 ⧵ 𝐼 ′ is not an optimal solution to the VERTEX 𝑘-WAY CUT problem on the interval graph
instance 𝐺 ⧵ 𝐼 ′. Observe that 𝐺 ⧵ (𝑆′ ∪ 𝐼 ′) has at least 𝑘 components, and |𝑆′ ∪ 𝐼 ′| = |𝑆′| + |𝐼 ′| < |𝑆| + |𝐼 ′| = |𝑆 ∪ 𝐼 ′|. Thus 𝑆′ ∪ 𝐼 ′ is an
optimal solution to VERTEX 𝑘-WAY CUT problem on 𝐺 with size strictly smaller than 𝑆 which is a contradiction to our assumption
that 𝑆 is an optimal solution. □

Now given an instance 𝐺 for VERTEX 𝑘-WAY CUT problem on circular-arc graphs we convert it to an instance of interval graph
for all the 2𝑛 endpoints and run the algorithm for VERTEX 𝑘-WAY CUT problem, designed in Section 4.1, on each of those interval
graphs and store the corresponding 𝑆′, 𝐼 ′. As a solution, we return the set 𝑆′ ∪ 𝐼 ′ that has minimum size. Since algorithm for interval
graph runs in (𝑘𝑛4) time (Theorem 8); so we have the following theorem.

Theorem 12. VERTEX 𝑘-WAY CUT in circular-arc graphs with 𝑛 vertices can be solved in (𝑘𝑛5) time.

4.4. Permutation graphs

This subsection presents a dynamic-programming algorithm for the optimization version of the VERTEX 𝑘-WAY CUT problem on
permutation graphs. Let 𝐺 be a permutation graph with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺). There exists a corresponding geometric
intersection representation for a permutation graph 𝐺 similar to interval graphs, where each vertex 𝑣 in 𝐺 is associated with a line
segment 𝑆(𝑣) with endpoints 𝑥(𝑣) and 𝑦(𝑣) being on two parallel lines 𝑋 and 𝑌 , respectively. Without loss of generality, we can
assume that both the lines 𝑋 and 𝑌 are horizontal. Two vertices 𝑢 and 𝑣 are adjacent in 𝐺 if and only if the segments 𝑆(𝑢) and 𝑆(𝑣)
intersect with each other. Assume that along with the graph, we have the set of corresponding line segments as an input. Here, we
use  to denote the segments {𝑆(𝑣)∶ 𝑣 ∈ 𝑉 }. Let 𝑃𝑋 and 𝑃𝑌 denote the set of all endpoints of 𝑆 on the lines 𝑋 and 𝑌 , respectively.
Let 𝑃 = 𝑃𝑋 ∪ 𝑃𝑌 .

For a pair of vertices 𝑢 and 𝑣, we write 𝑥(𝑢) < 𝑥(𝑣) (similarly, 𝑦(𝑢) < 𝑦(𝑣)) to indicate that 𝑥(𝑣) is to the right of 𝑥(𝑢) (similarly, 𝑦(𝑣) is
to the right of 𝑦(𝑢)). If both 𝑥(𝑢) < 𝑥(𝑣) and 𝑦(𝑢) < 𝑦(𝑣) hold, then we say 𝑆(𝑢) ≺ 𝑆(𝑣). In the rest of this subsection, we interchangeably
use 𝑣 and 𝑆(𝑣). For a pair of points 𝛼 and 𝛽 where 𝛼 ∈𝑋, 𝛽 ∈ 𝑌 , we denote the set of segments in  whose one endpoint lies either
to the left of 𝛼 or to the left of 𝛽 by 𝑆𝛼

𝛽
. We use 𝐺[𝛼, 𝛽] to denote the subgraph induced by 𝑆𝛼

𝛽
in 𝐺. Additionally, for any set of

four points, 𝛼1, 𝛼2 ∈𝑋 and 𝛽1, 𝛽2 ∈ 𝑌 such that 𝛼1 < 𝛼2 and 𝛽1 < 𝛽2, we define 𝑆𝛼1 ,𝛼2
𝛽1 ,𝛽2

= {𝑆(𝑣)∶ 𝛼1 ≤ 𝑥(𝑣) ≤ 𝛼2, 𝛽1 ≤ 𝑦(𝑣) ≤ 𝛽2}. We use
𝐺[(𝛼1, 𝛼2), (𝛽1, 𝛽2)] to denote the subgraph of 𝐺 induced by the segments 𝑆𝛼1 ,𝛼2

𝛽1 ,𝛽2
.

