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Abstract. We are given a bipartite graph G = (A∪B, E) where each vertex has a preference list
ranking its neighbors: In particular, every a ∈ A ranks its neighbors in a strict order of preference,
whereas the preference list of any b ∈ B may contain ties. A matching M is popular if there is no
matching M ′ such that the number of vertices that prefer M ′ to M exceeds the number of vertices
that prefer M to M ′. We show that the problem of deciding whether G admits a popular matching
or not is NP-hard. This is the case even when every b ∈ B either has a strict preference list or puts all
its neighbors into a single tie. In contrast, we show that the problem becomes polynomially solvable
in the case when each b ∈ B puts all its neighbors into a single tie. That is, all neighbors of b are
tied in b’s list and b desires to be matched to any of them. Our main result is an O(n2) algorithm
(where n = |A ∪B|) for the popular matching problem in this model. Note that this model is quite
different from the model where vertices in B have no preferences and do not care whether they are
matched or not.
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1. Introduction. We are given a bipartite graph G = (A ∪ B,E) where the
vertices in A are called applicants and the vertices in B are called posts, and each
vertex has a preference list ranking its neighbors in an order of preference. Here we
assume that vertices in A have strict preferences while vertices in B are allowed to
have ties in their preference lists. Thus each applicant ranks all posts that she finds
interesting in a strict order of preference, while each post need not come up with a
total order on all interested applicants—here applicants may get grouped together in
terms of their suitability, thus equally competent applicants are tied together at the
same rank.

Our goal is to compute a popular matching in G. The definition of popularity uses
the notion of each vertex casting a “vote” for one matching versus another. A vertex
v prefers matching M to matching M ′ if either v is unmatched in M ′ and matched in
M or v is matched in both matchings and M(v) (v’s partner in M) is ranked better
than M ′(v) in v’s preference list. In an election between matchings M and M ′, each
vertex v votes for the matching that it prefers or it abstains from voting if M and M ′

are equally preferable to v. Let φ(M,M ′) be the number of vertices that vote for M
in an election between M and M ′.

Definition 1. A matching M is popular if φ(M,M ′) ≥ φ(M ′,M) for every
matching M ′.

If φ(M ′,M) > φ(M,M ′), then we say M ′ is more popular than M and denote it
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POPULAR MATCHINGS WITH ONE-SIDED TIES 2349

by M ′ � M ; else M � M ′. Observe that popular matchings need not always exist.
Consider an instance where A = {a1, a2, a3} and B = {b1, b2, b3}, and for i = 1, 2, 3,
each ai has the same preference list which is b1 followed by b2 followed by b3 while
each bi ranks a1, a2, a3 the same, i.e., a1, a2, a3 are tied together in bi’s preference list
(see bottom left instance in Figure 2). It is easy to see that for any matching M
here, there is another matching M ′ such that M ′ �M , thus this instance admits no
popular matching.

The popular matching problem is to determine if a given instance G = (A∪B,E)
admits a popular matching or not, and if so, to compute one. This problem has been
studied in the following two models:

– 1-sided model: Here it is only vertices in A (also called agents) that have
preferences and cast votes; vertices in B are objects with no preferences or
votes.

– 2-sided model: Vertices on both sides have preferences and cast votes.
Popular matchings need not always exist in the 1-sided model and the problem of

deciding whether a given instance admits one or not can be solved efficiently using the
characterization and algorithm from [1]. In the 2-sided model when all preference lists
are strict, it is known that any stable matching is popular [7]; thus a popular matching
can be found in linear time using the Gale–Shapley algorithm. However, when ties
are allowed in preference lists on both sides, Biró, Irving, and Manlove [3] showed
that the popular matching problem is NP-complete. One of our models discusses this
case further, strengthening the above result. Our other model deals with the following
variant of the two-sided model with ties:

∗ Vertices on both sides cast votes. However, it is only vertices of A that rank
their neighbors in a strict order of preference, in other words, the preference
list of each vertex of A is strict while the preference list of each vertex of B
contains a single “large tie.”

That is, in the above model, vertices in B have no ranking over their neighbors—
however, each b ∈ B desires to be matched to any of its neighbors. Thus in an
election between two matchings, b abstains from voting if it is matched in both or
unmatched in both, else it votes for the matching where it is matched.

The above model is a natural variant of the 1-sided model (recall that A is a set
of agents and B is a set of objects here) where each object has an owner who gains a
fixed profit by allocating the object to an agent. Such fixed price markets occur, for
example, in housing markets where the house owner earns rent when his house gets
allotted to a tenant. Thus agents have preferences over objects and each object-owner
wants his object to get matched to some agent so as to earn the cost of the object.
That is, each object has a vote and does not care who is matched to it as long as it
is matched to someone.

We will see in section 2 that the above problem is significantly different from the
popular matching problem in the 1-sided model where vertices in B do not cast votes.
We show the following results here, complementing our polynomial time algorithm
in Theorem 2 with an NP-hardness result in Theorem 3. Note that Theorem 3 deals
with the case when vertices of B are also allowed to have strict preference lists.

Theorem 2. Let G = (A ∪ B,E) be a bipartite graph where each a ∈ A has a
strict preference list while each b ∈ B puts all its neighbors into a single tie. The
popular matching problem in G can be solved in O(n2) time, where |A ∪B| = n.

Theorem 3. Let G = (A ∪ B,E) be a bipartite graph where each a ∈ A has a
strict preference list while each b ∈ B either has a strict preference list or puts all its
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neighbors into a single tie. The popular matching problem in G is NP-complete.

Thus Theorem 3 tells us that the popular matching problem with two-sided pref-
erences and one-sided ties is NP-hard even in the restricted case where the preference
list of each b ∈ B is either strict or a single tie. We know that the two extreme cases
admit polynomial time algorithms, i.e., (i) when the preference list of every vertex of
B is strict (popular matchings always exist in this case [7]) or (ii) when the preference
list of every vertex of B is a single tie (by Theorem 2).

When proving Theorem 2 we show that a graph G, where each a ∈ A has a strict
preference list and each b ∈ B puts all its neighbors into a single tie, admits a popular
matching if and only if a new graph H that we construct here (H is essentially a
subgraph of G) admits an A-complete matching, i.e., one that matches all vertices
in A. The graph H is based on a partition 〈X,Y, Z〉 of B, where the first set X is a
subset of top posts and, roughly speaking, the second set Y consists of mid-level posts,
while the third set Z consists of unwanted posts. We show that corresponding to any
popular matching in G, there is a partition 〈L1, L2, L3〉 of B into top posts, mid-level
posts, and unwanted posts such that X ⊇ L1 and Z ⊆ L3, where 〈X,Y, Z〉 is the
partition computed by our algorithm to construct H. This allows us to show that if
H does not admit an A-complete matching, then G has no popular matching. In fact,
not every popular matching in G becomes an A-complete matching in H (section 3 has
such an example). However, it will be the case that if G admits popular matchings,
then at least one of them becomes an A-complete matching in H.

Theorem 3 follows from a simple reduction from the (2,2)-e3-sat problem. The
(2,2)-e3-sat problem takes as its input a Boolean formula I in CNF, where each
clause contains three literals and every variable appears exactly twice in unnegated
form and exactly twice in negated form in the clauses. The problem is to determine
if I is satisfiable or not. This problem is NP-complete [2] and our reduction shows
that the following version of the 2-sided popular matching problem in G = (A∪B,E)
with 1-sided ties is NP-complete:

– every vertex in A has a strict preference list of length 2 or 4;
– every vertex in B has either a strict preference list of length 2 or a single tie

of length 2 or 3 as a preference list.
Note that our NP-hardness reduction needs B to have Ω(|B|) vertices with strict
preference lists and Ω(|B|) vertices with single ties as their preference lists.

Background. Popular matchings have been well-studied in the 1-sided model
[1, 15, 16, 17, 19, 20] where only vertices of A have preferences and cast votes. Abra-
ham et al. [1] gave efficient algorithms to determine if a given instance admits a
popular matching or not—their algorithm also works when preference lists of vertices
in A admit ties. The capacitated, many-to-one matching extension of the problem
was studied by Sng and Manlove [17], while many-to-many markets were considered
by Paluch [21]. The notions of least unpopular matchings [18] and popular mixed
matchings [14] were also proposed to deal with instances that had no popular match-
ings. For markets with edge weights, McDermid and Irving [19] gave a structural
characterization of popular matchings. Mestre [20] showed that in the presence of
vertex weights, a maximum weight maximum cardinality popular matching or a proof
of its nonexistence can be found in polynomial time even in the presence of ties.

Gärdenfors [7], who introduced the notion of popularity, considered the popu-
lar matchings problem in the domain of 2-sided preference lists and showed that in
any instance with strict preference lists, a stable matching is popular. Later, Biró,
Irving, and Manlove [3] gave polynomial-time algorithms to test a given matching
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POPULAR MATCHINGS WITH ONE-SIDED TIES 2351

for popularity. Efficient algorithms for computing a maximum size popular match-
ing in an instance G = (A ∪ B,E) with 2-sided strict preference lists were given
in [10, 12]. Various structural properties of popular matchings in such instances have
also been investigated, such as identifying which vertices can get matched in some
popular matching [9], determining “popular edges” (those that belong to some pop-
ular matching) [5], solving the optimal popular half-integral matching problem [13],
and studying the polytope of popular fractional matchings [11].

Organization of this paper. Section 2 has preliminaries. Section 3 contains
our algorithm and its proof of correctness. Section 4 shows our NP-hardness result.
We conclude with some open problems.

2. Preliminaries. For any a ∈ A, let f(a) denote a’s most desired, first choice
post. Let F = {f(a) : a ∈ A} be the set of these top posts. We will refer to posts in
F as f -posts and to the ones in B \ F as non-f -posts. For any a ∈ A, let ra be the
rank of a’s most preferred non-f -post in a’s preference list; when all of a’s neighbors
are in F , we set ra = ∞. The following theorem characterizes popular matchings in
the 1-sided voting model.

Theorem 4 (from [1]). Let G = (A∪B,E) be an instance of the 1-sided popular
matching problem, where each a ∈ A has a strict preference list. Let M be any
matching in G. M is popular if and only if the following two properties are satisfied:

(i) M matches every b ∈ F to some applicant a such that b = f(a);
(ii) M matches each applicant a to either f(a) or its neighbor of rank ra.

Thus the only applicants that may be left unmatched in a popular matching here
are those a ∈ A that satisfy ra =∞.

