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Abstract Given a bipartite graph G = (A ∪ B, E) with strict preference lists and
given an edge e∗ ∈ E , we ask if there exists a popular matching in G that contains e∗.
We call this the popular edge problem.Amatching M is popular if there is nomatching
M ′ such that the vertices that prefer M ′ to M outnumber those that prefer M to M ′.
It is known that every stable matching is popular; however G may have no stable
matchingwith the edge e∗. In this paperwe identify another natural subclass of popular
matchings called “dominant matchings” and show that if there is a popular matching
that contains the edge e∗, then there is either a stable matching that contains e∗ or a
dominant matching that contains e∗. This allows us to design a linear time algorithm
for identifying the set of popular edges. When preference lists are complete, we show
an O(n3) algorithm to find a popular matching containing a given set of edges or
report that none exists, where n = |A| + |B|.
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1 Introduction

Our input is an instance G = (A ∪ B, E) of the stable marriage problem with strict
and possibly incomplete preference lists, along with an edge e∗ ∈ E . A matching M
is stable if there is no blocking pair with respect to M , in other words, there is no
pair (a, b) such that a is either unmatched or prefers b to M(a) (a’s partner in M)
and similarly, b is either unmatched or prefers a to M(b). The problem of deciding
if there exists a stable matching that contains the edge e∗ is an old and well-studied
problem – this was first considered by Knuth [13] in 1976 who showed that a modified
version of the Gale–Shapley algorithm solves this problem. Here we consider a related
problem that we call the “popular edge” problem: is there a popular matching in G
that contains the edge e∗?

The notion of popularity, introduced by Gärdenfors [8] in 1975, is a relaxation of
stability. A popular matching allows blocking edges with respect to it, however there
is global acceptance for this matching. We make this formal now.

A vertex u ∈ A ∪ B prefers matching M to matching M ′ if either u is matched
in M and unmatched in M ′ or u is matched in both and it prefers M(u) to M ′(u).
For matchings M and M ′ in G, let φ(M, M ′) be the number of vertices that prefer M
to M ′. If φ(M ′, M) > φ(M, M ′) then M ′ is more popular than M .

Definition 1 A matching M is popular if there is no matching that is more popular
than M ; in other words, φ(M, M ′) ≥ φ(M ′, M) for all matchings M ′ in G.

Thus in an election between any pair of matchings, where each vertex casts a vote
for the matching that it prefers, a popular matching never loses. Popular matchings
always exist in G since every stable matching is popular [8]. It is also known that
every stable matching is a minimum size popular matching [10]. As stability is stricter
than popularity, it may be the case that there is no stable matching that contains the
given edge e∗ while there is a popular matching that contains e∗. Figure 1 has such an
example.

Stability is a very strong condition and there are several problems, for instance, in
allocating projects to students or in assigning applicants to training posts, where the
total absence of blocking edges may not be necessary. However the popularity of a
matching is required, otherwise the vertices could vote to replace the current matching
with a more popular one. The popular edge problem has applications in such a setting
where the central authority seeks to pair a ∈ A and b ∈ B with each other and desires
a matching M such that M is popular and (a, b) ∈ M .

A first attempt to solve this problem may be to ask for a stable matching S in the
subgraph obtained by deleting the endpoints of e∗ from G and add e∗ to S. However

Fig. 1 The top-choice of both a1 and of a2 is b1; the second choice of a1 is b2. The preference lists of the
bi ’s are symmetric. There is no edge between a2 and b2. The matching S = {(a1, b1)} is the only stable
matching here, while there is another popular matching M = {(a1, b2), (a2, b1)}. Thus every edge is a
popular edge here, while there is only one stable edge, namely (a1, b1)
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Popular edges and dominant matchings 211

Fig. 2 Here we have e∗ = (a2, b2). The top choice for a1 and a2 is b1, while b3 is a1’s second choice
and b2 is a2’s second choice; b1’s top choice is a2, second choice is a1, and third choice is a3. The vertices
b2, b3, and a3 have a2, a1, and b1 as their only neighbors

Fig. 3 Thevertexb1 is the top choice for allai ’s andb2 is the second choice fora1 anda2 whileb3 is the third
choice for a1. The preference lists of the bi ’s are symmetric. There are 2 maximum size popular matchings
here: M1 = {(a1, b1), (a2, b2)} and M2 = {(a1, b2), (a2, b1)}. The matching M1 is not dominant since
it is not more popular than the larger matching M3 = {(a1, b3), (a2, b2), (a3, b1)}. The matching M2 is
dominant since M2 is more popular than M3

S∪{e∗} need not be popular. Figure 2 has a simple examplewhere e∗ = (a2, b2) and the
subgraph induced by a1, a3, b1, b3 has a unique stable matching {(a1, b1)}. However
{(a1, b1), (a2, b2)} is not popular in G as {(a1, b3), (a2, b1)} is more popular. Note
that there is a popular matching M∗ = {(a1, b3), (a2, b2), (a3, b1)} that contains e∗.

It would indeed be surprising if it was the rule that for every edge e∗, there is always
a popular matching that can be decomposed as e∗+ a stable matching on the remaining
vertices, as popularity is a far more flexible notion than stability; for instance, the set
of vertices matched in every stable matching in G is the same [7] while there can be a
large variation (up to a factor of 2) in the sizes of popular matchings in G. We need a
larger palette than the set of stable matchings to solve the popular edge problem. We
now identify another natural subclass of popular matchings called dominant popular
matchings or dominant matchings, in short.

Definition 2 Matching M is dominant if M is popular, moreover, for any matching
M ′ we have: if |M ′| > |M |, then M is more popular than M ′.

When M and M ′ gather the same number of votes in the election between M and
M ′, instead of declaring these matchings as incomparable, it seems natural to regard
the larger of M and M ′ as the superior matching. Dominant matchings are those
popular matchings that have no superior matchings. That is, a dominant matching M
gets at least as many votes as any other matching M ′ in an election between them and
if |M ′| > |M |, then M gets more votes than M ′.

Note that a dominant matching has to be a maximum size popular matching. How-
ever not everymaximumsize popularmatching is a dominantmatching, as the example
(from [10]) in Fig. 3 demonstrates.

Our contribution Theorem 1 is our main result here. This enables us to solve the
popular edge problem in linear time.
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212 Á. Cseh, T. Kavitha

Theorem 1 There exists a popular matching in G = (A ∪ B, E) that contains the
edge e∗ if and only if there exists either a stable matching in G that contains e∗ or a
dominant matching in G that contains e∗.

TechniquesTo prove Theorem 1, we show that any popular matching M can be decom-
posed as M0 ·∪ M1, where M0 is dominant in the subgraph induced by the vertices
matched in M0, and in the subgraph induced by the remaining vertices, M1 is stable. If
M contains e∗, then e∗ is either in M0 or in M1. In the former case, we show a dominant
matching in G that contains e∗ and in the latter case, we show a stable matching in G
that contains e∗.

