
International Journal of Game Theory (2019) 48:835–862
https://doi.org/10.1007/s00182-019-00664-6

ORIG INAL PAPER

Paths to stable allocations

Ágnes Cseh1 ·Martin Skutella2

Accepted: 17 February 2019 / Published online: 21 February 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The stable allocation problem is one of the broadest extensions of the well-known
stable marriage problem. In an allocation problem, edges of a bipartite graph have
capacities and vertices have quotas to fill. Here we investigate the case of uncoordi-
nated processes in stable allocation instances. In this setting, a feasible allocation is
given and the aim is to reach a stable allocation by raising the value of the alloca-
tion along blocking edges and reducing it on worse edges if needed. Do such myopic
changes lead to a stable solution? In our present work, we analyze both better and best
response dynamics from an algorithmic point of view.With the help of two determinis-
tic algorithmswe show that random procedures reach a stable solutionwith probability
one for all rational input data in both cases. Surprisingly, while there is a polynomial
path to stability when better response strategies are played (even for irrational input
data), the more intuitive best response steps may require exponential time. We also
study the special case of correlated markets. There, random best response strategies
lead to a stable allocation in expected polynomial time.

Keywords Stable matching · Stable allocation · Paths to stability · Best response
strategy · Better response strategy · Correlated market

A short version of this paper has appeared in the proceedings of SAGT 2014, the 7th International
Symposium on Algorithmic Game Theory. This work was supported by the Cooperation of Excellences
Grant (KEP-6/2018), by the Ministry of Human Resources under its New National Excellence
Programme (ÚNKP-18-4-BME-331), the Hungarian Academy of Sciences under its Momentum
Programme (LP2016-3/2016), its János Bolyai Research Fellowship, OTKA grant K128611, and the
Cluster of Excellence MATH+ (EXC 2046/1, project ID: 390685689).

B Ágnes Cseh
cseh.agnes@krtk.mta.hu

Martin Skutella
skutella@math.tu-berlin.de

1 Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of
Sciences, Tóth Kálmán u. 4., 1097 Budapest, Hungary

2 TU Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00182-019-00664-6&domain=pdf
http://orcid.org/0000-0003-4991-2599

836 Á. Cseh, M. Skutella

1 Introduction

Capacitated matching markets without prices model various real-life problems such
as, e. g., employee placement, task scheduling or admission procedures. Research on
markets with ordinal preferences focuses on maximizing social welfare instead of
profit, which is usually expressed in cardinal terms. Stability is probably the most
widely used optimality criterion in that case.

Finding equilibria inmarkets that lack a central authority of control is anotherwidely
studied, challenging task. Besides modeling uncoordinated markets such as third-
generation (3G)wireless data networks (Goemans et al. 2006) and ride-sharing systems
(Wang et al. 2017), selfish and uncontrolled agents can also represent modifications in
coordinated markets, e. g., the arrival of a new agent or slightly changed preferences
(Blum et al. 1997). In our present work, those two topics are combined: we study
uncoordinated capacitated matching markets.

1.1 Stability in matchingmarkets

The theory of stable matchings has been investigated for decades. Gale and Shapley
(1962) introduced the notion of stability on their well-known stable marriage problem.
An instance of this problem consists of a bipartite graph where the two vertex groups
symbolize men and women, respectively. Each agent has a preference list of their
acquaintances of the opposite gender. A set of marriages (a matching) is stable, if no
pair blocks it. A blocking pair is an unmarried pair so that the man is single or he
prefers the woman to his current wife and vice versa, the woman is single or she prefers
the man to her current husband. The Gale-Shapley algorithm was the first proof for
the existence of stable matchings.

A natural extension of matching problems arises when capacities are introduced.
The stable allocation problem is defined in a bipartite graph with edge capacities and
quotas on vertices. The exact problem formulation and a detailed example are provided
in Sect. 2.

1.2 Better and best response steps in uncoordinatedmarkets

Central planning is needed in order to produce a stable solution with the Gale–Shapley
algorithm. In many real-life situations, however, such a coordination is not available.
Yet stability is a naturally desirable property of uncoordinatedmarkets.A stablematch-
ing seems to be the best reachable solution for all agents, because they cannot find any
partnership that could improve their own position. In uncoordinated markets, agents
play their selfish strategy, trying to reach the best possible solution.

A path to stability is a series of myopic operations, each of which can occur without
any central coordination. The intuitive picture of a myopic operation is the following.
If a man and a woman block a marriage scheme, then they both agree to form a couple
together, even if they divorce their current partners to that end. The recently divorced
agents may induce new blocking pairs. In a path to stability, such changes are made
until a stable matching is reached.

123

Paths to stable allocations 837

Fig. 1 A stable marriage instance and a cycle of best response blocking edges. Starting with the unstable
matching (j2m2, j3m3), and saturating the blocking edges j1m3, j2m1, j3m1, j1m2, j2m2, j3m3 in this
order leads back to the same unstable matching. In each round, the chosen blocking edge is the best blocking
edge of the corresponding vertex ji

The studyof uncoordinatedmatchingprocesses has a longhistory. In the case of one-
to-one matchings, two different concepts have been studied: better and best response
dynamics. One of the agent groups is chosen to be the active side. These vertices
submit proposals to the passive vertices. According to best response dynamics, the
best blocking edge of an active vertex is chosen to perform myopic changes along.
In better response dynamics, any blocking edge can play this role. Observe that the
Gale–Shapley algorithm itself can be seen as series of best response steps, with men
being the active side.

The core questions regarding uncoordinated processes rise naturally. Can a series
of myopic changes result in returning back to the same unstable matching? If yes, is
there a way to reach a stable solution? How do random procedures behave? The first
question about uncoordinated two-sided matching markets was brought up by Knuth
(1997) in 1976. He also gives an example of amatching problemwhere better response
dynamics cycle.More than adecade later,Roth andVandeVate (1990) cameupwith the
next result on the topic. They show that random better response dynamics converge to
a stable matching with probability one. Analogous results for best response dynamics
were published in 2011 by Ackermann et al. (2011). They also show an instance in
which best response dynamics cycle (see Fig. 1), give a deterministic algorithm for
reaching a stable solution in polynomial time and prove that the convergence time is
exponential in both random cases.

Besides these works on the classical stable marriage problem, there is a number of
papers investigating it from the paths-to-stability point of view. One dynamic approach
is to add or remove agents of the stable marriage instance one by one or in groups.
Blum et al. (1997) and Blum and Rothblum (2002) develop a natural procedure which
reflects the greedy behavior of agents and leads to a stablematching in the new instance.
A path to stability also exists in the bipartite matching case with payments where
flexible salaries and productivity are taken into account (Chen et al. 2016). Closely
related optimality concepts, such as socially stable, locally stable, friendshipmatching,

123

838 Á. Cseh, M. Skutella

and considerate matching have also been investigated in uncoordinated one-to-one
matching markets (Hoefer and Wagner 2014).

Various extensions of the stable marriage problem also have been studied in the
dynamic setting. For the stable roommates problem, the non-bipartite version of the
stable marriage problem, it is known that there is a series of myopic operations that
leads to a stable solution, if one exists (Diamantoudi et al. 2004). In a special one-
to-many matching scenario, the hospitals/residents assignment problem with couples,
the existence of such a path is only guaranteed if the preferences are weakly respon-
sive (Klaus and Klijn 2007). Weak responsiveness ensures consistence between the
preferences of each partner and the couple’s preference list on pairs of hospitals. In
many-to-many markets, supposing substitutable preferences on one side and respon-
sive preferences on the other side, a path to stability can be found (Kojima and Ünver
2008). Both substitutable and responsive preferences are defined in instances where
preferences are given over sets of vertices. In the matching with contracts model,
a path to stability exists for a many-to-many matching model with contracts, if the
preferences on one side are substitutable and the preferences on the other side satisfy
substitutability and two further assumptions (Millán and Risma 2018).

Our setting is a many-to-many bipartite instance with strictly ordered preferences
over agents. The preference structure we work with is stricter than some other inves-
tigated structures, in particular, it satisfies the conditions in Kojima and Ünver (2008)
andMillán and Risma (2018). However, while all previous work is valid for matchings
or b-matchings, where an edge is either fully inside or fully outside a matching, our
setting allows edges to be capacitated, and be partially contained in a solution. Up
to our knowledge, although many variants of the stable marriage problem have been
studied, and the range of investigated preference structures is quite broad, no paper
discusses the case of capacitated allocations. Our present work makes an attempt to
fill this gap in the literature.