If b1 is ranked better than b2 in a’s preference list (where a ∈ A), then we write
b1 > b2 in a’s list. Let us consider the following example where A = {a1, a2, a3} and
B = {b1, b2, b3}: both a1 and a2 have the same preference list which is b1 > b2 while
a3’s preference list is b1 > b2 > b3 (see the top left figure in Figure 2). Assume first
that only applicants cast votes. The only posts that any of a1, a2, a3 can be matched
to in a popular matching here are b1 and b2. As there are three applicants and
only two possible partners in a popular matching, there is no popular matching here.
However, in our 2-sided voting model, where posts also care about being matched
and all neighbors of a post are in a single tie in its preference list, we have a popular
matching {(a1, b1), (a2, b2), (a3, b3)}. Note that b3 is ranked third in a3’s preference
list, which is worse than ra3 = 2. However, such edges are permitted in popular
matchings in our 2-sided model.

Consider the following example (see the middle figure in Figure 2): A = {a0, a1, a2,
a3} and B = {b0, b1, b2, b3}; both a1 and a2 have the same preference list which is
b1 > b2 while a3’s preference list is b1 > b0 > b2 and a0’s preference list is b0 > b3.
There is again no popular matching here in the 1-sided model. However, in our 2-sided
voting model, we have a popular matching {(a0, b3), (a1, b1), (a2, b2), (a3, b0)}. Note
that b0 ∈ F and here it is matched to a3 and f(a3) 6= b0; also a3 is matched to its
second ranked post: This is neither its top post nor its ra3-th ranked post (ra3 = 3
here).

Thus popular matchings in our 2-sided voting model are quite different from the
characterization given in Theorem 4 for popular matchings in the 1-sided model. Our
algorithm (presented in section 3) uses the following decomposition.

Dulmage–Mendelsohn decomposition [6]. Let M be a maximum matching in a
bipartite graph G = (A∪B,E). Using M , we can partition A∪B into three disjoint
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sets: A vertex v is even (similarly, odd) if there is an even (resp., odd) length alter-
nating path with respect to M from an unmatched vertex to v. Similarly, a vertex v
is unreachable if there is no alternating path from an unmatched vertex to v. Denote
by E , O, and U the sets of even, odd, and unreachable vertices, respectively. The
following properties (proved in [8]) will be used in our algorithm and analysis.

– E , O, and U are pairwise disjoint. Let M ′ be any maximum matching in G
and let E ′, O′, and U ′ be the sets of even, odd, and unreachable vertices with
respect to M ′, respectively. Then E = E ′, O = O′, and U = U ′.

– Every maximum matching M matches all vertices in O ∪ U and has size
|O|+ |U|/2. In M , every vertex in O is matched with some vertex in E , and
every vertex in U is matched with another vertex in U .

– The graph G has no edge in E × (E ∪ U).

3. Finding popular matchings in a 2-sided voting model. The input is
G = (A ∪ B,E) where each applicant a ∈ A has a strict preference list while each
post b ∈ B has a single tie as its preference list. If G has a popular matching, then
we will construct such a matching in this section; else we return the message “G has
no popular matching.” Recall that F is the set of top posts and ra is the rank of a’s
most preferred non-f -post, for every a ∈ A.

Our goal is to construct a graph H such that G admits a popular matching if
and only if H admits an A-complete matching. Note that the algorithm for popular
matchings in the 1-sided popular matching problem is also based on the same idea:
The algorithm in [1] constructs a graph based on the partition 〈F,B \F 〉 of B. While
it is the case that in the 1-sided popular matching problem every applicant has to be
matched to either its most preferred post in F or its most preferred post in B \F , we
saw in the examples given in section 2 that in our 2-sided popular matching problem
an applicant a can be matched to a neighbor of rank worse than ra; also posts in F
can be matched to applicants who do not regard them as top posts.

Let M be any matching in G and let us label each edge (a, b) in G\M by the vote
of a for b versus M(a), i.e., if a prefers b to M(a), then label(a, b) = +1, otherwise
label(a, b) = −1. In case a is not matched in M , then label(a, b) = +1 for any neighbor
b of a. If M is popular in G, then the following two necessary conditions must hold
on these edge labels:

(i) There is no alternating path ρ such that the edge labels in ρ\M are 〈+1,+1,
+1, · · · 〉, i.e., no three consecutive nonmatching edges are labeled +1.

(ii) There is no alternating path ρ where the edge labels in ρ\M are 〈+1,+1,−1,
+1,+1, · · · 〉, i.e., no five consecutive nonmatching edge labels add up to 3.

Otherwise M ⊕ ρ �M . Inspired by the above two conditions that are necessary for a
matching M to be popular, our algorithm will construct a 3-level partition 〈X,Y, Z〉
of B such that the following properties hold:

– X ⊆ F and Z ⊆ B \ F,
– Y ⊆ F ∪ {b ∈ B \ F : b has rank ra in some a’s preference list}.

The graph H that we will construct here will be based on this partition 〈X,Y, Z〉.
Using the partition 〈X,Y, Z〉 of B, we will build a graph H where each applicant
keeps at most two edges: either (1) to its most preferred post in X and also in Y or
(2) to its most preferred post in Z and also in Y . Later, we will define dummy posts
that may be included in Y towards the end of our algorithm.

Our algorithm performs the partition of B into X, Y , and Z over several itera-
tions. Initially X = F , Y = B \ F , and Z = ∅. In each iteration, certain non-top
posts get demoted from Y to Z and similarly, certain top posts get demoted from X
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to Y .
We will decide which f -posts belong to X and which belong to Y by trying to

maintain the following property which will enable us to show that M obeys necessary
condition (ii) stated above. Let M(U) be the set of applicants who are matched to
posts in U for any U ⊆ B.

(∗) There will be no edge in G between an applicant in M(X) and a post in Z.
In order to maintain property (∗), we will partition A into two subsets: A\nbr(Z)

and nbr(Z), where nbr(U) (similarly, nbrH(U)) is the set of neighbors in G (resp., in
H) of the vertices in U , for any subset U of vertices. Our algorithm will maintain
nbrH(X) ⊆ A \ nbr(Z) and thus it is only the applicants in A \ nbr(Z) who will get
matched to vertices in X in M and so property (∗) will be maintained. In each
iteration, we have new posts entering Z from Y and this causes some applicants to
move from A \ nbr(Z) to nbr(Z).
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X

Y

Z

nbr(Z)

A \ nbr(Z)

XM(X)

M(Z)

M(Y ) Y

Z

Fig. 1. The set B gets partitioned into X, Y , and Z. We have nbrH(X) ∩ nbr(Z) = ∅. In
the figure on the right, the horizontal edges belong to M . These belong to the graph H and the
dashed edges are other possible edges in the graph H. It will be the case that only the edges of
(M(Y )×X) ∪ (M(Z)× (X ∪ Y )) in G can be labeled +1.

If M is the matching that is returned by our algorithm, then it will be the case
that any edge that is labeled +1 by our edge labeling in G \M has to be either in
M(Y )×X or in M(Z)× (X ∪ Y ) (see Figure 1). There will be no +1 edge incident
on any applicant who is matched to a post in X. This will enable us to show that M
obeys necessary condition (i) stated earlier.

We are now ready to formally describe our algorithm. InitializeX = F , Y = B\F ,
and Z = ∅.

(I) While true do
0. H is the empty graph on A ∪B.
1. For each a ∈ A \ nbr(Z) do:

– if f(a) ∈ X, then add the edge (a, f(a)) to H.
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2. For every b ∈ X that is isolated in H do:
– delete b from X and add b to Y .

3. For each a ∈ A do:
– let b be a’s most preferred post in the set Y ; if the rank of b in a’s preference
list is ≤ ra (i.e., ra or better), then add (a, b) to H.

4. Consider the graph H constructed in steps 1–3. Compute a maximum
matching in H. (This is to identify “even” posts in H.)

– If there exist even posts in Y, then delete all even posts from Y and add
them to Z.

– Else quit the While-loop.

(II) Every a ∈ nbr(Z) adds the edge (a, b) to H where b is a’s most preferred post
in the set Z.

(III) Add all posts in D = {`(a) : a ∈ A and ra =∞} to Y , where `(a) is the dummy
last resort post of applicant a. For every applicant a such that nbr({a}) ⊆ X,
add the edge (a, `(a)) to H.

Note that introducing dummy posts does not interfere with the voting for popular
matchings because dummy posts do not vote—they are only present in the “helper”
graph H constructed above and not in the given instance G. For any applicant a,
being matched to `(a) in H is equivalent to a being left unmatched in G. Thus any
matching M in H can be projected to a matching in G, by deleting all (a, `(a)) edges
from M . For convenience, we will refer to the resulting matching also as M .

The condition for exiting the While-loop ensures that all posts in Y are odd/un-
reachable in the subgraph of H with the set of posts restricted to real posts in X ∪Y
(i.e., the nondummy ones). This implies that all posts in X are also odd/unreachable
in this subgraph—this is because if a post b ∈ X is even in this subgraph, then b’s
neighbor a in this subgraph is odd (by Dulmage–Mendelsohn decomposition). So
the applicant a has degree more than 1 and hence it has a neighbor b′ in the set Y .
Note that then b′ has to be even in this subgraph, otherwise there would be no odd
length alternating path from an unmatched vertex to a in any maximum matching
here (recall that every applicant has degree at most 2 in H).

Thus all posts in X ∪ Y are odd/unreachable in the subgraph of H with the set
of posts restricted to the nondummy ones. So starting with a maximum matching in
this subgraph and augmenting it after adding the edges on posts in Z in phase (II)
and the edges on dummy posts in phase (III), we get a maximum matching in H that
matches all real posts in X ∪ Y . After the construction of H, our algorithm for the
popular matching problem in G is given below.

– If H admits an A-complete matching, then return one that matches all real
posts in X ∪ Y ; else output “G has no popular matching.”

In the rest of this section, we prove the following theorem.

Theorem 5. G admits a popular matching if and only if H admits an A-complete
matching, i.e., one that matches all vertices in A.

3.1. Some examples. We present some examples in Figure 2 and describe how
our algorithm builds the graph H on these examples. Let Xi, Yi, Zi denote the sets
X,Y, Z at the end of the ith iteration of our algorithm and let Hi denote the graph
H in step 4 of the ith iteration of our algorithm.

In the first example (top left of Figure 2), we have A = {a1, a2, a3} and B =
{b1, b2, b3} and the preferences of applicants are denoted on the edges. By our ini-
tialization, we have X0 = {b1}, Y0 = {b2, b3}, and Z0 = ∅. In step 4 of our
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Fig. 2. We have four examples here: except for the graph in bottom left, all the
other graphs admit popular matchings and these are highlighted. In the graph on the extreme
right, both the red dotted and green dashed matchings are popular. However, the matching
{(a1, b1), (a2, b2), (a3, b3), (x1, y1), (x2, y2)} in their union is not popular. (Figure appears in color
online.)

first iteration, we identify b3 as an even post in H1. So Y1 = {b2} and Z1 =
{b3}. In the second iteration, a3 ∈ nbr(Z1) and so it has no edge to b1 in H2.
This is the last iteration of our algorithm. Our final graph H has the edge set
{(a1, b1), (a2, b1), (a1, b2), (a2, b2), (a3, b2), (a3, b3)}.