We now define a table for our dynamic-programming algorithm (for an illustration see Fig. 2). For every tuple (𝑖, 𝑝, 𝑞, 𝑟, 𝑠), where
𝑝, 𝑞 ∈ 𝑃𝑋 with 𝑝 < 𝑞 and 𝑟, 𝑠 ∈ 𝑃𝑌 with 𝑟 < 𝑠, any cut where 𝐺[(𝑝, 𝑞), (𝑟, 𝑠)] is the 𝑖-th component with respect to the cut in 𝐺[𝑞, 𝑠] is
a feasible cut for the tuple (𝑖, 𝑝, 𝑞, 𝑟, 𝑠) and 𝑇 [𝑖; 𝑝, 𝑞, 𝑟, 𝑠] stores the minimum size among all such feasible cut for the tuple (𝑖, 𝑝, 𝑞, 𝑟, 𝑠).
Notice that any two connected components do not intersect. Hence we can order the components from left to right. In particular, for
a pair of components 𝐶𝑗 and 𝐶𝑗′ , we say 𝐶𝑗 ≺ 𝐶𝑗′ if for any pair of line segments 𝑢 ∈ 𝐶𝑗 and 𝑣 ∈ 𝐶𝑗′ , 𝑆(𝑢) ≺ 𝑆(𝑣).

For the base case, the value 𝑇 [1; 𝑝, 𝑞, 𝑟, 𝑠] is the number of segments in 𝐺[𝑞, 𝑠] whose one endpoint lies either strictly to the left
of 𝑝 or 𝑟, or strictly to the right of 𝑞 or 𝑠, formally 𝑇 [1; 𝑝, 𝑞, 𝑟, 𝑠] = |𝑆𝑞𝑠 | − |𝑆𝑝,𝑞𝑟,𝑠 |. In the next lemma, we give a recursive formula for
computing the values 𝑇 [𝑖; 𝑝, 𝑞, 𝑟, 𝑠], for 𝑖 > 1.

Lemma 13. For every 𝑖, 2 < 𝑖 < 𝑘 and any set of four points 𝑝, 𝑞, 𝑟, 𝑠, where 𝑝, 𝑞 ∈ 𝑃𝑋 with 𝑝 < 𝑞 and 𝑟, 𝑠 ∈ 𝑃𝑌 with 𝑟 < 𝑠, the following holds:

𝑇 [𝑖; 𝑝, 𝑞, 𝑟, 𝑠] = min
′ ′ ′ ′

{𝑇 [𝑖 − 1; 𝑝′, 𝑞′, 𝑟′, 𝑠′] + |𝑆𝑞𝑠 | − |𝑆𝑞′
𝑠′
| − |𝑆𝑝,𝑞𝑟,𝑠 |}.
8

𝑝 ,𝑞 ∈𝑃𝑋 & 𝑟 ,𝑠 ∈𝑃𝑌
𝑝′<𝑞′<𝑝, 𝑟′<𝑠′<𝑟

Theoretical Computer Science 983 (2024) 114288S. Jana, S. Saha, A. Sahu et al.

Fig. 2. The blue-colored segments represent two components 𝐺[(𝑝′, 𝑞′), (𝑟′ , 𝑠′)] and 𝐺[(𝑝, 𝑞), (𝑟, 𝑠)]. The purple-colored and green-colored segments are associated with
the entry 𝑇 [𝑖 − 1; 𝑝′ , 𝑞′ , 𝑟′ , 𝑠′] and the set 𝑆𝑞𝑠 ⧵ (𝑆𝑞

′

𝑠′
∪𝑆𝑝,𝑞𝑟,𝑠), respectively.

Proof. We prove the recurrence by showing inequalities in both directions. In one direction, let (𝐶1, 𝐶2, … , 𝐶𝑖) be a feasible cut
corresponding to the entry 𝑇 [𝑖; 𝑝, 𝑞, 𝑟, 𝑠]. Here 𝐶𝑖 =𝐺[(𝑝, 𝑞), (𝑟, 𝑠)]. Let 𝑝′, 𝑞′, 𝑟′, 𝑠′ be four points such that 𝐶𝑖−1 =𝐺[(𝑝′, 𝑞′), (𝑟′, 𝑠′)], 𝑝′, 𝑞′ ∈
𝑃𝑋 and 𝑟′, 𝑠′ ∈ 𝑃𝑌 . Clearly, 𝑝′ < 𝑞′ < 𝑝 and 𝑟′ < 𝑠′ < 𝑟 hold. Now, the segments of the set 𝑆𝑞𝑠 ⧵ (𝑆