We also show that every dominant matching in G can be realized as an image (under
a simple and natural mapping) of a stable matching in a new graph G ′. This allows us
to determine in linear time if there is a dominant matching with the edge e∗. Moreover,
we can find the set of popular edges in linear time. The above mapping between stable
matchings in G ′ and dominant matchings in G can also be used to efficiently find a
max-weight dominant matching in G, where each edge has a weight associated with
it.

The graph G ′ that we construct here is closely related to the 2-level Gale–Shapley
algorithm from [12]—this algorithm computes a max-size popular matching in G in
linear time. In fact, this algorithm computes a dominant matching in G as does the
earlier polynomial time algorithm from [10] to find a max-size popular matching in G.
Our decomposition of any popular matching M into a dominant part M0 and a stable
part M1 is also inspired by the analysis in [12] proving the correctness of the 2-level
Gale–Shapley algorithm.

When every vertex in G = (A ∪ B, E) has a complete preference list, then every
popularmatching is dominant. Thus in such instances, amax-weight popularmatching
can be efficiently computed and we use this to solve the “popular set” problem. In the
popular set problem, we are given a set {e1, e2, . . . , ek} of edges and we want to find a
popular matching with all these edges, if one exists. We show an O(n3) algorithm for
this problem (via max-weight popular matching) when preference lists are complete,
where n = |A| + |B|. When preference lists are incomplete, the complexity of the
popular set problem is open for k ≥ 2.

1.1 Related results

Stable matchings were defined by Gale and Shapley in their landmark paper [6]. The
attention of the community was drawn very early to the characterization of stable
edges: edges and sets of edges that can appear in a stable matching. In the seminal
book of Knuth [13], stable edges first appeared under the term “arranged marriages”.
Knuth presented a linear time algorithm algorithm to find a stable matching with a
given stable set of edges or report that none exists. Gusfield and Irving [9] provided a
similar, simple method for the stable edge problem with the same running time.

The stable edge problem is a highly restricted case of the max-weight stable match-
ing problem, where a stable matching that has the maximum edge weight among all
stable matchings is sought. With the help of edge weights, various stable matching
problems can be modeled, such as stable matchings with restricted edges [3] or egali-
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Popular edges and dominant matchings 213

tarian stable matchings [11]. A simple and elegant formulation of the stable matching
polytope of G = (A ∪ B, E) is known [15] and using this, a max-weight stable
matching can be computed in polynomial time via linear programming. When edge
weights are non-negative integers, Feder [4,5] showed a max-weight stable matching

algorithm with running time O(n2 · log
(

C
n2

+ 2
)

·min {n,
√

C}), where n is the num-

ber of vertices and C is the optimal weight computed based on the weight function
represented as the sum of U-shaped weight functions at each vertex.

The popular matching problem is to decide if a given instance G = (A ∪ B, E)

admits a popular matching or not. When ties are allowed in preference lists, this prob-
lem is NP-complete [1,2]. With strict preference lists, the popular matching problem
becomes easy since every stable matching is popular [8]. The size of a stable matching
in G can be as small as |Mmax|/2, where Mmax is a maximum size matching in G.
Relaxing stability to popularity yields larger matchings and it is easy to show that a
largest popular matching has size at least 2|Mmax|/3 in G = (A ∪ B, E) with strict
preference lists. Efficient algorithms for computing a popular matching of maximum
size were shown in [10,12]. The popular edge problem was solved by McDermid and
Irving [14] for bipartite instances, where only one side has preferences and is allowed
to vote.
Organization of the paper A characterization of dominant matchings is given in
Sect. 2. In Sect. 3 we show a surjective mapping between stable matchings in a larger
graph G ′ and dominant matchings in G. Section 4 has our algorithm for the popular
edge problem.

2 A characterization of dominant matchings

Let M be any matching in G = (A ∪ B, E). Recall that each u ∈ A ∪ B has a strict
and possibly incomplete preference list and let M(u) denote u’s partner in M .

Definition 3 For any u ∈ A ∪ B and distinct neighbors x and y of u, define u’s vote
between x and y as follows.

voteu(x, y) =
{

+ if u prefers x to y

− if u prefers y to x .

If a vertex u is unmatched in M , then M(u) is undefined and this is the least preferred
state for u, so voteu(v, M(u)) = + for any neighbor v of u. Label each edge e = (a, b)

in E\M by the pair (αe, βe), where αe = votea(b, M(a)) and βe = voteb(a, M(b)),
i.e., αe is a’s vote for b versus M(a) and βe is b’s vote for a versus M(b).

For any edge (a, b) /∈ M , there are 4 possibilities for the label of edge (a, b):

– it is (+,+) if (a, b) blocks M in the stable matching sense;
– it is (+,−) if a prefers b to M(a) while b prefers M(b) to a;
– it is (−,+) if a prefers M(a) to b while b prefers a to M(b);
– it is (−,−) if both a and b prefer their respective partners in M to each other.

Let G M be the subgraph of G obtained by deleting edges that are labeled (−,−).
The following theorem characterizes popular matchings.
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214 Á. Cseh, T. Kavitha

Theorem 2 (from [10]) A matching M is popular if and only if the following three
conditions are satisfied in the subgraph G M :

(i) There is no alternating cycle with respect to M that contains a (+,+) edge.
(ii) There is no alternating path starting from an unmatched vertex with respect to

M that contains a (+,+) edge.
(iii) There is no alternating path with respect to M that contains two or more (+,+)

edges.

Lemma 1 characterizes those popular matchings that are dominant. The “if” side
of Lemma 1 was shown in [12]: it was shown that if there is no augmenting path
with respect to a popular matching M in G M then M is more popular than all larger
matchings.

Here we show that the converse holds as well, i.e., if M is a popular matching such
that M is more popular than all larger matchings, in other words, if M is a dominant
matching, then there is no augmenting path with respect to M in G M .

Lemma 1 A popular matching M is dominant if and only if there is no augmenting
path with respect to M in G M .

Proof Let M be a popular matching in G. Suppose there is an augmenting path ρ with
respect to M in G M . Let us use M ≈ M ′ to denote both matchings getting the same
number of votes in an election between them, i.e., φ(M, M ′) = φ(M ′, M). We will
now show that M ⊕ ρ ≈ M . Since M ⊕ ρ is a larger matching than M , M ⊕ ρ ≈ M
means that M is not dominant.