While the above example admits a popular matching, consider the graph in the
bottom left of Figure 2. The first iteration of our algorithm is exactly the same on
this graph as it was with the earlier graph. We have X1 = {b1}, Y1 = {b2}, and
Z1 = {b3}. However, in the second iteration all the applicants a1, a2, a3 become
elements of nbr(Z1) and b1 becomes an isolated vertex in step 2, so b1 becomes an
element of Y2. In step 4 of the second iteration, b2 is identified as an even post in H2
as it is isolated in H2. So Y2 = {b1} and Z2 = {b2, b3}. No demotions happen in the
third iteration, which is the last iteration of our algorithm. Our final graph H has
the edge set {(a1, b1), (a2, b1), (a3, b1), (a1, b2), (a2, b2), (a3, b2)}. Observe that H has
no A-complete matching.

In the third example (middle of Figure 2), we have A = {a0, a1, a2, a3} and
B = {b0, b1, b2, b3} and the preferences of applicants are again denoted on the edges.
In step 4 of the first iteration of this algorithm, the post b3 is identified as an
even vertex in Y0 and it becomes an element of Z1. So a0 ∈ nbr(Z1) and b0 be-
comes isolated in step 2 of the second iteration. So b0 becomes an element of Y2
and this is the last iteration of our algorithm. Our final graph H has the edge set
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{(a1, b1), (a2, b1), (a3, b1), (a1, b2), (a2, b2), (a3, b0), (a0, b0), (a0, b3)}. This graph admits
an A-complete matching {(a1, b1), (a2, b2), (a3, b0), (a0, b3)}.

The fourth example here (the rightmost graph in Figure 2) is that of a graph G
with several popular matchings. It is not the case that H contains all these match-
ings. At the end of our entire algorithm, we have X = {b1, y1}, Y = {b2, y2},
and Z = {b3, y3}. The graph H does not contain the edges (a3, b1) and (x1, y1)
since a3 and x1 belong to nbr(Z). The subgraph H admits an A-complete matching
M = {(a1, b1), (a2, b2), (a3, b3), (x2, y1), (x1, y2)} and this is a popular matching in G.
However, H does not contain M ′ = {(a1, b2), (a2, b1), (a3, b3), (x1, y1), (x2, y2)}, which
is another popular matching in G. In fact, any subgraph that contains both M and M ′

would also contain the following A-complete matching N = {(a1, b1), (a2, b2), (a3, b3),
(x1, y1), (x2, y2)}, which is not popular. This is because the matching N ′ = {(a1, b1),
(a2, y1), (a3, b2), (x1, y3), (x2, y2)} is more popular than N : Observe that the vertices
a2, a3, and y3 prefer N ′ to N and the vertices x1 and b3 prefer N to N ′ while the
remaining vertices are indifferent between the two matchings.

3.2. Proof of Theorem 5: The sufficient part. We first show that if H
admits an A-complete matching, then G admits a popular matching. We have al-
ready observed that if H admits an A-complete matching, then H has an A-complete
matching M that matches all real posts in X ∪ Y .

A useful observation is that Z ⊆ B \ F . This is because in step 4 of the While-
loop in our algorithm, all f -posts in Y are odd/unreachable in H as they are the only
neighbors in H of applicants who regard them as f -posts, i.e., their neighbors have
degree 1 in H in step 4.

We now assign edge labels in {±1} to all edges in G \ M as described at the
beginning of section 3, i.e., each edge (a, b) in G \M is labeled label(a, b) which is
a’s vote for b versus M(a) and label(a, b) = +1 if a is unmatched in M . Figure 1 is
helpful here. For any U ∈ {X,Y, Z}, let M(U) ⊆ A be the set of applicants matched
in M to posts in U . The following lemma is important.

Lemma 6. Every edge of G in M(X)× Y is labeled −1; similarly, every edge in
M(Y ) × Z is labeled −1. Any edge labeled +1 has to be either in M(Y ) × X or in
M(Z)× (X ∪ Y ).

Proof. Every edge of nbr(X)×X that is present in H is a top ranked edge. Since
M belongs to H, the edges of M from nbr(X) ×X are top ranked edges. Thus it is
clear that every edge of G in M(X)× Y is labeled −1. Regarding M(Y )× Z, every
edge of nbr(Y ) × Y that is present in the graph H is an edge (a, b) where the rank
of b in a’s preference list is ≤ ra (i.e. ra or better); on the other hand, every edge of
nbr(Z)×Z that is present in the graph G is an edge (a, b′) where the rank of b′ in a’s
preference list is ≥ ra (because b′ ∈ B \ F ). Since M belongs to H, every edge of G
in M(Y )× Z is labeled −1.

We now show that any edge labeled +1 has to be in either M(Y )×X or M(Z)×
(X ∪Y ) (see Figure 1). Consider any edge (a, b) /∈M such that b ∈ U and a ∈M(U),
where U ∈ {X,Y, Z}. It follows from the construction of the graph H that a vertex
in nbr(U) can be adjacent in H to only its most preferred post in U . Thus any edge
(a, b) /∈ M where b ∈ U and a ∈ M(U) is labeled −1. We have already seen that all
edges in M(X)×Y and in M(Y )×Z are labeled −1. There are no edges in M(X)×Z
since M(X) ⊆ A \ nbr(Z). Thus any edge labeled +1 has to be in either M(Y )×X
or M(Z)× (X ∪ Y ).

Let M ′ be any matching in G. The symmetric difference of M ′ and M is denoted
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by M ′⊕M : this consists of alternating paths and alternating cycles—note that edges
here alternate between M and M ′. Recall that last resort posts are not used in M ′

(which is a matching in G) whereas last resort posts may be present in M (which is
a matching in H).

Lemma 7. Consider M ′ ⊕M . The following three properties hold:
(i) In any alternating cycle in M ′ ⊕ M , the number of −1 edges is at least the

number of +1 edges.
(ii) In any alternating path in M ′⊕M , the number of +1 edges is at most two plus

the number of −1 edges; in case one of the endpoints of this path is a last resort
post, then the number of +1 edges is at most one plus the number of −1 edges.

(iii) In any even length alternating path in M ′ ⊕M , the number of −1 edges is at
least the number of +1 edges; in case one of the endpoints of this path is a last
resort post, then the number of −1 edges is at least one plus the number of +1
edges.

Proof. Property (i). Let C ∈ M ⊕ M ′ be an alternating cycle. Let C be b0-
a0-b1-a1-b2-· · · -ak−1-b0, where (ai, bi) ∈ M for 0 ≤ i ≤ k − 1. If C contains no
vertex of Z, then there cannot be two consecutive nonmatching edges labeled +1
in C. That is, if (ai, bi+1) is labeled +1, then bi+1 ∈ X and there is no +1 edge
incident on M(bi+1) = ai+1, thus the nonmatching edge incident on ai+1 in C has to
be labeled −1. Hence the number of −1 edges is at least the number of +1 edges.

Suppose C contains a vertex of Z: let bi be such a vertex. There can be two
consecutive nonmatching edges labeled +1 now: Let bi-ai-bi+1-ai+1-bi+2 be such an
alternating path within C, where both (ai, bi+1) and (ai+1, bi+2) are labeled +1. Then
bi ∈ Z, bi+1 ∈ Y , and bi+2 ∈ X. In the first place, there is no +1 edge incident on
ai+2 and the crucial part is that there is no edge in G between a vertex in nbrH(X)
and a vertex in Z. Thus once we reach a vertex ai+2 ∈ M(X), we have to see an
edge (ai+2, bi+3) labeled −1 where bi+3 ∈ X ∪ Y (since ai+2 has no neighbor in Z).
In order to reach a vertex in Z, we need to see at least two consecutive nonmatching
edges labeled −1. Thus it again follows that the number of −1 edges is at least the
number of +1 edges.

Property (ii). Let ρ ∈ M ⊕M ′ be an alternating path. Let ρ be b0-a0-b1-a1-
b2-· · · -ak−1-bk-ak, where (ai, bi) ∈ M for 0 ≤ i ≤ k. The same argument that was
used in the proof of property (i) shows us that there can be at most two consecutive
nonmatching edges labeled +1 in ρ and once we traverse such an alternating path
bi-ai-bi+1-ai+1-bi+2 in ρ (where bi has to be in Z), we are at a vertex bi+2 ∈ X.
Thereafter, we have to see at least two more nonmatching edges labeled −1 than
those labeled +1 to again reach a vertex in Z. Thus it follows that the difference
between the number of +1 edges and the number of −1 edges is at most two.

In fact, for the difference between the number of +1 edges and the number of −1
edges to be exactly two, it has to be the case that b0 is in Z. In case b0 is in Y , then it
is easy to see that the difference between the number of +1 edges and the number −1
edges is at most one. Note that all last resort posts belong to Y . Thus when b0 is a
last resort post, then the number of +1 edges in ρ is at most one plus the number
of −1 edges.

Property (iii). Let ρ = b0-a0-b1-a1-b2-· · · -ak−1-bk be an even length alternating
path where (ai, bi) ∈ M for 0 ≤ i ≤ k − 1. The post b0 is unmatched in M ′ and bk
is unmatched in M . Recall that M is A-complete, thus any even length alternating
path with respect to M has to have vertices in B as its endpoints (since one of them
is left unmatched in M). Since bk is a post that is matched in M ′ but not in M , it
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follows that bk ∈ Z (as all nondummy posts in X ∪ Y are matched in M).
Now the argument is similar to the proof of property (ii). In order to maximize

the difference between the number of edges labeled +1 and those labeled −1, we
assumed that the starting vertex b0 ∈ Z. For the final vertex bk to be in Z, it follows
that the number of −1 edges is at least the number of +1 edges. In particular, when
b0 is a last resort post, then the starting vertex is in Y and so the number of −1 edges
is at least one plus the number of +1 edges.

Lemma 8 uses the above lemma to show the popularity of M . This completes the
proof that if H admits an A-complete matching, then G admits a popular matching.

Lemma 8. For any matching M ′ in G, we have φ(M,M ′) ≥ φ(M ′,M).

Proof. Recall that M is A-complete (where some of the posts used in M can be
last resort posts). Consider M ⊕M ′. We will now investigate every component of
M ⊕M ′—each of which is an alternating cycle, or an odd length alternating path, or
an even length alternating path—and show φ(M,M ′) ≥ φ(M ′,M) for each of them.

