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Abstract

We introduce a general method for obtaining fixed-parameter algorithms for problems about
finding paths in undirected graphs, where the length of the path could be unbounded in the
parameter. The first application of our method is a randomized algorithm, that given a colored
n-vertex undirected graph, vertices s and t, and an integer k, finds an (s, t)-path containing at
least k different colors in time 2knO(1). This is the first FPT algorithm for this problem, and
it generalizes the algorithm of Björklund, Husfeldt, and Taslaman [SODA 2012] on finding a
path through k specified vertices. It also implies the first 2knO(1) time algorithm for finding an
(s, t)-path of length at least k.

Our method yields FPT algorithms for even more general problems. For example, we consider
the problem where the input consists of an n-vertex undirected graph G, a matroid M whose
elements correspond to the vertices of G and which is represented over a finite field of order q,
a positive integer weight function on the vertices of G, two sets of vertices S, T ⊆ V (G), and
integers p, k, w, and the task is to find p vertex-disjoint paths from S to T so that the union
of the vertices of these paths contains an independent set of M of cardinality k and weight w,
while minimizing the sum of the lengths of the paths. We give a 2p+O(k2 log(q+k))nO(1)w time
randomized algorithm for this problem.
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1 Introduction

The study of long cycles and paths in graphs is a popular research direction in parameterized
algorithms. Starting from the color-coding of Alon, Yuster, and Zwick [1], powerful algorithmic
techniques have been developed [2, 3, 15, 16, 21, 29, 46, 49], see also [14, Chapter 10], for finding
long cycles and paths in graphs. However, most of the known methods are applicable only in the
scenario when the size of the solution is bounded by the parameter. Let us explain what we mean
by that by the following example.

Consider two very related problems, k-Cycle and Longest Cycle. In both problems, we are
given a graph1 G and an integer parameter k. In k-Cycle we ask whether G has a cycle of length
exactly k. In Longest Cycle, we ask whether G contains a cycle of length at least k. While in
the first problem any solution should have exactly k vertices, in the second problem the solution
could be even a Hamiltonian cycle on n vertices. The essential difference in applying color-coding
(and other methods) to these problems is that for k-Cycle, a random coloring of the vertices of
G in k colors will color the vertices of a solution cycle with different colors with probability e−k.
Such information about colorful solutions allows dynamic programming to solve k-Cycle (as well
as the related k-Path problem, the problem of finding a path of length exactly k). However, since a
solution cycle for Longest Cycle is not upper-bounded by a function of k, the coloring argument
falls apart. As Fomin et al. write in [21] “This is why color-coding and other techniques applicable
to k-Path do not seem to work here.” Sometimes, like in the case of Longest Cycle, a simple
“edge contraction” trick, see [14, Exercise 5.8], allows reducing the problem to k-Cycle. We are
not aware of general methods for solving problems related to cycles and paths when the size of the
solution is not upper-bounded by the parameter.

The main result of this paper is a theorem that allows deriving algorithms for various param-
eterized problems about paths, cycles, and beyond, in the scenario when the size of the solution
is not upper-bounded by the parameter. We discuss numerous applications of the theorem in the
next subsection.

Our theorem is about finding a k-colored (S, T )-linkage in a colored graph. Let G be a graph,
S and T be sets of vertices of G, and p be a positive integer. An (S, T )-linkage of order p is a
set P of p = |P| vertex-disjoint paths, each starting in S and ending in T . The set of vertices in
the paths of P is denoted by V (P). The total length (or often just the length) of an (S, T )-linkage
is the total number of vertices in its paths, i.e., |V (P)|. For a coloring c : V (G) → [n] of G, an
(S, T )-linkage P is called k-colored if V (P) contains at least k different colors, i.e., |c(V (P))| ≥ k.
Let us note that in the above definition the sets S and T are not necessarily disjoint and that the
coloring c is not necessarily a proper coloring in the graph-coloring sense. We also note that for
vertices s, t ∈ V (G), an ({s}, {t})-linkage of order 1 corresponds to an (s, t)-path.

Theorem 1. There is a randomized algorithm, that given as an input an n-vertex graph G, a
coloring c : V (G)→ [n] of G, two sets of vertices S, T ⊆ V (G), and integers p, k, in time 2k+pnO(1)

either returns a k-colored (S, T )-linkage of order p and of the minimum total length, or determines
that G has no k-colored (S, T )-linkage of order p.

Few remarks are in order. First, Theorem 1 cannot be extended to directed graphs. It is easy
to show, see Proposition 1, that finding a 2-colored (s, t)-path in a 2-colored directed graph is
already NP-hard. Second, by another simple reduction, see Proposition 2, it can also be observed
that if the time complexity of Theorem 1 could be improved to (2 − ε)k+pnO(1) for ε > 0, even
in the case when p = 1, G is colored with k colors, and S = T = V (G), then Set Cover

1In this paper, graphs are assumed to be undirected if it is not explicitly mentioned to be otherwise.
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would admit a (2− ε)n(mn)O(1) time algorithm, contradicting the Set Cover Conjecture (SeCoCo)
of Cygan et al. [13]. We also remark that actually we prove an even more general result than
Theorem 1, our result in full generality will be stated as Theorem 4. It can be also observed that
by a simple reduction that subdivides edges, the coloring could be on the edges of G instead of
vertices (or on both vertices and edges).

The algorithm in Theorem 1 invokes DeMillo-Lipton-Schwartz-Zippel lemma for polynomial
identity testing and thus is “heavily” randomized. We do not know whether Theorem 1 could
be derandomized. The special case of Theorem 1 when the coloring is a bijection, the problem
of finding an (S, T )-linkage of order p and of length at least k, can be reduced to the (rooted)
topological minor containment. To see why, observe that if we enumerate all possible collections P
of p paths of total length k, then we can check for each collection P if it is contained as a rooted
topological minor in G. The topological minor containment admits a deterministic FPT algorithm
parameterized by the size of the pattern graph [24]. However the running time of the algorithm
of Grohe et al. [24] is bounded by a tower of exponents in k and p. Our next theorem gives a
deterministic algorithm for computing an (S, T )-linkage of order p and of length at least k whose
running time is single-exponential in the parameter k for any fixed value of p. The other advantage
of the algorithm in Theorem 2 is that it works on directed graphs too. In the following statement,
a directed (S, T )-linkage is defined analogously to an (S, T )-linkage, but is composed of directed
paths from S to T .

Theorem 2. There is a deterministic algorithm that, given an n-vertex digraph G, two sets of
vertices S, T ⊆ V (G), an integer p, and an integer k, in time pO(kp)nO(1) either returns a directed
(S, T )-linkage of order p and of total length at least k, or determines that G has no directed (S, T )-
linkage of order p and total length at least k.

1.1 Applications of Theorem 1

Theorem 1 implies FPT algorithms for several problems. It encompasses a number of fixed-
parameter-tractability results and improves the running times for several fundamental well-studied
problems.

Longest path/cycle. When the coloring c : V (G)→ [n] is a bijection, and thus all vertices of G are
colored in different colors, then an (S, T )-linkage is k-colored if and only if its length is at least
k. In this case, Theorem 1 outputs an (S, T )-linkage of order p with at least k vertices in time
2k+pnO(1). In particular, for p = 1 it implies that Longest (s, t)-Path (i.e., for s, t ∈ V (G) and
k ≥ 0, to decide whether there is an (s, t)-path of length at least k) is solvable in time 2knO(1).
Since one can solve Longest Cycle (to decide whether G contains a cycle of length at least k)
by solving for every edge st ∈ E(G) the Longest (s, t)-Path problem, Theorem 1 also yields an
algorithm solving Longest Cycle in time 2knO(1). To the best of our knowledge, the previous
best known algorithm for Longest (s, t)-Path runs in time 4.884knO(1) [22] and the previous best
known algorithm for Longest Cycle runs in time 1.662knO(1) = 2.76knO(1) [3, 49]. The latter
algorithm follows by combining the result of Zehavi [49] stating that Longest Cycle is solvable
in time t(G, 2k)nO(1), where t(G, k) is the best known running time for solving k-Path, with the
fastest algorithm for k-Path of Björklund et al. [3].

For p = 2, the problem of finding an (S, T )-linkage of length at least k is equivalent to the
problem of finding a cycle of length at least k passing through a given pair of vertices s, t. A
randomized algorithm of running time (2e)knO(1) for this problem, known as Longest (s, t)-
Cycle, was given by Fomin et al. in [19, Theorem 4] (see also [20]).
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As we already have mentioned the problem of finding an (S, T )-linkage of order p and of length
at least k can be reduced to the (rooted) topological minor containment. For p ≥ 3, Theorems 1
and 2 provide the first (randomized and deterministic) single-exponential in k + p and single-
exponential in k for constant p, respectively, algorithms for computing an (S, T )-linkage of order
p and of length at least k. For directed graphs, Theorem 2 gives the first FPT algorithm for the
problem parameterized by k + p.

T -cycle. In the T -Cycle problem, we are given a graph G and a set T ⊆ V (G) of terminals.
The task is to decide whether there is a cycle passing through all terminals [4, 28, 45]. By the
celebrated result of Björklund, Husfeldt, and Taslaman [4], T -Cycle is solvable in time 2|T |nO(1),
and their algorithm in fact returns the shortest such cycle. To solve T -Cycle as an application of
Theorem 1, we do the following. We pick a terminal vertex t ∈ T , create a twin vertex s of t (i.e., a
vertex s with N(s) = N(t)), and color s and t with color 1. We then color all non-terminal vertices
of G with color 1 too. The remaining terminal vertices T \ {t} we color in |T | − 1 colors from 2
to |T |, such that no color repeats twice. Then G has a T -cycle if and only if there is a |T |-colored
({s}, {t})-linkage of order 1. Therefore, using the algorithm of Theorem 1, we can also find the
shortest T -cycle in time 2|T |nO(1). One could use Theorem 1 to generalize the algorithmic result
of Björklund, Husfeldt, and Taslaman in different settings. For example, instead of a cycle passing
through all terminal vertices, we can ask for a cycle containing at least k terminals from a set T of
unbounded size, in time 2knO(1).

Another generalization of T -Cycle comes from covering terminal vertices by at most p disjoint
cycles. For example, in the basic VRP (vehicle routing problem) one wants to route p vehicles,
one route per vehicle, starting and finishing at the depot so that all the customers are supplied
with their demands and the total travel cost is minimized [10]. In the simplified situation when the
clients are viewed as terminal vertices T of a graph and routes in VRP are required to be disjoint,
this problem turns into the problem of finding a “p-flower” of minimum total length containing all
vertices of T . By p-flower we mean a family of p cycles that intersect only in one (depot) vertex s.
To see this problem as a problem of finding a colored (S, T )-linkage, we replace the depot s by a set
S of 2p vertices whose neighbors are identical to the neighbors of s. Then similar to T -Cycle, this
variant of VRP reduces to computing a minimum length (|T |+ 1)-colored (S, S)-linkage of order p;
thus it is solvable in time 2|T |+pnO(1) by Theorem 1.

Colored paths and cycles. The problems of finding a path, cycle, or another specific subgraph in
a colored graph with the maximum or the minimum number of different colors appear in different
subfields of algorithms, graph theory, optimization, and operations research [6, 8, 11, 12, 25, 31, 32,
42, 47]. In particular, the seminal color-coding technique of Alon, Yuster, and Zwick [1], builds on
an algorithm finding a colorful path in a k-colored graph, that is, a path of k vertices and k colors,
in time O(2kn).

In the Maximum Colored (s, t)-Path problem, we are given a graph G with a coloring
c : V (G) → [n] and integer k. The task is to identify whether G contains a k-colored (s, t)-path,
i.e., an (s, t)-path with at least k different colors. In the literature, this problem is also known as
Maximum Labeled Path [12] and Maximum Tropical Path [11]. Theorem 1 yields the first
FPT algorithm for Maximum Colored (s, t)-Path, as well as for Maximum Colored Cycle
(decide whether G contains a k-colored cycle). It is also the first FPT algorithm for the even more
restricted variant of deciding if a given k-colored graph contains any k-colored path. A recent
paper of Cohen et al. [11] claims a O(2kn2) time deterministic algorithm for computing a shortest
k-colored path in a given k-colored graph. Unfortunately, a closer inspection of the algorithm of
Cohen et al. reveals that it computes a k-colored walk instead of a k-colored path.2

2The error in [11] occurs on p. 478. It is claimed that if P is a shortest (u, v)-path that uses the set C of colors
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It is interesting to note that the minimization version of the colored (s, t)-path, i.e., to decide
whether there is an (s, t)-path containing at most k different colors, is W[1]-hard even on very
restricted classes of graphs [18].

Beyond graphs: frameworks. Frameworks provide a natural generalization of colored graphs. Fol-
lowing Lovász [35], we say that a pair (G,M), where G is a graph and M = (V (G), I) is a matroid
on the vertex set of G, is a framework. Then we seek for a path, cycle, or (S, T )-linkage in G
maximizing the rank function of M . Note that frameworks (G,M) where M is a partition ma-
troid generalize colored graphs. Indeed, the universe V (G) of M is partitioned into color classes
L1, . . . , Ln and a set I is independent if |I ∩ Li| ≤ 1 for every color i ∈ [n]. However, by plugging
different types of matroids into the definition of the framework, we obtain problems that cannot
be captured by colored graphs.

Frameworks, under the name pregeometric graphs, were used by Lovász in his influential work
on representative families of linear matroids [34]. The problem of computing maximum matching
in frameworks is strongly related to the matchoid, the matroid parity, and polymatroid match-
ing problems. See the Matching Theory book of Lovász and Plummer [36] for an overview. In
their book, Lovász and Plummer use the term matroid graph for frameworks. In his most recent
monograph, [35], Lovász introduces the term frameworks, and this is the term we adopt in our
work. More generally, the problems of computing specific subgraphs of large ranks in a framework,
belong to the broad class of problems about submodular function optimization under combinatorial
constraints [7, 9, 40].

Let (G,M) be a framework and let r : 2V (G) → Z≥0 be the rank function of the matroid M .
The rank of a subgraph H of G is r(V (H)) and we denote it by r(H). We say that an (S, T )-
linkage P in a framework (G,M) is k-ranked if the rank of P, that is the rank in M of the elements
corresponding to the vertices of the paths of P, is at least k. With additional work involving (lossy)
randomized truncation of the matroid, it is possible to extend Theorem 1 from colored graphs to
frameworks over a general class of representable matroids.

Theorem 3. There is a randomized algorithm that, given a framework (G,M), where G is an
n-vertex graph and M is represented as a matrix over a finite field of order q, sets of vertices
S, T ⊆ V (G), and an integer k, in time 2p+O(k

2 log(q+k))nO(1) either finds a k-ranked (S, T )-linkage
of order p and of minimum total length, or determines that (G,M) has no k-ranked (S, T )-linkage
of order p.

With minor adjustments, Theorem 3 can be adapted for frameworks with matroids that are in
general not representable over a finite field of small order. For example, uniform matroids, and more
generally transversal matroids, are representable over a finite field, but the field of representation
must be large enough. Despite this, we can apply Theorem 3 to transversal matroids. Similarly, it
is possible to apply Theorem 3 in the situation when M is represented by an integer matrix over
rationals with entries bounded by nO(k).

Weighted extensions. Theorem 1 can be extended into a weighted version in two different settings.
The first setting is to have weights on edges that affect the length of the (S, T )-linkage. It is easy
to see that by subdividing edges, coloring the subdivision vertices with a new “dummy color”,
and increasing k by one, all our algorithms work in the setting when the edges have polynomially-
bounded positive integer weights.

The second weighted extension is more interesting. It is to have weights on vertices, and asking
for an (S, T )-linkage containing a combination of weights and colors in a specific sense. In this

and P ′ is a (w, t)-sub-path of P using colors C′ ⊆ C, then P ′ must be a shortest (w, t)-path among all (w, t)-paths
using colors C′. This claim is correct for walks but not for paths.
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setting, we have in addition to the coloring c : V (G) → [n] a weight function we : V (G) → Z≥1.
For integers k,w, we say that an (S, T )-linkage P is (k,w)-colored if its vertices V (P) contain a
set X ⊆ V (P) so that |X| = k, all vertices of X have different colors, and the total weight of X
is exactly we(X) =

∑
v∈X we(v) = w. This weighted version does not follow by direct reductions,

but instead by a modification of Theorem 1 (in our main proof, we will directly prove Theorem 4
instead of Theorem 1).

Theorem 4. There is a randomized algorithm that, given as an input an n-vertex graph G, a
coloring c : V (G) → [n] of G, a weight function we : V (G) → Z≥1, two sets of vertices S, T , and
three integers p, k, w, in time 2k+pnO(1)w either returns a (k,w)-colored (S, T )-linkage of order p
and of minimum total length, or determines that no (k,w)-colored (S, T )-linkages of order p exist.

Note that Theorem 4 implies Theorem 1 by setting all vertex weights to 1 and w = k. Theorem 4
allows to derive some applications of our technique that do not directly follow from Theorem 1,
which we proceed to describe.

Longest T -cycle. Recall that in the T -Cycle problem the task is to find a cycle passing through
a given set T of terminal vertices. Both the algorithm of Björklund, Husfeldt, and Taslaman [4],
and the application of the algorithm of Theorem 1 find in fact the shortest T -cycle. A natural
generalization of the T -Cycle problem is the Longest T -Cycle problem, where in addition to
the set T we are given an integer k and the task is to find a cycle of length at least k passing through
the terminals T . Theorem 4 can be used to solve Longest T -Cycle in time 2max(|T |,k)nO(1) as
follows. First, if |T | ≥ k, any T -cycle has length at least k and we just use the algorithm for
T -Cycle. Otherwise, like in the reduction for T -Cycle, we first pick a terminal t ∈ T and create
a twin s of it. Then, we color s and t with color 1, and all the other vertices with different colors
from 2 to n. We also assign weight 3 to the terminal vertices T , weight 1 to the vertex s, and weight
2 to all other vertices. We invoke Theorem 4 to find an ({s}, {t})-linkage of order 1 that contains
a set X of vertices with distinct colors, size |X| = k, and weight we(X) = 2k + |T |. Any such set
X must be a superset of T and not contain s, and therefore the found path must correspond to a
cycle of length at least k passing through the terminals T .

Vehicle routing with profits. With Theorem 4, we can give an algorithm for the vehicle routing
problem in a bit more general setting. In particular, we consider the situation where the depot has
k parcels, p vehicles, and for each vertex v we know that we obtain a profit we(v) for delivering a
parcel to that vertex. We can use Theorem 4 with the same reduction as used for VRP earlier, but
instead letting the coloring of the vertices to be a bijection, to obtain a 2k+pnO(1)w time algorithm
for determining the shortest routing by cycles intersecting only at the depot that yields a total
profit of w.

Longest k-colored (S, T )-linkage. Theorem 4 can be also used to derive a longest path version of
Theorem 1, in particular an algorithm that given a graph G, a coloring c : V (G)→ [n], two sets of
vertices S, T ⊆ V (G), three integers k, p, `, in time 2p+`+knO(1) outputs a k-colored (S, T )-linkage
of order p and length at least `. The reduction is as follows. First, if p ≥ `, then any (S, T )-linkage
of order p has length at least `, so we can use Theorem 1. Otherwise, we are looking for a k-colored
(S, T )-linkage that contains at least ` − p edges. We subdivide every edge, and for each created
subdivision vertex we assign a new color and weight 2k. For the original vertices we keep their
colors and assign weight 1. Now, any k-colored (S, T )-linkage of order p and length at least `
corresponds to an (S, T )-linkage of order p that contains a set X of vertices with distinct colors,
size |X| = k+ `−p, and weight exactly we(X) = (`−p) ·2k+k (note that here we use the property
that we are looking for an exact weight instead of maximum weight).

5



Weighted frameworks. We consider a generalization of frameworks into weighted frameworks. In
particular, we say that a triple (G,M, we), where G is a graph, M = (V (G), I) is a matroid, and
we : V (G) → Z≥1 is a weight function, is a weighted framework. Now we can say that an (S, T )-
linkage P in a weighted framework (G,M, we) is (k,w)-ranked if V (P) contains a set X of vertices
with X ∈ I, size |X| = k, and weight we(X) = w. By using the same reduction as from Theorem 1
to Theorem 3, we obtain the following theorem.

Theorem 5. There is a randomized algorithm that given a weighted framework (G,M, we), where
G is an n-vertex graph and M is represented as a matrix over a finite field of order q, sets of
vertices S, T ⊆ V (G), and integers p, k, w, in time 2p+O(k

2 log(q+k))nO(1)w either finds a (k,w)-
ranked (S, T )-linkage of order p and of minimum total length, or determines that (G,M, we) has
no (k,w)-ranked (S, T )-linkages of order p.