Consider M ⊕ ρ versus M : every vertex that does not belong to the path ρ gets
the same partner in both these matchings. Hence vertices outside ρ are indifferent
between these two matchings. Consider the vertices on ρ. In the first place, there is no
edge in ρ\M that is labeled (+,+), otherwise that would contradict condition (ii) of
Theorem 2. Since the path ρ belongs to G M , no edge is labeled (−,−) either. Hence
every edge in ρ\M is labeled either (+,−) or (−,+). Note that the + signs count the
number of votes for M ⊕ ρ while the − signs count the number of votes for M . Thus
the number of votes for M ⊕ρ equals the number of votes for M on vertices of ρ, and
thus in the entire graph G. Hence M ⊕ ρ ≈ M .

Now we show the other direction: if there is no augmenting path with respect to
a popular matching M in G M then M is dominant. Let M ′ be a larger matching.
Consider M ⊕ M ′ in G: this is a collection of alternating paths and alternating cycles
and since |M ′| > |M |, there is at least one augmenting path with respect to M here.
Call this path p, running from vertex u to vertex v. Let us count the number of votes
for M versus M ′ among the vertices of p.

No edge in p is labeled (+,+) as that would contradict condition (ii) of Theorem 2,
thus all the edges of M ′ in p are labeled (−,+), (+,−), or (−,−). Since p does not
exist in G M , there is at least one edge that is labeled (−,−) here (see Fig. 4): thus
among the vertices of p, matching M gets more votes than matching M ′ (recall that
+’s are votes for M ′ and−’s are votes for M). Thus M is more popular than M ′ among
the vertices of p.

By the popularity of M , we know that M gets at least as many votes as M ′ over
all other paths and cycles in M ⊕ M ′; this is because if ρ is an alternating path/cycle
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Popular edges and dominant matchings 215

Fig. 4 The u-v augmenting path p in G where the bold edges are in M ; at least one edge here (say, (x, y))
is labeled (−, −)

in M ⊕ M ′ such that the number of vertices on ρ that prefer M ′ to M is more than
the number that prefer M to M ′, then M ⊕ ρ is more popular than M , a contradiction
to the popularity of M . Thus adding up over all the vertices in G, it follows that
φ(M, M ′) > φ(M ′, M). Hence M is more popular than any larger matching and so
M is a dominant matching. 
�

Corollary 1 is a characterization of dominant matchings. This follows immediately
from Lemma 1 and Theorem 2.

Corollary 1 Matching M is a dominant matching if and only if M satisfies con-
ditions (i)–(iii) of Theorem 2 and condition (iv): there is no augmenting path with
respect to M in G M .

3 The set of dominant matchings

In this section we show a surjective mapping from the set of stable matchings in a new
instance G ′ = (A′ ∪ B ′, E ′) to the set of dominant matchings in G = (A ∪ B, E). It
will be convenient to refer to vertices in A and A′ as men and vertices in B and B ′ as
women. The construction of G ′ = (A′ ∪ B ′, E ′), depicted in Fig. 5, is as follows.

– Corresponding to every man a ∈ A, there will be two men a0 and a1 in A′ and
one woman d(a) in B ′. The vertex d(a) will be referred to as the dummy woman
corresponding to a. Corresponding to every woman b ∈ B, there will be exactly
one woman in B ′ – for the sake of simplicity, we will use b to refer to this woman
as well. Thus B ′ = B ∪ d(A), where d(A) = {d(a) : a ∈ A} is the set of dummy
women.

– Regarding the other side of the graph, A′ = A0 ∪ A1, where Ai = {ai : a ∈ A}
for i = 0, 1, and vertices in A0 are called level 0 vertices, while vertices in A1 are
called level 1 vertices.

We now describe the edge set E ′ of G ′. For each a ∈ A, the vertex d(a) has exactly
two neighbors: these are a0 and a1; d(a)’s preference order is a0 followed by a1. The
dummywoman d(a) is a1’s most preferred neighbor and a0’s least preferred neighbor.
The preference list of a0 is all the neighbors of a (in a’s preference order) followed
by d(a). The preference list of a1 is d(a) followed by the neighbors of a (in a’s
preference order) in G.

For any b ∈ B, its preference list in G ′ is level 1 neighbors in the same order of
preference as in G followed by level 0 neighbors in the same order of preference as
in G. For instance, if b’s preference list in G is a followed by a′, then b’s preference
list in G ′ is top-choice a1, then a′

1, and then a0, and the last-choice is a′
0. We show an

example in Fig. 5.
We now define the mapping T : {stable matchings in G ′} → {dominant matchings

in G}. Let M ′ be any stable matching in G.
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Fig. 5 The graph G′ on the right corresponding to G on the left. We used blue to color edges in (A1 ×
B) ∪ (A0 × d(a)) and orange to color edges in (A0 × B) ∪ (A1 × d(a)) (color figure online)

– T (M ′) is the set of edges obtained by deleting all edges involving vertices in d(A)

(i.e., dummy women) from M ′ and replacing every edge (ai , b) ∈ M ′, where
b ∈ B and i ∈ {0, 1}, by the edge (a, b).

It is easy to see that T (M ′) is a valid matching in G. This is because M ′ has to
match d(a), for every a ∈ A, since d(a) is the top-choice for a1. Thus for each a ∈ A,
one of a0, a1 has to be matched to d(a). Hence at most one of a0, a1 is matched to a
non-dummy woman b and thus M = T (M ′) is a matching in G.

3.1 The proof that M is a dominant matching in G

This proof is similar to the proof of correctness of themaximum size popular matching
algorithm in [12]. As described in Sect. 2, in the graph G, label each edge e = (a, b)

in E\M by the pair (αe, βe), where αe ∈ {+,−} is a’s vote for b versus M(a) and
βe ∈ {+,−} is b’s vote for a versus M(b).

– It will be useful to assign a value in {0, 1} to each a ∈ A. If M ′(a1) = d(a), then
f (a) = 0 else f (a) = 1. So if a ∈ A is unmatched in M then (a0, d(a)) ∈ M ′
and so f (a) = 1.

– We will now define f -values for vertices in B as well. If M ′(b) ∈ A1 then f (b) =
1, else f (b) = 0. In particular, if b ∈ B is unmatched in M ′ (and thus in M) then
f (b) = 0.

Claim 1 The following statements hold on the edge labels if a, y ∈ A and b, z ∈ B:

(1) If the edge (a, b) is labeled (+,+), then f (a) = 0 and f (b) = 1.
(2) If (y, z) is an edge such that f (y) = 1 and f (z) = 0, then (y, z) has to be

labeled (−,−).

Proof We show part (1) first, see Fig. 6. The edge (a, b) is labeled (+,+). Let M(a) =
z and M(b) = y. Thus in a’s preference list, b ranks better than z and similarly,
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Fig. 6 The orange matching on the left is blocked by edge (a, b). The corresponding stable matching in
G′ is shown by orange edges on the right (color figure online)

in b’s preference list, a ranks better than y. We know from the definition of our
function T that M ′(z) ∈ {a0, a1} and M ′(b) ∈ {y0, y1}. So there are 4 possibilities:
M ′ contains (1) (a0, z) and (y0, b), (2) (a1, z) and (y0, b), (3) (a1, z) and (y1, b),
(4) (a0, z) and (y1, b).