Structure of the paper In the next section, the essential theoretical basis is provided:
besides stable allocations, better and best response modifications are also defined
formally. In Sect. 3, allocation instances with characteristic preference profiles are
investigated. We show that although random best response processes generally run
in exponential time, in the case of correlated markets, polynomial convergence is
expected. Better and best response dynamics in the general case on rational input are
extensively studied in Sect. 4. We describe two deterministic algorithms that general-
ize the result of Ackermann et al. on one-to-one matching markets to stable allocation
instances and also show algorithmic differences between better and best response
strategies. In the case of random procedures, convergence is shown for both strategies.
Sect. 5 focuses on running time efficiency and contains our main result. There, a better
response algorithm is presented that terminates with a stable solution in O(|V |2|E |)
time in a graph with |V | vertices and |E | edges, even for irrational input data. A coun-
terexample proves that such an acceleration cannot be reached for the best response
dynamics. Our contribution is summarized in Table 1.

Applied to a matching instance, our best-response algorithm (in Sect. 4) performs
the same steps as the two-phase best response algorithmofAckermann et al.Our better-
response variant can also be interpreted as an extended version of the above mentioned

123

Paths to stable allocations 839

Table 1 Our results for a shortest and a random path to a stable allocation in instances with rational input

Shortest path to stability Random path to stability

Best response dynamics Exponential length Converges with probability 1

Better response dynamics Polynomial length Converges with probability 1

method. The only difference is that while our first phase is better response, while theirs
is best response. However, this seems to be a minor difference, as their proof is also
valid for a better response first phase, and our proof still holds if only best blocking
edges are chosen. Moreover, stable allocations might be the most complex model in
which this approach brings results. The most intuitive extension of Ackermann et al.’s
algorithm for stable flows, defined by Fleiner (2014), does not even result in feasible
myopic changes.

On the other hand, our accelerated better-response algorithm (in Sect. 5) generalizes
another knownmethod, the polynomial algorithm that finds a stable allocation.Applied
directly to an instance with empty allocation, our accelerated Phase II performs aug-
mentations like the augmenting path algorithms of Baïou and Balinski (2002), and of
Dean and Munshi (2010). Since our accelerated Phase II is a slightly modified variant
of our first algorithm, our solution concept offers a bridge between two known meth-
ods for solving two different problems, namely the paths to stability problem in stable
marriage instances and the stable allocation problem, providing a solution to both of
them.

2 Preliminaries

In this sectionwe define stable allocations formally, and then proceed to the description
of better and best response myopic changes in stable allocation instances.

2.1 Stable allocations

The stable marriage problem has been extended in several directions. A great deal of
research effort has been spent on many-to-one and many-to-many matchings, some-
times also referred to as b-matchings. Their extension is called the stable allocation
problem, also known as the ordinal transportation problem, since it is a direct analog
of the classical cost-based transportation problem. In this problem, the vertices of a
bipartite graph G = (V , E) have quotas q : V (G) → R≥0, while edges have capaci-
ties c : E(G) → R≥0. Both functions are real-valued, unlike the respective functions
in many-to-many instances, where capacities are unit, while quotas are integer-valued.
Therefore, allocations can model more complex problems, for example where goods
can be divided unequally between agents. In order to avoid confusion caused by terms
associated with the marriage model, we call the vertices of the first side jobs and the
remaining vertices machines. For each machine, its quota is the maximal time spent
working. A job’s quota is the total time that machines must spend on the job in order

123

840 Á. Cseh, M. Skutella

to complete it. In addition, machines have a limit on the time spent on a specific job;
this is modeled by edge capacities. A feasible allocation is a set of contracts where no
machine is overloaded and no job is worked on after it has been completed.

Definition 1 (allocation) Function x : E(G) → R≥0 is called an allocation if for
every edge e ∈ E(G) and every vertex v ∈ V (G):

1. x(e) ≤ c(e);
2. x(v) := ∑

e∈δ(v) x(e) ≤ q(v), where δ(v) is the set of edges incident to v.

For an edge e with x(e) > 0 we say that e is in x . To define stability we need
preference lists as well. All vertices rank their incident edges strictly. Vertex v prefers
uv towv, if uv is ranked better on v’s preference list thanwv: rankv(uv) < rankv(wv).
In this case we say that uv dominates wv at v. A stable allocation instance consists of
four elements: (G, q, c, O), where O is the set of all preference lists.

Definition 2 (blocking edge, stable allocation) An allocation x is blocked by an edge
jm if all of the following properties hold:

1. x(jm) < c(jm);
2. x(j) < q(j) or j prefers jm to its worst edge with positive value in x ;
3. x(m) < q(m) or m prefers jm to its worst edge with positive value in x .

A feasible allocation is stable if no edge blocks it.

In other words, edge jm is blocking if it is unsaturated and neither end vertices of
jm has filled up its quota with at least as good edges as jm. If an unsaturated edge
fulfills the second criterion, then we say that it dominates x at j . Similarly, if the third
criterion is fulfilled for an unsaturated edge, then we talk about an edge dominating x
at m.

Example 1 Figure 2 illustrates a stable allocation instance. We use the same example
throughout the entire paper to demonstrate different notions defined here. For the
sake of simplicity, all edge capacities are unit. The numbers within parenthesis over
and under the vertices represent the quota function. The preferences can be seen on
the edges: the more preferred edges carry a better rank, i.e., a smaller number. For
example, machine m1’s most preferred job is j2, its second choice is j3, while its
least preferred, but still acceptable job is j1. The function x = 1 on the colored edges
and x = 0 on the remaining edges is a feasible allocation, since no quota or capacity
constraint is violated. The unique blocking edge is easy to find: j3m1 blocks x , because
it is unsaturated and both end vertices have free quota.

Baïou and Balinski (2002) prove that stable allocations always exist. They also give
two algorithms for finding them, an extended version of the Gale–Shapley algorithm
and an inductive algorithm. The worst case running time of the first algorithm is
exponential, but the latter one runs in strongly polynomial time. Dean and Munshi
(2010) speed up the polynomial algorithm using sophisticated data structures: their
version runs in O(|E | log |V |) time for any real-valued instance.

123

Paths to stable allocations 841

Fig. 2 A stable allocation instance with unit capacities and a feasible, but unstable allocation, marked by
colored edges

2.2 Better and best response steps for allocations

First, we provide some basic definitions and notationswewill use throughout the entire
paper. A feasible, but possibly unstable allocation x is given at the beginning, thus the
instance can be written as I = (G, q, c, O, x). In our instance I, jobs form the active
side J , while machines M are passive players. For the sake of simplicity we denote
the residual capacity c(jm)− x(jm) of edge jm by x̄(jm) and similarly, the residual
quota q(v) − x(v) of vertex v by x̄(v). The definition of better and best response
strategies is not as straightforward as it is in the matching instance with unit quotas
and capacities. Here, the possible outcomes for a player are ordered lexicographically.
We say that machine m prefers allocation x1 to allocation x2 if x1(j ′m) > x2(j ′m)

the for the best ranked edge j ′m among edges with x1(jm) �= x2(jm).
Although lexicographic order seems to be a natural choice, it is somewhat against

the convention when discussing stable allocations. In most cases, when comparing the
position of an agent in two stable allocations, the so called min-min criterion is used
Baïou and Balinski (2002). According to this rule, the agent prefers the allocation in
which its worst edge in x is ranked better. In order tomake use of such an ordering rela-
tion, each vertex has to have the same allocation value in all stable solutions. Therefore
here, when studying and comparing arbitrary feasible allocations, this concept proves
to be counter-intuitive.

An active player j having some blocking edges is chosen to perform a best response
step on the current allocation x . Amongst j’s blocking edges, let jm be the one ranked
best on j’s preference list. The aimof player j is to reach its best possible lexicographic
position via increasing x(jm). To this end, j is ready to allocate all its remaining quota
x̄(j) to jm, moreover, it may reassign allocation from all edges worse than jm to jm.
Thus, j aims to increase x(jm) by x̄(j)+x(edges dominated by jm at j). To preserve
feasibility, x(jm) is not increased by more than x̄(jm). The passive player m agrees
to increase x(jm) as long as it does not lose allocation on better edges. This constraint
gives the third upper bound, x̄(m) + x(edges dominated by jm at m). To summarize
this, in a best response step x(jm) is increased by the following amount.

A := min{x̄(j) + x(edges dominated by jm at j), x̄(jm),

x̄(m) + x(edges dominated by jm at m)}

123

842 Á. Cseh, M. Skutella

Once this A and the new x(jm) is determined, j andm fill their remaining quota, then
refuse allocation on their worst allocated edges, until x becomes feasible.

Better response steps are much less complicated to describe. The chosen active
vertex j increases the allocation on an arbitrary blocking edge jm. Both j and m
are allowed to refuse allocation on worse edges than jm. This rule guarantees that
j’s lexicographic situation improves and that the change is myopic for both vertices.
By definition, best response steps are always better response steps at the same time.
The execution of a single better response step consists of modifications on at most
|δ(j)| + |δ(m)| − 1 ≤ |V | − 1 edges.