𝑞′

𝑠′
∪𝑆𝑝,𝑞𝑟,𝑠) are cut vertices corresponding

to the entry 𝑇 [𝑖; 𝑝, 𝑞, 𝑟, 𝑠]. Here we get a set of (𝑖 −1) components 𝐶1, 𝐶2, … , 𝐶𝑖−1 in the graph 𝐺[𝑞′, 𝑠′] with 𝐶𝑖−1 ⊆𝐺[(𝑝′, 𝑞′), (𝑟′, 𝑠′)] and
cut size at most 𝑇 [𝑖; 𝑝, 𝑞, 𝑟, 𝑠] − (|𝑆𝑞𝑠 | − |𝑆𝑞′

𝑠′
| − |𝑆𝑝,𝑞𝑟,𝑠 |). Therefore, 𝑇 [𝑖 − 1; 𝑝′, 𝑞′, 𝑟′, 𝑠′] ≤ 𝑇 [𝑖; 𝑝, 𝑞, 𝑟, 𝑠] − (|𝑆𝑞𝑠 | − |𝑆𝑞′

𝑠′
| − |𝑆𝑝,𝑞𝑟,𝑠 |).

In the other direction, let (𝐶 ′
1, 𝐶

′
2, … , 𝐶 ′

𝑖−1) be a feasible cut corresponding to the entry 𝑇 [𝑖 − 1; 𝑝′, 𝑞′, 𝑟′, 𝑠′], where 𝑝′ < 𝑞′ < 𝑝,
𝑟′ < 𝑠′ < 𝑟 and 𝐶𝑖−1 =𝐺[(𝑝′, 𝑞′), (𝑟′, 𝑠′)]. The component induced by the subgraph 𝐺[(𝑝, 𝑞), (𝑟, 𝑠)] together with 𝐶 ′

1, 𝐶
′
2, … , 𝐶 ′

𝑖−1 produces
a feasible cut for 𝑇 [𝑖; 𝑝, 𝑞, 𝑟, 𝑠]. Now the cut corresponding to the entry 𝑇 [𝑖 − 1; 𝑝′, 𝑞′, 𝑟′, 𝑠′] together with (|𝑆𝑞𝑠 | − |𝑆𝑞′

𝑠′
| − |𝑆𝑝,𝑞𝑟,𝑠 |) gives a

cut that yields the set of components 𝐶 ′
1, 𝐶

′
2, … , 𝐶 ′

𝑖−1, 𝐶
′
𝑖
=𝐺[(𝑝, 𝑞), (𝑟, 𝑠)]. Hence, 𝑇 [𝑖 −1; 𝑝′, 𝑞′, 𝑟′, 𝑠′] + |𝑆𝑞𝑠 | − |𝑆𝑞′

𝑠′
| − |𝑆𝑝,𝑞𝑟,𝑠 | ≥ 𝑇 [𝑖; 𝑝, 𝑞, 𝑟, 𝑠].

This completes the proof of the lemma. □

With the insight of Lemma 13, we can now state the following theorem.

Theorem 14. VERTEX 𝑘-WAY CUT in permutation graph with 𝑛 vertices can be solved in (𝑘𝑛8) time.

Proof. Let 𝐺 be a given graph with a set  of 𝑛 line segments. Recall that we use 𝑃𝑋 and 𝑃𝑌 to denote the set of all endpoints of
line segments in 𝑋 and 𝑌 , respectively. In the pre-processing step, we do the following: (i) we construct 𝑆𝛼

𝛽
, for every pair of points

𝛼 ∈ 𝑃𝑋 and 𝛽 ∈ 𝑃𝑌 . (ii) we compute |𝑆𝛼1 ,𝛼2
𝛽1 ,𝛽2

| for each possible set of four points 𝛼1, 𝛼2 ∈ 𝑃𝑋 and 𝛽1, 𝛽2 ∈ 𝑃𝑌 . It takes (𝑛5) time to
perform all these pre-processing steps. Now in the recurrence formula, to obtain 𝑇 [𝑖; 𝑝, 𝑞, 𝑟, 𝑠], we use the already computed values,
where 𝑝′, 𝑞′ ∈ 𝑃𝑋 and 𝑟′, 𝑠′ ∈ 𝑃𝑌 with 𝑝′ < 𝑞′ < 𝑝 and 𝑟′ < 𝑠′ < 𝑟. Computing any entry takes (𝑛4) time. Since 𝑖 ranges from 1 to 𝑘,
we can compute all the values 𝑇 [𝑖; 𝑝, 𝑞, 𝑟, 𝑠] in (𝑘𝑛8) time. Notice that the entry 𝑇 [𝑘; ., .] with minimum value gives us the size of a
minimum vertex 𝑘-way cut in 𝐺. Hence, the theorem holds. □