– For any alternating cycle C ∈ M ⊕ M ′ among the vertices of C, the dif-
ference between those who prefer M ′ and those who prefer M is equal to∑
a∈C label(a,M ′(a)). It follows from part (i) of Lemma 7 that this sum is

at most 0.
– Consider any odd length alternating path ρ ∈ M ⊕M ′: Its endpoints are

an applicant a′ and a post b′ that are unmatched in M ′. Assume b′ is a
nondummy post. Then among the vertices of ρ that are matched in M ′, the
difference between those who prefer M ′ and those who prefer M is equal to∑
a∈ρ label(a,M ′(a)). It follows from part (ii) of Lemma 7 that this sum is

at most 2. The two vertices a′ and b′ prefer M to M ′ as they are matched in
M and unmatched in M ′. Thus summed over all vertices of ρ, the difference
between those who prefer M ′ and those who prefer M is again at most 0.
Now suppose b′ is a dummy post. Then it follows from part (ii) of Lemma 7
that among the vertices of ρ that are matched in M ′, the difference between
those who prefer M ′ and those who prefer M is at most 1. The vertex a′

prefers M to M ′. Thus summed over all real vertices of ρ, the difference
between those who prefer M ′ and those who prefer M is again at most 0.

– Consider any even length alternating path ρ ∈ M ⊕M ′: Its endpoints are
a post b0 that is unmatched in M ′ and a post bk that is unmatched in M .
Assume b0 is a nondummy post. Then summed over all vertices of ρ (this
includes b0 who prefers M and bk who prefers M ′), the difference between
those who prefer M and those who prefer M ′ is at least 0 (by part (iii) of
Lemma 7).
Now suppose b0 is a dummy post. Then summed over all real vertices of ρ
that are matched in M , the difference between those who prefer M and those
who prefer M ′ is at least 1 (by part (iii) of Lemma 7). Thus summed over
all real vertices of ρ (this includes bk who prefers M ′), the difference between
those who prefer M and those who prefer M ′ is at least 0.

All vertices whose partners in M and in M ′ are different belong to some al-
ternating path or cycle in M ⊕ M ′. Hence the difference between the number of
vertices that prefer M and those that prefer M ′ is nonnegative. In other words,
φ(M,M ′) ≥ φ(M ′,M).

Bounding the size of M . We know that M is an A-complete matching in H and it
matches all real posts in X ∪Y . We would now like to bound from below the number
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of “real edges” in M , i.e., we would like to bound from below the size of the matching
obtained after deleting those edges from M that are incident on dummy posts.

We claim that any popular matching in G has size at least 2/3 · |Mmax|, where
Mmax is a maximum size matching in G. This is because there can be no length-3
augmenting path ρ with respect to any popular matching N in N ⊕Mmax. Suppose
ρ = b0-a1-b1-a0 is such an augmenting path where a0 and b0 are unmatched in N .
Then by matching a0 to b1 and a1 to b0, we get a matching N ⊕ρ that is preferred by
both a0 and b0 while one vertex a1 prefers N to N ⊕ ρ. Thus N ⊕ ρ is more popular
than N , a contradiction to the popularity of N . Hence every augmenting path in
N ⊕Mmax has length 5 or more. Thus we have |N | ≥ 2/3 · |Mmax|.

The above bound is tight as shown by the example in Figure 3. Here A =
{a0, a1, a2}, B = {b0, b1, b2}, and let b1 be the top post of all the three applicants, let
b2 be the second ranked post of both a1 and a2, and let b0 be the third ranked post
of a2. Consider the matching N = {(a1, b1), (a2, b2)}. This is a popular matching.
In fact, the matching M = N ∪ {(a0, `(a0))} = {(a1, b1), (a2, b2), (a0, `(a0))} is an
A-complete matching in H that matches all real posts in X ∪Y (i.e., the posts b1 and
b2).
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a1

Fig. 3. The graph H corresponding to the above instance G. Let N = {(a1, b1), (a2, b2)}. In
the graph G, the matching N has a length-5 augmenting path a0-b1-a1-b2-a2-b0 with respect to it.

The maximum size matching in G is Mmax = {(a0, b1), (a1, b2), (a2, b0)}. Note
that Mmax is also a popular matching, thus popular matchings in G can have different
sizes. Observe that our algorithm could return either the matching Mmax or the
matching M since all we ask of our algorithm is to return an A-complete matching
in H that matches all real posts in X ∪ Y . We could easily modify our algorithm so
that it always returns an A-complete matching in H that matches all real posts in
X ∪ Y and the fewest number of dummy posts. We will describe this modification
in section 3.4 and show the resulting matching to be a max-size popular matching
whenever G admits popular matchings.

3.3. Proof of Theorem 5: The necessary part. We now show the other side
of Theorem 5. That is, if G admits a popular matching, then H admits an A-complete
matching. Let M∗ be a popular matching in G. We label the edges of G \M∗ by
+1 or −1 as done at the beginning of section 3: For any edge (a, b) in G \M∗, we
have label(a, b) = vote of a for b versus M∗(a). In case a is not matched in M∗, then
label(a, b) = +1 for any neighbor b of a.

A crucial property is that there is no alternating path ρ such that the edge labels
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2360 Á. CSEH, C.-C. HUANG, AND T. KAVITHA

in ρ \M∗ are 〈+1,+1,+1, · · · 〉, i.e., no three consecutive nonmatching edges in any
alternating path are labeled +1: Note that this is the same as necessary condition (i)
stated in the early part of section 3. We will use this property to prove Lemma 9.

Lemma 9. If (a, b) ∈ M∗ and b ∈ F , then b has rank better than ra in a’s
preference list.

Proof. Suppose (a, b) ∈ M∗, where b ∈ F , and b has rank worse than ra in a’s
preference list. Note that the rank of b cannot be exactly ra since there is another post
b′ /∈ F that has rank ra in a’s preference list. We know that a = M∗(b) prefers post
b′ to b. If post b′ is unmatched, then consider M∗ ⊕ p where p = M∗(a0)-a0-b-a-b′,
where a0 is an applicant such that f(a0) = b (there exists such an applicant since
b ∈ F ). The matching M∗ ⊕ p is more popular than M∗.

So suppose the post b′ is matched and let a1 = M∗(b′). If a0 = a1, then consider
the alternating cycle C = a0-b-a-b′-a0; the matching M∗ ⊕ C makes a0 and a swap
their partners and both applicants prefer M∗ ⊕ C to M∗ while nobody prefers M∗

to M∗ ⊕ C. Thus M∗ ⊕ C is more popular than M∗.
If a0 6= a1, then consider the alternating path ρ = a0-b-a-b′-a1-f(a1), where

a1 = M∗(b′). The path ρ has three consecutive nonmatching edges (a0, b), (a, b′),
(a1, f(a1)) that are labeled +1, hence M∗ ⊕ ρ is more popular than M∗. Thus we
have contradicted the popularity of M∗ in all the cases.

Let p = a1-b1-a2-b2-a3-b3 and p′ = a′1-b′1-a′2-b′2-a′3-b′3 be two length-5 alternating
paths in G with all their nonmatching edges labeled +1. Note that if bi = b′j for
some i, j ∈ {1, 2, 3}, then i = j; otherwise, p and p′ can be appropriately combined to
create an alternating path with three consecutive nonmatching edges labeled +1 and
we know there is no such alternating path in G.

Based on the matching M∗ and the edge labels on G \M∗, we partition B into
L1 ∪ L2 ∪ L3.

– Roughly speaking, L3 consists of unwanted posts, so all posts that are un-
matched in M∗ belong to L3. Similarly, posts like b3 with a length-5 alter-
nating path a1-b1-a2-b2-a3-b3 incident on them, with both the nonmatching
edges labeled +1 (see Figure 4) are in L3; mid-level posts like b2 are in L2
and top posts like b1 are in L1.
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b1
a1

a2

a3

Fig. 4. A length-5 alternating path a1-b1-a2-b2-a3-b3, where M∗(bi) = ai, for i = 1, 2, 3, and
both (a3, b2), (a2, b1) are labeled +1.

– There cannot be an edge in G between a1 and b′3 where a1-b1-a2-b2-a3-b3 and
a′1-b′1-a′2-b′2-a′3-b′3 are two length-5 alternating paths with both the nonmatch-
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ing edges labeled +1—note that this is the same as necessary condition (ii)
stated in the early part of section 3. We will maintain this invariant that
M∗(L1) ∩ nbr(L3) = ∅ while adding further posts to L1, L2, L3.

More formally, we define the partition B = L1 ∪ L2 ∪ L3 below.
0. Initialize L1 = L2 = ∅ and L3 = {b ∈ B : b is unmatched in M∗}. Let all

posts that are matched in M∗ be unmarked. In steps 1–4 we mark these posts
and add them to the sets L1, L2, L3 as described below.

1. For each length-5 alternating path ρ = a1-b1-a2-b2-a3-b3 where (a1, b1), (a2, b2),
(a3, b3) ∈M∗, and both (a2, b1) and (a3, b2) are labeled +1:

– add bi to Li (if not already there) and mark bi, for i = 1, 2, 3.
2. Repeat the following two steps until there is no unmarked post b to be added

to L2 ∪ L3 by these rules:
– If M∗(b) has no +1 edge incident on it and M∗(b) ∈ nbr(L3), then add
b to L2 and mark b.

– If M∗(b) has a +1 edge to a vertex in L2, then add b to L3 and mark b.
3. For each unmarked b:

(3.1) if M∗(b) has no +1 edge incident on it then add b to L1 and mark b;
(3.2) else add b to L2 and mark b.

Remark. If a post b is unmarked at the end of step 2, then there are two subcases:
– either M∗(b) has no +1 edge incident on it and M∗(b) /∈ nbr(L3),
– or M∗(b) = a has a +1 edge (a, b′) incident on it and b′ /∈ L2.

In the first subcase above, b will get added to L1 in (3.1) and in the second subcase
above, b will get added to L2 in (3.2). Since every post b ∈ B gets added to exactly
one of L1, L2, L3, steps 0-3 obtain a partition 〈L1, L2, L3〉 of B.

Lemma 10. We have L1 ⊆ F ⊆ L1 ∪ L2, where F is the set of top posts.

Proof. We will first show that every post in L1 is an f -post. Posts are added
to L1 in steps 1 and 3.1. Regarding posts added to L1 in step 3.1, it follows from
the description of step 3.1 that there is no +1 edge incident on the partner of such a
post. Let b be any post added to L1 in step 1. Note that there is no +1 edge incident
to M∗(b). Otherwise, we would have an alternating path ρ with respect to M∗ with
three consecutive nonmatching edges that are labeled +1 (which is forbidden since
M∗ is popular). Thus L1 ⊆ F .