We know that M ′ has no blocking pairs in G ′ since it is a stable matching. In (1),
the pair (a0, b) blocks M ′, and in (2) and (3), the pair (a1, b) blocks M ′. Thus the only
possibility is (4). That is, M ′(b) ∈ A1 and M ′(a1) = d(a). In other words, f (a) = 0
and f (b) = 1.

We now show part (2) of Claim 1. We are given that f (y) = 1, so M ′(y0) = d(y).
We know that d(y) is y0’s last choice and y0 is adjacent to z, thus z must have a better
partner than y0. Since we are given that f (z) = 0, i.e., M ′(z) ∈ A0, it follows that
M ′(z) = u0, where u ranks better than y in z’s preference list in G.

In the graph G ′, the vertex z prefers y1 to u0 since it prefers any level 1 neighbor
to a level 0 neighbor. Thus y1 is matched to a neighbor that is ranked better than z in
y’s preference list, i.e., M ′(y1) = v, where y prefers v to z. We have the edges (y, v)

and (u, z) in M , thus both y and z prefer their respective partners in M to each other.
Hence the edge (y, z) has to be labeled (−,−). 
�

Lemmas 2 and 3 shown below, along with Lemma 1, imply that M is a dominant
matching in G.

Lemma 2 There is no augmenting path with respect to M in G M .

Proof Let a ∈ A and b ∈ B be unmatched in M . Then f (a) = 1 and f (b) = 0.
If there is an augmenting path ρ = 〈a, · · · , b〉 with respect to M in G M , then in ρ

we move from a man whose f -value is 1 to a woman whose f -value is 0. Thus there
have to be two consecutive vertices y ∈ A and z ∈ B on ρ such that f (y) = 1 and
f (z) = 0. However part (2) of Claim 1 tells us that such an edge (y, z) has to be
labeled (−,−). In other words, G M does not contain the edge (y, z) or equivalently,
there is no such augmenting path ρ in G M . 
�
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Lemma 3 M is a popular matching in G.

Proof We will show that M satisfies conditions (i)–(iii) of Theorem 2.
Condition (i) Consider any alternating cycle C with respect to M in G M and let a
be any vertex in C : if f (a) = 0 then its partner b = M(a) also satisfies f (b) = 0
and part (2) of Claim 1 tells us that there is no edge in G M between b and any a′
such that f (a′) = 1. Similarly, if f (a) = 1 then its partner b = M(a) also satisfies
f (b) = 1 and though there can be an edge (y, b) labeled (+,+) incident on b, part (1)
of Claim 1 tells us that f (y) = 0 and thus there is no way the cycle C can return to
a, whose f -value is 1. Hence if G M contains an alternating cycle C with respect to
M , then all vertices in C have the same f -value. Since there can be no edge labeled
(+,+) between two vertices whose f -value is the same (by part (1) of Claim 1), it
follows that C has no edge labeled (+,+).
Condition (ii) Consider any alternating path p with respect to M in G M and suppose
first that the starting vertex in p is a ∈ A. Since a is unmatched in M , we have
f (a) = 1 and we know from part (2) of Claim 1 that there is no edge in G M between
such a man and a woman whose f -value is 0. Thus a’s neighbor is p is a woman b′
such that f (b′) = 1. Since f (b′) = 1, its partner a′ = M(b′) satisfies f (a′) = 1 and
part (2) of Claim 1 tells us that there is no edge in G M between a′ and any b′′ such
that f (b′′) = 0. Iterating this argument we deduce that all vertices of p have f -value
1 and thus there is no edge labeled (+,+) in p.

Suppose now that the starting vertex in p is b ∈ B. Since b is unmatched in M , we
have f (b) = 0 and we again know from part (2) of Claim 1 that there is no edge in
G M between such a woman and a man whose f -value is 1. Thus b’s neighbor in p is a
woman a′ such that f (a′) = 0. Since f (a′) = 0, its partner b′ = M(a′) also satisfies
f (b′) = 0 and part (2) of Claim 1 tells us that there is no edge in G M between b′ and
any a′′ such that f (a′′) = 1, thus all vertices of p have f -value 0 and thus there is no
edge labeled (+,+) in p.
Condition (iii) Consider any alternating path ρ with respect to M in G M . We can
assume that the starting vertex in ρ is matched in M (as condition (ii) has dealt with
the case when this vertex is unmatched). Suppose the starting vertex is a ∈ A. If
f (a) = 0 then its partner b = M(a) also satisfies f (b) = 0 and part (2) of Claim 1
tells us that there is no edge in G M between b and any a′ such that f (a′) = 1, thus
all vertices of ρ have f -value 0 and thus there is no edge labeled (+,+) in ρ. If
f (a) = 1 then after traversing some vertices whose f -value is 1, we can encounter
an edge (y, z) that is labeled (+,+) where f (z) = 1 and f (y) = 0. However once
we reach y, we get stuck in vertices whose f -value is 0 and thus we can see no more
edges labeled (+,+).

Suppose the starting vertex in ρ is b ∈ B. If f (b) = 1 then its partner a = M(b)

also satisfies f (a) = 1 and part (2) of Claim 1 tells us that there is no edge in G M

between a and any b′ such that f (b′) = 0, thus all vertices of ρ have f -value 1 and
thus there is no edge labeled (+,+) in ρ. If f (b) = 0 then after traversing some
vertices whose f -value is 0, we can encounter an edge (y, z) labeled (+,+) where
f (y) = 0 and f (z) = 1. However once we reach z, we get stuck in vertices whose
f -value is 1 and thus we can see no more edges labeled (+,+). Thus in all cases there
is at most one edge labeled (+,+) in ρ. 
�
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Fig. 7 Vertices get added to A1 and A0 by alternating paths in G M from either unmatched vertices (first
and third paths) or endpoints of edges labeled (+, +) (middle path). The solid black edges are in M , and
the white vertices get added to their respective sets in Steps 0 and 1

With this we have proved that every stable matching M ′ in G ′ projects to a popular
matching M = T (M ′) in G.

3.2 Mapping T is surjective

We now show that corresponding to any dominant matching M in G, there is a stable
matching M ′ in G ′ such that T (M ′) = M . We will work in G M , the subgraph of G
obtained by deleting all edges labeled (−,−). We now construct sets A0, A1 ⊆ A
and B0, B1 ⊆ B as described in the algorithm below. These sets will be useful in
constructing the matching M ′.