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] Christopher J. Augeri, Hesham H. Ali, New graph-based algorithms for partitioning VLSI circuits, in: 2004 IEEE International Symposium on Circuits and Systems
(IEEE Cat. No. 04CH37512), vol. 4, IEEE, 2004, p. IV.

[2] Chandra Chekuri, Kent Quanrud, Chao Xu, LP relaxation and tree packing for minimum 𝑘-cut, SIAM J. Discrete Math. 34 (2) (2020) 1334–1353.

[3] Derek G. Corneil, The complexity of generalized clique packing, Discrete Appl. Math. 12 (3) (1985) 233–239.

[4] Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Saket Saurabh, Magnus Wahlström, Randomized contractions meet lean
decompositions, ACM Trans. Algorithms 17 (1) (2021) 6:1–6:30.

[5] Rodney G. Downey, Vladimir Estivill-Castro, Michael Fellows, Elena Prieto, Frances A. Rosamund, Cutting up is hard to do: the parameterised complexity of
𝑘-cut and related problems, Electron. Notes Theor. Comput. Sci. 78 (2003) 209–222.

[6] Olivier Goldschmidt, Dorit S. Hochbaum, A polynomial algorithm for the 𝑘-cut problem for fixed 𝑘, Math. Oper. Res. 19 (1) (1994) 24–37.

[7] Martin Charles Golumbic, Algorithmic Graph Theory and Perfect Graphs, Elsevier, 2004.

[8] Anupam Gupta, Euiwoong Lee, Jason Li, An FPT algorithm beating 2-approximation for 𝑘-cut, in: Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SIAM, 2018, pp. 2821–2837.

[9] Anupam Gupta, Euiwoong Lee, Jason Li, Faster exact and approximate algorithms for 𝑘-cut, in: 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), IEEE, 2018, pp. 113–123.

[10] Yoko Kamidoi, Noriyoshi Yoshida, Hiroshi Nagamochi, A deterministic algorithm for finding all minimum 𝑘-way cuts, SIAM J. Comput. 36 (5) (2007) 1329–1341.

[11] David R. Karger, Clifford Stein, A new approach to the minimum cut problem, J. ACM 43 (4) (1996) 601–640.

[12] George Karypis, Vipin Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1) (1998) 359–392.

[13] Ken-ichi Kawarabayashi, Bingkai Lin, A nearly 5/3-approximation FPT algorithm for Min-𝑘-Cut, in: Proceedings of the Fourteenth Annual ACM-SIAM Symposium
9

on Discrete Algorithms, SIAM, 2020, pp. 990–999.

http://refhub.elsevier.com/S0304-3975(23)00601-1/bib65C05741F5CBA5E1E5299EB2228018F9s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib65C05741F5CBA5E1E5299EB2228018F9s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib4AA0624FECF151323628057C97DA1A33s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibFC2B0EA77AFF98F3979B9836EE61A684s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib3F92607770017A03FB91AB85BEB3DFA8s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib3F92607770017A03FB91AB85BEB3DFA8s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib32BE999562FD5923A45E547CEFBED19Ds1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib32BE999562FD5923A45E547CEFBED19Ds1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib058D93E7E421D1A443D694CB6813AD45s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib1CA03DFCDED78F27CC8A3918657826B1s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibA99B30299C7187ADF16D84934C534691s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibA99B30299C7187ADF16D84934C534691s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibBF6D01DBE35E7DB0596E64997F99DCCCs1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibBF6D01DBE35E7DB0596E64997F99DCCCs1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibA3C285D10D016D2E43CC69F0A90F5B60s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibD30E1B4628D52B3E081512AA8A9FB422s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib22C0EC16A42E67E3A0FBDE7BA08E063Ds1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib89532DCF7A9C1EC57791C9353B56B8C2s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib89532DCF7A9C1EC57791C9353B56B8C2s1

Theoretical Computer Science 983 (2024) 114288S. Jana, S. Saha, A. Sahu et al.