Note that Theorem 5 implies Theorem 3 by setting all vertex weights to 1 and w = k.
Finally, we remark that even though the correctness argument of our algorithm is technical, the

algorithm itself is simple and practical, consisting of only simple dynamic programming over walks
in the graph. In particular, the observed practicality of the algorithm of Björklund, Husfeldt, and
Taslaman [4] for T -Cycle on graphs with thousands of vertices holds also for our algorithm.

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we overview
our techniques and outline our algorithms. In Section 3 we recall definitions and preliminary results.
In Section 4 we prove the main result, i.e., Theorem 4 (recall that Theorem 4 implies Theorem 1). In
Section 5 we give the extensions of our results from colored graphs to frameworks, i.e., Theorem 5.
In Section 6 we prove Theorem 2. Finally, we conclude in Section 7.

2 Techniques and outline

The techniques behind Theorem 1 build on the idea of exploiting cancellation of monomials, a
fundamental tool in the area [2, 3, 4, 5, 29, 30, 33, 42, 46]. In particular, we build on the cycle-
reversal-based cancellation for T -Cycle introduced by Björklund, Husfeldt, and Taslaman [4],
and on the bijective labeling-based cancellation introduced by Björklund [2] (see also [3]). The
algorithm of Theorem 2 builds on color-coding [1], generalizing ideas that appeared in [19] for
finding an (s, t)-cycle of length at least k.

In Section 2.1 we explain the new ideas of the techniques behind Theorem 1 in comparison to
the earlier works, in Section 2.2 we give a more detailed outline of the proof of Theorem 1, and in
Section 2.3 we give an outline of the proof of Theorem 2.

2.1 New techniques for Theorem 1

Let us first focus on the single path case of Theorem 1, i.e., p = |S| = |T | = 1, corresponding
to the question of finding a k-colored (s, t)-path. Our algorithm is analogous to the algorithm of
Björklund, Husfeldt, and Taslaman [4] for T -Cycle, but instead of having the “interesting set”
of vertices T fixed in advance, our algorithm can choose any interesting set X ⊆ V (G) of vertices
of size |X| = k included in the path “on the fly” in the dynamic programming over the walks. In
particular, our dynamic programming over walks can choose whether it gives a label to a vertex
or not. This is the crucial difference to the earlier works where there would be a set of vertices
Y ⊆ V (G) fixed in advance so that a vertex of Y would always be given a label if encountered in
the walk and the vertices V (G) \ Y would never be given labels [2, 3, 4, 42]. This would impose
a limitation that because these algorithms work in time exponential in the number of labels used
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(i.e. 2k, where k is the number of labels), the intersection of the found path with the set Y would
have to be bounded in the parameter. This explains why the previous techniques could not yield an
FPT-algorithm for Maximum Colored Path, as no such suitable set Y can be fixed in advance.

Our on the fly labeling of vertices allows our algorithm to find paths that visit the same color
multiple times, while still making sure that at least k different colors are visited. In particular,
the interesting set X ⊆ V (G) of vertices in the path that we want to label is any set of size k
that contains k different colors. While our dynamic programming is still a straightforward dynamic
programming over walks, the main difficulty over previous works is the argument that if no solution
exists, then the polynomial that we compute is zero, i.e., all unwanted walks cancel out.

First, the argument of cancellation in the case when two vertices of the same color are given
a label is a now-standard application of the bijective labeling based cancellation of Björklund [2].
Therefore, our main focus is on a cancellation argument for walks where k vertices of different
colors have been labeled. Here, our starting point is the cycle reversal based cancellation argument
for T -Cycle [4], but in our case significantly more arguments are needed. In particular, the main
difference to earlier works caused by the introduction of the on the fly labeling is that a vertex can
occur in a walk as both labeled and unlabeled. Very much oversimplified, this case is handled by a
new label-swap cancellation argument, where a label is moved from a labeled occurrence of a vertex
into an unlabeled occurrence of the vertex. While in isolation this argument is simple, it causes
significant complications when combining with the cycle reversal based cancellation, in particular
because of the “no labeled digons” property we have to impose to the labeled walk. However, we
manage to combine these two arguments into a one very technical cancellation argument.

Then, let us move from one (s, t)-path to an (S, T )-linkage. This generalization of using cancel-
lation of monomials to find multiple paths is foreshadowed by an algorithm for minimum cost flow
by Lingas and Persson [33]. However, their arguments are considerably simpler due to not having
labels on the walks.

To find (S, T )-linkages, we use a similar dynamic programming to the one path case, extending
the set of walks from S to T one walk at a time. Here, we must introduce a new cancellation
argument for the case when two different walks intersect. This argument is again simple in isolation:
take the intersection point of the two intersecting walks and swap the suffixes of them starting from
this point. First, to make sure that this operation does anything we need to make sure that the
suffixes are not equal. We do this by enforcing that the ending vertices of the walks are different
already in the dynamic programming, which adds the extra 2p factor to the time complexity. The
second complication is that again, this suffix swap operation does not play well together with the
other cancellation arguments, and we need to again significantly increase the complexity of the
combination of the three cancellation arguments. In the end, we have to consider 18 different cases
in our cancellation argument, see Definition 3.

The extension from Theorem 1 to the weighted setting of Theorem 4 is a simple modification of
the dynamic programming so that also the weight of the labeled vertices X is stored. Interestingly,
this argument could be extended to look for paths containing a set of vertices X with any property
of X that could be efficiently evaluated in dynamic programming.

2.2 Outline of Theorem 1

We first give the outline of the algorithm for the single path case of finding a k-colored (s, t)-path,
and then discuss the generalization to (S, T )-linkage.

Superficially, our approach follows the one of Björklund, Husfeldt, and Taslaman [4] developed
for the T -cycle problem. Similar to Björklund et al., for every length ` ≥ 1, we define a certain
family of walks C` and a polynomial f(C`) so that over a finite field of characteristic 2, the polynomial
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f(C`) is non-zero if the graph contains a k-colored (s, t)-path of length `, and the polynomial f(C`)
is the identically zero polynomial if the graph does not contain any k-colored (s, t)-path of length
≤ `. Then by making use of the DeMillo-Lipton-Schwartz-Zippel lemma [44, 50], finding a k-colored
(s, t)-path of minimum length boils down to evaluating the polynomial f(C`) at a random point for
increasing values of `.

With k-colored path, the role similar to the role of terminal vertices in T -cycle is played by a
subset X of k vertices of the path with k different colors. However, a priori we do not know this
set X, and there could be nk candidates so we cannot enumerate them. Because of that, we define
the polynomial f on families of labeled (s, t)-walks in the graph G. A labeled (s, t)-walk of length
` is a pair of sequences W = ((v1, . . . , v`), (r1, . . . , r`)), where v1, . . . , v` is an (s, t)-walk of length `,
and r1, . . . , r` is a sequence of numbers from [0, k] indicating a labeling. The interpretation of the
labeling is that ri = 0 indicates that the index i of the walk is not labeled, and ri ≥ 1 indicates
that the index i is labeled with the label ri, with the interpretation that the vertex vi at this index
is selected to the set X.

Next we present the definition of the polynomial f . The polynomial f is over GF(23+dlog2 ne),
which is a field of characteristic 2 and order ≥ 8n. With every edge uv ∈ E(G) we associate a vari-
able fe(uv), with every vertex v ∈ V (G) we associate a variable fv(v), and with every color-label pair
(x, y) ∈ [n]× [k] we associate a variable fc(x, y). For a labeled walk W = ((v1, . . . , v`), (r1, . . . , r`))
we associate the monomial

f(W ) =

`−1∏
i=1

fe(vivi+1) ·
∏

i∈[`]|ri 6=0

fv(vi) · fc(c(vi), ri).

For the family of walks C`, which we will define immediately, we are interested in the polynomial

f(C`) =
∑
W∈C`

f(W ).

For vertices s, t and integers k, `, the family C` is the family of all labeled (s, t)-walks

W = ((v1 = s, v2, . . . , v` = t), (r1, . . . , r`))

of length ` that satisfy the following two properties. The first property is that the labeling
(r1, . . . , r`) is bijective, meaning that every label from [k] is used exactly once. Note that this
implies that every monomial of f(C`) has degree `− 1 + 2k, being a product of `− 1 edge variables,
k vertex variables, and k color-label pair variables. The second property is that the labeled walk
W has no labeled digons. By that we mean that W cannot have a subwalk vi−1vivi+1 with vi being
a labeled vertex (with ri 6= 0) and vi−1 = vi+1. It is not immediately clear that having no labeled
digons is useful, but this will turn out to be crucial similarly to the property of having no T -digons
in the algorithm for T -cycle [4].

It is not difficult to prove that when a graph has a k-colored (s, t)-path of length `, then f(C`)
is a non-zero polynomial. Indeed, a path has no repeated vertices and thus has no labeled digons,
so if we take a k-colored (s, t)-path v1, . . . , v` and let the labels r1, . . . , r` take the values from [k]
on k vertices with k different colors, then the labeled walk W = ((v1, . . . , v`), (r1, . . . , r`)) appears
in C`, and thus a corresponding monomial f(W ) appears in f(C`). Because v1, . . . , v` is a path
and the labeled vertices have different colors, we can recover the labeled walk W uniquely from
the monomial f(W ), and therefore the monomial f(W ) must occur exactly once in the polynomial
f(C`) (i.e. with coefficient 1), and therefore f(C`) is non-zero.

The proof of the opposite statement—absence of a k-colored (s, t)-path of length ≤ ` implies
that f(C`) is zero—is more complicated. We have to show that in this case each monomial f(W ) for
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labeled walks W ∈ C` occurs an even number of times in the polynomial f(C`), in particular that
there is an even number of labeled walks W ∈ C` for every monomial f(W ). The proof is based on
constructing an f -invariant fixed-point-free involution φ on C`, that is a function φ : C` → C` such
that for every W ∈ C` it holds that f(W ) = f(φ(W )), φ(W ) 6= W , and φ(φ(W )) = W .

Let us start with the easy part of the proof, that is, constructing such φ for labeled walks where
two vertices of the same color are labeled (which could be two different occurrences of the same
vertex). In this case, let 1 ≤ i < j ≤ ` be the lexicographically smallest pair of indices so that
c(vi) = c(vj), ri 6= 0, and rj 6= 0. The function φ works by swapping ri with rj . Because each
label from [k] occurs in r1, . . . , r` exactly once, this results in a different labeled walk φ(W ) with
the same monomial f(φ(W )) = f(W ), and moreover W = φ(φ(W )) holds. After this argument, we
can let C∗` ⊆ C` be the family of labeled walks in C` where all labeled vertices have different colors,
and we know that f(C∗` ) = f(C`). Therefore, we can focus only to constructing φ : C∗` → C∗` .

Now, the first approach (which does not work) would be to adapt the strategy of Björklund,
Husfeldt, and Taslaman for our purposes. The essence of their strategy is the following. Since
walks from C∗` do not have labeled digons and because there is no k-colored (s, t)-path of length
≤ `, it is possible to show that every walk W ∈ C∗` has a “loop”, that is a subwalk vUv starting
and ending in the same vertex v, and so that U is not a palindrome. Then φ(W ) is the walk W ′

obtained from W by reversing U . This approach does not work directly in our case. The reason
is that a labeled vertex could also occur several times in a walk as unlabeled. Because of that,
reversing a subwalk can result in a walk with a labeled digon, and thus φ could map W outside the

family C∗` . For example, for a walk abcdâb (here â is a labeled vertex), reversing a
←−
bcdâb results in

walk adcbâb with labeled digon bâb. A natural “patch” for that type of walks is to not reverse but
to apply a new type of operation of swapping a label from one occurrence of a vertex to another
occurrence of it. For example, swapping a label for abcdâb would result in âbcdab. This results in
a different labeled walk contributing the same monomial f(W ) to the polynomial. See Figure 1 for
an illustration of the above examples.

cc

ba b

d

a
abcdâb adcbâb

a
âbcdab

b

d d c

Figure 1: An illustration of the walks abcdâb, a
←−
bcdâb = adcbâb, and âbcdab. The grey bags

correspond to vertices of the graph. The squares are copies of the corresponding bag-vertex and
these together with the red path illustrate the order the vertices appear in the walk. Red squares
correspond to labeled vertices.

However, the new operation of swapping a label brings us new problems. First of all, swapping
a label could again result in a labeled digon. For example, swapping a label for walk âbcac results in
walk abcâc with labeled digon câc. An attempt to “patch” this by using a “mixed” strategy—when
possible, swap a label, otherwise reverse—does not work either. For example, for walk W = âbcac
we cannot label swap (that will result in a labeled digon câc), hence we reverse. Thus we obtain

walk W ′ = φ(W ) = â
←−
bcac = âcbac. For W ′, swapping a label for a is a valid operation, thus

φ(W ′) = acbâc, but then we would have that φ(φ(W )) 6= W . See Figure 2 for an illustration of the
above example.

At this moment, the situation becomes desperate: the more patches we introduce, the more
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b

c

a b

c

âbcac âcbac acbâc

c

a ba

Figure 2: An illustration of the walks âbcac, â
←−
bcac = âcbac, and acbâc. The grey bags correspond

to vertices of the graph. The squares are copies of the corresponding bag-vertex and these together
with the red path illustrate the order the vertices appear in the walk. Red squares correspond to
labeled vertices.

issues appear and the whole construction falls apart. Moreover, on top of that, one has to define
the mapping φ recursively in order to deal with palindromic loops, making the situation even more
complicated. We find it a bit surprising, that in the end a combination of label swaps and reverses
allows the construction of the required mapping φ. To make it happen, we use quite an involved
strategy to identify what labels can be swapped and what subwalks could be reversed, and in
what order. Whole Section 4.4 is devoted to defining this strategy (for the more general setting of
(S, T )-linkages) and to the proof of its correctness.

To evaluate the polynomial f(C`), we apply quite standard dynamic programming techniques.
In particular, the polynomial can be evaluated in 2knO(1) time by dynamic programming over
walks, where we store the length of the walk, the last two vertices of the walk, the subset of labels
used so far (causing the 2k factor), and whether the last vertex is labeled. This is similar to the
dynamic programming for T -cycle [4], with the difference only in that it is chosen in the dynamic
programming which vertices of the walk are labeled, and that instead of a subset of T we store the
subset of the labels.

To extend the algorithm from a single (s, t)-path to an (S, T )-linkage of order p, we define a
family C` of labeled walkages and a polynomial f(C`) over them. We note that by a simple reduction
we can assume that |S| = |T | = p, and that S and T are disjoint. A labeled walkage of order p and
total length ` is a p-tuple W = (W 1, . . . ,W p) of labeled walks W i, whose sum of the lengths is `.
The family C` contains labeled walkages W with the following properties: They have order p, total
length `, the starting vertices are ordered according to a total order on V (G), ending vertices are
distinct (each vertex in T is an ending vertex of exactly one walk in W), the labeling is bijective
(each label from [k] is used exactly once), and no walk in W contains a labeled digon.

The monomial f(W) is then defined as

f(W) =

p∏
i=1

f(W i),

and the polynomial f(C`) as

f(C`) =
∑
W∈C`

f(W).

The definitions are analogous to the single path case, in particular we recover the previously
explained single path case by setting p = 1. The proof that if there exists a k-colored (S, T )-linkage
of order p and total length ` then f(C`) is non-zero is directly analogous to the one path case. Also
the proof that we can consider the smaller family C∗` ⊆ C` where all labeled vertices have different
colors is analogous.
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However, to prove that if there is no k-colored (S, T )-linkages of order p and total length ≤ ` then
f(C∗` ) is identically zero we need new cancellation arguments beyond the previous cycle reversal and
label swap arguments. In particular, none of the previously considered arguments can be applied
if we have a labeled walkage W = (W 1,W 2) of order two, where both W 1 and W 2 are labeled
paths that intersect. In this case, the new argument is that we could swap the suffixes of W 1 and
W 2 starting from the intersection point. For example, for a walkage W = (abcd̂e, stcuv), we define
φ(W) = (abcuv, stcd̂e). The property that the walks in W have different ending vertices is crucial
here to ensure that φ(W) 6=W.

However, also with this suffix swap cancellation argument we run into problems. In particular,
the first challenge is that the suffix swap could create labeled digons, for example when W =
(abĉde, stcbu) both of the walks are paths, but swapping the suffix after c would create a labeled
digon. In this situation we can instead use the label swap operation on c, from the first walk to the
second, but of course this will add again even more complications. In the end, we manage to extend
the strategy of φ from paths to linkages, but it makes the definition of φ even more complicated
(see Definition 3, the path case uses the case groups A and C, while the linkage case needs the
addition of case groups B and D).

The dynamic programming for (S, T )-linkage is similar to the (s, t)-path, extending the walks
in the walkage one walk at the time. It requires two new fields to store, the index of the walk that
we are currently extending, and the subset of the ending vertices T that have been already used.
Storing the used ending vertices causes the additional factor 2p in the time complexity (as we can
assume that |T | = p).

2.3 Outline of Theorem 2

Recall that the main difference to Theorem 1 is that Theorem 2 provides a deterministic algorithm
that, moreover, works on directed graphs. The price is, however, that this algorithm is only suitable
for the special case of finding an (S, T )-linkage of length at least k, and the time complexity as a
function of k and p is higher. Theorem 2 thus requires a completely different toolbox: the algorithm
is based on ideas of random separation. Our result can be seen as a generalization of earlier works
on finding paths and cycles of length at least k, the closest one being the result of Fomin et al. [19]
on finding an (s, t)-cycle of length at least k. Note that their result is stated for undirected graphs,
and that the problem of finding an (S, T )-linkage of order 2 and length at least k is equivalent to
the problem of finding an (s, t)-cycle of length at least k (up to increasing k by 2) on undirected
graphs.

Similarly to the earlier results, the case where the target (S, T )-linkage is of length close to k
can be covered by a standard application of color-coding [1]. The difficulty is that the length of
the (S, T )-linkage can be arbitrarily larger than k. While because of that it would be intractable
to highlight the target (S, T )-linkage as a whole, it is still possible to apply random separation to
give distinct colors to k-length segments at the end of each path in the (S, T )-linkage. The main
hurdle is then to argue that at least in one color we can pick a finishing segment as an arbitrary
shortest path of length k, without intersecting any other path in the optimal solution. Afterwards,
finding the desired (S, T )-linkage is easy, as the length requirement is already satisfied; one only
needs to find a suitable connection to complete the (S, T )-linkage, which exists as witnessed by the
optimal solution.

Lemma 15 encapsulates the novel combinatorial result allowing the approach above, strongly
generalizing a similar basic idea that appeared in [19] for two undirected paths. To give an intuition
behind the lemma (see also Figure 3), observe first that the problem of finding an (S, T )-linkage of
order p and of total length at least k is equivalent to the problem of finding an (s, t)-linkage of order
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(a) The given digraph G, edge directions are im-
plicit along the paths P1–P3, and Q1–Q3.
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s t
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Q3
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C2

(b) Starting state S1: two tokens belong to Q2

so Push is applied to t13.

P1

P3

P2

s t

v1

v2

v3

Q1

Q2

Q3

C3

C1

C2

(c) In S2, t23 = v3 so Clear is applied to Q3,
moving t23 to t and t22 next along P2.

P1

P3

P2

s t

v1

v2

v3

Q1

Q2

Q3

C3

C1

C2

(d) Finishing state S3: P2 is continued via Q1, P1

viaQ2, and P3 is preserved to obtain the solution.

Figure 3: Illustration to the proof of Lemma 16. Large empty squares mark tokens in the current
state; those with red filling are moved by the next rule.

p and of total length at least k+2, where an (s, t)-linkage of order p consists of p internally-disjoint
(s, t)-paths, for some s, t ∈ V (G). Now let (s, t)-paths P1, . . . , Pq come from the shortest solution,
an (s, t)-linkage of order p and the smallest total length which is at least k. Let the sets C1, . . . , Cq
be the result of random separation applied to k-length suffixes of P1 − {t}, . . . , Pq − {t}, i.e., for
each i ∈ [q], the k-length suffix of Pi − {t} is contained in Ci. The algorithm of Theorem 2 seeks
to find a solution where for some i ∈ [q], vi is the k-th vertex of Pi from t, and Qi is a k-length
shortest path from vi to t inside Ci, by guessing vi ∈ Ci and taking an arbitrary path Qi of the
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form above. The solution is then any collection of an (s, vi)-path and p − 1 (s, t)-paths that do
not intersect each other and Qi, together with Qi. If Qi does not intersect the (s, vj)-prefix of Pj ,
for each j ∈ [q], then the paths P1, . . . , Pq certify that the desired collection of paths exists. Now
comes Lemma 15: it claims, roughly, that if this is not the case for all i ∈ [q], then there is a shorter
(s, t)-linkage given by prefixes of P1, . . . , Pq and suffixes of Q1, . . . , Qq (introducing another color
to the random separation makes sure that the total length of the prefixes is still at least k), which
is a contradiction.