Example 2 In our example above, j3 andm1 mutually agree to allocate value 1 to j3m1.
If best response strategies are played, m1 refuses 0.2 amount of allocation from j1m1,
while j3 reduces x(j3m2) to 0.9. Through this step, they induce blocking elsewhere
in G: now j4m2 blocks the new x , because m2 lost some allocation. Thus, another
myopic change would now be to increase x(j4m2), and so on. A better response step
of the same vertex j3 would be for example to increase x(j3m1) to 1, while refusing
j3m2 entirely. To keep feasibility, m1 has to refuse 0.2 amount of allocation on j1m1.

3 Correlatedmarkets

Before tackling the general paths to stability problem, we first restrict ourselves to
instances with characteristic preference profiles. In this section, we study the case of
stable allocations on an uncoordinated market with correlated preferences. Later we
will prove that the convergence time of random best and better response strategies is
exponential in general instances. By contrast, here we show that on correlatedmarkets,
random best response strategies terminate in expected polynomial time, even in the
presence of irrational data. At the end of this section we also elaborate on the behavior
of better response dynamics.

Definition 3 (correlated market) An allocation instance is correlated, if there is a
function f : E(G) → N such that rankv(uv) < rankv(wv) if f (uv) < f (wv) for
every u, v, w ∈ V (G) and no two edges have the same f value.

Correlated markets are also called instances with globally ranked pairs or acyclic
markets. The latter property means that there is no cycle of incident edges such that
every edge is preferred to the previous one by their common vertex. Abraham et al.
(2008) show that acyclic markets are correlated and vice versa. The instance depicted
in Fig. 2 is not correlated: edges (j3m3, j4m3, j4m2, j3m2) form a preference cycle.
Ackermann et al. (2011) were the first to prove that random better and best response
dynamics reach a stable matching on correlated markets in expected polynomial time.
Using a similar argumentation, we extend their result to allocation instances.

Theorem 1 In correlated allocation instances with real-valued input data, random
best response dynamics reach a stable solution in expected time O(|V |2|E |).
Proof Before studying paths to stability we show that in correlated instances, the set
of stable solutions has cardinality one. There is an absolute minimum of f (jm). The

123

Paths to stable allocations 843

single edge jm with this minimal f value must be in all stable allocations with value
min {c(jm), q(j), q(m)}, otherwise it is blocking. Fixing x on jm and decreasing the
quotas of j and m respectively leads to another correlated allocation instance. In this
instance, the stable solutions are exactly the stable solutions of the original instance
without jm. This leads to an inductive algorithm that proves that there is a unique
stable allocation on correlated markets. We now turn to showing that random best
response dynamics reach this unique solution in expected polynomial time.

Whenever a job j with an unsaturated edge jm of an absolute minimal f (jm) is
chosen to submit an offer, its best response strategy is to increase x on jm. Due to this
single best response operation performed by j , x(jm) = min {c(jm), q(j), q(m)}
is reached. The probability that a vertex j ∈ J is chosen to take the next step is at
least 1

|J | . As mentioned in Sect. 2.2, one best response step requires at most O(|V |)
modifications. Thus, in order to reach x(jm) = min {c(jm), q(j), q(m)} on the best
edge in G, |J | · |V | = O(|V |2) modifications are needed in expectation. After this,
the edge jm with minimal f value will have reached its final position in the unique
stable allocation. From this point on, x(jm) will never be reduced, because neither j ,
norm have a better incident edge. Thus, x(jm) can be fixed, and a newminimum of f
can be chosen for the same procedure as before. The number of iterations is bounded
from above by the number of edges in the graph. The unique stable allocation is thus
reached in O(|V |2|E |) time in expectation. �	

In order to establish a similar result for better response dynamics in real-valued
correlated instances, an exact interpretation of random events would be needed. In the
matching case, best and better response dynamics differ exclusively in the rank of the
chosen blocking edge: when playing best response strategy, the best blocking edge is
chosen by an active vertex j . In contrast to this, here, better response steps differ also
in the amount of modification and in the edges chosen to refuse allocation along. The
first factor indicates a continuous state space.

However, if we assume that any better response step results in reassigning the
highest possible allocation value to an arbitrary blocking edge, an analogous proof
can be derived.

Theorem 2 On correlated allocation instances with real-valued input data, random
better response dynamics reach a stable solution in expected time O(|V |3|E |).
Proof The only difference to the setting with best response steps is that after j is
chosen, the expected time of reaching x(jm) = min {c(jm), q(j), q(m)} is larger. In
this case, j chooses jm with probability at least 1

|δ(j)| . This implies that reaching the

stable allocation value on the best edge takes |δ(j)| · (|δ(j)|+ |δ(m)|− 1) = O(|V |2)
steps in expectation. In total, for all vertices j ∈ J and all edges the algorithm takes
O(|V |3|E |) steps in expectation. �	

4 Best and better responses with rational data

In this section, the case of allocations in an uncoordinated market with rational
data is studied. As already mentioned, better and best response dynamics can cycle

123

844 Á. Cseh, M. Skutella

in such instances. We describe two deterministic methods, a better-response and a
best-response algorithm that yield stable allocations in finite time. Our best response
algorithm is by definition a better response algorithm as well, yet we present a differ-
ent, better but not best response strategy in Sect. 4.1, because it can be accelerated to
reach a stable solution in polynomial time, while the best response strategy cannot, as
shown in Sect. 4.2. The main idea of our algorithms is to distinguish between blocking
edges based on the type of blocking at the job: dominance or free quota.

A blocking edge can be of two types. Recall point 2 of Definition 2: if jm blocks x ,
then x(j) < q(j) or j prefers jm to its worst edge with positive value in x . We talk
about blocking of type I in the latter case, if jm blocks x because j prefers jm to its
worst edge having positive value in x . Blocking of type II means that j has no allocated
edge that is worse than jm, but j has not filled up its quota yet, x(j) < q(j). Note
that the reason of the blocking property at m is not involved when defining the two
types.

Example 3 Recall our example in Fig. 2. The unique blocking edge j3m1 is of type I,
because j3, its active vertex, prefers edge j3m1 to its worst allocated edge j3m2.

4.1 Better response dynamics

First, we provide a deterministic algorithm that constructs a finite path to stability
from any feasible allocation. In the first phase of our algorithm, only blocking edges
of type I are chosen to perform myopic changes along. The active vertices (jobs)
choose one of their blocking edges of type I, not necessarily the best one. In all cases,
withdrawal is executed along worst allocated edges. The amount of new allocation
added to the blocking edge is determined in such a way that at least one edge or a
vertex becomes saturated or empty. Thus, in the first phase, active vertices replace
their worst edges with better ones, even if they have free quota. When no blocking
edge of type I remains, the second phase starts. The allocation value is increased on
blocking edges of type II such that they cease to be blocking.

The runtime of our algorithm is exponential. Later, in Sect. 5 we will show that
this algorithm can be accelerated such that a stable solution is reached in strongly
polynomial time.

Theorem 3 For every allocation instance with rational data and a given rational
feasible allocation x, there is a finite sequence of better responses that leads to a
stable allocation.

The main idea of the proof is the following. We need to keep track of the change
in the size of the allocation and in the lexicographic position of the active vertices
simultaneously. In one step of the first phase along edge jm, either both j and m
refuse edges, thus, the size of the allocation |x | = ∑

j∈J x(j) decreases, or only j
does so, leaving |x | unchanged and improving j’s situation lexicographically. Since
both procedures aremonotone and the second one does not impair the first one, the first
phase terminates. Termination of the second phase is implied by the fact that passive
vertices improve their lexicographic situation in each step. The technical details of
this proof sketch are presented as Claims 4.1 and 4.1.

123

Paths to stable allocations 845

In the first phase, the jobs propose along arbitrary blocking edges of type I. We will
show that this process ends with an allocation where no job has a blocking edge of
type I. In the second phase, the jobs propose along their best blocking edges of type II.
Later we will see that during this phase until termination, no job gets a blocking edge
of type I. A pseudocode is provided after the description of both phases.