0. Let A0 = B1 = ∅, A1 = {unmatched men in M}, B0 = {unmatched women in
M}.

1. For every edge (y, z) ∈ M that is labeled (+,+) do:
– let A0 = A0∪{y}, B0 = B0∪{M(y)}, B1 = B1∪{z}, and A1 = A1∪{M(z)}.

2. While there exists a matched man a /∈ A0 adjacent in G M to a woman in B0 do:
– A0 = A0 ∪ {a} and B0 = B0 ∪ {M(a)}.

3. While there exists a matched woman b /∈ B1 adjacent in G M to a man in A1 do:
– B1 = B1 ∪ {b} and A1 = A1 ∪ {M(b)}.

At start, all unmatchedmen are in A1 and all unmatchedwomen are in B0. For every
edge (y, z) that is labeled (+,+), we add y and its partner to A0 and B0, respectively
while z and its partner are added to B1 and A1, respectively. For any man a, if a is
adjacent to a vertex in B0 and a is not in A0, then a and its partner get added to A0
and B0, respectively. Similarly, for any woman b, if b is adjacent to a vertex in A1 and
b is not in B1, then b and its partner get added to B1 and A1, respectively.

The following observations are easy to see (refer to Fig. 7). Every a ∈ A1 has an
even length alternating path in G M to either:

(1) a man unmatched in M (by Step 0 and Step 3) or
(2) a man M(z) where the woman z has an edge labeled (+,+) incident on it (by

Step 1 and Step 3).

Similarly, every a ∈ A0 has an odd length alternating path in G M to either:

(3) a woman unmatched in M (by Step 0 and Step 2) or
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(4) a woman M(y) where the man y has an edge labeled (+,+) incident on it (by
Step 1 and Step 2).

We show the following lemma here and its proof is based on the characterization of
dominant matchings in terms of conditions (i)–(iv) as given by Corollary 1. We will
also use (1)–(4) observed above in our proof.

Lemma 4 A0 ∩ A1 = ∅.

Proof We distinguish four cases here, based on the reason for a being added to A1
(reason (1) or (2) from above) and to A0 (reason (3) or (4) from above) simultaneously.
Case 1 Suppose a satisfies reasons (1) and (3) for its inclusion in A1 and in A0,
respectively. So a is in A1 because it is reachable via an even alternating path in G M

from an unmatched man u; also a is in A0 because it is reachable via an odd length
alternating path in G M from an unmatchedwoman v. Then there is an augmenting path
〈u, . . . , v〉 with respect to M in G M—a contradiction to the fact that M is dominant
(by Lemma 1).
Case 2 Suppose a satisfies reasons (1) and (4) for its inclusion in A1 and in A0,
respectively. So a is in A1 because it is reachable via an even alternating path with
respect to M in G M from an unmatched man u; also a is in A0 because it is reachable
via an odd length alternating path in G M from z, where edge (y, z) is labeled (+,+).
Then there is an alternating path with respect to M in G M from an unmatchedman u to
the edge (y, z) labeled (+,+) and this is a contradiction to condition (ii) of popularity.
Case 3 Suppose a satisfies reasons (2) and (3) for its inclusion in A1 and in A0,
respectively. This case is absolutely similar to Case 2. This will cause an alternating
path with respect to M in G M from an unmatched woman to an edge labeled (+,+),
a contradiction again to condition (ii) of popularity.
Case 4. Suppose a satisfies reasons (2) and (4) for its inclusion in A1 and in A0,
respectively. So a is reachable via an even length alternating path in G M from an edge
labeled (+,+) and M(a) is also reachable via an even length alternating path in G M

from an edge labeled (+,+). If it is the same edge labeled (+,+) that both a and
M(a) are reachable from, then there is an alternating cycle in G M with a (+,+) edge
– a contradiction to condition (i) of popularity. If these are two different edges labeled
(+,+), then we have an alternating path in G M with two edges labeled (+,+) – a
contradiction to condition (iii) of popularity.

These four cases finish the proof that A0 ∩ A1 = ∅. 
�
We now describe the construction of the matching M ′. Initially M ′ = ∅.

– For each a ∈ A0: add the edges (a0, M(a)) and (a1, d(a)) to M ′.
– For each a ∈ A1: add the edge (a0, d(a)) to M ′ and if a is matched in M then add

(a1, M(a)) to M ′.
– For a /∈ (A0 ∪ A1): add the edges (a0, M(a)) and (a1, d(a)) to M ′.

(Note that the men outside A0 ∪ A1 are not reachable from either unmatched
vertices or edges labeled (+,+) via alternating paths in G M .)
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Fig. 8 If the vertex a1 prefers v

to b in G′, then a prefers v to b
in G; thus the edge (a, v) has to
be present in G M

Lemma 5 M ′ is a stable matching in G ′.

Proof Suppose M ′ is not stable in G ′. Then there are edges (ui , v) and (a j , b) in M ′,
where i, j ∈ {0, 1}, such that in the graph G ′, the vertices v and a j prefer each other
to ui and b, respectively. There cannot be a blocking pair involving a dummy woman,
thus the edges (u, v) and (a, b) are in M .

If i = j , then the pair (a, v) blocks M in G. However, from the construction of
the sets A0, A1, B0, B1, we know that all the blocking pairs with respect to M are in
A0 × B1. Thus there is no blocking pair in A0 × B0 or in A1 × B1 with respect to M
and so i �= j . Since v prefers a j to ui in G ′, the only possibility is i = 0 and j = 1.
It has to be the case that a prefers v to b, so there is an edge labeled (+,−) between
a ∈ A1 and v ∈ B0 (see Fig. 8).

So once v got added to B0, since a is adjacent in G M to a vertex in B0, vertex a
satisfied Step 2 of our algorithm to construct the sets A0, A1, B0, and B1. So a would
have got added to A0 as well, i.e., a ∈ A0 ∩ A1, a contradiction to Lemma 4. Thus
there is no blocking pair with respect to M ′ in G ′. 
�

This concludes the proof that every dominant matching in G can be realized as an
image under T of some stable matching in G ′. Thus T is surjective.

3.3 The max-weight dominant matching problem

Here we are given a weight functionw : E → Q and the problem is to find a dominant
matching in G whose sum of edge weights is the highest. We will use the surjective
mapping T established from {stable matchings in G ′} to {dominant matchings in G}
to solve the max-weight dominant matching problem in G.

It is easy to extendw to the edge set of G ′. For each edge (a, b) in G, we will assign
w(a0, b) = w(a1, b) = w(a, b) andwewill setw(a0, d(a)) = w(a1, d(a)) = 0.Thus
the weight of any stable matching M ′ in G ′ is the same is the weight of the dominant
matching T (M ′) in G.