The proof of Lemma 15 can be imagined as the following token sliding game. First, we put
a token on each Pi, at the first place of intersection with some Qj . Then we move the tokens by
applying two rules, Push and Clear. If two tokens end up on the same Qj for some j ∈ [q], we
move the farthest of them from t further along its path Pi, until it hits another Qj′ ; this is called
Push. As for the Clear, if at any step h the current token thi of the path Pi reaches the vertex
vi, we forfeit this path: the token is moved to t, which corresponds to the i-th path of the shorter
solution being exactly Pi, and all other tokens on Qi are moved next along their paths similarly
to the rule Push. Moreover, every future application of any rule will not place a token on Qi,
skipping it to the next Qj that is still active. Clearly, this game is finite, as tokens are only being
slid further along their paths. The main claim of Lemma 15 is that when the game is over, there
is at least one remaining active token, these tokens are one per a path in {Qj}j∈[q] (since Push
is not applicable), and that all corresponding paths Pi can be simultaneously extended each along
its own Qj instead of taking their original routes, without intersections (since in Push we always
keep the closest token to t). This is a shorter solution since a token of Pi, if active, is inside some
Qj at distance less than k from t, and the prefix of Pi up to this token is shorter than the prefix of
Pi up to vi.

Another challenge the proof of Theorem 2 faces, is that while the random separation approach is
well-known, it is normally applied to separating two, rarely three (e.g. [19]), sets. We, on the other
hand, need to apply random separation to p sets simultaneously, while making sure that it can be
derandomized. To this end, in Lemma 16 we devise in a deterministic way a family of functions that
models random separation of p sets of size at most k each. The size of this family is bounded by
pO(kp) log n, which matches the inverse probability (up to the log n factor) of coloring the universe
in p colors uniformly at random so that each set receives its own color. The construction is based
on perfect hash families [39].

3 Preliminaries

In this section, we introduce basic notation and state some auxiliary results.

3.1 Basic definitions and preliminary results

We use Z≥1 to denote the set of positive integers and Z≥0 the set of non-negative integers. Also,
given integers p, q such that p < q, we use [p, q] to denote the set {p, p+ 1, . . . , q} and, if p ≥ 1, we
use [p] to denote the set {1, . . . , p}.

Parameterized Complexity. We refer to the book of Cygan et al. [14] for introduction to the
area. Here we only briefly mention the notions that are most important to state our results. A
parameterized problem is a language L ⊆ Σ∗×N, where Σ∗ is a set of strings over a finite alphabet
Σ. An input of a parameterized problem is a pair (x, k), where x is a string over Σ and k ∈ N
is a parameter. A parameterized problem is fixed-parameter tractable (or FPT) if it can be solved
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in time f(k) · |x|O(1) for some computable function f . The complexity class FPT contains all
fixed-parameter tractable parameterized problems.

Graphs. We use standard graph-theoretic terminology and refer to the textbook of Diestel [17]
for missing notions. We consider only finite graphs, and the considered graphs are assumed to be
undirected if it is not explicitly said to be otherwise. For a graph G, V (G) and E(G) are used to
denote its vertex and edge sets, respectively. Throughout the paper we use n = |V (G)| = |G| and
m = |E(G)| if this does not create confusion. For a graph G and a subset X ⊆ V (G) of vertices,
we write G[X] to denote the subgraph of G induced by X. For a vertex v, we denote by NG(v)
the (open) neighborhood of v, i.e., the set of vertices that are adjacent to v in G. For X ⊆ V (G),
NG(X) =

(⋃
v∈X NG(v)

)
\ X. The degree of a vertex v is dG(v) = |NG(v)|. If G is a digraph,

N+
G (v) denotes the out-neighborhood of v, i.e., the set of vertices that are adjacent to v in G via an

arc from v, and N−G (v) is the in-neighborhood, defined symmetrically for arcs going to v. We may
omit subscripts if the considered graph is clear from a context.

A walk W of length ` in G is a sequence of vertices v1, v2, . . . , v`, where vivi+1 ∈ E(G) for
all 1 ≤ i < `. The vertices v1 and v` are the endpoints of W and the vertices v2, . . . , v`−1 are
the internal vertices of W . A path is a walk where no vertex is repeated. For a path P with
endpoints s and t, we say that P is an (s, t)-path. A cycle is a path with the additional property
that v`v1 ∈ E(G) and ` ≥ 3.

DeMillo-Lipton-Schwartz-Zippel lemma. Our strategy involves the use the DeMillo-Lipton-Schwartz-
Zippel lemma for randomized polynomial identity testing.

Lemma 1 ([44, 50]). Let p(x1, . . . , xn) be a non-zero polynomial of total degree d over a field F,
and let S be a subset of F. If each xi is independently assigned an uniformly random value from S,
then p(x1, . . . , xn) = 0 with probability at most d/|S|.

3.2 Hardness results

We conclude this section by showing the NP-hardness of finding a k-colored (s, t)-path on directed
graphs, for any k ≥ 2, and the optimality of the time complexity of Theorem 1 assuming the Set
Cover Conjecture (SeCoCo) of Cygan et al. [13].

We start with the hardness for directed graphs.

Proposition 1. For any integers k, ` ≥ 2, it is NP-complete to decide, given a directed graph G,
a coloring c : V (G)→ [`], and two vertices s and t, whether G has a k-colored (s, t)-path.

Proof. We show the claim for k = ` = 2 as it is straightforward to generalize the proof for other
values of k and `. We reduce from the Disjoint Paths problem on directed graphs. The task of
this problem is, given a (directed) graph G and k pairs of terminal vertices (si, ti) for i ∈ {1, . . . , k},
decide whether G has vertex-disjoint (si, ti)-paths for i ∈ {1, . . . , k}. This problem is well-known to
be NP-complete on directed graphs even if k = 2 [23]. Consider an instance (G, (s1, t1), (s2, t2)) of
Disjoint Paths, where G is a directed graph. We assume that the terminal vertices are pairwise
distinct. We construct the directed graph G′ from G by adding a vertex w and arcs (t1, w) and
(w, s2). Note that G has vertex-disjoint (s1, t1) and (s2, t2)-paths if and only if G′ has an (s1, t2)-
path containing w. We define the coloring c by setting c(w) = 1 and defining c(v) = 2 for all
v ∈ V (G′) \ {w}. Clearly, G′ has a 2-colored (s1, t2)-path if and only if G′ has an (s1, t2)-path
containing w. This immediately implies NP-hardness.

Then, we show that Theorem 1 is optimal assuming the Set Cover Conjecture.
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Figure 4: Construction of the graph G.

Proposition 2. If there is a (2−ε)knO(1) time algorithm for finding a k-colored path in a k-colored
graph for some ε > 0, then there is a (2− ε)n(mn)O(1) time algorithm for Set Cover.

Proof. In the Set Cover problem, we are given a universe U of n elements, a collection S of m
subsets of U , and an integer t and we ask whether there is a collection S ′ ⊆ S of size t such that
for every u ∈ U , there is a set S ∈ S ′ such that u ∈ S.

Given an instance (U,S, t) of Set Cover, where |U | = n and S = {S1, . . . , Sm}, we construct
a graph G as follows. We first construct the graph H by considering two vertices a and b and
adding m internally vertex-disjoint (a, b)-paths PS1 , . . . , PSm , where for every i ∈ [m], the vertices
in PSi are bijectively mapped to the elements of Si. We call a the source of H and b the sink of H.
We finally construct a graph G that is obtained by considering t copies H1, . . . ,Ht of H, for each
i ∈ [t− 1], identifying the sink bi of Hi with the source ai+1 of Hi+1, and adding two new vertices
v and v′ of degree one, adjacent to a1 and bt respectively. See Figure 4 for an illustration of the
construction of graph G. Note that t ≤ m and |V (G)| = (mn)O(1).

Assuming an ordering u1, . . . , un of U , for each i ∈ [n], we assign color i to all vertices of G that
correspond to ui, color n+ 1 and n+ 2 to v and v′, and color n+ 3 to all vertices in V (G) \ {v, v′}
that do not correspond to members of U . Observe that (U,S, t) is a yes-instance of Set Cover
if and only if there is an n + 3-colored path in G. Therefore, a (2 − ε)knO(1) time algorithm for
finding a k-colored path in a k-colored n-vertex graph implies the existence of a (2− ε)n(mn)O(1)

time algorithm for finding a set cover of size t in a universe U of size n with a collection S of m
subsets of U .

4 Randomized algorithm for colored (S, T )-linkages

In this section we prove the main result, i.e., Theorem 4. Recall that Theorem 1 is a special case
of Theorem 4.

Let G be an n-vertex graph, p an integer, and S, T ⊆ V (G). An (S, T )-linkage of order p is a
set P of p = |P| vertex-disjoint paths between S and T . We denote by V (P) the vertices in the
paths of P. The length of an (S, T )-linkage is the total number |V (P)| of vertices in the paths.
Let c : V (G) → [n] an arbitrary coloring of G, and we : V (G) → Z≥1 a weight function. For
positive integers k and w, we say that an (S, T )-linkage P is (k,w)-colored if there exists a set
X ⊆ V (P) with |X| = k, all vertices of X have different colors, and we(X) =

∑
v∈X we(v) = w.

We give a 2p+knO(1)w time algorithm for the problem of finding a minimum length (k,w)-colored
(S, T )-linkage of order p (Theorem 4).

We will assume that |S| = |T | = p, and S and T are disjoint, as the general case can be reduced
to this case by the following reduction: We add p vertices s1, . . . , sp with N(si) = S and p vertices
t1, . . . , tp with N(ti) = T , all with the same new color and weight equal to k ·maxv∈V (G) we(v) + 1.
Then, we can set S = {s1, . . . , sp} and T = {t1, . . . , tp}, and solve the problem with k increased by
one and w increased by k ·maxv∈V (G) we(v) + 1. Because we can assume that the original weights
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are at most w + 1, this increases the target weight w by a factor O(k), and therefore does not
increase the time complexity of the algorithm.

4.1 Labeled walks and walkages

In this subsection we define labeled walks and labeled walkages.

Labeled walks. Let ` be an integer. A walk of length ` in G is a sequence of vertices v1, . . . , v`
of G, where vivi+1 ∈ E(G) for all 1 ≤ i < `. A labeled walk of length ` is a pair of sequences
W = ((v1, v2, . . . , v`), (r1, r2, . . . , r`)), where v1, . . . , v` is a walk of length `, and r1, . . . , r` is a
sequence of integers from [0, k], indicating a labeling. The interpretation of the labeling is that
ri = 0 indicates that the index i is unlabeled and ri 6= 0 indicates that the index i is labeled
with the label ri ∈ [k]. A labeled walk is injective if each label from [k] appears in it at most
once. Most of the labeled walks that we treat in the algorithm have length at least one, but the
definition allows also an empty labeled walk of length zero. The set of vertices collected by W is
R(W ) = {vi | ri 6= 0}, i.e., the set of vertices that occur at labeled indices. The set of edges of W
is E(W ) = {vivi+1 | 1 ≤ i < `}. An index i in a labeled walk of length ` is a digon if 1 < i < ` and
vi−1 = vi+1 (see Figure 5 for an illustration). An index i in a labeled walk is a labeled digon if it is
a digon and ri 6= 0.

vi−1 vi+1

vi

vi−2 vi+2

vivi+1vi−1vi

Figure 5: An example of a labeled walk W with a digon i.

Labeled walkages. A labeled walkage of order p is a tuple W = (W 1, . . . ,W p), where each W i =
((vi1, . . . , v

i
`i

), (ri1, . . . , r
i
`i

)) is a labeled walk of length `i ≥ 1. The length of W is
∑p

i=1 `i. The

set of edges of W is E(W) =
⋃p
i=1E(W i). The set of vertices collected by W is R(W) =⋃p

i=1R(W i). The weight we(W) of W is the sum of the weights of the labeled vertices, i.e.,
we(W) =

∑p
i=1

∑
j∈[`i]|rij 6=0 we(vij). Note that the weight of a vertex can be counted more than once

if the vertex occurs as labeled more than once. A labeled walkage is injective if each label from [k]
appears in it at most once, and bijective if each label from [k] appears in it exactly once. Note that
every labeled walk in an injective labeled walkage is injective.

The set of ending vertices of a labeled walkageW of order p is T (W) = {vi`i | i ∈ [p]}. The tuple

of starting vertices of W is start(W) = (v11, . . . , v
p
1). Let < be a total order on V (G). A labeled

walkage is ordered if start(W) is ordered according to <, i.e., vi1 < vi+1
1 holds for all 1 ≤ i < p.

The asymmetry that the starting vertices are an ordered tuple while the ending vertices are an
unordered set is essential for our algorithm. A labeled linkage is a labeled walkage where every
vertex occurs at most once, i.e., the walks are vertex-disjoint paths.

We also define semiproper and proper labeled walkages. The intuition here is that, in Section 4.2,
we define a polynomial over semiproper walkages (see also Definition 1). Then, walkages that are
semiproper but not proper will be handled by using standard techniques and therefore we can
focus on proper walkages. Dealing with proper walkages will be the most technical part of the
proof. A labeled walkage is semiproper if it is injective, no walk in it contains labeled digons, and
the ending vertices of the walkage are distinct, i.e., vi`i 6= vj`j for i 6= j. A labeled walkage W is
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proper if it is semiproper and all of its labeled indices correspond to vertices of different colors, i.e.,
|c(R(W))| = |{(i, j) | rij 6= 0}|. Note that being proper implies that no vertex is labeled twice, and
note that if W is bijective and proper then |c(R(W))| = k.

4.2 Algorithm

We assume that there is a total order < on V (G), and for a set S ⊆ V (G) we denote by ordv(S) the
tuple containing the elements of S ordered according to <. Note that G contains a (k,w)-colored
(S, T )-linkage of order p and length ` if and only if there is a bijective proper ordered labeled linkage
W with order p, length `, weight we(W) = w, tuple of starting vertices start(W) = ordv(S), and
set of ending vertices T (W) = T . We define a family of labeled walkages that includes all such
labeled linkages, but relaxes the condition of being a linkage to walkage, and the condition of being
proper to semiproper.

For each integer `, we define a family of labeled walkages C` of length `.

Definition 1 (Family C`). Let ` a positive integer. The family C` consists of the bijective semiproper
ordered labeled walkages W with order p, length `, weight we(W) = w, tuple of starting vertices
start(W) = ordv(S), and set of ending vertices T (W) = T .

Definition of the polynomial. Let q = 23+dlog2 ne and keep in mind that GF(q) is a finite field of
characteristic 2 and order q ≥ 8n. Next, we define a polynomial over GF(q) that will be evaluated
at a random point by our algorithm. For each edge uv ∈ E(G) we associate a variable fe(uv), for
each vertex v ∈ V (G) we associate a variable fv(v), and for each color-label-pair (x, y) ∈ [n] × [k]
we associate a variable fc(x, y). For a labeled walk W = ((v1, . . . , v`), (r1, . . . , r`)) we associate the
monomial

f(W ) =
`−1∏
i=1

fe(vivi+1) ·
∏

i∈[`]|ri 6=0

fv(vi) · fc(c(vi), ri).

For a labeled walkage W = (W 1, . . . ,W p) we associate the monomial

f(W) =

p∏
i=1

f(W i).

For a family F of labeled walkages we associate the polynomial

f(F) =
∑
W∈F

f(W).

In particular, because the walkages in C` are bijective, every monomial in the polynomial f(C`)
has degree `− p+ 2k, being a product of `− p variables corresponding to the edges of the walkage,
k variables corresponding to the labeled vertices, and k variables corresponding to the color-label-
pairs.

Algorithm for finding a (k,w)-colored (S, T )-linkage. Our algorithm for finding a (k,w)-colored
(S, T )-linkage of order p works as follows. Starting with ` = p, we evaluate the polynomial f(C`)
at a random point x over GF(q), for increasing values of `. If f(C`)(x) 6= 0, we return that G
contains a (k,w)-colored (S, T )-linkage of order p, and moreover that the shortest (k,w)-colored
(S, T )-linkage of order p has length `. Otherwise, we continue increasing ` until ` = n+ 1 in which
case we return that G does not contain a (k,w)-colored (S, T )-linkage of order p.
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For the proof of correctness of the algorithm, in Section 4.3 we show that with probability at
least 1/2 this algorithm returns the length of the shortest (k,w)-colored (S, T )-linkage of order p,
and never returns a length shorter than the shortest (k,w)-colored (S, T )-linkage of order p.

Proof of time complexity of the algorithm. Next we prove the time complexity of the algorithm. The
evaluation of the polynomial is done using dynamic programming. This is a standard application
of dynamic programming over walks while keeping track of the set of labels used so far, the weight
of the labeled vertices, and the set of ending vertices used. We prove that it can be performed in
time 2p+knO(1)w.

Lemma 2. Let S, T be disjoint subsets of V (G) of size |S| = |T | = p, c : V (G)→ [n] a coloring of
G, we : V (G) → Z≥1 a weight function, ` ≤ n an integer, k,w integers, and q = 23+dlog2 ne. The
polynomial f(C`) can be evaluated at a random point over GF(q) in time 2p+knO(1)w.

Proof. We associate random values over GF(q) to all variables fv(v), fe(uv), and fc(x, y), and from
now denote by fv(v), fe(uv), and fc(x, y) these associated values, and by extension for a walkage
W denote by f(W) the value associated to the monomial f(W) and for a family of walkages F
denote by f(F) the value associated to the polynomial f(F). Now, the task is to compute f(C`).

Informally, we will compute f(C`) by dynamic programming over partial walkages, growing the
walkages one labeled walk at a time in the order specified by ordv(S).

Denote ordv(S) = (s1, s2, . . . , sp) and for any t ∈ [p] denote by pret(S) the length-t prefix of
ordv(S). For every integer t ∈ [p], integer l ∈ [`], set L ⊆ [k] of labels, set T ′ ⊆ T of ending vertices,
weight w′ ∈ [0, w], vertices x, y ∈ V (G), and integer o ∈ {0, 1}, we define

D(t, l, L, T ′, w′, x, y, o) = f(F(t, l, L, T ′, w′, x, y, o)),

where we define F(t, l, L, T ′, w′, x, y, o) to be the family of labeled walkages W = (W 1, . . . ,Wt),
where for each i ∈ [t], W i = ((vi1, . . . , v

i
`i

), (ri1, . . . , r
i
`i

)), that satisfy the following properties:

1. Each labeled walk W i in W has length at least 2 and does not contain labeled digons,

2. W has order t and ordered tuple of starting vertices start(W) = pret(S),

3. W has length l,

4. W is injective and the set of used labels is L,

5. the set of ending vertices of all but the last walk in W is T ((W 1, . . . ,W t−1)) = T ′,

6. W has weight we(W) = w′,

7. the last vertex of the last walk in W is vt`t = x,

8. the second last vertex of the last walk in W is vt`t−1 = y, and

9. if o = 0, then rt,`t = 0, otherwise rt,`t 6= 0.

In other words, t specifies the number of walks, l specifies the length, L specifies the used labels,
T ′ specifies the used ending vertices, w′ specifies the weight, x specifies the last vertex of the last
walk, y specifies the second last vertex of the last walk, and o specifies whether the last vertex of
the last walk is labeled. Note that it can be without loss of generality assumed that each walk has
length at least 2 because S and T are disjoint.
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Then, we define also a shorthand that for t ∈ [p], l ∈ [`], L ⊆ [k], T ′ ⊆ T , and w′ ∈ [0, w],

D(t, l, L, T ′, w′) =
∑
x∈T ′

∑
y∈N(x)

∑
o∈{0,1}

D(t, l, L, T ′ \ {x}, w′, x, y, o),

which intuitively denotes the polynomial corresponding to a “completed” walkage of t walks with
length l, used labels L, used ending vertices T ′, and weight w′.

Now it holds that
f(C`) = D(p, `, [k], T, w),

and therefore computing f(C`) can be done by computing all of the values D(t, l, L, T ′, w′, x, y, o)
by dynamic programming.