First phase In one step, an arbitrary blocking edge jm of type I is chosen. Both end
vertices, j and m may refuse some allocation along worse edges when increasing x
on jm. Job j has a refusal pointer r(j) that denotes the worst edge allocated to j ,
if any exists. Similarly, r(m) stands for the worst currently allocated edge of m. A
step of Phase I consists of two or three operations, each along jm, r(j) and possibly
along r(m). Two operations take place, ifm has not filled up its quota yet. In this case,
x(r(j)) is decreased by A := min {x(r(j)), x̄(jm), x̄(m)}. At the same time, x(jm)

is increased by the same amount. Depending on which expression is the minimal one,
edge r(j) becomes empty or jm becomes saturated or m fills up its quota. Note that
r(m) plays no role because m does not refuse any allocation. In the remaining case, if
m has a full quota, three operations take place, since m has to refuse some allocation.
The amount of allocation we deal with is now A := min {x(r(j)), x̄(jm), x(r(m))}.
The allocation on the blocking edge jm will be increased by A, on the other two
edges it will be decreased by A, until one of them becomes empty or saturated. We
emphasize that whenever a job j with free quota adds a new edge better than its worst
allocated edge to x , it withdraws some allocation from the worst edge.

Example 4 We return to our example again. It has already been mentioned that
the unique blocking edge j3m1 is of type I. The refusal pointer r(j3) is j3m2.
Since m1 has not filled up its quota yet, its refusal pointer j1m1 is irrelevant at
the moment. Due to the same reason, two operations take place. We augment with
the following amount of allocation: min {x(j3m2), x̄(j3m1), x̄(m1)} = 0.8. After
this operation, x(j3m1) = 0.8, x(j3m2) = 0.2, and j3m1 is still a Phase I block-
ing edge. Since x(m1) = q(m1) holds now, three operations are executed with
A = min {x(j3m2), x̄(j3m1), x(j1m1)} = 0.2. Now j3m1 is saturated, hence it ceases
to be blocking. During the first operation, j4m2 became blocking of type I, becausem2
lost allocation. In the next step, one unit of allocation is reallocated to j4m2 from j4m3.
But j3m3 then becomes blocking of type I, and so on.

Claim Phase I terminates in finite time.

Proof We use the following potential function in order to show that the process does
not cycle:

Θ(x) :=
∑

j∈J

∑

jm∈E(G)

x(jm) rank j (jm)

Recall that rank j (jm) stands for the rank of jm on j’s preference list. The smaller
rank j (jm) is, the better m is for j . The expression above is bounded for any feasible
allocation x :

123

846 Á. Cseh, M. Skutella

Fig. 3 Edges affected by one
myopic operation along the
blocking edge jm of type II

0 ≤ Θ(x) ≤ |J | · max
jm∈E(G)

c(jm) · max
j∈J

|δ(j)|.

We will show that Θ(x) decreases in each step of the procedure. The process
terminates if the amount of decrement is always greater than a fixed positive constant.
If all data are rational, this is guaranteed.

Considering the potential function, we need to keep track of those two jobs that
proposed or got refused, since the allocation of all other jobs remains the same, thus
their contributions to the summations of Θ(x) do not change.

As mentioned above, a step consists of either two or three edges changing their
value in x . In the first case, when only two edges change their value in x , there is only
one job j that modifies its contribution. ThusΘ(x) decreases, because some allocation
will move from a less preferred edge to jm. In the second case, where three edges are
involved, there is a job j that improves its lexicographic position, and another job j ′
that loses allocation. The effect of the first change at j is just as above,Θ(x) decreases.
Losing allocation for j ′ also decreases Θ(x), since x(j ′) decreases. �	

Second phase When the first phase terminates, all blocking edges are of type II. In
the second phase, we are allowed to increase x(j). When improving the allocation
along a blocking edge jm of type II,m may refuse some allocation, but j cannot, since
the reason of blocking is that j has not filled up its quota yet. Thus, we do not need the
pointer r(j) any more. One step consists of changes along one edge if x(m) < q(m),
or along two edges otherwise. If m has not filled up its quota yet, then we simply
assign as much allocation to jm as possible without x(j), x(m) and x(jm) exceeding
q(j), q(m) and c(jm), respectively. Ifm has to refuse something from a job j ′ in order
to accept better offers from j , we improve m’s position until j ′m becomes empty or
jm becomes saturated or j’s quota is filled up.

Claim No step in Phase II can induce a blocking edge of type I.

Proof One step in Phase II leaves all vertices but j,m and the possibly refused j ′
unchanged. Thus, if there is a blocking edge of type I after the modification, it must be
incident to one of those vertices. The three cases, illustrated in Fig. 3, are the following.

123

Paths to stable allocations 847

– Edge j ′′m blocks x . The position of m became lexicographically better, thus, no
new blocking edge incident tom was introduced. The existing blocking edges j ′′m
of type II cannot become of type I, because j ′′’s position remained unchanged.

– Edge jm′ (or jm) blocks x . The only change at j is that x(jm) increases, thus, j
also improves its lexicographic position. Therefore, no new blocking edge incident
to j appeared. Blocking edges of type II can change their type of blocking only if
j increased its allocation on a worse edge. But this cannot happen since we chose
the best blocking edge jm in Phase II.

– Edge j ′m′ (or j ′m) blocks x . The only change in j ′’s neighborhood is that x(j ′m)

decreases. After this step, consider an unsaturated edge j ′m′ preferred by j ′ to
its worst allocated edge. Since no machine worsens its lexicographic position in
Phase II, if j ′m′ dominates the new allocation x , it already dominated the previous
allocation. Therefore, j ′m′ must have been a blocking edge of type II prior to the
modification and thus remains of type II.

We have argued that once Phase II has started, Phase I can never return. �	
The last step ahead of us is to show that Phase II may not cycle. But this follows

from the fact that in each step exactly one machine strictly improves its lexicographic
situation, while all other machines maintain the same allocation as before. In case of
a rational input, this improvement is bounded from below, thus, the second phase of
the algorithm terminates.

With this we finished the proof of Theorem 3.

Algorithm 1 Two-phase better response algorithm
while ∃ j ∈ J with a blocking edge of type I do

Improvement_I(j)
end while
while ∃ j ∈ J with a blocking edge of type II do

Improvement_II(j)
end while

procedure Improvement_I(j)
jm ← blocking edge of type I of j
if x(m) < q(m) then

A := min {x(r(j)), x̄(jm), x̄(m)}
x(r(j)) := x(r(j)) − A
x(jm) := x(jm) + A

else
A := min {x(r(j)), x̄(jm), x(r(m))}
x(r(j)) := x(r(j)) − A
x(jm) := x(jm) + A
x(r(m)) := x(r(m)) − A

end if
end procedure

procedure Improvement_II(j)
jm ← best blocking edge of type II of j
if x(m) < q(m) then

A := min {x̄(jm), x̄(j), x̄(m)}
x(jm) := x(jm) + A

else
A := min {x(r(m)), x̄(jm), x̄(j)}
x(jm) := x(jm) + A
x(r(m)) := x(r(m)) − A

end if
end procedure

123

848 Á. Cseh, M. Skutella

Fig. 4 Worst-case instances for our better response algorithm. On the graph on the left hand-side, Phase I
cycles along 〈 j1m2, j2m2, j2m1, j1m1〉 N times. In the second instance, Phase II first assigns N amount
of allocation to edges j1m2 and j2m1 and then cycles N times along 〈 j1m1, j2m1, j2m2, j1m2〉

Example 5 The duration of both phases strongly depends on the capacities and quotas.
The examples in Fig. 4 show two bad instances. The capacity is N on all edges, where
N is an arbitrarily large integer. Quotas are marked above and below the vertices. In
the first instance, the initial allocation for Phase I is N on j1m1 and on j2m2 and zero
on the remaining two edges. The first phase performs N augmenting steps along the
same cycle. Phase II terminates after N iterations in the second instance, starting with
the empty allocation.

This algorithm also proves an important result regarding rational random better
response processes. If the input is rational (there is a smallest positive number that can
be represented as a linear combination of all data), it is clearly worthwhile to restrict
the set of feasible better response modifications to the ones that reassign a multiple of
this unit. Under this assumption, the set of reachable allocations is finite and they can
be seen as states of a discrete time Markov chain. Our algorithm proves that from any
state there is a finite path to an absorbing state with a positive probability.

Theorem 4 In the rational case, random better response strategies terminate with a
stable allocation with probability one.

Polynomial time convergence cannot be shown for random better response strate-
gies, since they need exponential time to converge in expectation even in matching
instances (Ackermann et al. 2011).

4.2 Best response dynamics

In this section, we derive analogous results for best response modifications to the ones
established for better response strategies. The main difference from the algorithmic
point of view is that instances can be found inwhich no series of best response strategies
terminates with a stable solution in polynomial time. A simple example shown on the
right in Fig. 4 resembles the instance given by Baïou and Balinski (2002) to prove that
the Gale–Shapley algorithm requires exponential time to terminate in stable allocation
instances.