Since every dominant matching M in G equals T (M ′) for some stable matching M ′
in G ′, it follows that the max-weight dominant matching problem in G is the same as
the max-weight stable matching problem in G ′. Since a max-weight stable matching
in G ′ can be computed in polynomial time, we can conclude Theorem 3 stated in
Sect. 3.
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If every vertex in G = (A∪ B, E) has a complete preference list, then every popular
matching M is dominant. This is because M is A-perfect (assuming |A| ≤ |B|). So
every vertex in A is matched in M , thus there is no augmenting path with respect to
M in G (and thus in G M ). It now follows from Lemma 1 that M is dominant. Thus
we can deduce Theorem 3.

Theorem 3 Given a graph G = (A ∪ B, E) with strict and complete preference lists
and a weight function w : E → Q, the problem of computing a max-weight popular
matching can be solved in polynomial time.

We now use the above result on max-weight popular matchings to efficiently solve
the popular set problem in complete bipartite graphs. In the popular set problem, we
are given a set {e1, . . . , ek} and we need to find a popular matching containing these
k edges, if one exists. Else we seek a popular matching that contains as many of these
edges as possible. The problem of determining if there exists a popular matching
containing all these k edges can be easily posed as a max-weight popular matching
problem by assigning edge weights as follows: for 1 ≤ i ≤ k, set w(ei ) = 1 and set
the weight of every other edge to be 0.

It is easy to see that under the above assignment of weights, a max-weight popular
matching is exactly a popular matching that contains the largest number of edges
in {e1, . . . , ek}. In particular, if the weight of this popular matching is k, then there
exists a popular matching that contains all these k edges. Using the max-weight stable
matching algorithm of Feder [4,5] here, we can deduce the following theorem.

Theorem 4 The popular set problem in G = (A ∪ B, E) with strict and complete
preference lists can be solved in O(n3) time, where |A| + |B| = n.

4 The popular edge problem

In this section we show a decomposition for any popular matching in terms of a
stable matching and a dominant matching. We use this result to design a linear time
algorithm for the popular edge problem. Here we are given an edge e∗ = (u, v) in
G = (A ∪ B, E) (with strict and possibly incomplete preference lists) and we would
like to know if there exists a popular matching in G that contains e∗. We claim the
following algorithm solves the above problem.

1. If there is a stable matching Me∗ in G that contains edge e∗, then return Me∗ .
2. If there is a dominant matching M ′

e∗ in G that contains edge e∗, then return M ′
e∗ .

3. Return “there is no popular matching that contains edge e∗ in G”.

Running time of the above algorithm In step 1 of our algorithm, we have to determine
if there exists a stable matching Me∗ in G that contains e∗ = (u, v). We modify the
Gale–Shapley algorithm so that the woman v rejects all proposals from anyone worse
than u. If the modified Gale–Shapley algorithm produces a matching M containing e∗,
then it will be a man-optimal matching among stable matchings in G that contain e∗.
Else no stable matching in G contains e∗. We refer the reader to [9, Section 2.2.2] for
the correctness of the modified Gale–Shapley algorithm; it is based on the following
fact:
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– If G admits a stable matching that contains e∗ = (u, v), then exactly one of (i),
(ii), (iii) occurs in any stable matching M of G: (i) e∗ ∈ M , (ii) v is matched to a
neighbor better than u, (iii) u is matched to a neighbor better than v.

In step 2 of our algorithm for the popular edge problem, we have to determine if
there exists a dominant matching in G that contains e∗ = (u, v). This is equivalent to
checking if there exists a stable matching in G ′ that contains either the edge (u0, v) or
the edge (u1, v). This can be determined by using the same modified Gale–Shapley
algorithm as given in the previous paragraph. Thus both steps 1 and 2 of our algorithm
can be implemented in O(m) time, where m = |E |.

We now show the correctness of our algorithm. Let M be a popular matching in G
that contains edge e∗. We will partition M into two sets M0 and M1 to show that there
is either a stable matching or a dominant matching that contains e∗. As before, label
each edge e = (a, b) outside M by the pair of votes (αe, βe), where αe is a’s vote for
b versus M(a) and βe is b’s vote for a versus M(b).

We run the following algorithm now—this is similar to the algorithm in the previous
section (where we showed T to be surjective) to build the subsets A0, A1 of A and
B0, B1 of B, except that all the sets A0, A1, B0, B1 are initialized to empty sets here.

0. Initialize A0 = A1 = B0 = B1 = ∅.
1. For every edge (a, b) ∈ M that is labeled (+,+):

– let A0 = A0∪{a}, B1 = B1∪{b}, A1 = A1∪{M(b)}, and B0 = B0∪{M(a)}.
2. While there exists a man a′ /∈ A0 that is adjacent in G M to a woman in B0 do:

– A0 = A0 ∪ {a′} and B0 = B0 ∪ {M(a′)}.
3. While there exists a woman b′ /∈ B1 that is adjacent in G M to a man in A1 do:

– B1 = B1 ∪ {b′} and A1 = A1 ∪ {M(b)}.
All vertices added to the sets A0 and B1 are matched in M—otherwise there would

be an alternating path from an unmatched vertex to an edge labeled (+,+) and this
contradicts condition (ii) of popularity of M (see Theorem 2). Note that every vertex
in A1 is reachable via an even length alternating path with respect to M in G M from
some man M(b) whose partner b has an edge labeled (+,+) incident on it. Similarly,
every vertex in A0 is reachable via an odd length alternating path with respect to M
in G M from some woman M(a) whose partner a has an edge labeled (+,+) incident
on it. The proof of Case 4 of Lemma 4 shows that A0 ∩ A1 = ∅.

We have B1 = M(A1) and B0 = M(A0) (see Fig. 9). All edges labeled (+,+) are
in A0 × B1 (from our algorithm) and all edges in A1 × B0 have to be labeled (−,−)

(otherwise we would contradict either condition (i) or (iii) of popularity of M).
Let A′ = A0∪A1 and B ′ = B0∪B1. Let M0 be thematching M restricted to A′∪B ′.

The matching M0 is popular on A′ ∪ B ′. Suppose not and there is a matching N0 on
A′ ∪ B ′ that is more popular. Then the matching N0 ∪ (M\M0) is more popular than
M , a contradiction to the popularity of M . Since M0 matches all vertices in A′ ∪ B ′,
it follows that M0 is dominant on A′ ∪ B ′.

Let M1 = M\M0 and let Y = A\A′ and Z = B\B ′. The matching M1 is stable on
Y ∪ Z as there is no edge labeled (+,+) in Y × Z (all such edges are in A0 × B1 by
Step 1 of our algorithm above).

The subgraph G M contains no edge in A1 × Z – otherwise such a woman z ∈ Z
should have been in B1 (by Step 3 of the algorithm above) and similarly, G M contains
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Fig. 9 M0 is the matching M restricted to A′ ∪ B′. All unmatched vertices are in (A\A′) ∪ (B\B′)

no edge in Y × B0 – otherwise such a man y ∈ Y should have been in A0 (by Step 2
of this algorithm). We will now show Lemmas 6 and 7. These lemmas prove the
correctness of our algorithm.