Next we specify this computation by dynamic programming. All values that we do not specify
here will be set to zero. First, to initialize, we define a special value D(0, 0, ∅, ∅, 0) = 1 corresponding
to a family of walkages containing one empty walkage.

Next, we describe computing the states where o = 0, i.e., the last vertex is not labeled, for all
t ∈ [p], l ∈ [`], L ⊆ [k], T ′ ⊆ T , w′ ∈ [0, w], x ∈ V (G), and y ∈ N(x), assuming that all the states
with smaller l have already been computed. There are four cases, corresponding to the four lines
of Equation (1). In the first case the walk Wt has length at least three, its second last vertex y is
not labeled, and we are extending the walkage by adding one not labeled vertex x to Wt. Second
case is the same, but the second last vertex y is labeled and thus we have to ensure to not create a
labeled digon. Third case is the case that we are extending the walkage by adding one more labeled
walk, consisting of two vertices y, x, where y = st, neither of them labeled. Fourth case is like the
third, but the first vertex y = st of the new walk is labeled. Recall the notation that [y = st] = 1
if y = st holds, and 0 otherwise.

D(t, l, L, T ′, w′, x, y, 0) = fe(xy)

·

 ∑
z∈V (G)

D(t, l − 1, L, T ′, w′, y, z, 0)

+
∑

z∈V (G)\{x}

D(t, l − 1, L, T ′, w′, y, z, 1)

+ [y = st] ·D(t− 1, l − 2, L, T ′, w′)

+[y = st] ·
∑
r∈L

fv(y) · fc(c(y), r) ·D(t− 1, l − 2, L \ {r}, T ′, w′ − we(y))

)
.

(1)

Then, we describe computing the states where o = 1, i.e., the last vertex is labeled, for all
t ∈ [p], l ∈ [`], L ⊆ [k], T ′ ⊆ T , w′ ∈ [0, w], x ∈ V (G), and y ∈ N(x), assuming that all of
the states with smaller l have already been computed. There are again four cases, analogously to
Equation (1).
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D(t, l, L, T ′, w′, x, y, 1) =
∑
r∈L

fv(x) · fc(c(x), r) · fe(xy)

·

 ∑
z∈V (G)

D(t, l − 1, L \ {r}, T ′, w′ − we(x), y, z, 0)

+
∑

z∈V (G)\{x}

D(t, l − 1, L \ {r}, T ′, w′ − we(x), y, z, 1)

+ [y = st] ·D(t− 1, l − 2, L \ {r}, T ′, w′ − we(x))

+[y = st] ·
∑

r′∈L\{r}

fv(y) · fc(c(y), r′) ·D(t− 1, l − 2, L \ {r, r′}, T ′, w′ − we(x)− we(y))

 .

(2)

This completes the description of the dynamic programming, which shows that each of the
states D(t, l, L, T ′, w′, x, y, o) can be computed in nO(1) time given the values of the states with
smaller l. As there are p · ` · 2k · 2p · (w+ 1) · n · n · 2 = O(p2p+kn3w) states, the algorithm works in
time 2p+knO(1)w.

As the algorithm can be implemented by O(n) applications of Lemma 2, the algorithm has time
complexity 2p+knO(1)w. Recovering the solution can be done by a factor ofO(n2) more applications.

4.3 Correctness

To prove the correctness of the algorithm, we show that

(a) the polynomial f(C`) is non-zero if G contains a (k,w)-colored (S, T )-linkage of order p and
length ` and

(b) the polynomial f(C`) is the identically zero polynomial if the graph does not contain a (k,w)-
colored (S, T )-linkage of order p and length ≤ `.

Because f(C`) has degree ` − p + 2k ≤ 3n ≤ q/2, it follows from Lemma 1 and (a) that if G
contains a (k,w)-colored (S, T )-linkage of order p and length `, then evaluating f(C`) at a random
point of GF(q) has probability at least 1/2 to be non-zero. From (b) it follows that if G does not
contain a (k,w)-colored (S, T )-linkage of order p and length ≤ `, then evaluating f(C`) at a random
point is guaranteed to be zero. This establishes that the algorithm is correct with probability at
least 1/2, with one-sided error.

The part (a) is relatively easy to prove (Lemma 3). To prove (b), we first show that the
monomials in f(C`) corresponding to non-proper labeled walkages cancel out (Lemma 4). This
argument is based on the now-standard technique of bijective labeling based cancellation introduced
in [2]. The remaining part of the proof of (b) is much more complicated and is the main technical
challenge. It is based on the technical Lemma 5, whose proof is postponed to Section 4.4.

We start with (a).

Lemma 3. If G has a (k,w)-colored (S, T )-linkage of order p and length `, then f(C`) is non-zero.

Proof. Consider a (k,w)-colored (S, T )-linkage P of order p and length `. Let X ⊆ V (P) be the
set of vertices with |X| = k, different colors, and weight we(X) = w. We can turn P into a proper
labeled linkage W of order p, length `, weight w, where start(W) = ordv(S) and T (W) = T , by
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ordering the paths based on their starting vertices and assigning the labels [k] arbitrarily to the
vertices X when W intersects X.

Therefore W ∈ C`, so it remains to prove that W is the only labeled walkage in C` that corre-
sponds to the monomial f(W), which then implies that the monomial f(W) occurs in the polyno-
mial f(C`) with coefficient 1, implying that f(C`) is non-zero.

Notice that from f(W), from the edge variables fe we can recover the edges E(W) of W, from
the vertex variables fv we can recover the labeled vertices X, and because vertices in X have
different colors, from the color-label pair variables fc we can recover how the labels correspond to
the labeled vertices. Therefore as the ordering of the paths is fixed by ordv(S) and every vertex
appears in W at most once, we have that W is the unique element of C` that corresponds to the
monomial f(W).

Then, we deal with non-proper walkages in C`. Let C∗` ⊆ C` denote the family of proper labeled
walkages in C`, i.e., the labeled walkages in C` where all labeled indices have vertices of different
colors.

Lemma 4. It holds that f(C∗` ) = f(C`).

Proof. We will show that there is a function φ : C` \ C∗` → C` \ C∗` that is an f -invariant fixed-
point-free involution, i.e., for all W ∈ C` \ C∗` it holds that (1) f(φ(W)) = f(W), (2) φ(W) 6= W,
and (3) φ(φ(W)) = W. This implies that the set C` \ C∗` can be partitioned into pairs {W, φ(W)}
with f(W) = f(φ(W)), and therefore every monomial corresponding to a labeled walkage in C` \C∗`
occurs in f(C`) an even number of times, and therefore they cancel out because f is over a field of
characteristic 2.

The function φ is defined as follows. Let W = (W 1, . . . ,W p) be a labeled walkage in C` \ C∗` ,
where W i = ((vi1, . . . , v

i
`i

), (ri1, . . . , r
i
`i

)). Because W is semiproper but not proper, there exists
two different labeled indices that have a vertex of the same color, i.e., pairs (i, a) and (j, b) with
i, j ∈ [p], a ∈ [`i], b ∈ [`j ], (i, a) 6= (j, b), c(via) = c(vjb), r

i
a 6= 0, and rjb 6= 0. Let (i, a), (j, b) be the

lexicographically smallest such pair. We set φ(W) to be the labeled walkage obtained fromW after
swapping ria with rjb .

First, we observe that φ(W) ∈ C`. Indeed, it cannot make a bijective walkage into non-bijective,
and as it does not change the sequence of vertices ofW or which indices are labeled, it cannot make
a semiproper walk into non-semiproper, or change the order, the length, the weight, the tuple of
starting vertices, or the set of ending vertices. Also φ(W) is not proper, i.e., φ(W) ∈ C`\C∗` , because

the vertices via and vjb are still labeled and have the same color.
To see why f(φ(W)) = f(W), note that, since φ does not change the vertices, it also does not

change the edge variables fe of the monomial, it does not change which vertices are labeled so it
does not change the vertex variables fv of the monomial, and because the vertices via and vjb have
the same color the color-label-pair variables fc of the monomial are also not changed.

Also, we have that φ(W) 6= W, since the fact that W is bijective implies that ria 6= rjb . Also,
φ(φ(W)) =W because the swapping does not change which indices are labeled, and therefore does
not change the lexicographically smallest pair of labeled indices with the same colors.

As a result of Lemma 4, we can work with f(C∗` ) instead of f(C`).

The most complicated part of the correctness proof will be to show part (b), that is, if there is
no (k,w)-colored (S, T )-linkage of order p and length at most `, then f(C∗` ) (and, thus by Lemma 4,
f(C`)) is an identically zero polynomial. Most of this proof will be presented in Section 4.4, but
we introduce here the statement the lemma that we will prove in Section 4.4. For this, we define
barren labeled walkages.
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Definition 2 (Barren labeled walkage). A labeled walkage W of length ` is barren if there exists no
labeled linkage W ′ with starting vertices start(W ′) = start(W), set of ending vertices T (W ′) =
T (W), set of collected vertices R(W ′) = R(W), length ≤ ` and edges E(W ′) ⊆ E(W).

In other words, a labeled walkage W of length ` is barren if its edges form a subgraph of G
where no labeled linkage W ′ of length at most ` can have the same sets of starting vertices, ending
vertices, and collected vertices as W. Intuitively, this means that the labeled walkage W can
not be “untangled” to give a corresponding labeled linkage. In particular, observe that because
the “untangling” preserves the set of collected vertices, i.e., R(W ′) = R(W), if no (k,w)-colored
(S, T )-linkages of order p and length at most ` exists, then all labeled walkages in C∗` are barren.

Next, we state the main technical lemma for establishing the correctness of our algorithm.
Section 4.4 is devoted to its proof.

Lemma 5. Let G be a graph and let B the set of all proper barren labeled walkages in G. There
exists a function φ : B → B so that for all W ∈ B, the function φ satisfies that

1. φ(φ(W)) =W (φ is involution),

2. φ(W) 6=W (φ is fixed-point-free),

3. f(φ(W)) = f(W) (φ preserves the monomial),

4. T (φ(W)) = T (W) (φ preserves the set of ending vertices), and

5. start(φ(W)) = start(W) (φ preserves the ordered tuple of starting vertices).

The main reason for defining the function φ for all proper barren labeled walkages instead of
just barren walkages in C∗` is that φ will be defined recursively, and in the recursion we will anyway
need to handle all proper barren labeled walkages.

Now, the proof of (b) is an easy consequence of Lemma 5.

Lemma 6. If G has no (k,w)-colored (S, T )-linkage of order p and length ≤ `, then f(C∗` ) is an
identically zero polynomial.

Proof. First, because G has no (k,w)-colored (S, T )-linkage of order p and length ≤ `, all labeled
walkages in C∗` are barren, i.e., C∗` ⊆ B.

We show that if W ∈ C∗` , then φ(W) ∈ C∗` . By definition, φ(W) is proper. By (3), φ preserves
the set of labeled vertices and moreover because the labeled vertices have different colors it preserves
also the label-vertex mapping, and therefore φ(W) is bijective and has weight w. By (4) and (5),
φ preserves the set of ending vertices and the ordered tuple of starting vertices. By (3), φ also
preserves the length `, as the order of W is preserved by (5). Therefore the restriction φ �C∗` is a
function φ �C∗` : C∗` → C∗` .

Then, by (1-3), φ �C∗` is an f -invariant fixed-point-free involution on C∗` , implying that the set C∗`
can be partitioned into pairs {W, φ(W)} with f(W) = f(φ(W)), and therefore for every monomial
f(W), there is an even number of labeled walkages W ∈ C∗` corresponding to it, and therefore
because f(C∗` ) is over a field of characteristic 2, it is identically zero.

4.4 Proof of Lemma 5

In this subsection we prove Lemma 5 by explicitly defining the function φ and then showing that
it has all of the required properties.
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In order to define φ we first introduce some notation for manipulating labeled walks and labeled
walkages. Let W = ((v1, . . . , v`), (r1, . . . , r`)) be a labeled walk. For indices a, b with 1 ≤ a ≤ b ≤ `,
we denote by W [a, b] the labeled subwalk between a and b, inclusive, i.e., the labeled walk W [a, b] =
((va, . . . , vb), (ra, . . . , rb)). If a > b, then W [a, b] denotes an empty labeled walk.

The involution φ will use three types of operations: reversing a subwalk, swapping a label from
one occurrence of a vertex to another occurrence of it (possibly in a different walk), and swapping
suffixes of two walks.

The subwalk reversal operation is defined as follows. Let W be a labeled walk of length ` and a, b
indices with 1 ≤ a ≤ b ≤ `. The walk obtained fromW by reversing the subwalk between a and b, in-

clusive, including the labels, is denoted by W
←−−
[a, b]. For example, if W = ((v1, v2, v3, v4), (0, 1, 0, 2)),

then W
←−−
[2, 3] = ((v1, v3, v2, v4), (0, 0, 1, 2)). A labeled walk W is a palindrome if W = W

←−−
[1, `] holds,

i.e., the labeled walk is the same in reverse. Note that W
←−−
[a, b] = W holds if and only if W [a, b] is a

palindrome and that a subwalk W [a, b] can be a palindrome only if its length is odd or if it is the
empty walk. We will use the following lemma about palindromic subwalks of labeled walks, and in
particular the reason to forbid labeled digons is to make this lemma true. Recall that any labeled
walk in a proper labeled walkage is injective and does not contain labeled digons. Recall also that
R(W [a+ 1, b− 1]) = ∅ if and only if W has no labels in the subwalk W [a+ 1, b− 1].

Lemma 7. Let W = ((v1, . . . , v`), (r1, . . . , r`)) be an injective labeled walk of length ` that does
not contain labeled digons, and let a, b ∈ [`]. If va = vb and W [a + 1, b − 1] is a palindrome, then
R(W [a+ 1, b− 1]) = ∅.
Proof. First, because W [a+ 1, b− 1] is injective and palindrome, the only vertex of W [a+ 1, b− 1]
that can be labeled is the middle vertex. However, a label cannot occur at the middle vertex of
a palindrome with more than one vertex because it would be a labeled digon. If W [a + 1, b − 1]
has exactly one vertex, then again this vertex cannot be labeled because va = vb and W does not
contain labeled digons.

The label swap operation is defined as follows. Let W = (W 1, . . . ,W p) be a labeled walkage
of order p, where for each i ∈ [p] the walkage W i is denoted by ((vi1, . . . , v

i
`i

), (ri1, . . . , r
i
`i

)). Let

(i, a), (j, b) be pairs with i, j ∈ [p], a ∈ [`i], b ∈ [`j ], v
i
a = vjb , and exactly one of ria and rjb equal

to zero (i.e. one of them unlabeled and one labeled). The labeled walkage obtained from W by
swapping ria with rjb is denoted by W _i,j

a,b. Note that because ria 6= rjb , it holds that W _i,j
a,b 6=W.

See Figure 6 for an illustration of the label swap operation.
The suffix swap operation is defined as follows. Let (i, a) and (j, b) be pairs with i, j ∈ [p],

a ∈ [`i + 1], b ∈ [`j + 1], and i 6= j. The labeled walkage obtained from W by swapping the suffix

of W i starting at index a with the suffix of W j starting at index b is denoted by W ↔i,j
a,b. Note

that here we allow that a = `i + 1 or b = `j + 1, with the interpretation that this corresponds
to the empty suffix. Clearly, if both a = `i + 1 and b = `j + 1, then this operation does not do
anything, but otherwise ifW is a proper labeled walkage, applying this operation will in fact always
result in a different walkage because of the different ending vertices condition. See Figure 7 for an
illustration of the suffix swap operation.

If W 1 and W 2 are labeled walks so that the last vertex of W 1 is adjacent to the first vertex of
W 2, then W 1 ◦W 2 denotes the concatenation of W 1 and W 2. If W = (W 1, . . . ,W p) is a labeled
walkage and W is a labeled walk, then W �W denotes the labeled walkage (W ◦W 1, . . . ,W p) and
W tW denotes the labeled walkage (W,W 1, . . . ,W p).

Next we define the function φ of Lemma 5. We will provide some intuition about φ right after
the definition, and Figures 8 to 16 demonstrate different cases of it. The definition of φ will be
recursive, using induction by the length of the walkage.
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Figure 6: An illustration of the label swap operation. On the left: a labeled walkage W =
(W 1, . . . ,W p), and pairs (i, a), (j, b) with i, j ∈ [p], a ∈ [`i], b ∈ [`j ], v

i
a = vjb , and exactly one

of ria and rjb equal to zero. Note that we allow i = j. On the right: the labeled walkage W _i,j
a,b.
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Figure 7: An illustration of the suffix swap operation. On the left: a labeled walkage W =
(W 1, . . . ,W p), and pairs (i, a), (j, b) with i, j ∈ [p], a ∈ [`i + 1], b ∈ [`j + 1], and i 6= j. On the

right: the labeled walkage W ↔i,j
a,b.

Definition 3 (The function φ). Let W = (W 1, . . . ,W p) be a proper barren labeled walkage of order
p. For each i ∈ [p], denote W i = ((vi1, . . . , v

i
`i

), (ri1, . . . , r
i
`i

)). The value φ(W) is defined, in some
cases recursively, by selecting the first matching case from the following list:

A. if the vertex v11 occurs only once in W:

1. if `1 ≥ 2, then φ(W) = W 1[1, 1] � φ(W 1[2, `1],W
2, . . . ,W p).

2. otherwise (i.e., `1 = 1), φ(W) = W 1 t φ(W 2, . . . ,W p).

B. if the vertex v11 occurs in at least three different walks W i:
There must be at least two different walks W i that contain v11 but do not contain it as labeled.
Let i, j be the two smallest indices so that both W i and W j contain v11 but do not contain it
as labeled. Let a be the index of the first occurrence of v11 in W i and b be the index of the first
occurrence of v11 in W j. Now, φ(W) =W ↔i,j

a,b.

C. if the vertex v11 occurs only in the walk W 1:
By the case (A), the vertex v11 occurs multiple times in W 1. Let b be the index of the last
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occurrence of v11 in W 1 and a be the index of the second last occurrence of v11 in W 1. Note
that a = 1 if v11 occurs only twice in W 1, and note also that 1 ≤ a ≤ b− 2.

1. if r11 = r1b = 0:

(a) if W 1[2, b− 1] is not a palindrome, then φ(W) = (W 1
←−−−−−
[2, b− 1],W 2, . . . ,W p).

(b) otherwise, if b < `1, then φ(W) = W 1[1, b] � φ(W 1[b+ 1, `1],W
2, . . . ,W p).

(c) otherwise (i.e., b = `1), φ(W) = W 1 t φ(W 2, . . . ,W p).

2. if the index b is not a digon in W 1, then φ(W) =W _1,1
1,b .

Note: If neither case (1) nor (2) applies, then r11 6= 0.

3. if W 1[2, a− 1] is not a palindrome, then φ(W) = (W 1
←−−−−−
[2, a− 1],W 2, . . . ,W p).

Note: If a = 1, then W 1[2, a− 1] is the empty walk which is a palindrome.

4. if v1a+1 = v1b−1:

(a) if W 1[a+1, b−1] is not a palindrome, then φ(W) = (W 1
←−−−−−−−−
[a+ 1, b− 1],W 2, . . . ,W p).

(b) otherwise, φ(W) = W 1[1, b] � φ(W 1[b+ 1, `1],W
2, . . . ,W p).

Note: Here W 1[b+1, `1] cannot be an empty walk because by case (C.2) b is a digon
in W 1.

X. otherwise, φ(W) = W 1[1, a] � φ(W 1[a+ 1, `1],W
2, . . . ,W p).

Note: The case C.X will form a “common case” with the case D.X.

D. if the vertex v11 occurs in exactly two different walks:
Let i be the index of the another walk W i in which v11 occurs and let b be the index of the first
occurrence of v11 in W i.

1. if r11 = rib = 0, then φ(W) =W ↔1,i
1,b.

2. if the index b is not a digon in W i, then φ(W) =W _1,i
1,b.

Note: If neither case (1) nor (2) applies, then r11 6= 0.

3. if v11 occurs at least twice in W i, then let c be the index of its second occurrence and
φ(W) =W ↔1,i

2,c+1.
Note: It can happen that one of the suffixes in this case is empty. However, both of them
cannot be empty at the same time because W 1 and W i have different ending vertices
because W is proper.
Note: In the remaining cases, v11 occurs exactly once in W i, and this occurrence is a
digon at index b.
Now, let a be the index of the last occurrence of v11 in W 1 (if v11 occurs only once in W 1,
then a = 1).