We will now show that every f -post belongs to either L1 or L2. Suppose b1 =
f(a0) belongs to L3. The post b1 has to be matched in M∗. Let a1 = M∗(b1) and
we also know from the construction of the set L3 that there is an edge (a1, b2) with
b2 ∈ L2 that is labeled +1. If the vertex a0 is unmatched in M∗, then by promoting
a0 to b1 and a1 to b2, and leaving M∗(b2) unmatched, we obtain a matching that is
more popular than M∗.

Hence let us assume that a0 is matched in M∗. Consider the alternating path
M∗(a0)-a0-b1-a1-b2 with respect to M∗: This has two consecutive nonmatching edges
that are labeled +1. Thus it follows from our construction of L1, L2, L3 that M∗(a0) ∈
L3, b1 ∈ L2, and b2 ∈ L1. This contradicts our assumption that b1 ∈ L3.

Lemma 11. M∗(L1) ∩ nbr(L3) = ∅.
Before we prove the above lemma, we will show the following claim which will be

useful in proving Lemma 11.

Claim 1. If a ∈ nbr(L3) and M∗(a) = f(a), then there is an alternating path ρa
with respect to M∗ with a as an endpoint such that either |ρa| is even and the edge
labels on ρa \M∗ are 〈−1,+1,−1, . . . ,+1,+1〉 or |ρa| is odd and the edge labels on
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ρa \M∗ are 〈−1,+1,−1, . . . ,+1,−1〉, where the last edge is incident on an unmatched
post.

Proof. Posts are added to L3 in steps 0, 1, and 2. We now study each of these
cases. The set L3 was initialized to the set of posts left unmatched in M∗. So at
the end of step 0, it is the case that every a ∈ nbr(L3) has an odd length alternating
path, which is in fact an edge (a, b) labeled −1, whose one endpoint is a and the other
endpoint is an unmatched post b.

Let b3 be a post that got added to L3 in step 1. Then there is an alternating path
b3-a3-b2-a2-b1-a1 such that (ai, bi) ∈ M∗ for i = 1, 2, 3, and both (a3, b2) and (a2, b1)
are marked +1. Thus every neighbor a ∈ nbr({b3}) with M∗(a) = f(a) has an even
length alternating path ρa = a-b3-a3-b2-a2-b1-a1 where the edge labels on ρa \M∗ are
〈−1,+1,+1〉. Note that a 6= a1. Otherwise, ρa is an alternating cycle and M∗⊕ ρa is
more popular than M∗.

Thus the claim that every a ∈ nbr(L3) with M∗(a) = f(a) has a desired alter-
nating path ρa is true at the end of step 1. Let b3 be a post that got added to L3
in step 2 and let us assume that till the point b3 gets added to L3, the claim holds.
Since b3 was added to L3 in step 2, this was due to a +1 edge between a3 = M∗(b3)
and a post b2 ∈ L2 whose partner a2 = M∗(b2) regards b2 as a top post. The post
b2 ∈ L2 because its partner a2 ∈ nbr(L3). This means there is a desired alternating
path ρa2 incident on a2. Neither b3 nor b2 lies on ρa2 since all the posts in ρa2 that
belong to L2 ∪ L3 were added to L2 ∪ L3 prior to b2 joining L2 and b3 joining L3.
Consider any neighbor a of b3 that is in nbr(L3) because b3 ∈ L3 and M∗(a) = f(a).
The desired alternating path ρa is a-b3-a3-b2-a2 followed by ρa2 .

Proof of Lemma 11. We will use Claim 1 to show that M∗(L1) ∩ nbr(L3) = ∅.
Posts get added to L1 in steps 1 and 3.1 of the partition scheme. Let b1 be a post
that got added to L1 in step 1, then there is an alternating path p = a3-b2-a2-
b1-a1 where both (a3, b2) and (a2, b1) are labeled +1. It has to be the case that
b1 = f(a1) (otherwise there would be an alternating path with respect to M∗ with
three consecutive nonmatching edges labeled +1); if a1 ∈ nbr(L3), then there is an
alternating path ρa1 as described in Claim 1. If the applicants a2 and a3 do not appear
in ρa1 , then consider the alternating path p′ which consists of p followed by ρa1 . It is
easy to see that M∗⊕ p′ is more popular than M∗: A contradiction to the popularity
of M∗.

In case a2 appears in ρa1 , then we have an alternating cycle C, which is ρa1 trun-
cated until the vertex a2 followed by a2-b1-a1. This cycle has a stretch of alternating
−1 and +1 labeled nonmatching edges along with two consecutive nonmatching edges
labeled +1: these are the edge (a2, b1) and the edge incident on b2 in ρa1 from a vertex
in M∗(L3). Thus M∗ ⊕ C is more popular than M∗: A contradiction again. If a3
appears in ρa1 , then we can again construct an alternating cycle C ′ (using the a1 ; a3
subpath of ρa1 followed by the alternating path p). The matching M∗ ⊕ C ′ is more
popular than M∗ since C ′ has more +1 labeled nonmatching edges than −1 labeled
nonmatching edges. This again contradicts the popularity of M∗.

Regarding any post b added to L1 in step 3.1, as observed in the remark below
our partition scheme, we have M∗(b) /∈ nbr(L3). This completes the proof that
M∗(L1) ∩ nbr(L3) = ∅.

We will use the partition 〈L1, L2, L3〉 of B to build the following subgraph G′ =
(A ∪B,E′) of G. For each a ∈ A, include the following edges in E′:

(i) If a /∈ nbr(L3), then add the edge (a, f(a)) to E′.
(ii) If a has a neighbor of rank ≤ ra in L2, then add the edge (a, b) to E′, where
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b is a’s most preferred neighbor in L2.
(iii) If a ∈ nbr(L3), then add the edge (a, b) to E′, where b is a’s most preferred

neighbor in L3.

Lemma 12. Every edge of the matching M∗ belongs to the graph G′.

Proof. The set B has been partitioned into L1 ∪L2 ∪L3. We will now show that
for each post b0 that is matched in M∗, the edge (M∗(b0), b0) belongs to G′. We
distinguish three cases: b0 ∈ L1, b0 ∈ L2, and b0 ∈ L3.

Case 1. The post b0 ∈ L1. Hence there is no +1 edge incident on a0 = M∗(b0),
in other words, b0 = f(a0). Lemma 11 tells us that M∗(L1) ∩ nbr(L3) = ∅; hence a0
has no neighbor in L3, and by rule (i) above, the edge (a0, f(a0)) = (a0, b0) belongs
to the edge set of G′.

Case 2. Next we consider the case when b0 ∈ L2. It is easy to see that b0 has to
be a0’s most preferred post in L2, where a0 = M∗(b0). Otherwise, there would have
been an edge (a0, b1) labeled +1 with b1 ∈ L2, where b1 is a0’s most preferred post
in L2. Then either b1 ∈ L1 or b0 ∈ L3 (from how we construct the sets L1, L2, L3), a
contradiction. We now have to show that the rank of b0 in a0’s preference list is ≤ ra.
Otherwise, the edge (a0, b0) does not belong to G′.

Suppose b0 ∈ F . Since the edge (a0, b0) ∈ M∗, which is a popular matching, it
follows from Lemma 9 that b0 is ranked better than ra0 in a0’s preference list; thus
the edge (a0, b0) belongs to G′. So the case left is when b0 /∈ F . If b0 is not a0’s
most preferred post outside F , then there is the length-5 alternating path ρ = b0-
a0-b1-a1-f(a1)-M∗(f(a1)), where b1 is the most preferred post of a0 outside F and
a1 = M∗(b1). The alternating path ρ has two consecutive nonmatching edges (a0, b1)
and (a1, f(a1)) that are labeled +1. This contradicts the presence of b0 in L2 as such
a post would have to be in L3. Thus if b0 /∈ F , then b0 has to be a0’s most preferred
post outside F , i.e., b0 has rank ra0 in a0’s preference list.

Case 3. We finally consider the case when the post b0 ∈ L3. We need to show
that b0 is the most preferred post of a0 = M∗(b0) in L3. Suppose not. Let b1 be
a0’s most preferred post in L3. The post b1 has to be matched in M∗, otherwise
M∗⊕ρ is more popular than M∗, where ρ = b0-a0-b1. Since b1 ∈ L3 while F ∩L3 = ∅
(by Lemma 10), we know that there is an edge labeled +1 incident on a1 = M∗(b1).
Let this edge be (a1, b2) and let a2 be M∗(b2). So there is a length-5 alternating
path p = b0-a0-b1-a1-b2-a2 where both the nonmatching edges (a0, b1) and (a1, b2) are
labeled +1. This contradicts the presence of b1 in L3 as such a post would have to be
in L2. Thus b0 is a0’s most preferred post in L3.

The following lemma shows the relationship between the partition 〈L1, L2, L3〉
and the partition 〈X,Y, Z〉 constructed by our algorithm that builds the graph H.

Lemma 13. The set X ⊇ L1 and the set Z ⊆ L3.

Proof. In our algorithm that constructs the graph H and also the partition
〈X,Y, Z〉, the set X is initialized to F and the set Y is initialized to B \ F . As
our algorithm progresses, in each iteration of the While-loop, some f -posts get de-
moted from X to Y and similarly, some non-f -posts get demoted from Y to Z until
there is an iteration (say, iteration h + 1) where all posts in Y are odd/unreachable
in H—this is the last iteration of the While-loop.

For any 1 ≤ k ≤ h+ 1, let Tk (similarly, Fk) be the set of posts that got demoted
from Y to Z (resp., X to Y ) in the k-th iteration of the While-loop in our algorithm.
We have Th+1 = ∅.
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Note that F1 = ∅ since Z is initialized to ∅, so in the first iteration of our
algorithm, every f -post b has a neighbor a ∈ A \ nbr(Z) such that f(a) = b. Thus no
post is demoted from X to Y in the first iteration.

The graph H1 is the subgraph of G where each a ∈ A has at most two neighbors:
its top post and when ra <∞, its neighbor of rank ra. The set T1 is the set of even
non-f -posts in H1. We will use the following claims and finish the proof of this lemma
(the proofs of Claims 2–4 are given after the proof of Lemma 13).

Claim 2. The set T1 ⊆ L3.

Claim 3. For any 1 ≤ k ≤ h, if
⋃k
i=1 Ti ⊆ L3, then Fk+1 ⊆ L2.

Claim 4. For any 2 ≤ k ≤ h, if
⋃k
i=2 Fi ⊆ L2, then Tk ⊆ L3.

Claim 2 tells us that T1 ⊆ L3. We now use Claims 3 and 4 alternately to conclude
that for every 1 ≤ k ≤ h, we have ∪k+1

i=2 Fi ⊆ L2 and ∪ki=1Ti ⊆ L3.

Thus the set Z = ∪hi=1Ti is a subset of L3 and the set F \X = ∪h+1
i=2 Fi is a subset

of L2. Since F \X ⊆ L2, it follows that X ⊇ F \L2. We know that F \L2 = L1 (by
Lemma 10), thus X ⊇ L1.