123

Paths to stable allocations 849

Example 6 Let G be a complete bipartite graph on four vertices, with quota q(j1) =
N + 1, (j2) = q(m1) = q(m2) = N , and initial allocation x(j1m1) = x(j2m2) = N
for an arbitrary large number N . If the preference profile is chosen to be cyclic, such
that rank j1(m1) = rank j2(m2) = rankm1(j2) = rankm2(j1) = 2, the unique series of
best response steps consists of 2N operations. This example shows that a polynomial
path to stability does not exist, not even for rational input data. A path of exponential
length to stability can still be found. Our next theorem shows that this is the case in
general.

Theorem 5 For every allocation instance with rational data and a given rational
feasible allocation x, there is a finite sequence of best responses that leads to a stable
allocation.

Proof Similar to our method for better response strategies, we prove that there is a
two-phase algorithm that terminates with a stable solution.

All blocking edges we take into account are best blocking edges of their job j .
Depending on their rank compared to j’s worst allocated edge r(j), they are either of
type I or type II. A job j’s best blocking edge jm is

– of type I(a), if rank j (jm) < rank j (r(j)) and
x̄(j) < min {x̄(jm), x̄(m) + x(edges dominated by jm atm)};

– of type I(b), if rank j (jm) < rank j (r(j)) and
x̄(j) ≥ min {x̄(jm), x̄(m) + x(edges dominated by jm atm)};

– of type II, if rank j (jm) ≥ rank j (r(j)).

The intuitive interpretation of the grouping above is given by the steps that we need to
execute when jm is chosen to perform a best response operation. If jm is of type I(b),
then jm can be saturated without any refusal made by j , since j has sufficient free
quota. On the other hand, if j agrees to reduce x(r(j)) in order to accommodate more
allocation on jm, then jm is a blocking edge of type I(a). The remaining case occurs
when jm is not better than r(j), that is, j accepts min {x̄(m), x̄(j), x̄(jm)} allocation
from m. In this case, no rejection is called by j .

In Phase I, only best blocking edges of type I(a) and I(b) are selected. Then, when
only type II blocking edges remain, Phase II starts. In order to prove finite termination,
we introduce two potential functions, Θ(x) and Ψ (x). When proving termination of
the first phase, both of them are used, while the second phase is discussed by analyzing
the behavior of Ψ (x) only.

The first function Θ(x) comprises two components. The first component is the
sum consisting of the rank of refusal pointers at jobs. The second term is a sum
consisting of the allocation value of refusal pointers at jobs. When we say that Θ(x)
decreases, it is meant in the lexicographic sense. The second function, Ψ (x) is a set of
|M | vectors, each of them corresponding to a machine. Each vector contains |δ(m)|
entries, defined as x(jm) for all jm ∈ δ(m), ordered as they appear in m’s preference
list. We denote these vectors by lex(m), because lex(m) increases lexicographically if
and only if the lexicographic position of m improves. We added a minus sign in order
to keep the terms decreasing. When we say that Ψ (x) decreases we mean that at least
one vector in it decreases lexicographically and no vector increases lexicographically.

123

850 Á. Cseh, M. Skutella

This also implies that we could add up the i-th elements of these vectors and follow the
lexicographic increment of the resulting vector. We choose not to do so for intuitive
reasons, but the reader can also think of Ψ (x) as a single vector of maxm∈M deg(m)

scalar components.

Θ(x) := (Θ1(x),Θ2(x)) :=
⎛

⎝
∑

j∈J

rank j (r(j)),
∑

j∈J

x(r(j))

⎞

⎠

Ψ (x) := − (
lex(m1), lex(m2), ..., lex(m|M|)

)

Claim The best response step of job j along edge jm of type I(a) decreases Θ(x).

Proof Due to the type-defining characteristics listed above, there is a rejection on r(j).
If x(r(j)) becomes 0 through this step, then Θ1(x) decreases, while Θ2(x) might
increase. Otherwise, if x(r(j)) > 0 holds even after executing the step, hence Θ1(x)
remains unchanged, butΘ2(x) decreases. Any other decrement in x , such as allocation
refused by m on r(j ′) for some j ′ �= j can only further decrease both components
of Θ(x). �	
Claim The best response step of job j along edge jm of type I(b) decreases Ψ (x) and
does not increase Θ(x).

Proof Since j does not reject any allocation, x(r(j)) remains unchanged. If any other
r(j ′) for some j ′ �= j is affected,Θ(x) is decreased. The onlymachinewhose position
changes ism itself: it clearly improves its lexicographic position, thus one component
of Ψ (x) decreases, while the remaining vectors remain unchanged. �	

For any rational input data, the changes inΘ(x) orΨ (x) in each round are bounded
from below. Since both functions have an absolute minimum, Phase I terminates in
finite time.

Claim The best response step of job j along edge jm of type II decreases Ψ (x).
Moreover, no edge becomes blocking of type I(a) or I(b).

Proof During the second phase, no machine loses allocation, thus, their lexicographic
position cannot worsen. In addition, for the machine of the current blocking edge jm,
lex(m) improves. This also implies that no edge j ′m′ dominates x at m′ that has not
already dominated it before the myopic change. Moreover, edges that lost allocation
during that step are the worst-choice edges of j , hence they cannot be blocking of
type I(a) or I(b). If there is an edge j ′m′ that became blocking of type I(a) or I(b), then
it is better than the worst edge in x at j ′. These edges were already unsaturated before
the last step and also already dominated x at both end vertices. This contradicts the
fact that best blocking edges are chosen in each step. �	

The same arguments as above, inTheorem4, imply the result on randomprocedures.

Theorem 6 In the rational case, random best response strategies terminate with a
stable allocation with probability one.

123

Paths to stable allocations 851

5 Irrational data: the accelerated algorithm

Both of our presented algorithms require exponentiallymany steps to terminate.More-
over, in our previous section we relied several times on the fact that in each step, x
is changed with values greater than a specific positive lower bound. When irrational
data are present, e.g., q, c or x are real-valued functions, this can no longer be guar-
anteed. Hence, our arguments for termination are no longer valid. As a matter of fact,
some algorithmic ideas do not work with irrational input data, such as in the case of
the well-known Ford-Fulkerson algorithm for finding a maximum flow, which fails
when irrational capacities are present: the calculated flow might not even converge
towards the maximum flow (Ford and Fulkerson 1962; Zwick 1995). In this section,
we describe a fast version of our two-phase better response algorithm that terminates
in polynomial time with a stable allocation for irrational input data as well. We also
give a detailed proof of correctness for the first phase and show a construction with
which all Phase II steps can be interpreted as Phase I operations in a slightly modified
instance.

As usual in graph theory, an alternating path with respect to an allocation x is a
sequence of incident edges that are saturated in x and of those that are unsaturated in
x in an alternating manner.

5.1 Accelerated first phase

The algorithm and the proof of its correctness can be outlined in the following way
(see also Algorithm 2 below). A helper graph is built in order to keep track of edges
that may gain or lose some allocation. A potential function is also defined, which
stores information about the structure of the helper graph and the degree of instability
of the current allocation. In the helper graph we are looking for paths and cycles to
augment along. The amount of allocation we augment with is specified in such a way
that the potential function decreases and the helper graph changes. When using paths
and cycles instead of proposal-refusal triplets, more than one myopic operation can be
executed at a time. Moreover, we also keep track of consequences of locally myopic
improvements. For example, we spare running time by avoiding reducing allocation
on edges that later become blocking anyway.

First, we elaborate on the structure of the helper graph, define alternating paths
and cycles and specify the amount of augmentation. The algorithm, the proof of its
correctness, a pseudocode, and an example execution are all described in detail in this
section.

Helper graph

Recall that our real-valued input I consists of a stable allocation instance (G, q, c, O)

and a feasible allocation x . First, we define a helper graph H(x) on the same vertices
asG. This graph is dependent on the current allocation x andwill be changedwhenever
we modify x . The edge set of H(x) is partitioned into three disjoint subsets. The first
subset P is the set of Phase I blocking edges. Each job j that has at least one edge

123

852 Á. Cseh, M. Skutella

with positive x value, also has a worst allocated edge r(j). When a myopic change is
made, jobs tend to reduce x along exactly these edges. These refusal pointers formR,
the second subset of E(H(x)). We also keep track of edges that are currently not of
blocking type I, but later on they may enter setP . This last subsetP ′ consists of edges
that may become blocking of type I after some myopic changes. An edge jm /∈ P has
to fulfill three criteria in order to belong to P ′:
1. c(jm) > x(jm);
2. m has at least one refusal edge, i.e., δ(m) ∩ R �= ∅;
3. rank j (jm) < rank j (r(j)).

Such an edge immediately becomes blocking of type I if m loses allocation along one
of its refusal edges. Edges in P ′ are called possibly blocking edges, the set P ∪ P ′
forms the set of proposal edges. Note that a job j may have several edges inP andP ′,
but at most one inR. Moreover, if j has a proposal edge in H(x), it also has an edge
in R. Regarding the machines, if m has a P ′-edge, it also has an R-edge. Note that
(P ∪ P ′) ∩ R = ∅, because both P and P ′ per definition comprises edges that are
ranked better by j than r(j). The following lemma provides an additional structural
property of H(x).