4. if W 1[2, a− 1] is not a palindrome, then φ(W) = (W 1
←−−−−−
[2, a− 1],W 2, . . . ,W p).

Note: If a = 1, then W 1[2, a− 1] is the empty walk which is a palindrome.

5. if a = `1, then φ(W) = W 1 t φ(W 2, . . . ,W p).

6. if v1a+1 = vib+1, then φ(W) =W ↔1,i
a+1,b+1.

Note: By case (5) it holds that a < `1 and by case (2) it holds that b < `i.

X. otherwise, φ(W) = W 1[1, a] � φ(W 1[a+ 1, `1],W
2, . . . ,W p).

Note: The case D.X will form a “common case” with the case C.X.
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A.1(W 1[2, ℓ1],W
2, . . . ,W p) ϕ(W 1[2, ℓ1],W

2, . . . ,W p)

v11 v11

ϕ
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v11 v11

A.2

ϕ

Figure 8: Examples of cases A.1 and A.2 of the definition of φ. The vertex v11 can be either labeled
or unlabeled.

vjb

via

v11

vi1

vj1 vjb

via

v11

vi1

vj1 vjb

via

v11

vi1

vj1

B

ϕ

Figure 9: Example of case B of the definition of φ. All vertices inside the grey bag are different
occurrences of the same vertex v11 of the graph. The white vertices via and vjb are unlabeled, the
black vertices could be labeled or unlabeled, and the green vertex v11 is labeled in this specific
example.

Intuition for φ. Before laboriously proving that φ indeed is a function from proper barren labeled
walkages to proper barren labeled walkages satisfying the required properties, let us give some
rough outline of ideas behind it. First, the general idea is that if the walkage W goes to a certain
case, then the walkage φ(W) goes again to the same case, which then maps it back toW. The only
exception is that the cases C.X and D.X could map to each other.

Then, let us consider the cases relevant for a single walk, i.e., the case A.1 and the cases under
C. Here, the intuition of case A.1 is to just move forward in the walk: we don’t care much about
what φ does to the rest of the walk because it must preserve the vertex right after v11, and attaching
v11 to the front will not create a digon because v11 occurs only at one index. Then, case C.1.a is the
standard loop reversal case, which is safe because neither index 1 nor b is labeled. The case C.1.b
(and C.1.c) corresponds to ignoring a palindromic subwalk, which can be safely done by Lemma 7.
Then, case C.2 is the standard label swap case, which is safe because the index b is a not digon (note
that the index 1 is never a digon). The cases C.1–C.2 are in some sense the “easy cases”, while the
cases C.3–C.X require more analysis of the remaining situation and quite unintuitive design. First,
if neither C.1 nor C.2 applies, we know that the index 1 is labeled and the index b is digon. The
purpose of case C.3 is to, in some sense reduce to a situation where we pretend that the vertex v11
occurs only at indices 1, a, and b, as the walk between 1 and a is an irrelevant palindromic loop.
Then, case C.4 handles a corner condition which would prevent case C.X from working. The case
C.X ignores the palindromic loop between 1 and a, leaving the only occurrence of the vertex v11
in the rest of the walk to be at the digon b, which in some sense makes it “harmless” in that the
recursive calls will never need to analyse the vertex v1b again as the first vertex.

The intuition for the case of multiple walks is as follows. First, the case A.2 is just an analogue
of A.1 when the first walk has length 1. Then, if the vertex v11 occurs multiple times, we consider
three different cases: v11 occurs in at least three walks, v11 occurs in one walk, and v11 occurs in two
walks. Here, the three walks case B is quite easy, as we can just consider two of the walks where v11
is not labeled, circumventing all issues with labeled digons. When v11 occurs in only one walk we
go to the one walk case C. Then, when v11 occurs in two walks W 1 and W i, the intuition of cases
under D is that we concatenate W 1 with reversed W i, with some special marker in between, and
then apply the single walk cases under C for this concatenation. Here, in the case D.X this can
change whether v11 occurs in two walks or a single walk, and therefore it is necessary to have the
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Figure 10: Example of case C.1.a of the definition of φ. All vertices inside the grey bag are different
occurrences of the same vertex v11 of the graph. The vertices v11 and v1b are unlabeled and the black
vertices v12, v1a, and v1b−1 can be either labeled or unlabeled.

v12v11
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(W 1[b+ 1, ℓ1],W
2, . . . ,W p)

v11

v1a

v1b
v1b+1

ϕ(W 1[b+ 1, ℓ1],W
2, . . . ,W p)

C.1.b

ϕ

v1b−1 v1b−1

Figure 11: Example of case C.1.b of the definition of φ. All vertices inside the grey bags are the
same vertex of the graph. By case C.1.a, the blue subwalk W 1[2, b−1] is palindrome, and therefore
by Lemma 7, the vertices in it are unlabeled.

common case of C.X and D.X, moreover taking care in the proof that moving back from C.X to
D.X will be handled correctly.

Correctness proof for φ. We will then proceed to first show that φ is well-defined, then that φ
maps proper barren labeled walkages to proper barren labeled walkages, and then that φ satisfies
all of the properties stated in Lemma 5, with φ(φ(W)) = W being the most complicated of them
to prove. The proof is long because we have to analyze most of the 18 cases one by one. However,
most of the arguments in these proofs are relatively easy once the definition of φ is set. The main
challenge in the proof was to come up with the right definition of φ.

Well-definedness of φ. In Definition 3, in several cases, namely A.1, A.2, C.1.b, C.1.c, C.4.b, C.X,
D.5, and D.X, the function φ is defined recursively. A priori it is not even clear why the syntactic
value φ(W) is even well-defined in these cases. It requires proof that in these cases the recursive
argument is in the domain of φ, in particular that it is also a proper barren labeled walkage.

Next we show that the syntactic value φ(W) for proper barren labeled walkages W is well-
defined. We remark that Lemma 8 does not yet show that φ(W) is a proper barren labeled
walkage; it will require more efforts to prove (see Lemmas 9 to 11).

Lemma 8. In case A.1 of Definition 3 it holds that (W 1[2, `1],W
2, . . . ,W p) is a proper barren

labeled walkage, in cases A.2, C.1.c, and D.5 it holds that (W 2, . . . ,W p) is a proper barren labeled
walkage, in cases C.1.b, and C.4.b it holds that (W 1[b+1, `1],W

2, . . . ,W p) is a proper barren labeled
walkage, and in cases C.X and D.X it holds that (W 1[a + 1, `1],W

2, . . . ,W p) is a proper barren
labeled walkage.

Proof. In all cases, the labeled walkage used as the recursive argument is obtained from W by
removing either the walk W 1 or a prefix of W 1. First we need to argue that the recursive argument
is a labeled walkage. For this, the only thing to argue is that (1) the recursive argument contains
at least one walk (i.e., p ≥ 2 in cases A.2, C.1.c, and D.5) and that (2) all walks in the recursive
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Figure 12: Example of case C.1.c of the definition of φ. All vertices inside the grey bags correspond
to the same vertex of the graph. By case C.1.a, the blue subwalk W 1[2, b − 1] is palindrome, and
therefore by Lemma 7, the vertices in it are unlabeled.
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v1a−1
C.3
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Figure 13: Example of cases C.2 and C.3 of the definition of φ. Vertices inside the same grey
bags correspond to the same vertex of the graph. On the left part of the figure (case C.2), in the
initial configuration the vertex v11 is unlabeled and the vertex v1b is labeled (with color red) and the
application of φ in this case exchanges this label from v1b to v11. On the right part of the figure, v1b
is a digon and therefore it is unlabeled and by cases C.1 and C.2, v11 has to be labeled (depicted in
green).

argument are non-empty (i.e. `1 ≥ 2 in case A.1, b < `1 in cases C.1.b and C.4.b, and a < `1 in
cases C.X and D.X). The other properties of labeled walkages are clearly satisfied when removing
either W 1 or a prefix of W 1.

The above conditions are satisfied directly by definition in cases A.1 and C.1.b. In case C.4.b,
b < `1 holds by the fact that (due to case C.2) the index b is a digon in W 1. In case C.X, recall
that a is the index of the second last occurrence of v11 in W 1, so a < `1. In case D.X, we have that
a < `1 by case D.5. For the remaining cases A.2, C.1.c, and D.5, observe the following. If p = 1
would hold, then W = (W 1). Then, since in all these three cases v1`1 = v11 and W 1[2, `1] cannot
contain labels (in A.2 trivially, in C.1.c by r11 = r1b = 0 and Lemma 7, and in D.5 by cases D.1, D.2,
and D.4 combined with Lemma 7), it should hold that (W 1[1, 1]) is a labeled linkage consisting
only of one walk with one vertex that would contradict the fact that W is barren by Definition 2.

It is clear by definition of a proper labeled walkage that removing a walk or a prefix of a walk
maintains that the walkage is proper. To complete the proof, it remains to show case by case that
the labeled walkages used as recursive arguments are barren.

In all of the cases the proofs will follow the same template: For the sake of contradiction we
suppose that the labeled walkage W ′ used as a recursive argument is not barren, then consider the
labeled linkage W ′′ that witnesses that W ′ is not barren, and then use W ′′ to construct a labeled
linkage that shows that W is not barren, obtaining a contradiction. We spell out these steps in
detail for the case A.1, and in less detail for subsequent cases.

Case A.1. For the sake of contradiction, suppose that W ′ = (W 1[2, `1],W
2, . . . ,W p) is not barren.

Then by the definition of barren, there exists a labeled linkage W ′′ with start(W ′′) = start(W ′),
T (W ′′) = T (W ′), R(W ′′) = R(W ′), length ≤ `−1, and edges E(W ′′) ⊆ E(W ′). By the assumptions
of case A.1, the labeled walkage W ′ does not contain v11, so the labeled linkage W ′′ cannot contain
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Figure 14: Examples of cases C.4.a and C.4.b of the definition of φ. By case C.2, b is a digon on
W 1 and by case C.3, W 1[2, a−1] is a palindrome. For both case C.4.a and case C.4.b, we have that
v1a+1 = v1b−1 (v1a+1, v

1
b−1, and v1b+1 are in the same grey bag). If W 1[a+1, b−1] is not a palindrome,

then we are in case C.4.a (on the left), while if W 1[a + 1, b − 1] is a palindrome, we are in case
C.4.b. (on the right).
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Figure 15: Examples of cases C.X and D.X of the definition of φ.

v11 because the edge property E(W ′′) ⊆ E(W ′) ensures that v11 cannot occur in a walk of length
more than one, and the start vertex property start(W ′′) = start(W ′) ensures that v11 cannot
occur in a walk of length one. By the start vertex property, it holds that the first vertex of the
first walk in W ′′ is v12. Therefore, W 1[1, 1] � W ′′ is a labeled linkage. Because v11v

1
2 ∈ E(W)

and E(W ′′) ⊆ E(W ′) ⊆ E(W), we have that E(W 1[1, 1] � W ′′) ⊆ E(W). Also, observe that
because of R(W ′′) = R(W ′), it holds that R(W 1[1, 1] � W ′′) = R(W). Similarly, we observe that
start(W 1[1, 1] � W ′′) = start(W), T (W 1[1, 1] � W ′′) = T (W), and the length of W ′′ is at most
`. Therefore, W 1[1, 1] � W ′′ is a labeled linkage that according to Definition 2 contradicts the fact
that W is barren.

Case A.2. Again, suppose that W ′ = (W 2, . . . ,W p) is not barren, and consider the witness W ′′.
Because v11 does not occur in W ′′, it holds that W 1 tW ′′ is a labeled linkage that contradicts that
W is barren.

Case C.1.b. Suppose that W ′ = (W 1[b+ 1, `1],W
2, . . . ,W p) is not barren and consider the witness

W ′′. As, by definition of b in case C, v11 occurs inW only in the subwalk W 1[1, b], it cannot occur in
W ′′. Therefore W 1[1, 1]�W ′′ is a labeled linkage. It is easy to observe that start(W 1[1, 1]�W ′′) =
start(W), T (W 1[1, 1]�W ′′) = T (W), and E(W 1[1, 1]�W ′′) ⊆ E(W). Also, Lemma 7 implies that
R(W 1[1, b]) = ∅ and therefore R(W 1[1, 1]�W ′′) = R(W), therefore contradicting thatW is barren.

Case C.1.c. This case is similar as the previous, in particular, Lemma 7 implies that R(W 1) = ∅.
Therefore, if we assume that W ′ = (W 2, . . . ,W p) is not barren and we take the labeled linkage
W ′′ that witnesses that W ′ is not barren, we can construct a labeled linkage W 1[1, 1] t W ′′ that
contradicts the fact that W is barren.

Case C.4.b. Assume that W ′ = (W 1[b + 1, `1],W
2, . . . ,W p) is not barren and take the labeled

linkage W ′′ that witnesses that W ′ is not barren. As v11 occurs in W only in the subwalk W 1[1, b],
it cannot occur in W ′′. Therefore W 1[1, 1] � W ′′ is a labeled linkage. Note that in this case
W 1[2, a − 1] is a palindrome, the index a of the walk W 1 is not labeled because the index 1 is
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Figure 16: Example of cases D.1-D.6 of the definition of φ. In each grey bag, all vertices inside
the corresponding bag are the same vertex of the graph. Labeled vertices are depicted in red and
green. White vertices correspond to unlabeled vertices and black vertices can be either labeled or
unlabeled.

labeled andW is proper, and W 1[a+1, b−1] is a palindrome, and the index b of W 1 is not labeled.
Therefore, by Lemma 7, R(W 1[1, b]) = {v11}, and therefore R(W 1[1, 1]�W ′′) = R(W), and therefore
we contradict the fact that W is barren.

Case C.X. In this case, the argument is less apparent because v11 indeed occurs in W 1[a + 1, `1].
Again, we start by assuming that W ′ = (W 1[a + 1, `1],W

2, . . . ,W p) is not barren, and take the
labeled linkage W ′′ that witnesses that W ′ is not barren. Now, note that v11 occurs in W ′ only as a
single digon in W 1[a+1, `1]. Therefore, v11 cannot occur as a starting or ending vertex inW ′′. Also,
there is only one edge in E(W ′) incident to v11, which then prevents v11 occuring at any position in
W ′′, because any position containing v11 would have to a digon, but W ′′ is labeled linkage and thus
does not contain digons. Therefore, we construct a labeled linkage W 1[1, 1] � W ′′ and use the fact
that W 1[2, a − 1] is palindrome with Lemma 7 to conclude that R(W 1[1, 1] � W ′′) = R(W), and
to finally observe that W 1[1, 1] �W ′′ satisfies also all the other needed properties to contradict the
fact that W is barren.

Case D.5. Note that here we have that r11 6= 0, v11 = v1`1 , and W 1[2, `1 − 1] is a palindrome. The
arguments are similar to case C.X: The vertex v11 does occur in the walkage (W 2, . . . ,W p), but it
occurs in it only a single time, which is a digon in the walk W i. So suppose thatW ′ = (W 2, . . . ,W p)
is not barren, and consider the witness W ′′. By similar arguments as in case C.X, v11 cannot occur
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in W ′′. Therefore, we construct a labeled linkage W 1[1, 1] tW ′′ and use the fact that W 1[2, a− 1]
is palindrome with Lemma 7 to conclude that R(W 1[1, 1] t W ′′) = R(W), and to finally observe
that W 1[1, 1] t W ′′ satisfies also all the other needed properties to contradict the fact that W is
barren.

Case D.X. Note that here again, we have that r11 6= 0 and W 1[2, a − 1] is a palindrome, where a
is the last occurrence of v11 in W 1. The arguments are similar to case C.X: The vertex v11 does
occur in the walkage (W 1[a + 1, `1],W

2, . . . ,W p), but it occurs in it only a single time, which is
a digon in the walk W i. So again suppose that W ′ = (W 1[a + 1, `1],W

2, . . . ,W p) is not barren,
and consider the witness W ′′. Again by arguments of C.X we have that v11 cannot occur in W ′′.
Therefore, we again construct a labeled linkage W 1[1, 1] �W ′′ and use the fact that W 1[2, a− 1] is
palindrome with Lemma 7 to conclude that R(W 1[1, 1] �W ′′) = R(W), and to finally observe that
W 1[1, 1] �W ′′ satisfies also all the other needed properties to contradict that W is barren.

The next three lemmas establish that φ(W) is a proper barren labeled walkage. In addi-
tion, Lemma 9 shows that φ satisfies the properties f(φ(W)) = f(W), T (φ(W)) = T (W), and
start(φ(W)) = start(W).

Lemma 9. Let W be a proper barren labeled walkage. It holds that φ(W) is a labeled walkage,
start(φ(W)) = start(W), T (φ(W)) = T (W), and f(φ(W)) = f(W).

Proof. We prove the lemma by induction on the length of the walkage W. Here, all of the cases
should be easy to verify, so the arguments we provide will be terse.

Cases A.1 works directly by induction, in particular, we can use the induction assumptions that

• φ(W 1[2, `1],W
2, . . . ,W p) is a labeled walkage,

• start(φ(W 1[2, `1],W
2, . . . ,W p)) = start((W 1[2, `],W 2, . . . ,W p)),

• T (φ(W 1[2, `1],W
2, . . . ,W p)) = T ((W 1[2, `],W 2, . . . ,W p)), and

• f(φ(W 1[2, `1],W
2, . . . ,W p)) = f((W 1[2, `],W 2, . . . ,W p)),

to prove the same properties for W. In particular, we use the start vertex property to ensure that
the first vertex of the first walk of φ(W 1[2, `1],W

2, . . . ,W p) is v12, and therefore the first edge of
the first walk of W 1[1, 1] � φ(W 1[2, `1],W

2, . . . ,W p) is v11v
1
2.

Case A.2 works similarly to A.1. Case B works by the property that via = vjb , in particular
observing that if both of the suffixes are non-empty, the suffix swap operation preserves the set
of ending vertices T (W). Case C.1.a works because v11 = v1b , and cases C.1.b and C.1.c work by
similar induction as A.1. Case C.2 works because v11 = v1b , in particular, even though the index
of the label in the walk changes, the vertex variable or the label-color pair variable do not change
because the vertex does not change. Case C.3 works because v11 = v1a. Case C.4.a works because
v1a = v1b and case C.4.b works by similar induction as A.1. Case C.X works again by induction.
Case D.1 works because v11 = vib. Case D.2 works because v11 = vib, by the same argument as case
C.2.

In case D.3, all other conditions work directly by v11 = vic, but we should pay attention to
the ending vertices condition T (φ(W)) = T (W), because it can happen that one of the suffixes
is empty. As observed already in the definition, observe that at most one of the suffixes can be
empty because v11 = vic and W 1 and W i have different ending vertices becauseW is proper. First, if
`1 = 1, then the ending vertex of W i becomes vic = v11 = v1`1 , and the ending vertex of W 1 becomes

vi`i , so the condition holds. Second, if `i = c, then the ending vertex of W 1 becomes v11 = vic = vi`i ,

and the ending vertex of W i becomes v1`1 , so the condition holds.
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Case D.4 works because v11 = v1a. Case D.5 works by induction. Case D.6 works because
v1a+1 = vib+1 and the suffixes are guaranteed to be non-empty. Case D.X works by induction.

Note that because f(W) and start(W) determine R(W), E(W), and the length ofW uniquely,
Lemma 9 implies that φ(W) is a barren walkage (because W is barren). It remains to prove that
φ(W) is proper, and to prove that φ(W) is proper the only remaining thing to prove is that
φ(W) does not contain labeled digons (Lemma 11). In particular, the property T (φ(W)) = T (W)
guarantees that the ending vertices of φ(W) are distinct, and f(φ(W)) = f(W), which implies
R(φ(W)) = R(W) guarantees that the labeled vertices of φ(W) have different colors (because W
is proper).

We will make use of the following lemma that follows directly from Lemma 9.

Lemma 10. If a vertex occurs exactly once in W and this occurrence is a digon, then this vertex
also occurs exactly once in φ(W) and this occurrence is also a digon with the same adjacent vertices.

Proof. Suppose that a vertex v occurs exactly once inW and this occurrence is a digon. Therefore,
it cannot be a starting or ending vertex inW. By Lemma 9, it holds that start(φ(W)) = start(W)
and T (φ(W)) = T (W) and therefore v cannot be a starting or ending vertex neither in φ(W). Then,
since by Lemma 9, we have that f(φ(W)) = f(W), implying E(φ(W)) = E(W), the vertex v must
have the exactly same adjacent vertices in φ(W) as in W.

Then we prove that φ(W) has no labeled digons.