Proof of Claim 2. Any post in T1 that is left unmatched in M∗ has to belong
to L3. Similarly, any b0 ∈ T1 that is matched in M∗ to an applicant a0 that ranks
b0 worse than ra0 has to belong to L3: This is because there is a length-5 alternating
path p = b0-a0-b1-a1-b2-a2 where b1 is a post of rank ra0 in a0’s preference list,
a1 = M∗(b1), and b2 = f(a1). The path p has two consecutive nonmatching edges
that are labeled +1, so b0 ∈ L3.

Now consider any b0 ∈ T1 that is matched in M∗ to an applicant a0 such that
the rank of (a0, b0) is ra0 . So a0 is a neighbor of b0 in H1. Since b0 is even in H1, all
the neighbors of b0 in H1 are odd and thus they have to be of degree exactly 2 in H1
(recall that all applicants have degree at most 2 in H1). Thus the neighbors of these
applicants are again even. Let C be the connected component containing b0 in H1.
It is easy to see that in C, all posts are even, all applicants are odd and have degree
exactly 2, and the number of posts is more than the number of applicants. (In fact,
C is a tree with b0 as the root and the number of posts in C is one plus the number
of applicants in C.)

If b0 ∈ L2, then a0’s other neighbor in C, which is f(a0), has to be in L1 since
there is a +1 edge from a0 to f(a0). This means f(a0) is matched to an applicant a′0
that ranks it as a top post, so the applicant a′0 is a neighbor of f(a0) in C. There
has to be another neighbor of a′0 in C; call this vertex b1. The important observation
is that b1 cannot be in L3 as that would violate Lemma 11 since a′0 ∈ M∗(L1). So
b1 ∈ L2 and this means b1 is matched to an applicant a1 that ranks it ra1 , in other
words, a1 is a neighbor of b1 in C. So f(a1) has to be in L1 and we continue in
this manner marking all f -posts in C as elements of L1 and all non-f -posts in C as
elements of L2.

This means all posts in C are matched to their neighbors in C. However, this
is not possible as there are more posts than applicants in C. This contradicts our
assumption that b0 ∈ L2, in other words, b0 has to be in L3. Thus T1 ⊆ L3.

Proof of Claim 3. The set Fk+1 is the set of posts that got demoted from X to
Y in the (k + 1)th iteration of the While-loop: This means each post b in Fk+1 had
no applicant outside nbr(∪ki=1Ti) that regarded b as an f -post. In other words, every
applicant a such that f(a) = b belongs to nbr(∪ki=1Ti). Since ∪ki=1Ti ⊆ L3, each such
applicant a is present in nbr(L3).
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Let Fk+1 = {b1, . . . , bh}. For 1 ≤ i ≤ h, let (ai, bi) ∈ M∗: If f(ai) = bi, then
bi ∈ L2 (because ai ∈ nbr(L3)); else there is an edge (ai, f(ai)) that is labeled +1
incident on ai and hence bi cannot be in L1. Thus Fk+1 ∩L1 = ∅, i.e., Fk+1 ⊆ L2 (by
Lemma 10).

Proof of Claim 4. Let us assume that we have proved Claim 4 for all smaller
values of k. That is, for j ≤ k − 1, we have shown that if ∪ji=2Fi ⊆ L2, then the set
Tj ⊆ L3. This is indeed the case for k = 2 since we know T1 ⊆ L3 (by Claim 2).
Using Claims 3 and 4 (for j ≤ k − 1) alternately now, it follows that Tj ⊆ L3 for
j ≤ k − 1. Thus ∪k−1

i=1 Ti ⊆ L3. We will now show that Tk is also a subset of L3.
Let Hk denote the graph H in step 4 in the kth iteration of the While-loop in our

algorithm. This is the graph where we determine the even posts that will get demoted
from Y to Z. In step 4 of the kth iteration of the While-loop, the set X = F \∪ki=2Fi
(call this set Xk), Z = ∪k−1

i=1 Ti (call this set Zk), and let Yk be the set of posts
outside Xk ∪ Zk. The edge set of Hk is as follows:

– for each a ∈ A: If the rank of a’s most preferred post b in Yk is ≤ ra, then
the edge (a, b) belongs to Hk.

– for a ∈ A \ nbr(Zk): The edge (a, f(a)) is also present in Hk.
Let S be the set of non-f -posts that are odd/unreachable in the graph H1.

Let us refer to posts in S as s-posts. We will now show that all s-posts in L2 are
odd/unreachable in Hk; so every s-post that is even in Hk has to be in L3, in other
words, Tk ⊆ L3. Let G′0 be the subgraph of G′ with the set of posts restricted to
L1 ∪ L2 (see Figure 5). Consider the subgraph G′k of G′0 obtained by deleting edges
missing in Hk from G′0.

L1

Xk ∩ L2

Yk ∩ L2

Fig. 5. The set of posts in G′0 can be viewed as L1 ∪ (Xk ∩ L2) ∪ (Yk ∩ L2). All s-posts in L2
are in Yk ∩ L2.

We now show that G′k contains all edges in G′0 incident on s-posts in L2, by
showing that any edge (a, b) incident on an s-post b ∈ L2 in G′0 is present in Hk also.
Since the edge (a, b) belongs to G′0, the post b has to be ranked ra in a’s preference list
and moreover, there is no f -post in L2 of rank better than ra in a’s list. If the edge
(a, b) does not exist in Hk, then it means there is some f -post in Yk that a prefers
to b. All f -posts in Yk are in ∪ki=2Fi and we are given that ∪ki=2Fi ⊆ L2. Since we
know there is no f -post in L2 that a prefers to b, it follows that b has to be a’s most
preferred post in Yk and so the edge (a, b) belongs to Hk. Thus G′k, whose edge set
is the intersection of the edge sets of G′0 and Hk, contains all edges in G′0 incident on
s-posts in L2.
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Every post in L1∪L2 is odd/unreachable in G′0 since the matching M∗ restricted
to the edge set of G′0 is (L1∪L2)-complete. We have shown that G′k contains all edges
in G′0 incident on s-posts in L2: Thus all s-posts in L2 are odd/unreachable in G′k.
It is easy to see that all top ranked edges in G′0 incident on f -posts in Yk ∩ L2 are
also present in G′k: each such post has a degree 1 neighbor in G′k, thus all f -posts in
Yk ∩ L2 are also odd/unreachable in G′k.

We now claim that all posts in L1 are also odd/unreachable in G′k. We first show
that all edges incident on L1 in G′0 are present in Hk. This is because each edge (a, b)
in G′0 such that b ∈ L1 is incident on an applicant a ∈ A \ nbr(L3) such that b = f(a)
and we know the graph Hk has (a, f(a)) edges for all a ∈ A \ nbr(Zk) ⊇ A \ nbr(L3)
since Zk = ∪k−1

i=1 Ti ⊆ L3.
In G′k, each vertex b ∈ L1 either has a degree 1 neighbor (in which case our claim

is true) or it has a degree 2 neighbor a whose other neighbor is in Yk ∩ L2, i.e., it is
not in Xk ∩ L2. This is because a cannot have two neighbors in Xk in the graph Hk

and we know L1 ⊆ Xk since all f -posts missing in Xk (these are posts in ∪k−1
i=2 Fi) are

absent from L1 also. Since all posts in Yk ∩ L2 are odd/unreachable in G′k, it follows
that all posts in L1 are also odd/unreachable in G′k.

Let us now compare the graph Hk with the graph G′k. The graph Hk has ad-
ditional vertices: These are the ones in Yk ∩ L3 and the new edges in Hk (new
relative to G′k) belong to the following two classes: (i) nbr(L3) × (Yk ∩ L3) and
(ii) A × (L1 ∪ (Yk ∩ L2)). This is because every edge incident on Xk ∩ L2 in Hk

(these are all top-ranked edges) is present in G′0 as well.
Consider any new edge (a, b) in Hk of type (i), i.e., (a, b) ∈ nbr(L3) × (Yk ∩ L3).

Since (a, b) belongs to Hk, it must be the case that a’s most preferred neighbor in Yk
is b. So the post b is ranked ra in a’s list and a has no neighbor of rank better than
ra in Yk. Recall that G′0 has no edge in nbr(L3) × L1. So the only edge that can be
incident on a in the graph G′k is an edge to f(a) in Xk ∩ L2.

Consider any connected component C in G′k that contains an s-post in L2: Every
post here belongs to either L1 or Yk ∩L2, in other words, there is no post in Xk ∩L2
here. This is because there is no applicant a in G′k with neighbors in Yk ∩ L2 and
Xk ∩L2 as this means a has two neighbors in L2, which is forbidden in G′0. Similarly,
there is no applicant a′ in G′k with neighbors in L1 and Xk ∩ L2 as this means a has
two neighbors in Xk, which is forbidden in Hk. Thus C has no post from Xk ∩ L2.

So the new edges in Hk of type (i) do not touch components in G′k that contain
s-posts in L2. All the new edges incident upon these components have their endpoints
in L1 ∪ (Yk ∩ L2). These posts are already odd/unreachable in G′k. So these posts
remain odd/unreachable in Hk. Hence every s-post in L2 is odd/unreachable in Hk.
This completes the proof of Claim 4.

The augmented graph G′. The matching M∗ need not be A-complete. How-
ever, it would help us to assume that M∗ is A-complete, so we augment M∗ by adding
(a, `(a)) edges for every a ∈ A that is unmatched in M∗. Recall that `(a) is the dummy
last resort post of a. However, the augmented matching M∗ need not belong to the
graph G′ any longer—hence we augment G′ also by adding some dummy vertices and
some edges as described below.

The augmentation of G′ is analogous to phase (III) of our algorithm—we augment
G′ as follows: Let L2 = L2 ∪D, where D = {`(a) : a ∈ A and ra =∞}; if nbr({a}) ⊆
L1, then add (a, `(a)) to G′. Thus when compared to G′, the augmented G′ has some
new vertices (all these are dummy last resort posts) and some new edges—each new
edge is of the form (a, `(a)) where `(a) is a’s only neighbor in L2 ∪ L3. These new

D
ow

nl
oa

de
d 

08
/3

0/
20

 to
 1

39
.1

9.
61

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

POPULAR MATCHINGS WITH ONE-SIDED TIES 2367

edges are enough to show the following lemma.

Lemma 14. The augmented matching M∗ belongs to the augmented graph G′.

Proof. Before the augmentations of G′ and M∗, the matching M∗ belonged to
the graph G′ (by Lemma 12). We now need to show that if a is left unmatched in
M∗ (before augmentation), then ra =∞ and all of a’s neighbors belong to L1.