Lemma 1 If jm ∈ P and j ′m ∈ P ′, then rankm(jm) < rankm(j ′m). That is, blocking
edges are preferred to possibly blocking edges by their common machine m.

Proof Since jm ∈ P is a blocking edge of type I, jm dominates x atm. If the statement
is false, then rankm(jm) > rankm(j ′m) for some unsaturated edge j ′m that is better
than the worst allocated edge of j ′. Then also j ′m dominates x at m. This, together
with the first and last properties of possibly blocking edges implies that j ′m ∈ P . �	
Example 7 Once again we return to our example shown in Fig. 2. The only blocking
edge j3m1 alone forms P . The set R contains all four edges with positive allocation
value: j1m1, j2m1, j3m2 and j4m3. Edges j3m3 and j4m2 are possibly blocking. Thus,
in this case, G = H(x).

Alternating paths and cycles

Our algorithm performs augmentations along alternating paths and cycles, so that
the allocation value of refusal edges decreases, while the value of proposal edges
increases. This is done in such a way thatR, P , or P ′ (and thus, H(x)) changes. The
main idea behind these operations is the same we used in the proof of Theorem 3:
reassigning allocation to blocking edges from worse edges, such that the procedure
is monotone. The difference between this method and the one presented in Sect. 4.1
is that, while our first algorithm tackles a single blocking edge in each step, here we
deal with several blocking edges (forming the alternating path or cycle) at once.

When constructing the alternating proposal-refusal path or cycle ρ to augment
along, the following rules have to be obeyed:

1. The first edge j1m1 is a P-edge and it is the best proposal edge of m1.
2. P and P ′-edges are added to ρ together with the refusal edge they are incident

with on the active side.

123

Paths to stable allocations 853

3. Machines choose their best P or P ′-edge.
4. Walk ρ ends at m if

(i) m has no proposal edge or
(ii) ρ returns to its starting vertex, that is, m = m1 or
(iii) m’s best proposal edge runs to a job already visited by ρ or
(iv) m’s best proposal edge runs to a job whose refusal pointer points to a machine

already on ρ.

As long as there is a blocking edge of type I, the first edge j1m1 of such a path
or cycle can always be found. Lemma 1 guarantees that if j1m1 is the best proposal
edge of m1, then j1m1 ∈ P . After taking r(j1), all that remains is to continue on best
proposal edges of machines and refusal edges of jobs they end at. Since H(x) is a
finite graph, ρ either terminates at a machine without any proposal edge or it visits a
vertex already listed. These are exactly the cases listed in point 4. According to these
rules, proposal-refusal edge pairs are added to the current path until I) there is no pair
to add (4(i)) or II) the path reaches a vertex already visited (4(ii)-(iv)). In cases 4(i),
4(iii), and 4(iv), ρ is a path. In the remaining case 4(ii), ρ is a cycle.

Example 8 In our example in Fig. 2, ρ consists of the following edges: m1 j3, j3m2,

m2 j4, j4m3. Even if j3m3 ∈ P ′, ρ halts at m3, because j3 is already on ρ.

Before elaborating on the amount of augmentation, we emphasize that ρ is just
a subset of the set of edges whose x value changes during an augmentation step.
The goal is to reassign allocation from refusal edges to blocking edges, until a stable
solution is derived. Naturally, on an alternating path or cycle, refusal edges lose the
same amount of allocation that proposal edges gain. However, if augmentations are
performed along a path, the first machinem1 on ρ gains allocation in total (and the last
machine on ρ loses allocation). In order to preserve feasibility,m1 might have to refuse
allocation on edges not belonging to ρ. The exact amount of these refusals is discussed
later, together with the amount of augmentation along ρ. Since no other vertex gains
allocation in an augmentation step, feasibility cannot be violated elsewhere. Thus,
these are the only edges not on ρ that need to be modified.

By contrast, if the augmentation is performed along a cycleC , refusals only happen
on r(j) ∈ C ∩ R edges. Even if the machine m1 that started C has a full quota, it
does not need to refuse any allocation, since x(m1) remains unchanged during the
augmentation.

Amount of augmentation

Once ρ is fixed, the amount of allocation A to augment with has to be determined.
It must be chosen so that (1) a feasible allocation is derived and (2) at least one
refusal edge becomes empty or at least one proposal edge leaves P ∪P ′. These points
guarantee that H(x) changes. To fulfill these two requirements, the minimum of the
following terms is determined.

1. Allocation value on refusal edges along ρ: x(r(j)), where r(j) ∈ ρ ∩ R.
2. Residual capacity on proposal edges along ρ: x̄(p), where p ∈ ρ ∩ (P ∪ P ′).

123

854 Á. Cseh, M. Skutella

3. If ρ is a path, then m1 may refuse a sufficient amount of allocation such that
j1m1 does not become saturated, but it stops dominating x at m1. In this case,
the residual quota of m1 must be filled up and, in addition, the sum of allocation
values on edges worse than j1m1 must be refused. With this, j1m1 becomes the
worst allocated edge of a full machine. Until reaching this point, j1m1 may gain
x̄(m1) + x(edges dominated by j1m1 at m1) amount of allocation in total.

To summarize, we augment with

A := min{x(r(j)), x̄(p)|r(j) ∈ ρ ∩ R, p ∈ ρ ∩ (P ∪ P ′)}

if ρ is a cycle, because the last case with the starting vertex m1 does not occur.
Otherwise, the amount of augmentation is

A := min{x(r(j)), x̄(p), x̄(m1) + x(edges dominated by j1m1 at m1)|
r(j) ∈ ρ ∩ R, p ∈ ρ ∩ (P ∪ P ′)}.

We now provide a pseudocode for our algorithm. To simplify notation, we refer to
the vertices occurring on path ρ as V (ρ).

Algorithm 2 Accelerated Phase I
while |P| > 0 do

FindWalk(H(x))
if ρ is a cycle then

AugmentCycle(ρ)
else

AugmentPath(ρ)
end if
update R, P , P ′

end while

procedure FindWalk(H(x))
i := 1, ρ := ∅, find any m1 ∈ M with a P-edge
while mi has a best proposal edge jimi and r(ji) ∩ (V (ρ) \ m1) = ∅ do

ρ := ρ ∪ { jimi } ∪ {r(ji)}
if mi �= m1 then

jimi+1 := r(ji), i := i + 1
end if

end while
end procedure

procedure AugmentCycle(ρ)
A := min{x(r(j)), x̄(p)|r(j) ∈ ρ ∩ R, p ∈ ρ ∩ (P ∪ P ′)}
for p ∈ ρ ∩ (P ∪ P ′) do

x(p) := x(p) + A
end for

123

Paths to stable allocations 855

Fig. 5 After the first round of the accelerated Phase I algorithm

for r(j) ∈ ρ ∩ R do
x(r(j)) := x(r(j)) − A

end for
end procedure

procedure AugmentPath(ρ)
A := min{x(r(j)), x̄(p), x̄(m1) + x(edges dominated by j1m1 at m1)|r(j) ∈

ρ ∩ R, p ∈ ρ ∩ (P ∪ P ′)}
if A − x̄(m1) > 0 then

m1 refuses A − x̄(m1) allocation from its worst edges
end if
for p ∈ ρ ∩ (P ∪ P ′) do

x(p) := x(p) + A
end for
for r(j) ∈ ρ ∩ R do

x(r(j)) := x(r(j)) − A
end for

end procedure

Example 9 Recall the example instance in Fig. 2 again. Checking both proposal and
both refusal edges on ρ = 〈m1 j3, j3m2,m2 j4, j4m3〉, the residual capacity of m1,
and the allocation on m1’s worst edges, one can compute that A = 1. Thus, allocation
x shown in Fig. 5 is obtained after the first augmentation. Edge j3m1 leaves P , and
j3m3 enters it. The set of refusal edges consists of all edges with positive allocation
value. P ′ is empty. In the second round, ρ is easy to find: it is 〈m3 j3, j3m1〉. After
reassigning allocation of value 1 to j3m3, Phase I ends. The allocation derived is not
yet stable: j1m1 and j3m2 block it, but they are both of type II.

Note that executing several local myopic steps greedily, like in our first algorithm
(Algorithm 1), would lead to a different output. A simple example for that can be seen
on a slightly modified version of the first instance in Fig. 4, depicted in Fig. 6.