Lemma 11. Let W be a proper barren labeled walkage. The labeled walkage φ(W) has no labeled
digons.

Proof. We prove the lemma by induction on the length of the walkage W.

Case A.1. In this case, as φ(W 1[2, `1],W
2, . . . ,W p) has no labeled digons by induction, the only

potential place for a labeled digon could be index 2 of W 1. However, because v11 occurs only once
in W and therefore does not occur in φ(W 1[2, `1],W

2, . . . ,W p), we have that the index 2 of W 1

cannot become a digon.

Case A.2. Trivially by induction.

Case B. Here, by the definition of via and vjb in case B, both via and vjb are unlabeled and via = vjb
holds, so if W ↔i,j

a,b would contain a labeled digon then also W would.

Case C.1.a. Here, the indices 1 and b of W 1 are not labeled so they cannot become labeled digons.

For indices in [2, b − 1], note that if i ∈ [2, b − 1] would be a labeled digon in W 1
←−−−−−
[2, b− 1], then

b+ 1− i would have been a labeled digon in W 1.

Case C.1.b. Potential places for labeled digons here are incides b and b+1 at W 1. However, b is not
labeled so no labeled digon can be at b, and because v1b does not occur in (W 1[b+1, `1],W

2, . . . ,W p),
it cannot occur in φ(W 1[b+ 1, `1],W

2, . . . ,W p) and therefore b+ 1 cannot become labeled digon.

Case C.1.c. Trivially by induction.

Case C.2. The index 1 of W 1 is not digon by definition of digon, and the index b is not digon by
definition of this case, so no labeled digons are created.

Case C.3. Here, the index 1 cannot be a digon by definition, and the index a of W 1 has r1a = 0 by
case C.2, so they cannot become labeled digons. For indices in [2, a− 1], the same argument as in
case C.1.a applies.

Case C.4.a. Neither index a nor b is labeled so they cannot become labeled digons, and for indices
in [a+ 1, b− 1] the same argument as in case C.1.a applies.
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Case C.4.b. Same argument as in C.1.b, and using that by case C.2, it holds that r1b = 0.

Case C.X. Here, the index a of W 1 cannot become a labeled digon because it is not labeled. For
the index a + 1 the argument is more complicated: First note that the vertex v1a = v1b (= v11)
occurs only once in (W 1[a + 1, `1],W

2, . . . ,W p) (as v1b ). Also, by case C.2, b is a digon in W 1.
Therefore, by Lemma 10, the vertex v1b = v1a occurs in φ(W 1[a+ 1, `1],W

2, . . . ,W p) only once, and
this occurrence is a digon adjacent with vertex v1b−1 = v1b+1. Because by Lemma 9 φ preserves the
starting vertices, and by case C.4 it holds that v1a+1 6= v1b−1, it holds that the occurrence of v1b in
φ(W 1[a+ 1, `1],W

2, . . . ,W p) cannot be as the second vertex of the first walk. Therefore, the index
a+ 1 of the first walk cannot be a labeled digon in W 1[1, a] � φ(W 1[a+ 1, `1],W

2, . . . ,W p).

Case D.1. As r11 = rib = 0 and v11 = vib, it holds that if W ↔1,i
1,b would contain a labeled digon then

also W would.

Case D.2. The index 1 of W 1 cannot become a digon by definition of digon. The index b of W i

cannot become a digon by definition of this case.

Case D.3. Because v11 = via, in this case if W ↔1,i
2,c+1 would have a labeled digon at index 2 of W 1

or at index c + 1 of W i, then this same labeled digon would have existed also in W. Then, no
labeled digon can be created to index 1 of W 1 by definition of digon or to index c of W i because
r11 6= 0 and therefore ric = 0 by case D.2.

Case D.4. The index 1 of W 1 cannot become a digon by definition, and the index a cannot become
a labeled digon because it is not labeled because the index 1 is labeled. For indices in [2, a− 1], the
same argument as in case C.1.a applies.

Case D.5. Trivially by induction.

Case D.6. In this case, by cases D.1 and D.2 we have that r11 6= 0 and rib = 0. The former implies
that r1a = 0. Therefore, the index a of W 1 nor the index b of W i cannot become labeled digons
because they cannot become labeled. Then, if the index a + 1 of W 1 would be a labeled digon in
W ↔1,i

a+1,b+1, then the index b + 1 of W i would have been a labeled digon in W because v1a = vib
(and symmetrically for b+ 1 of W i).

Case D.X. Here, a similar argument as in C.X works: By Lemma 10 we know that vib occurs only as
a digon surrounded by vib−1 = vib+1 in φ(W 1[a+1, `1],W

2, . . . ,W p). Therefore, because φ maintains
the starting vertices and v1a+1 6= vib+1, it holds that the index a + 1 of W 1 cannot be a digon in
W 1[1, a]�φ(W 1[a+1, `1],W

2, . . . ,W p). The index a of W 1 cannot become a labeled digon because
it is not labeled.

The function φ is an involution. Now we have shown that φ is a function φ : B → B, where B is
the set of all barren proper labeled walkages, and that f(φ(W)) = f(W), T (φ(W)) = T (W), and
start(φ(W)) = start(W) hold. Next we show that φ is an involution on B, i.e., φ(φ(W)) = W
holds.

Lemma 12. For any proper barren labeled walkage W it holds that φ(φ(W)) =W.

Proof. We use induction on the length of walkage W. The structure of the proof is to show that in
all cases except C.X and D.X, the walk φ(W) goes to the same case of Definition 3 as W. Then,
the cases C.X and D.X are treated together.

Case A.1. In both W and φ(W) it holds that the v11 occurs only once in the walkage and φ does
not change the first vertex, so φ(φ(W)) =W holds by induction.

Case A.2. In this case the first walk of W is the same as the first walk of φ(W), so φ(φ(W)) =W
holds by induction.
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Case B. In this case, the function φ preserves the set of walks in which v11 occurs, and moreover
preserves the walk in which v11 occurs as labeled (if it occurs as labeled in any walk). Therefore the
walkage φ(W) also goes to case B, and in case B the indices i, j selected for φ(W) are the same as
selected for W. The suffix swap operation also does not change the indices of the first occurrences
of v11 in W i and W j , so the indices a and b selected are the same. Then, the lemma follows by
observing that W ↔i,j

a,b↔
i,j
a,b=W.

At this point, let us observe that W goes to cases C.1-4 if and only if φ(W) goes to cases C.1-4.
This is because all of these cases maintain that v11 occurs only in the walk W 1, but multiple times
in the walk W 1. In particular, in the recursive cases this is maintained by the fact that v11 does
not occur in the recursive argument.

We also observe that W goes to cases D.1-6 if and only if φ(W) goes to cases D.1-6. This
is because all of these cases maintain that v11 occurs in exactly two different walks. In the cases
D.1-4 and D.6 this is easy to observe since these are not recursive, and in the case D.5 this follows
from the fact that the walk W 1 is not changed and that in this case v11 occurs exactly once in
(W 2, . . . ,W p).

Case C.1. Note that going to the cases C.1.a, C.1.b, and C.1.c depends only on the last occurrence
b of v11, and the labels r11 and r1b . None of these cases change these, so φ(φ(W)) = W holds in

case C.1.a because W 1
←−−−−−←−−−−−
[2, b− 1] = W 1 and reversing a subwalk does not change whether it is a

palindrome, and by induction in cases C.1.b and C.1.c.

Case C.2. The order of the vertices in the walks and the fact that exactly one of r11 and r1b is labeled
is maintained, so if W goes to case C.2 then also φ(W) goes to C.2. Then, φ(φ(W)) =W because
W _1,1

1,b_
1,1
1,b=W.

Case C.3. It holds that a < b, so therefore reversing W 1[2, a − 1] does not change the fact that b
is a digon in W 1. It also does not change the index a of the second last occurrence of v11, nor the
index b of the last occurrence of v11, nor the fact that r11 6= 0, nor the fact that W 1[2, a− 1] is not
a palindrome.

Case C.4.a. Because v1a+1 = v1b−1, reversing W 1[a + 1, b − 1] does not change the fact that b is
a digon in W 1. Reversing W 1[a + 1, b − 1] also does not change the index a of the second last
occurrence of v11, nor the index b of the last occurrence of v11, nor the fact that r11 6= 0, nor the fact
that W 1[2, a− 1] is a palindrome.

Case C.4.b. Going to the case C.4.b depends only on the subwalk W 1[1, b] and on the vertex with
index b+1 in W 1 (whether the index b is a digon). Clearly, φ does not change the subwalk W 1[1, b]
in this case. The vertex with index b+ 1 is not changed because by Lemma 9 the starting vertices
are preserved by φ(W 1[b+ 1, `1],W

2, . . . ,W p), so the lemma holds by induction.
Before moving to the cases C.X and D.X, we handle the cases D.1-D.5.

Case D.1. In this case, the operation W ↔1,i
1,b does not change the two walks in which v11 occurs,

nor it changes the fact that the first occurrence of v11 in W i is at index b, nor that r11 = rib = 0.

The lemma follows from the fact that W ↔1,i
1,b↔

1,i
1,b=W.

Case D.2. This case does not change the vertices of the walks, so it is maintained that v11 occurs
only in W 1 and W i. It also does not change the fact that exactly one of r11 and rib is labeled or the

fact the index b is not a digon in W i, so the lemma follows from the fact that W _1,i
1,b_

1,i
1,b=W.

Case D.3. This case does not change the index b of the first occurrence of v11 in W i or the index
c of the second occurrence of v11 in W i, and neither does it change the fact that r11 6= 0. Because
c > b + 1, it also does not change that the index b is a digon in W i. The lemma follows from the
fact that W ↔1,i

2,c+1↔
1,i
2,c+1=W.
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Case D.4. This case does not change the index b of the first occurrence of v11 in W i, nor that r11 6= 0,
nor that b is a digon in W i, nor that v11 occurs only once in W i. It also does not change the index
a of the last occurrence of v11 in W i, or the fact that W 1[2, a − 1] is a palindrome so the lemma
holds.

Case D.5. The vertex v11 occurs exactly once in (W 2, . . . ,W p), so it is also maintained that v11
occurs in exactly two walks. The walk W 1 is not changed, so it is maintained that r11 6= 0 and
therefore φ(W) does not go to case D.1. By Lemma 10 we have that φ(W) does not go to case D.2,
and again because v11 occurs only once in (W 2, . . . ,W p) we have that φ(W) does not go to case
D.3. As W 1 is not changed we have that φ(W) does not go to case D.4. Then, as case D.5 does
not change the walk W 1, it is maintained that a = `1, so φ(W) goes to case D.5.

Case D.6. This case does not change that r11 6= 0, so φ(W) does not go to case D.1. It also does
not change the index b of the first occurrence of v11 in W i, and because v1a+1 = vib+1, it does not
change that b is a digon in W i, and therefore φ(W) does not go to case D.2. Because a is the
last occurrence of v11 in W 1, it also does not change that v11 occurs in W i only once, so φ(W) does
not go to case D.3. It also does not change the index a of the last occurrence of v11 in W 1 or the
subwalk W 1[2, a− 1], so φ(W) does not go to cases D.4. or D.5. Therefore, φ(W) goes to case D.6
with the same values of a, b, and i, so φ(φ(W)) =W holds because W ↔1,i

a+1,b+1↔
1,i
a+1,b+1=W.

Case C.X. We aim to prove that if W goes to case C.X, then φ(W) also goes to case C.X or
to the case D.X, with the same value of the index a, and therefore φ(φ(W)) = W will hold by
induction, as in both cases φ is defined as φ(W) = W 1[1, a] � φ(W 1[a+ 1, `1],W

2, . . . ,W p). First,
it is maintained that v11 occurs more than once, but in at most two walks, because v11 occurs only
once in (W 1[a+ 1, `1],W

2, . . . ,W p). Therefore, φ(W) does not go to case A or B.
Suppose that v11 occurs in φ(W) only in the walk W 1, i.e., goes to case C. We will show that

φ(W) goes to case C.X. It is maintained that r11 6= 0, so φ(W) does not go to case C.1. Then, by
Lemma 10 it is maintained that the last occurrence of v11 must be a digon so φ(W) does not go to
case C.2. Also, this case does not change the index a of the second last occurrence of v11 nor the
walk W 1[2, a − 1], so it is maintained that W 1[2, a − 1] is a palindrome and therefore φ(W) does
not go to case C.3. Then, to argue that φ(W) does not go to case C.4, observe that because φ
maintains the starting vertex, the vertex at the position a+ 1 is maintained. The vertices around
the digon at the last occurrence of v11 are maintained by Lemma 10, so therefore if W does not go
to case C.4 then also φ(W) does not go to case C.4. Therefore φ(W) goes to case C.X, and as the
walk W 1[1, a] is maintained, it goes to this case with the same value of a, so the lemma holds by
induction.

Then, suppose that v11 occurs in φ(W) in two walks W 1 and W i, i.e., goes to case D. We will
show that φ(W) goes to case D.X. It is maintained that r11 6= 0, so φ(W) does not go to case D.1.
Then, by Lemma 10 it must be that v11 occurs in W i only once and as a digon, and therefore φ(W)
does not go to case D.2 or D.3. Now, it will hold that the index a of the last occurrence of v11 in
the walk W 1 of φ(W) is the same as the index a of the last occurrence of v11 in the walk W 1 of
W. Therefore, the subwalk W 1[1, a] will be the same in W and φ(W), and therefore φ(W) will not
go to case D.4 because W did not go to case C.3. Then, because φ cannot turn a non-empty walk
into an empty walk, it is maintained that the length of W 1 is more than a, so φ(W) cannot go to
case D.5. Then, for case D.6 we again note that φ maintains the vertex at position a+ 1, and that
the digon around the occurrence of v11 outside of W 1[1, a] is maintained by Lemma 10. Therefore,
φ(W) goes to case D.X with the same value of a, so the lemma holds by induction.

Case D.X. We will show that ifW goes to case D.X, then φ(W) also goes to case D.X or to the case
C.X, with the same value of the index a, and therefore φ(φ(W)) =W will hold by induction, as in
both cases φ is defined as φ(W) = W 1[1, a] � φ(W 1[a+ 1, `1],W

2, . . . ,W p). First, it is maintained
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that v11 occurs more than once, so therefore φ(W) does not go to case A. Then, as v11 occurs only
once in (W 1[a + 1, `1],W

2, . . . ,W p), it can occur in at most two walks in φ(W), so φ(W) cannot
go to case B.

Suppose that v11 occurs in φ(W) only in the walk W 1, i.e., goes to case C. We will show that
φ(W) goes to case C.X. It is maintained that r11 6= 0, so φ(W) does not go to case C.1. Then,
because W 1[1, a] contains all other occurrences of v11 in W except the occurrence in W i, it must be
that now the last occurrence of v11 in W 1 of φ(W) corresponds to the occurrence of v11 in W i of W,
in particular, by Lemma 10 the last occurrence of v11 in W 1 of φ(W) must be a digon, and therefore
φ(W) does not go to case C.2. By the same reasoning, it also must be that the the index a of the
last occurrence of v11 in W 1 of W is the same as the index a of the second last occurrence of v11
in W 1 of φ(W), and therefore the subwalk W 1[1, a] of φ(W) in case C is the same as the subwalk
W 1[1, a] ofW in case D. Then, it follows that because W did not go to case D.4, φ(W) does not go
to case C.3. Then, as the case D.X does not change the vertex at the index a + 1 of W 1, it holds
that the vertex at the index a + 1 of W 1 is the same in W and φ(W). Also, by Lemma 10 the
vertices around the digon of the last occurrence of v11 are the same in W and φ(W), so φ(W) does
not go to case C.4 because W did not go to case D.5. Therefore, φ(W) must go to case C.X, and
we already reasoned that the index a is the same as for W in the case D.X, so the lemma holds by
induction.

Suppose that v11 occurs in φ(W) in two different walks, i.e., goes to case D. We will show that
φ(W) goes to case D.X. First, it is maintained that r11 6= 0, so φ(W) does not go to case D.1. Then,
we note that the walk W i that contains the other occurrence of v11 may be different for φ(W) than
W. However, it is maintained that v11 occurs only once outside of W 1, and by Lemma 10 that the
other occurrence is a digon and the vertices around this digon are maintained. Therefore, φ(W)
does not go to case D.2, nor to the case D.3. Now, the index a of the last occurrence of v11 in W 1

will be the same for φ(W) and W because φ(W) does not change the subwalk W 1[1, a]. Therefore,
it is maintained that W 1[2, a − 1] is a palindrome, and therefore φ(W) does not go to case D.4.
Then, because φ cannot turn a non-empty walk into an empty walk, it is maintained that the length
of W 1 is more than a, so φ(W) cannot go to case D.5. Then, by the start vertex property of φ, the
vertex at index a+ 1 of W 1 is also maintained, and by Lemma 10 the vertices around the digon of
the other occurrence of v11 are maintained, so φ(W) does not go to case D.6. Therefore, φ(W) goes
to the case D.X, with the same value of a, and therefore the lemma holds by induction.

Finally, we show that φ is fixed-point-free.

Lemma 13. For any proper barren labeled walkage W it holds that φ(W) 6=W.

Proof. We prove this by induction on the length ` of the walkage. In the recursive cases A.1, A.2,
C.1.b, C.1.c, C.4.b, C.X, D.5, and D.X this holds directly by induction. In cases B, D.1, D.3, and
D.6, φ changes the suffixes of two walks, and at least one of the suffixes is non-empty. Because W
is proper, the ending vertices of all walks in W are different, so the ending vertex of at least one
of the walks involved in the suffix swap is changed (in fact the ending vertices of both of the walks
change, but it is not necessary for this proof). In cases C.1.a, C.3, C.4.a, and D.4, φ reverses a
non-palindromic subwalk so φ(W) 6=W. In cases C.2 and D.2 φ changes a label from one position
to another, so φ(W) 6=W.

This completes the proof of Lemma 5.
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5 From colored graphs to frameworks

In this section, we extend our results from weighted colored graphs to weighted frameworks, in
particular, we prove Theorem 5 (recall that Theorem 5 implies Theorem 3), and then discuss even
further extensions to frameworks where the matroid is not necessarily represented over a finite field.

5.1 Frameworks

We recall definitions related to frameworks.

Matroids. We refer to the textbook of Oxley [41] for the introduction to Matroid Theory.

Definition 4. A pair M = (V, I), where V is a ground set and I is a family of subsets of V , called
independent sets of M , is a matroid if it satisfies the following conditions, called independence
axioms:

(I1) ∅ ∈ I,

(I2) if X ⊆ Y and Y ∈ I then X ∈ I,

(I3) if X,Y ∈ I and |X| < |Y |, then there is v ∈ Y \X such that X ∪ {v} ∈ I.

An inclusion maximal set of I is called a base. We use V (M) and I(M) to denote the ground
set and the family of independent sets of M , respectively.

Let M = (V, I) be a matroid. We use 2V to denote the set of all subsets of V . A function
r : 2V → Z≥0 such that for every X ⊆ V ,

r(X) = max{|Y | : Y ⊆ X and Y ∈ I}

is called the rank function of M . The rank of M , denoted r(M), is r(V ); equivalently, the rank of
M is the size of any base of M . A matroid M ′ = (V, I ′) is a k-truncation of M = (V, I) if for every
X ⊆ V , X ∈ I ′ if and only if X ∈ I and |X| ≤ k.

We work with several particular types of matroids. A uniform matroid is defined by the ground
set V and its rank r; every subset S of V of size at most r is independent. Partition matroids are
the matroids that can be written as disjoint sums of uniform matroids. Transversal matroids arise
from graphs. For a bipartite graph G = (U ∪B,E) with all edges between U and B, we can define
a matroid M = (V, I) such that a set S ⊆ V is independent if there exists a matching in G such
that every vertex in S is an endpoint of a matching edge.

Matroid representations. Let M = (V, I) be a matroid and let F be a field. An r × n-matrix A
is a representation of M over F if there is a bijective correspondence f between V and the set of
columns of A such that for every X ⊆ V , X ∈ I if and only if the set of columns f(X) consists
of linearly independent vectors of Fr. Equivalently, A is a representation of M if M is isomorphic
to the column matroid of A, that is, the matroid whose ground set is the set of columns of the
matrix and the independence of a set of columns is defined as the linear independence. If M has a
such a representation, then M is representable over F and it is also said M is a linear (or F-linear)
matroid. We can assume that the number of rows r = r(M) for a matrix representing M [37].