Suppose a is left unmatched in M∗ and ra < ∞. Since ra < ∞, there is a post
b /∈ F such that the post b has rank ra in a’s preference list. Consider the alternating
path p = a-b-a′-f(a′)-a′′, where a′ = M∗(b) and a′′ = M∗(f(a′)). The matching
M∗⊕p matches a to b and promotes a′ to its top post f(a′) and leaves a′′ unmatched.
Thus M∗ ⊕ p is more popular than M∗, a contradiction.

So let us assume ra = ∞ and a was left unmatched in M∗. Suppose a has some
neighbor b0 outside L1. The post b0 has to be in F because ra = ∞, i.e., a has no
neighbors outside F . Since F ⊆ L1 ∪ L2 (by Lemma 10), it follows that b0 ∈ L2.
Let a0 = M∗(b0); if b0 6= f(a0), then we again have an alternating path p = a-b0-a0-
f(a0)-a1, where a1 = M∗(f(a0)) such that M∗ ⊕ p is more popular than M∗. This
contradicts the popularity of M∗.

So suppose b0 = f(a0) and b0 ∈ L2 because a0 ∈ nbr(L3). We know from Claim 1
that there is a desired alternating path ρa0 , where either the last two nonmatching
edges are labeled +1 or the last post in ρa0 is unmatched. Consider the alternating
path ρ which is the path a-b0-a0 followed by the path ρa0 . It is easy to see that M∗⊕ρ
is more popular than M∗, a contradiction to the popularity of M∗.

Since the augmented M∗ is an A-complete matching, it follows from Lemma 14
that the augmented graph G′ admits an A-complete matching. Theorem 15 uses
Lemma 13 to show that if the augmented graph G′ admits an A-complete matching,
then so does the graph H constructed by our algorithm.

Theorem 15. If H does not admit an A-complete matching, then the augmented
graph G′ cannot admit an A-complete matching.

Proof. We will use G′ to refer to the augmented graph G′ in this proof. The rules
for adding edges in H and in G′ are exactly the same—the only difference is in the
partition 〈X,Y, Z〉 on which H is based versus the partition 〈L1, L2, L3〉 on which G′

is based. If 〈X,Y, Z〉 = 〈L1, L2, L3〉, then the graphs H and G′ are exactly the same.
Figure 6 denotes how the partition 〈X,Y, Z〉 can be modified to the partition

〈L1, L2, L3〉. We know from Lemma 13 that X ⊇ L1 and Z ⊆ L3. Consider the
subgraph G′′ of G′ induced on the vertex set A′ = (A\nbr(Z))∪(nbr(Z)∩nbrH(Y ∩L3))
and B′ = X ∪ Y . This is the part bounded by the box in Figure 6. In our analysis,
we can essentially separate G′ into G′′ and the part outside G′′ due to the following
claim that says G′ has no edges between A′ and Z.

Claim 5. G′ has no edge (a, b) where a ∈ A′ and b ∈ Z.

Proof. Any applicant a ∈ A′ has to belong to either A \ nbr(Z) or to nbr(Z) ∩
nbrH(Y ∩ L3) (see Figure 6). There is obviously no edge in G between a vertex in
A \ nbr(Z) and any vertex in Z. So suppose a ∈ nbr(Z) ∩ nbrH(Y ∩ L3). For b ∈ L3,
if the edge (a, b) is in G′, then b has to be a’s most preferred post in L3. We will now
show that b ∈ Y ∩ L3, equivalently b /∈ Z. Thus G′ has no edge (a, b) where a ∈ A′
and b ∈ Z.

Since a ∈ nbrH(Y ∩ L3), the graph H contains an edge between a and some
b′ ∈ Y ∩ L3. Recall that an element of Y ∩ L3 is a real post in Y . By the rules of
including edges in H, it follows that the rank of b′ in a’s preference list is ≤ ra. The
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L1

Y ∩ L2

L2

A \ nbr(Z)

Z

A′

B′

A′′

X ∩ L2

nbr(Z) \ nbrH(Y ∩ L3)

nbr(Z) ∩ nbrH(Y ∩ L3)

Y ∩ L3

Fig. 6. The part of G′ inside the box will be called G′′. We show that the graph G′ has no edge
between any applicant in A′ and any post in Z.

entire set L3 cannot contain any post of rank better than ra for any a ∈ A since any
post of rank better than ra in a’s list belongs to F while L3 ∩F = ∅ (by Lemma 10).
So b′ has rank ra in a’s list. Thus a’s most preferred neighbor in L3 belongs to Y ∩
L3.

Let G0 be the subgraph of G′′ obtained by deleting from G′′ the edges that are
absent in H. Thus G0 is a subgraph of both G′ and H. The following claim (whose
proof is given after the proof of Theorem 15) will be useful to us.

Claim 6. All posts in (X ∩L2)∪ (Y ∩L3) are odd/unreachable in G0. Moreover,
every edge (a, b) in G′ that is missing in H satisfies b ∈ (X ∩ L2) ∪ (Y ∩ L3).

Consider the graph G1 whose edge set is the intersection of the edge sets of G′

and H. Equivalently, G1 can be constructed by adding to the edge set of G0, the
edges incident on A′′ = nbr(Z) \ nbrH(Y ∩L3) that are present in both G′ and H (see
Figure 6). This is due to the fact that G′ has no edge in A′ × Z.

We claim that all posts in (X ∩L2)∪ (Y ∩L3) are odd/unreachable in G1. This is
because Claim 6 tells us that each post in this set is odd/unreachable in G0, and due to
the absence of A′×Z edges in G′, the graph G1 has no new edge (new when compared
to G0) incident on the set A′ of applicants in G0. Hence all posts in (X∩L2)∪(Y ∩L3)
remain odd/unreachable in G1.

Claim 6 also tells us that all edges in G′ that are missing in H are incident on
posts in (X ∩ L2) ∪ (Y ∩ L3). We know that all these posts are odd/unreachable in
G1, hence G′ has no new edge (new when compared to G1) on posts that are even
in G1. Thus the size of a maximum matching in G′ equals the size of a maximum
matching in G1. This is at most the size of a maximum matching in H, since G1 is a
subgraph of H. Hence if H has no A-complete matching, then neither does G′.

Proof of Claim 6. We will now show that all posts in (X ∩ L2) ∪ (Y ∩ L3) are
odd/unreachable in G0. Let a be an applicant with degree 2 in the graph G0 and let
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b1 and b2 be the two neighbors of a, where b1 is the more preferred neighbor of a. We
claim either (i) b1 ∈ X ∩ L2 and b2 ∈ Y ∩ L3 or (ii) b1 ∈ L1 and b2 ∈ Y ∩ L2. This is
due to the following reasons.

– There is no applicant in G0 with edges to both a post in L1 and post in
X ∩ L2. If there was such an applicant a, then a would have two neighbors
in the set X, which is forbidden in H. Recall that any edge in G0 is an edge
in H as well.

– There is no applicant in G0 with edges to both a post in X ∩ L2 and a post
in Y ∩L2. If there was such an applicant a, then a would have two neighbors
in the set L2, which is forbidden in G′. Recall that any edge in G0 is an edge
in G′ as well.

– There is no applicant in G0 with edges to both a post in Y ∩ L2 and a post
in Y ∩L3. If there was such an applicant a, then a would have two neighbors
in the set Y , which is forbidden in H.

– There is no applicant a in G0 with edges to both a post in L1 and a post in
Y ∩ L3. This is because G′ cannot contain such a pair of edges as it is only
applicants in A \ nbr(L3) that are adjacent to posts in L1.

Thus in the graph G0, vertices in (X ∩L2)∪ (Y ∩L3) and those in L1 ∪ (Y ∩L2)
belong to different connected components. Note that all dummy posts belong to
Y ∩ L2. So none of these posts belongs to any connected component in G0 that
contains vertices in (X ∩ L2) ∪ (Y ∩ L3). Consider the subgraph H ′ of H, obtained
by restricting the set of posts in H to real posts in X ∪ Y . All real posts in X ∪ Y
are odd/unreachable in H ′. Since (X ∩L2)∪ (Y ∩L3) consists of real posts, all these
posts are odd/unreachable in H ′.

We now claim that all posts in (X ∩ L2) ∪ (Y ∩ L3) remain odd/unreachable
in G0. In the first place, every edge (a0, b0) in H ′ incident on any vertex b0 ∈ Y ∩L3
is present in G′′ as well. This is because a0 ∈ A′ and if b0 ∈ Y ∩ L3 is the most
preferred post in Y for applicant a0, then the rank of b0 in a0’s preference list is ra0

and thus b0 is also a0’s most preferred post in L3, so the edge (a0, b0) belongs to the
graph G′′. Similarly every edge (a1, b1) in H ′ incident on any post b1 ∈ X ∩ L2 is
present in G′′ as well—this is because a1 ∈ A′ and b1 has to be f(a1) for the edge
(a1, b1) to exist in H ′. Thus b1 is also a1’s most preferred post in L2. Hence all edges
in H ′ incident on posts in (X ∩ L2) ∪ (Y ∩ L3) are present in G0.

Let b be any post in (X ∩ L2) ∪ (Y ∩ L3). The connected component in G0 that
contains b can be obtained by taking the connected component containing b in H ′ and
deleting all vertices in L1 ∪ (Y ∩L2) from this component. Since no edge incident on
b has been deleted here and because b is odd/unreachable in the starting component,
it follows that b is odd/unreachable in G0.

We will now show the second part of Claim 6: Every edge (a, b) in G′ that is
missing in H satisfies b ∈ (X ∩L2)∪ (Y ∩L3). We partitioned the set B of posts into
five sets (refer to Figure 6). These are L1, X ∩ L2, Y ∩ L2, Y ∩ L3, and Z. We will
now show that every edge in G′ that is incident on L1 ∪ (Y ∩L2)∪Z is present in H
also.

– Any edge (a, b) in G′ where b ∈ L1 is such that f(a) = b and a ∈ A \ nbr(L3).
Since L3 ⊇ Z (by Lemma 13), this means a ∈ A \ nbr(Z). Thus H also
contains the edge (a, b).

– Any edge (a, b) in G′ where b ∈ Y ∩ L2 is such that b is a’s most preferred
post in L2 and the rank of b in a’s preference list is ≤ ra. Note that Y \L2 =
(Y ∩ L3) ⊆ B \ F (by Lemma 10). Thus the rank of a’s most preferred post
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in Y \ L2 is ≥ ra and hence no post in Y \ L2 can be ranked better than b.
So the post b is, in fact, a’s most preferred post in Y . Thus the edge (a, b)
belongs to H as well.

– Any edge (a, b) in G′ where b ∈ Z is such that b is a’s most preferred post
in L3. Since L3 ⊇ Z, this means b is a’s most preferred post in Z. Thus H
also contains the edge (a, b).