Example 10 Let us assume that q(m2) = N + 2 and m2 has an edge j3m2 ranked
third, where c(j3m2) = 1. Let us start with the allocation x(j1m1) = x(j2m2) =
N , x(j3m2) = 1. Edge j1m2 ∈ P , so we can start ρ at m1, augment along

123

856 Á. Cseh, M. Skutella

Fig. 6 An example for a cycle augmentation in the accelerated better response algorithm. In the accelerated
version, j3m2 remains intact, while in the step-by-step version (Algorithm 1) it gets deleted and then added
again

〈m2 j1, j1m1,m1 j2, j2m2〉 with allocation value 1 and arrive at a stable solution. On
the other hand, our step-by-step better response algorithm presented in Sect. 4.1 would
first reject j3m2 fully, augment along the same cycle and, in Phase II, add j3m2 again.

It is easy to see that the emptying and then again adding edges like j3m2 can cause
more superfluous rounds if the instance is more complex. Generally speaking, here
we avoid m1 refusing edges, knowing that it loses allocation later. As a result of that,
m1 would go under its quota, and would possibly create new blocking edges. Both
strategies are better response, the difference is that our second algorithm keeps track
of changes made as a consequence of a myopic operation.

We will later show that the first phase of our algorithm can be easily transformed
into a second phase. We now turn to proving the correctness and running time of the
first phase in detail.

Theorem 7 For every real-valued allocation instance and given feasible allocation,
there is a sequence of better responses leading to an allocation blocked by edges of
type II exclusively. The sequence can be executed in O(|V |2|E |) time.
Proof Potential function. We show with the help of the following bicriteria potential
function that the procedure is monotone and finite:

Θ(x) := (Θ1(x),Θ2(x)) :=
(∑

j∈J

rank j (r(j)), −
∑

m∈M
rankm(best proposal edge at m)

)
.

If x(j) = 0, then rank j (r(j)) can be interpreted as a large number, for example
as |M | + 1. In lack of proposal edges, the expression in the second component can
also be interpreted as a large constant, for example as |J | + 1. In order to keep both
terms decreasing, a minus sign is added to the second expression.When functionΘ(x)
decreases, it does so in the lexicographic sense.

Since Θ(x) is a bounded, integer-valued function, any procedure that modifies it
strictly monotonically, is finite. We first show that each augmentation step strictly
decreases Θ(x). Later, we elaborate on the running time of our algorithm.

123

Paths to stable allocations 857

Finiteness.The amount of allocationwe augmentwith depends only on the extreme
points of the min function determining the amount of augmentation A. Recall the three
points we listed when defining A.

1. x(r(j))
The worst allocated edge of j becomes empty. Thus, Θ1(x) decreases unless j
gains an edge in x that is worse than r(j) was.

2. x̄(p)
If one of the proposal edges reaches its capacity, it stops being a proposal edge.
Since p was the best proposal edge of its machine, Θ2(x) decreases, unless p’s
machine gains a proposal edge better than p. Moreover, Θ1(x) does not increase
unless j gains an edge in x that is worse than r(j) was.

3. In case of a path ρ: x̄(m1) + x(edges dominated by j1m1 at m1)

The first blocking edge on ρ, m1’s best proposal edge ceases to dominate x at m1,
hence Θ2(x) decreases, unless m1 gains a proposal edge better than p. Moreover,
Θ1(x) does not increase unless j gains an edge in x that is worse than r(j) was.

To summarize this, Θ strictly decreases after a round unless a job gets a worse
refusal edge than before or a machine gets a better proposal edge than before without
any refusal edge improving. The upcoming two claims eliminate the possibility of
these two cases.

Claim In our algorithm, no job j gains an edge in x that is worse than r(j).

Proof The only edges x is increased on are proposal edges in augmenting paths and
cycles. These are by definition better than r(j) in j’s list. �	
Claim If a machine m gains a proposal edge that is better than m’s best proposal edge
in a round of our algorithm, then the same round shifted the refusal edge of some job
to m.

Proof Assume that j ′m became a better proposal edge of m than the previous best
proposal edge jm was. Since the preference lists are fixed, this is only possible, if j ′m
was not in P ∪ P ′ before. Proposal edges by definition have to fulfill three criteria,
out of which at least one was not fulfille before the augmentation.

1. j ′m became unsaturated

– One of the two possibilities for an edge to lose allocation occurs when j ′m ∈
ρ ∩R. Since j ′m is already the worst allocated edge of j ′, it cannot become a
blocking edge of type I or possibly blocking, unless an even worse edge gains
allocation, which is not possible, since it is only best proposal edges that do
so.

– Even if j ′m /∈ ρ, it can lose allocation, but only if x(j ′m)was reduced bym =
m1, the starting vertex of an alternating path. This j ′m is worse than jm, which
contradicts our assumption.

2. r(j ′) became worse than j ′m
Claim 5.1 shows that r(j ′) never becomes worse during Phase I.

123

858 Á. Cseh, M. Skutella

3. m gained an allocated edgeworse than j ′m or x(m)droppedbelowq(m) (necessary
for a blocking edge of type I) or
m gained a refusal pointer (necessary for a possibly blocking edge)

– In the first case,m increased x along an edge worse than j ′m. This worse edge
wasm’s best proposal edge, hence any better unsaturated edge from a job with
worse edges in x was already in P ∪ P ′ too. Thus, j ′m cannot enter P ∪ P ′
solely because m gained an allocated edge worse than j ′m. The previous two
points eliminate the possibility of the two cases that could be combined with
it in order to make j ′m enter P ∪ P ′.

– If m lost some allocation, then it was the last vertex on ρ and thus, it had a
refusal pointer. According to our definitions, any unsaturated edge of m from
a job with worse edges in x was already in P ∪P ′. The same applies as above,
j ′m cannot enter P ∪ P ′ just because m lost allocation.

– A refusal pointer moves to m, proving our statement.

�	

Running time

The helper graph H(x) has at most as many edges and vertices as G. In each iteration,
Θ(x) improves. Consider first the case when only Θ2 changes. The best proposal
edge of each machine m can move along all |δ(m)| edges of m. Since the procedure is
monotone, |E | such steps can be executed in total, for the machines altogether. Then,
Θ1 has to improve. Just like Θ2, Θ1’s monotone behavior also allows |E | steps in
total. Yet it is not possible that both components need all |E | rounds. When a refusal
pointer r(j) = jm switches to a better edge jm′, most of the elements in the sum for
Θ2 remain unchanged.

Upon shifting a refusal pointer, Θ2 can clearly be increased, since only lexico-
graphic monotonicity of Θ(x) can be shown. However, Claim 5.1 proves that shifting
a single refusal pointer r(j) = jm to jm′ might cause m′’s sole component in Θ2 to
increase by |J | < |V | at most and leaves all other components in the sum unaffected.

This argumentation shows that the number of iterations can be bounded by
O(|V ||E |) from above. Next, we determine how much time is needed to execute
a single augmentation. Procedure FindWalk starts with choosing any machine that
has a blocking edge of type I. This can be done in O(|V |) time. Adding the best
proposal edge and the refusal pointer takes constant time, if they are stored for each
vertex. Since at most one vertex is visited twice by the walk, after O(|V |) steps ρ is
chosen. Then, either of the two augmenting procedures is called. It modifies x on at
mostO(|V |) edges. At last,R,P, andP ′ are updated, which involves at mostO(|V |)
edges.

In total, the algorithm performs O(|V ||E |) rounds, each of which needs O(|V |)
time to be computed. Thus the accelerated Phase I algorithm runs inO(|V |2|E |) time.

Notice that our algorithm does not only takeO(|V |2|E |) steps as computation time,
but each of the O(|V ||E |) iterations also can be seen as a sequence of O(|V |) better
response steps. If ρ is a path, then the first agent acting myopically is j1 and the other
jobs follow it in the order of their occurrence in ρ. Each agent simply sets the value of

123

Paths to stable allocations 859

its edges in ρ to the value calculated by our algorithm. If ρ is a cycle, then in this first
step, j1 increases x(j1m1) by an arbitrary, small amount and decreases x(r(j)) so that
it reaches its final value calculated by our algorithm. Notice that this is a lexicographic
improvement. Now the last proposal edge added by the algorithm is blocking of type I
and a better response step sets the value of both of its edges in ρ to the final value. We
proceed backwards in the cycle in this manner, until we reach j1 again, who increases
x(j1m1) to its final value and we are done. We admittedly do not argue that such a
sequence of myopic changes is likely to occur without any central authority of control.
Yet it proves that there is a polynomial-length better-response path to stability, nicely
complementing our result that such a path for best responses does not exist in all
markets.