Whenever we consider a linear matroid, it is assumed that its representation is given and the
size of M is ‖M‖ = ‖A‖, that is, the bit-length of the representation matrix. Notice that given a
representation of a matroid, deciding whether a set is independent demands a polynomial number
of field operations. In particular, if the considered field is a finite or is the field of rationals, we can
verify independence in time that is a polynomial in ‖M‖.
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Frameworks. A framework is a pair (G,M), where M = (V, I) is a matroid whose ground set is
the set of vertices of G, i.e., V (M) = V (G). A weighted framework is a triple (G,M, we), where
(G,M) is a framework and we : V (G) → Z≥1 is a weight function. An (S, T )-linkage P in a
weighted framework (G,M, we) is (k,w)-ranked if V (P) contains a set X ⊆ V (P) with X ∈ I,
size |X| = k, and weight we(X) = w. When discussing algorithms for (weighted) frameworks, we
explicitly specify how M is represented.

5.2 From colored graphs to frameworks

In this section we prove Theorem 5. We reduce the more general cases of matroids to the case of
Theorem 4.

We start by giving our algorithm for the special case when the rank of M is bounded by k, in
particular when M is represented as a k × n matrix.

Lemma 14. There is a randomized algorithm, that given a weighted framework (G,M, we), where
G is an n-vertex graph and M is represented as a k × n matrix over a finite field of order q, sets
of vertices S, T ⊆ V (G), and integers p, k, w, in time 2p+O(k

2 log q)nO(1)w either finds a (k,w)-
ranked (S, T )-linkage of order p and of minimum total length, or determines that (G,M, we) has
no (k,w)-ranked (S, T )-linkages of order p.

Proof. The matrix has at most qk distinct column vectors so we can guess the k column vectors
forming the independent set X of size k that we are looking for with at most qk

2
guesses. By

inserting |S| new vertices with neighborhoods equal to S, all-zero column vector, and weight 1, we
can assume that the vectors of the starting vertices S will never correspond to the guessed basis.
Then, we k + 1-color the graph, assigning the color k + 1 to the vertices of the set S and other
vertices whose column vectors are not in the guessed basis, and the colors [k] to the other vertices
according to which of the k guessed column vectors they correspond to. We also assign the weight
of all vertices whose column vector is not in the guessed basis to be 1.

Then, (G,M, we) has a (k,w)-ranked (S, T )-linkage of order p if and only if it has a (k+1, w+1)-
colored (S, T )-linkage of order p. In particular, the extra color k + 1 contributes weight one and
one color more, and the selected set X ⊆ V (P) without the extra color must correspond to an
independent set of M . Therefore, we get an algorithm with time complexity qk

2
2p+knO(1)w =

2p+O(k
2 log q)nO(1)w.

By extending Lemma 14 to matrices with a large number of rows by using randomized lossy
truncation, we prove Theorem 5, which we restate here.

Theorem 5. There is a randomized algorithm that given a weighted framework (G,M, we), where
G is an n-vertex graph and M is represented as a matrix over a finite field of order q, sets of
vertices S, T ⊆ V (G), and integers p, k, w, in time 2p+O(k

2 log(q+k))nO(1)w either finds a (k,w)-
ranked (S, T )-linkage of order p and of minimum total length, or determines that (G,M, we) has
no (k,w)-ranked (S, T )-linkages of order p.

Proof. Let A be a r×n matrix representing M . Our goal is to obtain a “lossy” representation of the
k-truncation of M as a k×n matrix over a field of order O(q+k2). In particular, a representation so
that any independent set of M of size k is independent in the representation with probability ≥ 1/2,
and any dependent set of M is dependent in the representation. Then, we obtain the algorithm by
applying the algorithm of Lemma 14. Note that 2p+O(k

2 log(q+k2))nO(1)w = 2p+O(k
2 log(q+k))nO(1)w.

We use two techniques from [37], increasing the order of the field and truncation. First, we
make sure that the order of the field is at least 2k by choosing the least integer i such that qi ≥ 2k,
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and going to the field of order qi, as detailed in Proposition 3.2 of [37]. Now, we can assume that
A is over a field of order at least 2k and at most O(q + k2).

Then, we truncate the matroid by multiplying the matrix A by a random k × r matrix R,
in particular we claim that the k × n matrix B = RA is now the desired representation of the
k-truncation of M . The analysis here is the same as in Proposition 3.7 of [37], but with a smaller
field. In particular, let us consider a subset U of the ground set of M , and let A0 be the r × |U |
submatrix of A corresponding to S. Now, in B, the k × |U | submatrix corresponding to S will be
the matrix B0 = RA0. The rank of B0 is at most the rank of A0, so if U is dependent in M it will
be dependent in the representation by B. Then, assume that U is an independent set of M and
|U | = k. Now, detRA0 can be considered as a degree-k non-zero polynomial whose variables are
the kr random entries of R. Therefore, by Lemma 1, the probability that detRA0 = 0 is at most
k/2k.

With minor adjustments, Theorem 5 can be adapted for frameworks with matroids that are in
general not representable over a finite field of small order. For example, uniform matroids, and more
generally transversal matroids, are representable over a finite field, but the field of representation
must be large enough. We first show how Theorem 1 can be applied in the case of transversal
matroids.

Theorem 6. There is a randomized algorithm that given a weighted framework (G,M, we), where
G is an n-vertex graph and M is a transversal matroid represented by the corresponding bipartite
graph, sets of vertices S, T ⊆ V (G), and integers p, k, w, in time 2p+O(k

2 log k)nO(1)w either finds a
(k,w)-ranked (S, T )-linkage of order p and of minimum total length, or determines that (G,M, we)
has no (k,w)-ranked (S, T )-linkages of order p.

Proof. We will construct a representation of the transversal matroid as a linear matroid over a finite
field of order O(k), so that any independent set of M of size k is independent in the representation
with probability ≥ 1/2, and any dependent set of M is dependent in the representation. This yields
the algorithm by then using Theorem 5.

Our construction is the same as the construction of [37], except by using a smaller field. We
choose the least prime p with p ≥ 2k and work in the field of order p. Let the bipartition of the
vertices of the bipartite graph be (A,B). We construct an |B| × |A| matrix, so that an entry of
the matrix is a random element of the field if it corresponds to an edge, and zero otherwise. Now,
the determinant of a submatrix is guaranteed to be zero if there is no corresponding matching, so
any dependent set of M is dependent in the representation. Otherwise, the determinant of a k× k
submatrix can be seen as a non-zero degree-k polynomial that was evaluated at a random point.
Therefore, as p ≥ 2k, by Lemma 1, the probability that it is non-zero is at least 1/2.

It is also possible to apply Theorem 5 in the situation when M is represented by an integer
matrix over rationals with entries bounded by nO(k).

Theorem 7. There is a randomized algorithm that given a weighted framework (G,M, we), where G
is an n-vertex graph and M is represented as an integer matrix over rationals with entries bounded
by nO(k), sets of vertices S, T ⊆ V (G), and integers p, k, w, in time 2p+O(k

2 log k)nO(1)w either finds
a (k,w)-ranked (S, T )-linkage of order p and of minimum total length, or determines that (G,M, we)
has no (k,w)-ranked (S, T )-linkages of order p.

Proof. Let c be a constant so that the entries of the matrix are bounded by nck. We pick a random
prime p among the first 2 log2(k!nck

2
) primes, go to the finite field of order p by taking every entry

modulo p, and then apply the algorithm of Theorem 1.
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We first analyze the time complexity and then the correctness. By the prime number theorem,
the prime p is bounded by

p = O(log k!nck
2 · log log k!nck

2
) = O(k3 log n log log n).

We can find such random prime in nO(1) time by elementary methods. Then, the time complexity by
using Theorem 1 will be 2O(p+k

2 log(k+k3 logn log logn)nO(1). Denote t(n) = logn log logn and consider
two cases. First, if t(n) ≤ k5, then the time complexity is 2O(p+k

2 log(k8)nO(1) = 2O(p+k
2 log k)nO(1).

Second, if t(n) > k5, then the time complexity is 2O(p+k
2 log k3t(n))nO(1) = 2O(p+t(n)

1/2 log t(n))nO(1) =

2O(p) · 2O(log1/2 n logO(1) logn) = 2O(p)nO(1).
Then, for the correctness we show that any dependent set of M is dependent in the representa-

tion and any independent set of M of size k is independent in the representation with probability
≥ 1/2. Let A be a square submatrix of the original representation and Ap the corresponding sub-
matrix in the presentation modulo p. Now, detAp = detA mod p. Therefore, all dependent sets
stay dependent. Then, assume that A is a k × k submatrix corresponding to an independent set,
i.e., detA 6= 0. Now, the independent set can change into dependent only if detA is divisible by
p. The value detA is bounded by k!nck

2
, so there are at most log2(k!nck

2
) primes dividing it. We

chose p randomly among the first 2 log2(k!nck
2
) primes, so with probability ≥ 1/2 the prime p does

not divide detA.

6 Deterministic algorithm for longest (S, T )-linkage

This section is dedicated to the proof of Theorem 2, which we restate next for convenience.

Theorem 2. There is a deterministic algorithm that, given an n-vertex digraph G, two sets of
vertices S, T ⊆ V (G), an integer p, and an integer k, in time pO(kp)nO(1) either returns a directed
(S, T )-linkage of order p and of total length at least k, or determines that G has no directed (S, T )-
linkage of order p and total length at least k.

We start with showing the main combinatorial lemma behind the theorem. The lemma is
illustrated in Figure 3.

Lemma 15. Let G be a digraph and let C1, . . . , Cq be disjoint sets in V (G). For s, t ∈ V (G) let
P1, . . . , Pq be internally-disjoint (s, t)-paths. For each i ∈ [q], let vi ∈ V (Pi) be such that the suffix
of Pi starting from vi lies inside Ci, except for t. For i ∈ [q], let Qi be a path from vi to t with all
internal vertices in Ci. Then there exist internally-disjoint (s, t)-paths P ′1, . . . , P ′q such that P ′i is
either (i) Pi or (ii) a composition of a prefix of Pi not containing any vertices of Pi beyond vi, and
a suffix of Qj for some j ∈ [q], and there is at least one path of type (ii) among P ′1, . . . , P ′q.

Proof. For each i ∈ [q], denote the subpath of Pi from s to vi by P→i , and from vi to t by P←i . First,
assume there exists i ∈ [q] such that Qi does not share a common internal vertex with any P→j ,
j ∈ [q]. In this case, the solution is immediate: for each j 6= i, set P ′j = Pj , and set P ′i = P→i ◦Qi.
The path P→i does not intersect any other P ′j internally since P1, . . . , Pq are internally-disjoint,
and by the assumption Qi internally intersects neither P→i nor any other P ′j . So for the remaining
part of the proof we assume that for each Qi there exists j ∈ [q] such that Qi and P→j share a
common internal vertex.

We now show the statement by analyzing a certain token sliding game. Intuitively, we put a
token on each of the paths P1, . . . , Pq, originally on the place of the first intersection between Pi
and some Qj (see Figure 3b). Then we slide the tokens further along the paths according to certain
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rules, until the tokens reach a state where no rules can be applied (Figures 3c and 3d). Our goal
is to show that in this case we obtain the desired paths P ′1, . . . , P ′q.

More formally, we define a state S as a tuple (t1, . . . , tq), where ti ∈ V (Pi) for each i ∈ [q]. The
original state S1 = (t11, . . . , t

1
q) is defined as follows: for each i ∈ [q], t1i is the closest to s vertex

along Pi that belongs to Qj for some j ∈ [q]. The game then proceeds iteratively, constructing
the state Sh+1 from Sh for each h starting from h = 1 by applying one of the following rules. For
j ∈ [q], we shall refer to a path Qj as active if thj 6= t.

Clear Let thi = vi for some i ∈ [q]. Then set th+1
i = t, and for each j ∈ [q] such that thj ∈ V (Qi)\{t},

set thj to be the next vertex along the path Pj that belongs to an active Qj′ for some j′ ∈ [q],

here Qi is not considered active. For all remaining j ∈ [q], set th+1
j = thj .

Push Let i and i′, i 6= i′ ∈ [q], be such that both thi and thi′ belong to Qj − {t} for some j ∈ [q];
additionally, let thi be the farthest of two from t along Qj . Set thi to be the next vertex along
the path Pi that belongs to an active Qj′ for some j′ ∈ [q]. For all i′′ ∈ [q], i′′ 6= i, set
th+1
i′′ = thi′′ .

As long as there is a possibility, a Clear rule is applied; Push is only applied if no Clear is
available. If there are several options for applying the same rule, ties are breaking arbitrarily. We
observe that every application of each rule moves at least one of the state vertices further along its
respective path, and these vertices are never moved back. Thus, after a finite number of steps we
reach a state where neither of the rules is applicable. Denote this state by STi , our goal is to show
the following.

Claim 6.1. Let STi = (tT1 , . . . , t
T
q ). There is i ∈ [q] such that tTi 6= t.

Before showing the proof of Claim 6.1 we make the following simple observation.

Claim 6.2. For a state Sh, h ∈ [T ], for each j ∈ [q], thj ∈ V (Pj), and thj is either t or belongs to

an active Qi for some i ∈ [q]. Moreover, all of thj that are not t, are distinct.

Proof. By construction, the first part of the statement holds for the starting state S1. Both rules
either move vertices to an active Qi further along its path, or directly to t. The second part follows
immediately from the fact that the paths Pj are internally-disjoint.

We first explain how Claim 6.1 implies the claim in the lemma. By Claim 6.1, there is at least
one i ∈ [q] such that tTi 6= t; let I ⊂ [q] be the set of all indices with this property. By Claim 6.2,
each vertex in {tTi }i∈I lies on an active Qj for some j ∈ [q], and these vertices are all distinct.
Moreover, since the rule Push is not applicable, no two of these vertices share the same Qj . Let
π : I → [q] be the injection that maps i ∈ I to the index j such that tTi ∈ V (Qj). We construct
the desired family of paths as follows: for i ∈ [q] \ I, let P ′i be Pi, and for j ∈ I, let P ′j be a

concatenation of the subpath of Pi from s to tTj (denoted P̂i), and the subpath of Qπ(i) from tTj to

t (denoted Q̂i). Observe also that for each i ∈ I, tTi is not vi since the rule Clear is not applicable.
Moreover, since I is non-empty, there is at least one path of type (ii) in the constructed family. It
only remains to show that the paths {P ′i}i∈[q] are internally-disjoint.

For i ∈ [q] \ I, denote P̂i = P→i and Q̂i = P←i . For i 6= i′ ∈ [q], s is the only intersection

between P̂i and P̂i′ since P̂i and P̂i′ are proper prefixes of Pi and Pi′ respectively, and these paths
are internally-disjoint by the assumption of the lemma. Observe that for each i ∈ [q], the vertices
of Q̂i except t lie in the set Cj , for some j ∈ [q], and this correspondence between {Q̂i}i∈[q] and
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{Cj}j∈[q] is a bijection defined by π on I and by the identity permutation on [q] \ I. Since the sets

{Cj}j∈[q] are disjoint, for any i 6= i′ ∈ [q], we get that the paths Q̂i and Q̂i′ share the only common
vertex t.

It remains to verify that for each i 6= i′ ∈ [q], P̂i shares no common vertices with Q̂i′ . For
i′ ∈ [q] \ I, Q̂i′ = P←i′ , which is a suffix of Pi′ , and this path cannot intersect P̂i which is a prefix

of Pi; thus in the following we assume i′ ∈ I. Assume the contrary, then there is a vertex u on P̂i
that belongs to Qπ(i′), and is located on Qπ(i′) closer to t than tTi′ , which is the starting vertex of

Q̂i′ . Observe that the rule Clear has never been applied to Qπ(i′), otherwise Qπ(i′) would not be

active in ST . Thus, there is a state Sh where thi = u, since any application of the rules to th
′
i for

any h′ ∈ [T ] either leaves this vertex in place or moves it to the next vertex of Pi belonging to an
active Qj for some j ∈ [q]. Now observe that no application of the rule Push makes the closest
vertex to t on Qπ(i′) − {t} among {thj }j∈[q] farther, by definition of Push. However, we get that

thi is closer to t on Qπ(i′) than tTi , which is the only vertex of {tTj }j∈[q] on Qπ(i′) − {t}. This is a

contradiction to the assumption that P̂i and Q̂i′ intersect.

Proof of Claim 6.1. Assume the contrary, that tTi = t for each i ∈ [q]. Since the paths {P←i }i∈[q]
are non-empty, T > 1. Thus, the state ST−1 is defined and ST is obtained by applying a rule to
ST−1. First, observe that this rule could not have been Push, as it assumes there exist distinct
tT−1i and tT−1i′ on Qj − {t} for some i, i′, j ∈ [q], and only moves tT−1i away while keeping tTi′ on

Qj − {t}. Therefore, Clear has been applied to ST−1, replacing tT−1i = vj by tTi = t, for some
i, j ∈ [q]. Now, we claim that there is another i′ ∈ [q], i′ 6= i such that tT−1i′ ∈ V (Qj) \ {t}. Indeed,
by the starting assumption of the proof, there exists i′ such that P→i′ and Qj share an internal
vertex u. Since Qj is active until the last step, and since the application of any rule moves thi′ to
the next vertex of Pi′ intersecting some active Qj′ , there exists a step h ∈ [T − 1] where thi′ = u.
Before the step T −1, only the rule Push could have been applied to Qj , and an application of this
rule never makes the intersection {thi′′}i′′∈[q] ∩ (Qj \ {vj , t}) empty. Therefore there exists i′′ ∈ [q]

such that tT−1i′′ ∈ Qj \ {vj , t}. This contradicts the assumption that tTi′′ = t since the application of

Clear to Qj moves tT−1i′′ to the next vertex on Pi′′ on an active Qj′ ; this will not take tTi′′ farther
than vi′′ along Pi′′ .

Before we move to the proof of the main theorem, we note that the basic idea of random
separation is to exploit random colorings of the vertex set. We, on the other hand, are first and
foremost looking for a deterministic algorithm; the standard approach would be to enumerate a
sufficiently “expressive” set of colorings, instead of trying a pre-set number of random colorings.
Unfortunately, the existing results on derandomization of random separation algorithms cannot be
applied directly, as normally random separation is considered for constant number of sets; most
often two. Thus in the next lemma we directly construct a suitable family of functions by using
the standard tool of perfect hash families, given by the classical result of Naor, Schulman, and
Srinivasan [39] (we refer to [14, Chapter 5] for the detailed introduction to the concept). For
integers n and k, an (n, k)-perfect hash family F is a family of functions from [n] to [k] such that
for each set S ⊂ [n] of size k there exists f ∈ F that acts on S injectively. We are now ready to
state our derandomization lemma.

Lemma 16. For an n-element set U and q integers k1, . . . , kq,
∑q

i=1 ki = ` there exists a family of
functions F of size qO(`) log n mapping U to {1, . . . , q} with the following property. For any disjoint
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sets A1, . . . , Aq ⊂ U with |Ai| = ki for i ∈ [q], there exists a function f ∈ F such that f(x) = i if
x ∈ Ai. Moreover, F can be computed in time qO(`)n log n.

Proof. First, construct an (n, `)-perfect hash familyH of size e``O(log `) log n in time e``O(log `)n log n
by the result of Naor, Schulman, and Srinivasan [39]. For every h ∈ H and a partition [t] =
I1∪ . . .∪ Iq such that |Ii| = ki for i ∈ [q], add a function fhI1,...,Iq to F . The function acts as follows:

for any x ∈ U , fhI1,...,Iq(x) = i if h(x) ∈ Ii.
We now show that F defined above satisfies the conditions of the lemma. Fix the subsets A1,

. . . , Aq of U , denote A = A1 ∪ . . . ∪Aq, |A| = `. By the definition of an (n, `)-perfect hash family,
there exists h ∈ H such that the images h(x) are distinct for all x ∈ A. For each i ∈ [q], define Ii to
be the set of indices that h assigns to Ai. By definition, fhI1,...,Iq(x) = i if h(x) ∈ Ii, and h(x) ∈ Ii
if and only if x ∈ Ai. It only remains to bound the number of partitions I1, . . . , Iq.

Claim 6.3. The number of partitions of [`] into disjoint subsets I1, . . . , Iq with |Ii| = ki for i ∈ [q]
is O(` · q`).