Lemma 6 If e∗ ∈ M0 then there exists a dominant matching in G that contains e∗.

Proof Let H be the induced subgraph of G on Y ∪ Z . We will transform the stable
matching M1 in H to a dominant matching M∗

1 in H . We do this by computing a stable
matching in the graph H ′ = (Y ′ ∪ Z ′, E ′) – the definition of H ′ (with respect to H )
is analogous to the definition of G ′ (with respect to G) in Sect. 3. So for each man
y ∈ Y , we have two men y0 and y1 in Y ′ and one dummy woman d(y) in Z ′; the set
Z ′ = Z ∪ d(Y ) and the preference lists of the vertices in Y ′ ∪ Z ′ are exactly as given
in Sect. 2 for the vertices in G ′.

We wish to compute a dominant matching in H , equivalently, a stable matching
in H ′. However we will not compute a stable matching in H ′ from scratch since we
want to obtain a dominant matching in H using M1. So we compute a stable matching
in H ′ by startingwith the followingmatching in H ′ (this is essentially the same as M1):

– for each edge (y, z) in M1, include the edges (y0, z) and (y1, d(y)) in this initial
matching and for each unmatched man y in M1, include the edge (y0, d(y)) in
this matching. This is a feasible starting matching as there is no blocking pair with
respect to this matching.

Now run the Gale–Shapley algorithm in H ′ with unmatched men proposing and
women disposing. Note that the starting set of unmatched men is the set of all men y1
where y is unmatched in M1. However as the algorithm progresses, other men could
also get unmatched and propose. Let M ′

1 be the resulting stable matching in H ′. Let
M∗

1 be the dominant matching in H corresponding to the stable matching M ′
1 in H ′.

Observe that M0 is untouched by the transformation M1 � M∗
1 . Let M∗ = M0 ∪

M∗
1 . Since e∗ ∈ M0, the matching M∗ contains e∗.

Claim 2 M∗ is a dominant matching in G.

Proof We need to show that M∗ = M0 ∪ M∗
1 is a dominant matching, where M∗

1 is
the dominant matching in H corresponding to the stable matching M ′

1 in H ′.
Let Y0 be the set of men y ∈ Y such that (y1, d(y)) ∈ M ′

1 and let Y1 be the set of
men y ∈ Y such that (y0, d(y)) ∈ M ′

1. Let Z1 be the set of those women in Z that are
matched in M ′

1 to men in Y1 and let Z0 = Z\Z1.
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The following properties will be useful to us:

(i) If y ∈ Y1, then M∗
1 (y) ranks at least as good as M1(y) in y’s preference list. This

is because y ∈ Y1 and note that Y1 is a promoted set when compared to Y0. Thus
y1 gets at least as good a partner in M∗

1 as in the men-optimal stable matching in
H , which is at least as good as M1(y), as M1 is a stable matching in H .

(ii) If z ∈ Z0, then M∗
1 (z) ranks at least as good as M1(z) in z’s preference list. This

is because in the computation of the stable matching M ′
1, if the vertex z rejects

M1(z), then it was upon receiving a better proposal from a neighbor in Y0 (since
z ∈ Z0). Thus z’s final partner in M ′

1, and hence in M∗
1 , ranks at least as good as

M1(z) in her preference list.

Claim Every edge in (A1 ∪ Y1) × (B0 ∪ Z0) is labeled (−,−) with respect to M∗.

We already know that every edge in A1 × B0 is labeled (−,−) with respect to M0
and as shown in part (2) of Claim 1, it is easy to see that every edge in Y1×Z0 is labeled
(−,−) with respect to M∗

1 . We will now show that all edges in (Y1 × B0)∪ (A1 × Z0)

are labeled (−,−) with respect to M .

– Consider any edge (y, b) ∈ Y1× B0. We know that (y, b)was labeled (−,−)with
respect to M . We have M∗(b) = M0(b) = M(b). Thus b prefers M∗(b) to y. The
man y preferred M(y) to b and since y ∈ Y1, we know from (i) above that y ranks
M∗

1 (y) at least as good as M1(y) = M(y). Thus the edge (y, b) is labeled (−,−)

with respect to M∗ as well.
– Consider any edge in (a, z) ∈ A1 × Z0. We know that (a, z) was labeled (−,−)

with respect to M . We have M∗(a) = M0(a) = M(a). Thus a prefers M∗(a) to z.
The woman z preferred M1(z) to a andwe know from (ii) above that z ranks M∗

1 (z)
at least as good as M1(z). Thus the edge (a, z) is labeled (−,−)with respect to M∗
as well.

Thus we have shown that every edge in (A1 ∪ Y1) × (B0 ∪ Z0) is labeled (−,−).
We will now show the following claim.

Claim Any edge labeled (+,+) with respect to M∗ has to be in (A0∪Y0)×(B1∪ Z1).

Note that we already know that no edge in Ai × Bi is labeled (+,+)with respect to
M0 and no edge in Yi × Zi is labeled (+,+) with respect to M∗

1 , for i = 0, 1. We will
now show that no edge in ∪1

i=0(Ai × Zi ) ∪ (Yi × Bi ) is labeled (+,+) (see Fig. 10).

Fig. 10 All edges in
(A1 ∪ Y1) × (B0 ∪ Z0) are
labeled (−,−) with respect to
M∗ and all edges labeled (+, +)

with respect to M∗ are in
(A0 ∪ Y0) × (B1 ∪ Z1)
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(1) Consider any edge in (a, z) ∈ A1 × Z1. We know that (a, z) was labeled (−,−)

with respect to M . Since M∗(a) = M0(a) = M(a), the first coordinate in this
edge label with respect to M∗ is still −. Thus this edge is not labeled (+,+) with
respect to M∗.

(2) Consider any edge in (y, b) ∈ Y1 × B1: there was no edge labeled (+,+) with
respect to M in Y × B1.
– Suppose (y, b) was labeled (−,−) or (+,−) with respect to M . Since

M∗(b) = M0(b) = M(b), the second coordinate in this edge label with
respect to M∗ is still −. Thus this edge is not labeled (+,+) with respect
to M∗.

– Suppose (y, b) was labeled (−,+) with respect to M . Since y ∈ Y1, we know
from (i) above that y ranks M∗

1 (y) at least as good as M1(y). Hence the first
coordinate in this edge label with respect to M∗ is still −. Thus this edge is
not labeled (+,+) with respect to M∗.

(3) Consider any edge (y, b) ∈ Y0 × B0: we know that (y, b) was labeled (−,−)

with respect to M . Since M∗(b) = M0(b) = M(b), the second coordinate in this
edge label with respect to M∗ is still −. Thus this edge is not labeled (+,+) with
respect to M∗.