[14] Ken-ichi Kawarabayashi, Mikkel Thorup, The minimum 𝑘-way cut of bounded size is fixed-parameter tractable, in: 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, IEEE, 2011, pp. 160–169.

[15] Jason Li, Faster minimum 𝑘-cut of a simple graph, in: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2019,
pp. 1056–1077.

[16] Daniel Lokshtanov, Saket Saurabh, Vaishali Surianarayanan, A parameterized approximation scheme for min 𝑘-cut, in: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), IEEE, 2020, pp. 798–809.

[17] Pasin Manurangsi, Inapproximability of maximum edge biclique, maximum balanced biclique and minimum 𝑘-cut from the small set expansion hypothesis, in:
44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[18] Dániel Marx, Parameterized graph separation problems, Theor. Comput. Sci. 351 (3) (2006) 394–406.

[19] Joseph Naor, Yuval Rabani, Tree packing and approximating 𝑘-cuts, in: SODA, vol. 1, 2001, pp. 26–27.

[20] R. Ravi, Amitabh Sinha, Approximating 𝑘-cuts via network strength, in: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
2002, pp. 621–622.

[21] Huzur Saran, Vijay V. Vazirani, Finding 𝑘 cuts within twice the optimal, SIAM J. Comput. 24 (1) (1995) 101–108.

[22] Mikkel Thorup, Minimum 𝑘-way cuts via deterministic greedy tree packing, in: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
2008, pp. 159–166.

[23] David A. Tolliver, Gary L. Miller, Graph partitioning by spectral rounding: applications in image segmentation and clustering, in: 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, IEEE, 2006, pp. 1053–1060.

[24] Douglas Brent West, et al., Introduction to Graph Theory, vol. 2, Prentice Hall, Upper Saddle River, 2001.

[25] Mingyu Xiao, Leizhen Cai, Andrew Chi-Chih Yao, Tight approximation ratio of a general greedy splitting algorithm for the minimum 𝑘-way cut problem,
Algorithmica 59 (4) (2011) 510–520.

[26] Liang Zhao, Hiroshi Nagamochi, Toshihide Ibaraki, Approximating the minimum 𝑘-way cut in a graph via minimum 3-way cuts, J. Comb. Optim. 5 (4) (2001)
10

397–410.

http://refhub.elsevier.com/S0304-3975(23)00601-1/bibD93C1F715B83E16B4095F1F2488485C3s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibD93C1F715B83E16B4095F1F2488485C3s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibEA593B1204CC883C6152BAD2DACE632Fs1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibEA593B1204CC883C6152BAD2DACE632Fs1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib6CFA5DBD2B7938036210233CE779C76Cs1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib6CFA5DBD2B7938036210233CE779C76Cs1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib993F5D59AC1FAC5FB7434ABEEC2A46A9s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib993F5D59AC1FAC5FB7434ABEEC2A46A9s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib8C5F9495850E743CEA4DB14ADF0E7DCEs1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibE836AC8E9CD8838040D62BB1F64F29B2s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib7BCC795054BEA32E9F0B042F1B7C36A9s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib7BCC795054BEA32E9F0B042F1B7C36A9s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib742516A086B4C631D8F339A213BECFC0s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib4A6AC7145085811206D9D7F6500C27BFs1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib4A6AC7145085811206D9D7F6500C27BFs1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibE99C6993B9CA24176C64493DDBD27A2As1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibE99C6993B9CA24176C64493DDBD27A2As1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibD27CA2AB187FAB3BDE35A8BC753AFD78s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibA7E3AD481466AE94B7B663F5BF9AA387s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bibA7E3AD481466AE94B7B663F5BF9AA387s1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib5B3A08A1ADFE2097DEDCD768C16FA83Bs1
http://refhub.elsevier.com/S0304-3975(23)00601-1/bib5B3A08A1ADFE2097DEDCD768C16FA83Bs1

	Partitioning subclasses of chordal graphs with few deletions
	1 Introduction
	2 Preliminaries
	3 Sub-exponential FPT algorithm on chordal graphs
	4 Polynomial time algorithmic results
	4.1 Interval graphs
	4.2 Proper interval graphs
	4.3 Circular-arc graphs
	4.4 Permutation graphs

	Declaration of competing interest
	Data availability
	References