Our method resembles the well-known notion of rotations (Gusfield and Irving
1989). They can be used when deriving a stable solution from another, by finding an
alternating cycle of matching and non-matching edges and augmenting along them.
In our algorithm, when we are searching for augmenting cycles or walks, we use an
approach similar to rotations: jobs candidate their edges better than their worst edge in
x , while machines choose the best one out of them. However, two differences can be
spotted right away. While rotations are always assigned to a stable solution different
from the job-optimal, ourmethodworks on an unstable input.Moreover, besides cycles
we also augment along paths.

5.2 Accelerated second phase

The second phase can be accelerated in a very similar manner to the first phase. Instead
of describing this new algorithm directly and proving its correctness using the same
methods as above, we choose a simpler approach. The main idea in this section is that
the accelerated second phase of our algorithm is actually the accelerated first phase of
the same algorithm in a slightly modified instance. Thus, its correctness and running
time have already been proved.

At the beginning of our argumentation we make modifications in the instance I
given at termination of the accelerated Phase I algorithm. We show that the set of
blocking edges of type I in the modified instance I ′ and the set of blocking edges of
type II in I coincide. Then we let our accelerated Phase I algorithm run in I ′. At the
end, we argue that its output is stable in I.

Modified instance

After termination of the first phase, an allocation x0 is given so that all blocking edges
are of type II. This input of the second phase is modified in the following way. A
dummy job jd and edges between each machine and jd are added to G. The capacity
of these edges equals the maximum quota amongst all machines, and q(jd) is their
sum. While jd ’s preference list can be chosen arbitrarily, the new edges are ranked
worst on the preference lists of the machines. The new graph is called G ′. Not only
the graph, but also the allocation x0 is slightly modified: machines under their quota
assign all their free quota to jd . In this new allocation x ′

0 allmachines are saturated. The

123

860 Á. Cseh, M. Skutella

Fig. 7 The top figure depicts allocation x0 in I, denoted by colored edges, while allocation x ′
0 in I′ is

denoted by colored edges in the bottom figure

new instance I ′ consists of G ′, q ′, c′, O ′ and x ′
0. An example instance modification is

illustrated in Fig. 7.
As mentioned above, our goal is to perform Phase I operations in I ′. In order to be

able to do so, we swap the two sides: jobs play a passive role, while machines become
the active players. Since each active vertex has a filled up quota, all blocking edges
are of type I in I ′.

Note that I ′ was constructed in such a way that—regardless of the type of
blocking—each edge blocking x also blocks x ′ and vice versa. This is due to the
fact that the only difference between the two instances is that machines’ free quota
appears as allocation on their worst edge in I ′. The definition of a blocking edge does
not distinguish between those two notions. In particular, given a specific allocation x0
with no blocking edge of type I, the set of (Phase II) blocking edges in I and the set
of (Phase I) blocking edges in I ′ trivially coincide.

Let us denote the output of the accelerated Phase I algorithm in I ′ by x ′, and its
restriction to E(G) by x .

Claim Allocation x is stable in I.
Proof Suppose edge jm blocks x . InI ′, jm is unsaturated and dominates x ′ at both end
vertices, hence jm blocks x ′ as well. Since x ′ is the output of the accelerated Phase I
algorithm in I ′, jm is of type II. Our goal is to show by induction that x ′(m) = q(m)

for all machines. Thus, a contradiction is derived, because in I ′ no Phase II blocking
edge can occur.

Initially, x ′(m) = q(m) for all machines. The key property of x ′
0 is that all unsat-

urated edges that dominate x ′
0 at their (saturated) machine are not better than their

123

Paths to stable allocations 861

job’s worst edge in x ′
0. Otherwise, they would be blocking edges of type I for x0.

Augmenting along a blocking edge jm in x ′
0 can therefore never result in a refusal by

the passive vertex j . Thus, after the first round, x ′(m) = q(m) still holds. Alternating
walks are chosen in such a manner that jobs increase x ′ only on their best proposal
edges. This guarantees that even after the first round, if jm dominates the current
allocation x ′

1 at m, it is not better than j’s worst edge in x ′
1. From here on, induction

applies. �	
The running time of this phase cannot exceed the running time of the accelerated

Phase I algorithm, since the size of I ′ does not exceed the size of I significantly.
With this we finished the proof of the following result.

Theorem 8 For every allocation instance and given feasible allocation x, there is a
sequence of better responses that leads to a stable allocation in O(|V |2|E |) time.

Conclusion and open questions

We solved the problem of uncoordinated processes in stable allocation instances algo-
rithmically. Our first method is a deterministic better response algorithm that finds
a stable solution through executing myopic steps. In case of rational input data, the
existence of such an algorithm guarantees that random better response strategies ter-
minate with a stable solution with probability one. Analogous results are shown for
best response dynamics. We also prove that random best response strategies terminate
in expected polynomial time on correlated markets, even in the presence of irrational
data. An accelerated version of our first, better-response algorithm is provided as well.
For any real-valued instance, it terminates after O(|V |2|E |) steps with a stable allo-
cation. We also show a counterexample for a possible acceleration for the case of best
response dynamics.

Future research may involve more complex stability problems from the paths-to-
stability point of view. For example, any of the problem variants listed in Sect. 1.2 can
be combined with our general setting of allocations.

Acknowledgements Wewould like to thank Péter Biró, Tamás Fleiner, and our reviewers for their valuable
comments.

References

Abraham DJ, Levavi A, Manlove DF, O’Malley G (2008) The stable roommates problem with globally-
ranked pairs. Int Math 5:493–515

AckermannH,Goldberg PW,MirrokniVS, RöglinH,VöckingB (2011)Uncoordinated two-sidedmatching
markets. SIAM J Comput 40:92–106

Baïou M, Balinski M (2002) Erratum: the stable allocation (or ordinal transportation) problem. Math Oper
Res 27:662–680

Blum Y, Roth AE, Rothblum UG (1997) Vacancy chains and equilibration in senior-level labor markets. J
Econ Theory 76:362–411

Blum Y, Rothblum UG (2002) “Timing is everything” and marital bliss. J Econ Theory 103:429–443
Chen B, Fujishige S, Yang Z (2016) Random decentralized market processes for stable job matchings with

competitive salaries. J Econ Theory 165:25–36

123

862 Á. Cseh, M. Skutella

Dean BC, Munshi S (2010) Faster algorithms for stable allocation problems. Algorithmica 58:59–81
Diamantoudi E, Miyagawa E, Xue L (2004) Random paths to stability in the roommate problem. Games

Econ Behav 48:18–28
Fleiner T (2014) On stable matchings and flows. Algorithms 7:1–14
Ford LR, Fulkerson DR (1962) Flows in Networks. Princeton University Press, Princeton
Gale D, Shapley LS (1962) College admissions and the stability of marriage. Am Math Mon 69:9–15
GoemansMX, Li EL, Mirrokni VS, ThottanM (2006)Market sharing games applied to content distribution

in ad hoc networks. IEEE J Sel Areas Commun 24:1020–1033
Gusfield D, Irving RW (1989) The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cam-

bridge
Hoefer M, Wagner L (2014) Matching dynamics with constraints. In: Liu T-Y, Qi Q, Ye Y (eds) 10th

International Conference onWeb and Internet Economics (WINE). Springer International Publishing,
pp 161–174

KlausB,Klijn F (2007) Paths to stability formatchingmarketswith couples.GamesEconBehav 58:154–171
Knuth D (1997) Mariages stables. Les Presses de L’Université de Montréal, 1976. English translation in

Stable Marriage and its Relation to Other Combinatorial Problems, volume 10 of CRM Proceedings
and Lecture Notes. American Mathematical Society

Kojima F, ÜnverM (2008) Random paths to pairwise stability in many-to-manymatching problems: a study
on market equilibration. Int J Game Theory 36(3–4):473–488

Millán B, Risma EP (2018) Random path to stability in a decentralized market with contracts. Soc Choice
Welf 51(1):79–103

Roth AE, Vande Vate J H (1990) Random paths to stability in two-sided matching. Econometrica 58:1475–
1480

WangX, Agatz N, Erera A (2017) Stablematching for dynamic ride-sharing systems. Transp Sci 52(4):850–
867

Zwick U (1995) The smallest networks on which the Ford–Fulkerson maximum flow procedure may fail
to terminate. Theor Comput Sci 148(1):165–170

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Paths to stable allocations
	Abstract
	1 Introduction
	1.1 Stability in matching markets
	1.2 Better and best response steps in uncoordinated markets

	2 Preliminaries
	2.1 Stable allocations
	2.2 Better and best response steps for allocations

	3 Correlated markets
	4 Best and better responses with rational data
	4.1 Better response dynamics
	4.2 Best response dynamics

	5 Irrational data: the accelerated algorithm
	5.1 Accelerated first phase
	Helper graph
	Alternating paths and cycles
	Amount of augmentation
	Running time

	5.2 Accelerated second phase
	Modified instance

	Conclusion and open questions
	Acknowledgements
	References