(4) Consider any edge in (a, z) ∈ A0 × Z0: there was no edge labeled (+,+) with
respect to M in A0 × Z .
– Suppose (a, z)was labeled (−,−)or (−,+)with respect to M . Since M∗(a) =

M0(a) = M(a), the first coordinate in this edge label with respect to M∗ is
still −. Thus this edge is not labeled (+,+) with respect to M∗.

– Suppose (a, z) was labeled (+,−) with respect to M . Since z ∈ Z0, we know
from (ii) above that z ranks M∗

1 (z) at least as good as M1(z). Hence the second
coordinate in this edge label with respect to M∗ is still −. Thus this edge is
not labeled (+,+) with respect to M∗.

Thus any edge labeled (+,+) has to be in (A0 ∪ Y0) × (B1 ∪ Z1). This fact along
with the earlier claim that all edges in (A1 ∪ Y1) × (B0 ∪ Z0) are labeled (−,−),
immediately implies that Claim 1 holds here, where we assign f -values to all vertices
in A ∪ B as follows: if a ∈ A1 ∪ Y1 then f (a) = 1 else f (a) = 0; similarly, if
b ∈ B1 ∪ Z1 then f (b) = 1 else f (b) = 0.

Thus if the edge (a, b) is labeled (+,+), then f (a) = 0 and f (b) = 1, and if (y, z)
is an edge such that f (y) = 1 and f (z) = 0, then (y, z) has to be labeled (−,−).
Lemmas 2 and 3 with M∗ replacing M follow now (since all they need is Claim 1).
We can conclude that M∗ is dominant in G. Thus there is a dominant matching in G
that contains e∗. 
�

This finishes the proof of Lemma 6. 
�
Lemma 7 If the edge e∗ ∈ M1 then there exists a stable matching in G that contains e∗.

Proof Here we leave M1 untouched and transform the dominant matching M0 on
A′ ∪ B ′ to a stable matching M ′

0 on A′ ∪ B ′. We do this by demoting all men in A1.
That is, we run the stable matching algorithm on A′ ∪ B ′ with preference lists as in the
original graph G, i.e., men in A1 are not promoted over the ones in A0. Our starting
matching is M0 restricted to edges in A1 × B1. Since there is no blocking pair with
respect to M0 in A1 × B1, this is a feasible starting matching.
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Now unmatched men (all those in A0) propose in decreasing order of preference to
the women in B ′ and when a woman receives a better proposal than what she currently
has, she discards her current partner and accepts the new proposal. This may make
men in A1 single and so they too propose. This is the Gale–Shapley algorithm with
the only difference that our starting matching is not empty but M0 restricted to the
edges of A1 × B1. Let M ′

0 be the resulting matching on A′ ∪ B ′. Let M ′ = M ′
0 ∪ M1.

This is a matching that contains the edge e∗ since e∗ ∈ M1.

Claim M ′ is a stable matching in G.

Proof We will now show that M ′ = M ′
0 ∪ M1 is a stable matching. We already know

that there is no edge labeled (+,+) in A′ × B ′ with respect to M ′
0 and there is no edge

labeled (+,+) in Y × Z with respect to M1. Now we need to show that there is no
edge labeled (+,+) either in A′ × Z or in Y × B ′.

Wewill first show that there is no edge labeled (+,+) in A′×Z , i.e., in (A0∪A1)×Z .

(1) Consider any (a, z) ∈ A1 × Z : this edge was labeled (−,−) with respect to M .
Since M ′(z) = M1(z) = M(z), the second coordinate of the label of this edge
with respect to M ′ is −. Thus this edge cannot be labeled (+,+) with respect
to M ′.

(2) Consider any (a, z) ∈ A0 × Z : there was no edge labeled (+,+) with respect to
M in A′ × Z .
– Suppose (a, z)was labeled (+,−) or (−,−)with respect to M . Since M ′(z) =

M1(z) = M(z), the second coordinate of the label of this edge with respect to
M ′ is −.

– Suppose (a, z) was labeled (−,+). Since a ∈ A0, his neighbor M ′
0(a) is

ranked at least as good as M0(a) in his preference list. This is because women
in B0 are unmatched in our starting matching and no woman b ∈ B0 prefers
any neighbor in A1 to M0(b) (all edges in A1 × B0 are labeled (−,−) with
respect to M0). Thus in our algorithm that computes M ′

0, a will get accepted
either by M0(a) or a better neighbor. Hence the first coordinate of this edge
label with respect to M ′ is still −.

We will now show that there is no edge labeled (+,+)with respect to M ′ in Y × B ′,
i.e., in Y × (B0 ∪ B1).

(3) Consider any (y, b) ∈ Y × B0: the edge (y, b) was labeled (−,−) with respect
to M . Since M ′(y) = M1(y) = M(y), the first coordinate of the label of this edge
with respect to M ′ is −. Thus this edge cannot be labeled (+,+) with respect
to M ′.

(4) Consider any (y, b) ∈ Y × B1: there was no edge labeled (+,+) with respect to
M in Y × B ′.
– Suppose (y, b)was labeled (−,+) or (−,−)with respect to M . Since M ′(y) =

M1(y) = M(y), the first coordinate of the label of this edge with respect to
M ′ is −.

– Suppose (y, b) was labeled (+,−). Since b ∈ B1, her neighbor M ′
0(b) is

ranked at least as good as M0(b) in her preference list. This is because our
starting matching matched b to M0(b) and b would reject M0(b) only upon
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receiving a better proposal. Thus the second coordinate of the label of this edge
with respect to M ′ is −.

This completes the proof that there is no edge labeled (+,+) with respect to M ′
in G. In other words, M ′ is a stable matching in G. 
�
This finishes the proof of Lemma 7. 
�

We have thus shown the correctness of our algorithm. Theorem 5 now follows.

Theorem 5 Given a stable marriage instance G = (A ∪ B, E) with strict preference
lists and an edge e∗ ∈ E, we can determine in linear time if there exists a popular
matching in G that contains e∗.

We remark that computing the entire set of popular edges in an instance also takes
linear time. The proof of Theorem 5 shows that an edge is popular if and only if it
corresponds to a stable edge either in G or in G ′. It follows from [9] that all stable
edges in G (and similarly, in G ′) can be computed in linear time.
Open problems When vertices in G = (A ∪ B, E) have incomplete preference lists,
the complexity of the popular set problem is open. That is, given e1, . . . , ek , for k ≥ 2,
we would like to find a popular matching that contains all these edges, if one exists.
On a similar note, if we know that an instance has only dominant popular matchings,
then optimizing over the set of popular matchings is tractable. Thus a relevant problem
is to identify instances where all popular matchings are dominant.

Acknowledgements Thanks to Chien-Chung Huang for useful discussions which led to the definition of
dominant matchings.
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