Proof. The number of partitions is equal to the multinomial coefficient(
`

k1, k2, . . . , kq

)
=

`!

k1!k2! · · · kq!
≤ e
√
`

(
`
e

)t(
k1
e

)k1
·
(
k2
e

)k2
· · ·
(
kq
e

)kq = O

(
` · ``

kk11 · k
k2
2 · · · k

kq
q

)
,

by Stirling’s formula. We now argue that kk11 · k
k2
2 · · · k

kq
q ≥

(
`
q

)`
, which immediately implies that

the desired number of partitions is bounded by O

(
` · ``(

`
q

)`

)
= O(` · q`). For that, we observe

that the function f(x) = x log x is strictly convex on x ≥ 1, since (x log x)′ = (1 + log x), thus

x log x+ y log y ≥ 2 ·
(x+y

2 · log x+y
2

)
, and xx · yy ≥

(x+y
2

)2·x+y
2 for any x, y ≥ 1, where the equality

only holds if x = y. Now, consider the function h(x1, x2, . . . , xq) = xx11 · x
x2
2 · · ·x

xq
q defined on

the polytope K ⊂ Rq bounded by x1 ≥ 1, . . . , xq ≥ 1,
∑q

i=1 xi = `. Since h is continuous on
K and K is compact, h attains its minimum in K. Assume that h achieves its minimum on x1,
. . . , xq ∈ K with xi 6= xj for some i, j ∈ [q]. Then by the above, h(x1, . . . , xi, . . . , xj , . . . , xq) >

h(x1, . . . ,
xi+xj

2 , . . . ,
xi+xj

2 , . . . , xq); the tuple on the right-hand side still belongs to K. Thus, such
a x1, . . . , xq cannot achieve the minimum, and h is minimized at the only point with equal
coordinates, (`/q, . . . , `/q) ∈ K. Since (k1, . . . , kq) ∈ K, the claim is done.

The bound on the size of F now follows directly from Claim 6.3: |F| = |H| · O(` · q`) =
qO(`) · nO(1).

Finally, with Lemma 15 and Lemma 16 at hand, we move to the proof of Theorem 2 itself.

Proof of Theorem 2. First, we observe that finding an (S, T )-linkage of order p and total length at
least k is equivalent to finding an (s, t)-linkage of order p and total length at least (k + 2), where
moreover s 6= t and s is not adjacent to t. Indeed, consider the digraph G′ that is a copy of G
with two new vertices s and t, where N+

G′(s) = S and N−G′(t) = T . Then, any directed (s, t)-linkage
of order p and length k + 2 in G′ induces a directed (S, T )-linkage of order p and length k in G
by removing s and t, and vice versa. Thus for the rest of the proof we assume that the task is to
find an (s, t)-linkage of order p and total size at least k, s 6= t, and s is not adjacent to t. We now
describe two separate subroutines of our algorithm, tailored for different cases of the maximum
length of the path in the target (s, t)-linkage. The short case succeeds if there is an (s, t)-linkage
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where all paths have less than 2k internal vertices, and the main case succeeds otherwise (the
proof of correctness follows after the description of the algorithm).

Short case. For each i ∈ [p], we branch over the number of internal vertices ki of the i-th
path in the target linkage, 1 ≤ ki < 2k. If

∑p
i=1 ki < k − 2, we disregard the choice of {ki}pi=1

and proceed to the next branch. Otherwise, consider a function family F given by an invocation
of Lemma 16 with q = p and the current values of k1, . . . , kp. Branch over the choice of f ∈ F and
denote by C1, C2, . . . , Cp the vertices colored by the respective colors via f . For each i ∈ [p], we
use a deterministic algorithm for finding a directed (s, t)-path with exactly ki internal vertices in
the graph G[Ci ∪ {s, t}] in time 2Oh(ki) · nO(1). The fastest-known such algorithm is the algorithm
of Zehavi [48] running in time O(2.597ki) · nO(1)3 If for some choice of {ki}pi=1 and f the desired
collection of paths is found, the algorithm returns it. If no branch succeeds, the algorithm reports
a no-instance.

We now argue for correctness of the algorithm above. Since the paths are internally-disjoint
by construction and

∑p
i=1 ki ≥ k − 2, if the algorithm returns a collection of paths, they clearly

form a solution. In the other direction, fix a solution induced by directed (s, t)-paths P ∗1 , . . . , P ∗p ,
where for each i the i-th path contains exactly ki < 2k internal vertices, and consider the respective
branch of the algorithm above. If for each i ∈ [p] the set Ci contains the internal vertices of the
i-th path, the algorithm succeeds, as G[Ci ∪ {s, t}] contains an (s, t)-path with exactly ki internal
vertices. Denote by Ai the set of internal vertices of P ∗i , for each i ∈ [p], Lemma 16 guarantees that
there exists f ∈ F that colors each Ai in color i, concluding the proof of correctness in this case.

Algorithm 1: Main case of the algorithm in Theorem 2.

1 for q′ = 1, . . . , p do
2 Invoke Lemma 16 with q = p+ 1, k1 = · · · = kq′ = k, kq′+1 = · · · = kp = 2k, and

kp+1 = k, to obtain the function family F ;
3 foreach f ∈ F do
4 Denote by C0, C1, . . . , Cp the vertices colored by the respective colors via f ;
5 for i = 1, . . . , p do
6 foreach vi ∈ Ci at distance k from t in Gi = G[Ci ∪ {t}] do
7 Find a shortest (vi, t)-path Qi in Gi;
8 Find paths P1, P2, . . . , Pp in G− (V (Qi) \ {vi, t}), where Pi is an (s, vi)-path

and for each j 6= i, Pj is an (s, t)-path, such that no two paths share a
vertex except for s and t, and Pi does not contain t;

9 if such paths P1, P2, . . . , Pp exist then
10 Set Pi = Pi ◦Qi;
11 return the paths P1, P2, . . . , Pp;

12 end

13 end

14 end

15 end

16 end

Main case. The basic procedure is given in Algorithm 1. Observe that the task in Line 8
can be easily reduced to an instance of network flow, thus the whole procedure given in Lines 4

3While the result in [48] is stated for finding an arbitrary path of certain length, it could be easily adjusted to
finding an (s, t)-path.
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to 14 runs in polynomial time. If no iteration returns a collection of paths, the algorithm reports
a no-instance.

It is easy to observe that if Algorithm 1 returns a collection of paths, then these paths constitute
a solution to the given instance. Indeed, by construction, P1, . . . , Pp are internally-disjoint (s, t)-
paths. The length of Qi is exactly k, since the path Pi contains Qi as a subpath, the (s, t)-linkage
given by the paths P1, . . . , Pp is of order p and length at least k. It remains to verify that if there
exists an (s, t)-linkage of order p where there is a path with at least 2k internal vertices, then our
algorithm successfully returns a collection of paths for some choice of f . Denote the p-many (s, t)-
paths that form a solution of minimum total length by P ∗1 , . . . , P ∗p , assuming that the paths are
ordered from longest to shortest. In particular, |V (P ∗1 ) \ {s, t}| ≥ 2k. Denote by q′ the maximum
index such that |V (P ∗q′) \ {s, t}| ≥ 2k, 1 ≤ q′ ≤ p.

We say that the coloring C0, C1, . . . , Cp agrees with the paths P ∗1 , . . . , P ∗p if the following
holds:

(i) for each i ∈ [q′], the last k internal vertices of P ∗i belong to Ci,

(ii) the first k vertices of P ∗1 belong to C0,

(iii) for each j ∈ [p] \ [q′], all internal vertices of P ∗j belong to Cj .

For i ∈ [q′], denote by Ai the last k internal vertices of P ∗i ; by Ap+1 the first k vertices of P ∗1 ; for
j ∈ [p] \ [q′], denote by Aj all internal vertices of P ∗j plus arbitrary vertices not yet part of any Ai
so that |Aj | = 2k. By Lemma 16, there exists f ∈ F that induces a coloring C1, . . . , Cp+1 with
Ai ⊂ Ci for each i ∈ [p + 1], meaning that this coloring agrees with the solution P ∗1 , . . . , P ∗p . In
the remainder of the proof, we argue that for this choice of f Algorithm 1 outputs a solution.

For i ∈ [p], let vi be the vertex of P ∗i at distance exactly k from t along the path. Since the
coloring agrees with the solution, the last k internal vertices of P ∗i belong to Ci, including vi. If vi
is at distance k from t in Gi, denote by Qi the shortest (vi, t)-path in Gi that the algorithm finds on
Line 7; otherwise denote by Qi an arbitrary shortest (vi, t)-path in Gi. We now apply Lemma 15 to
the paths P ∗1 , . . . , P ∗q in the graph G with selected disjoint vertex subsets C1, . . . , Cq, with selected
vertices v1, . . . , vqand paths Q1, . . . , Qq. By the lemma, there exist internally-disjoint (s, t)-paths

P ′1, . . . , P ′q, such that for each i ∈ [q], P ′i is either P ∗i or a concatenation of a prefix P̂i of P ∗1 not

extending beyond vi, and a suffix Q̂i of Qj for some j ∈ [q]; moreover, at least one of the paths is
of the second type.

First, we claim that the paths P ′1, . . . , P ′q, P
∗
q+1, . . . , P ∗p together form an ({s}, {t})-linkage of

length at least k. Indeed, the paths P ∗1 , . . . , P ∗p are internally-disjoint from the beginning; thus
for each q < i < j ≤ p, P ∗i and P ∗j do not share common internal vertices. Moreover, for each
i ∈ [q], j ∈ [p] \ [q], P ′i and P ∗j are immediately internally-disjoint in case P ′i = P ∗i . In case P ′i is a

concatenation of P̂i and Q̂i, the path P̂i again does not share a vertex with P ∗j as a prefix of P ∗i ,

except for s. The suffix Q̂i − {t} on the other hand is fully contained in some Ci′ , i
′ ∈ [q], while

P ∗j − {s, t} is contained in Cj by the property (iii) of the coloring. Finally, for the length observe
that the path P ′1 contains the first k internal vertices of the path P ∗1 since they belong to the set
C0 disjoint from Ci for any i > 0.

Consider now a path P ′i that is not P ∗i but a concatenation, P̂i ◦ Q̂i. Since the paths P ∗1 , . . . ,
P ∗p come from a solution of smallest total length, it cannot be that P ′i is shorter than P ∗i . On the

other hand, the length of Q̂i is at most k, which is the length of the suffix of P ∗i from vi to t, and

P̂i is at most as long as the prefix of P ∗i from s to vi. Thus it has to be that P̂i is exactly the prefix

of P ∗i from s to vi, and Q̂i is Qi; additionally, Qi is then of length exactly k, thus vi is at distance
k from t in Gi, and Qi is the shortest path chosen by the algorithm in Line 7.
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We now claim that the existence of (s, t)-linkage P ′1, . . . , P ′q, Pq+1, . . . , Pp implies that Line 8

is executed successfully for the respective choice of vi. Indeed, denote Pi = P̂i, for each i′ ∈ [q],
i′ 6= i, denote Pi′ = P ′i , and for each j ∈ [p]\ [q], denote Pj = P ∗j . This collection of paths is of form
required by the conditions in Line 8, and thus the algorithm of Line 8 returns a suitable collection
of paths as well (not necessarily the same). This concludes the proof of correctness for Main case.

Finally, observe that the running time of both cases is dominated by the invocation of Lemma 16
with q = p+ 1 and ` ≤ 2k(p+ 1), resulting in the total running time of pO(kp) · nO(1).

7 Conclusion

We conclude with several concrete open questions. The first question is about derandomizing
Theorem 1, even for the case when p = 1. The algorithm in Theorem 1 is based on DeMillo-
Lipton-Schwartz-Zippel lemma for polynomial identity testing, and therefore we do not expect to
derandomize it using similar techniques [27, 38]. However, similarly to Theorem 2, we do not
exclude that other methods could result in (maybe slower) deterministic algorithms. We are not
aware of any deterministic and FPT in k algorithm for Maximum Colored Path.

The second question is about the Disjoint Paths problem. Here for a given set of pairs
of terminal vertices (s1, t1), . . . , (sr, tr), the problem is to decide whether there are vertex-disjoint
(si, ti)-paths, i ∈ [r]. The problem is FPT parameterized by r by the seminal algorithm of Robertson
and Seymour [43]. A natural extension of this problem would be on colorful graphs, where we want
the disjoint paths to collect at least k colors. We do not know whether the colored variant of the
problem is FPT parameterized by k even for 2-Disjoint Paths, that is for r = 2.

The third question concerns extending Theorem 3, where we demand matroid M to be rep-
resented as a matrix over a finite field of order q. The natural question here is whether there
is an FPT algorithm for k-ranked (s, t)-path (and more generally, for k-ranked (S, T )-linkage of
order p) in frameworks (G,M), where M is a linear matroid represented as a matrix over rationals.
We also ask what is the complexity of this problem when M is given by an independence oracle.
As was shown by Jensen and Korte [26], various matroid problems have unconditional complexity
lower bounds asserting that they admit no algorithms where the number of oracle calls is bounded
by a polynomial on the size of the matroid ground set. For example, this concerns the classical
Matroid Parity problem that can be solved in polynomial time on linear matroids as it was
shown by Lovász (see, e.g., [36]). It is natural to ask whether such a lower bound can be shown for
k-ranked (s, t)-path.

The last concrete question is about Longest (s, t)-Path and Longest Cycle. Our algorithm
implies the first 2knO(1) time algorithms for these problems, and the dependency on k in the time
complexity of our algorithm is unlikely to be improved in the general colored case. However, it
remains an interesting open problem whether Longest (s, t)-Path or Longest Cycle could be
solved in time (2 − ε)knO(1) for some ε > 0, especially keeping in mind that k-Path admits an
1.66knO(1) time algorithm [3].
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[12] B. Couëtoux, E. Nakache, and Y. Vaxès, The maximum labeled path problem, Algorith-
mica, 78 (2017), pp. 298–318. 3

[13] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Pa-
turi, S. Saurabh, and M. Wahlström, On problems as hard as CNF-SAT, ACM Trans.
Algorithms, 12 (2016), pp. 41:1–41:24. 2, 14

[14] M. Cygan, F. V. Fomin,  L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015. 1, 13, 42

[15] M. Cygan, S. Kratsch, and J. Nederlof, Fast hamiltonicity checking via bases of perfect
matchings, in Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC), ACM, 2013, pp. 301–310. 1

[16] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O.
Wojtaszczyk, Solving connectivity problems parameterized by treewidth in single exponential
time, in Proceedings of the 52nd Annual Symposium on Foundations of Computer Science
(FOCS), IEEE, 2011, pp. 150–159. 1

[17] R. Diestel, Graph Theory, 4th Edition, vol. 173 of Graduate texts in mathematics, Springer,
2012. 14

47



[18] E. Eiben and I. Kanj, A colored path problem and its applications, ACM Trans. Algorithms,
16 (2020), pp. 47:1–47:48. 4

[19] F. V. Fomin, P. A. Golovach, D. Sagunov, and K. Simonov, Algorithmic extensions
of Dirac’s theorem, CoRR, abs/2011.03619 (2020). 2, 6, 11, 13

[20] , Algorithmic extensions of Dirac’s theorem, in Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA22), SIAM, 2022, pp. 406–416. 2

[21] F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh, Efficient computation of
representative families with applications in parameterized and exact algorithms, J. ACM, 63
(2016), pp. 29:1–29:60. 1

[22] F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi, Long directed
( s, t)-path: FPT algorithm, Inf. Process. Lett., 140 (2018), pp. 8–12. 2

[23] S. Fortune, J. E. Hopcroft, and J. Wyllie, The directed subgraph homeomorphism
problem, Theor. Comput. Sci., 10 (1980), pp. 111–121. 14

[24] M. Grohe, K. Kawarabayashi, D. Marx, and P. Wollan, Finding topological subgraphs
is fixed-parameter tractable, in Proceedings of the 43rd Annual ACM Symposium on Theory
of Computing (STOC), ACM, 2011, pp. 479–488. 2

[25] R. Hassin, J. Monnot, and D. Segev, Approximation algorithms and hardness results for
labeled connectivity problems, J. Comb. Optim., 14 (2007), pp. 437–453. 3

[26] P. M. Jensen and B. Korte, Complexity of matroid property algorithms, SIAM J. Comput.,
11 (1982), pp. 184–190. 46

[27] V. Kabanets and R. Impagliazzo, Derandomizing polynomial identity tests means proving
circuit lower bounds, computational complexity, 13 (2004), pp. 1–46. 46

[28] K. Kawarabayashi, An improved algorithm for finding cycles through elements, in 13th
International Conference on Integer Programming and Combinatorial Optimization (IPCO),
vol. 5035 of Lecture Notes in Computer Science, Springer, 2008, pp. 374–384. 3

[29] I. Koutis, Faster algebraic algorithms for path and packing problems, in Proceedings of the
35th International Colloquium on Automata, Languages and Programming (ICALP), vol. 5125,
Springer, 2008, pp. 575–586. 1, 6

[30] I. Koutis and R. Williams, Algebraic fingerprints for faster algorithms, Commun. ACM,
59 (2016), pp. 98–105. 6

[31] L. Kowalik and J. Lauri, On finding rainbow and colorful paths, Theor. Comput. Sci., 628
(2016), pp. 110–114. 3

[32] N. Kumar, D. Lokshtanov, S. Saurabh, and S. Suri, A constant factor approximation
for navigating through connected obstacles in the plane, in Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, (SODA), SIAM, 2021, pp. 822–839. 3

[33] A. Lingas and M. Persson, A fast parallel algorithm for minimum-cost small integral flows,
Algorithmica, 72 (2015), pp. 607–619. 6, 7

48



[34] L. Lovász, Flats in matroids and geometric graphs, in Combinatorial surveys (Proc. Sixth
British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), 1977, pp. 45–86. 4

[35] L. Lovász, Graphs and geometry, vol. 65 of American Mathematical Society Colloquium
Publications, American Mathematical Society, Providence, RI, 2019. 4

[36] L. Lovász and M. D. Plummer, Matching theory, vol. 121 of North-Holland Mathematics
Studies, North-Holland Publishing Co., Amsterdam; North-Holland Publishing Co., Amster-
dam, 1986. Annals of Discrete Mathematics, 29. 4, 46

[37] D. Marx, A parameterized view on matroid optimization problems, Theor. Comput. Sci., 410
(2009), pp. 4471–4479. 37, 38, 39

[38] J. A. Montoya and M. Müller, Parameterized random complexity, Theory Comput. Syst.,
52 (2013), pp. 221–270. 46

[39] M. Naor, L. J. Schulman, and A. Srinivasan, Splitters and near-optimal derandom-
ization, in Proceedings of the 36th Annual Symposium on Foundations of Computer Science
(FOCS 1995), IEEE, 1995, pp. 182–191. 13, 42, 43

[40] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, An analysis of approximations for
maximizing submodular set functions - I, Math. Program., 14 (1978), pp. 265–294. 4

[41] J. Oxley, Matroid theory, vol. 21 of Oxford Graduate Texts in Mathematics, Oxford Univer-
sity Press, Oxford, second ed., 2011. 37

[42] F. Panolan, S. Saurabh, and M. Zehavi, Parameterized algorithms for list k-cycle, Algo-
rithmica, 81 (2019), pp. 1267–1287. 3, 6

[43] N. Robertson and P. D. Seymour, Graph minors XIII. The disjoint paths problem, J.
Comb. Theory, Ser. B, 63 (1995), pp. 65–110. 46

[44] J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J.
ACM, 27 (1980), pp. 701–717. 8, 14

[45] M. Wahlström, Abusing the Tutte matrix: An algebraic instance compression for the K-set-
cycle problem, in 30th International Symposium on Theoretical Aspects of Computer Science,
STACS 2013, February 27 - March 2, 2013, Kiel, Germany, N. Portier and T. Wilke, eds.,
vol. 20 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 341–352. 3

[46] R. Williams, Finding paths of length k in O∗(2k) time, Inf. Process. Lett., 109 (2009), pp. 315–
318. 1, 6

[47] H.-C. Wirth, Multicriteria approximation of network design and network upgrade problems,
PhD thesis, Universität Würzburg, 2001. 3

[48] M. Zehavi, Mixing color coding-related techniques, in Algorithms - ESA 2015, N. Bansal and
I. Finocchi, eds., Berlin, Heidelberg, 2015, Springer Berlin Heidelberg, pp. 1037–1049. 44

[49] M. Zehavi, A randomized algorithm for long directed cycle, Inf. Process. Lett., 116 (2016),
pp. 419–422. 1, 2

49



[50] R. Zippel, Probabilistic algorithms for sparse polynomials, in Symbolic and Algebraic Compu-
tation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic Computation,
Marseille, France, June 1979, Proceedings, E. W. Ng, ed., vol. 72 of Lecture Notes in Computer
Science, Springer, 1979, pp. 216–226. 8, 14

50