Thus every edge (a, b) in G′ that is missing in H satisfies b ∈ (X ∩ L2) ∪ (Y ∩ L3).

Theorem 15, along with Lemma 14, finishes the proof of the necessary part of
Theorem 5, and this completes the proof of correctness of our algorithm.

3.4. Finding a max-size popular matching in G. If G admits a popular
matching, then our algorithm currently finds some popular matching in G, not neces-
sarily a max-size popular matching. We could easily modify our algorithm so that it
always returns a max-size popular matching in G. This requires the following minor
changes in our algorithm:

1. Compute the graph H exactly as done in phases (I)–(III) of our algorithm
and find a maximum matching M in the subgraph of H restricted to real
posts in X ∪ Y and their neighbors.

2. (i) Add the edges of H on posts in Z and augment M .
(ii) Add the edges of H on dummy posts and augment M further.

Step 1 above is identical to our original algorithm, the minor change in our revised
algorithm is in step 2. While our original algorithm did not show any distinction
between the posts in Z and the dummy posts while augmenting M , here we give
precedence to the posts in Z. Thus M is a maximum matching in H that matches all
real posts in X ∪ Y (as before) and subject to this, as many posts in Z as possible,
or equivalently, as few dummy posts as possible.

Suppose G admits a popular matching. Then we know that M is an A-complete
matching in H. But this includes edges incident on dummy posts as well. Let M ′

denote the matching M after deleting all edges incident on dummy posts from M .
Theorem 16 below shows that M ′ is a max-size popular matching in G.

Theorem 16. Let M∗ be a popular matching in G = (A ∪ B,E). Then |M∗| ≤
|M ′|.

Proof. Let H̃ denote the graph H without the edges incident on dummy posts.
This is the graph obtained at the end of step 2(i) in our revised algorithm above. It
follows from the construction of M that M ′ is a max-size matching in H̃.

Corresponding to the popular matching M∗, we construct the graph G′ as done in
the early part of this section. This is the graph G′ before augmenting it with dummy
posts and let us denote this graph by G̃′. We know from Lemma 12 that M∗ belongs
to G̃′, thus the size of a maximum matching in G̃′ is at least k, where |M∗| = k.

Consider the graph G̃1 whose edge set is the intersection of the edge sets of G̃′
and H̃. Analogous to Claim 6, we have the following claim here.

Claim 7. All posts in (X ∩L2)∪ (Y ∩L3) are odd/unreachable in G̃1. Moreover,
every edge (a, b) in G̃′ that is missing in H̃ satisfies b ∈ (X ∩ L2) ∪ (Y ∩ L3).

We will first finish the proof of Theorem 16 and then we will prove Claim 7.
Claim 7 tells us that G̃′ has no new edge (new when compared to G̃1) on posts
that are even in G̃1. Thus the size of a maximum matching in G̃′ equals the size
of a maximum matching in G̃1. We have already seen that the size of a maximum
matching in G̃′ is at least k, thus the size of a maximum matching in G̃1 is also at
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least k. Since G̃1 is a subgraph of H̃, the size of a maximum matching in H̃ is also
at least k. Thus |M ′| ≥ k.

Proof of Claim 7. The edge set of the graph G̃1 is obtained by the intersection
of the edge sets of G̃′ and H̃. Equivalently, G̃1 is obtained by deleting the edges
incident on dummy posts from the graph G1 (defined in the proof of Theorem 15).
It was shown in the proof of Theorem 15 that all posts in (X ∩ L2) ∪ (Y ∩ L3) are
odd/unreachable in G1.

All the edges in G1 that are missing in G̃1 are incident on dummy posts and these
posts are in Y ∩L2. Since all posts in (X ∩L2)∪ (Y ∩L3) are odd/unreachable in G1
and the edges that got deleted from G1 are incident on posts in Y ∩L2, it follows that
all posts in (X ∩ L2) ∪ (Y ∩ L3) remain odd/unreachable in the resulting graph G̃1.

Regarding the second part of the claim, every edge of G̃′ that is missing in H̃ is
an edge of G′ that is missing in H. We know from Claim 6 that every such edge (a, b)
satisfies b ∈ (X ∩ L2) ∪ (Y ∩ L3). This finishes the proof of Claim 7.

Size of a max-size popular matching. We showed at the end of section 3.2 that
every popular matching in G has size at least 2/3 · |Mmax|, where Mmax is a max-size
matching in G. We will now show that there are instances where a max-size popular
matching need not be much larger than 2/3 · |Mmax|. Consider the following instance
G = (A ∪ B,E) on 6k vertices (see Figure 7)—the vertices can be partitioned into
k groups here: The first group consists of a1

0, a
1
1, a

1
2, b

1
0, b

1
1, b

1
2 whose preferences are

identical to the vertices a0, a1, a2, b0, b1, b2 in the instance in Figure 3 (see Figure 7
also); the tth group, for 2 ≤ t ≤ k, consists of six vertices at0, a

t
1, a

t
2, b

t
0, b

t
1, b

t
2. The

preferences of the vertices in the tth group, for 2 ≤ t ≤ k, are as follows:
– bt1 is the top post of all the 3 applicants at0, a

t
1, a

t
2,

– bt2 is the second ranked post of both at1 and at2,
– bt0 is the fourth ranked post of at2,
– b10 (which is a post in the first group) is the third ranked post of at2.

a1
1

a1
2

a1
0

b11

b12

b10

1
2

1
2
3

a2
1

a2
2

a2
0

b21

b22

b20

1
2

1
2
43

a3
1

a3
2

a3
0

b31

b32

b30

1
2

1
2
43

Fig. 7. The instance G corresponding to k = 3, i.e., on 6k = 18 vertices. Note that b10 is the
common third ranked post of all applicants at

2 for 1 ≤ t ≤ k.

The instance G admits a perfect matching {(at0, bt1), (at1, b
t
2), (at2, b

t
0) : 1 ≤ t ≤ k},

thus |Mmax| = 3k. The instance G also admits a popular matching {(a1
0, b

1
1), (a1

1, b
1
2),

(a1
2, b

1
0)}∪{(at1, bt1), (at2, b

t
2) : 2 ≤ t ≤ k} of size 2k+1. Note that no popular matching

can match the post bt0, for any t ∈ {2, . . . , k}. Suppose M is a matching that matches
bt0, i.e., the edge (at2, b

t
0) ∈M for some t, where 2 ≤ t ≤ k. It is easy to show that M

is not popular.
We can assume that b10 is matched in M , otherwise we get a more popular match-
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ing by promoting at2 to b10. Similarly, we can assume that bt1 and bt2 are matched in
M for all 1 ≤ t ≤ k. Consider the following alternating path ρ with respect to M :

ρ = bt0 − at2 − b10 − as2 − bs2 − as1 − bs1 − as0,

where as2 is the vertex matched to b10 in M . This means the post bs2 is matched
to its other neighbor as1 and so bs1 has to be matched to as0. The path ρ has three
consecutive nonmatching edges (at2, b

1
0), (as2, b

s
2), and (as1, b

s
1) that are labeled +1.

Hence M ⊕ ρ �M , thus M is not popular. So the size of any popular matching in G
is at most 3 + 2(k − 1) = 2k + 1, which is (2/3 · |Mmax|) + 1.

3.5. Running time of our algorithm. We now analyze the running time of
our algorithm. Observe that we can maintain the most preferred posts in X,Y , and Z
for all applicants over all iterations in O(m) time, where m is the number of edges in
G. To begin with, the most preferred non-f -post for all applicants can be determined
in O(m) time. Thereafter, whenever a post b moves from X to Y (similarly, from Y
to Z), we charge b a cost of the degree of b to pay for checking if any of its neighbors
now has b as its most preferred post in Y (resp., Z).

Let n be the number of vertices in G. The number of iterations is O(n) and the
most expensive step in each iteration is finding a maximum matching in a subgraph
where each vertex in A has degree at most 2. This step can easily be performed in
O(n) time. Thus the running time of our algorithm is O(n2). Hence we can deduce
Theorem 2 stated in section 1.

There are instances on O(n) vertices and O(n) edges where our algorithm takes
Θ(n2) time. Consider the example given in Figure 8: Here there are 2n+1 applicants
and 2n + 2 posts and the number of edges is 5n + 2. For each 1 ≤ i ≤ n, we have
f(ai) = f(a′i) = fi and si is the most preferred non-f -post for both ai and a′i. For
a0, we have f(a0) = f0 and a0’s most preferred non-f -post is s0.
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Fig. 8. The preferences of applicants are indicated on the edges. Our algorithm runs for n + 1
iterations here.

In the starting graph H1, there is exactly one post that is even in Y1: This is
s0 and so s0 moves from Y1 to Z1. In the second iteration, f0 has no applicant in
A \ nbr(Z) that regards it as a top post and this causes the demotion of f0 from X2
to Y2. Now the post f0 is the most preferred post in Y2 for a1 and this makes s1 even
in Y2 and causes s1 to move from Y2 to Z2.

This makes both a1 and a′1 belong to nbr(Z), and hence f1 gets isolated in H3
and so f1 moves from X3 to Y3. Now f1 becomes the most preferred post in Y3
for a2 and this causes s2 to move from Y3 to Z3 and so on. Thus our algorithm
runs for n + 1 iterations. This instance admits popular matchings; for instance,
{(a0, f0), (ai, fi), (a′i, si) : 1 ≤ i ≤ n} is a popular matching here.
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4. Our NP-hardness result. Given a matching M in G = (A ∪ B,E), it was
shown in [3] that M can be tested for popularity in O(

√
|V | · |E|) time (even in the

presence of ties), where |V | = |A∪B|. Thus the 2-sided popular matching problem in
G with 1-sided ties is in the complexity class NP. We now show the NP-hardness of
the 2-sided popular matching problem in G with 1-sided ties using the (2,2)-e3-sat
problem.

Recall that the (2,2)-e3-sat problem takes as its input a Boolean formula I in
CNF, where each clause contains three literals and every variable appears exactly twice
in unnegated form and exactly twice in negated form in the clauses. The problem is
to determine if I is satisfiable or not and this problem is NP-complete [2].

Constructing a popular matching instance G = (A∪B,E) from I. Let I have m
clauses and n variables. The instance G constructed consists of n variable gadgets, m
clause gadgets, and some interconnecting edges between these; see Figure 9. A variable
gadget representing variable vj , for 1 ≤ j ≤ n, is a 4-cycle on vertices aj1 , bj1 , aj2 ,
and bj2 , where aj1 , aj2 ∈ A and bj1 , bj2 ∈ B. A clause gadget representing clause Ci,
for 1 ≤ i ≤ m, is a subdivision graph of a claw. Its edges are divided into three classes:
ci ∈ B is at the center, the neighbors of ci are xi1 , xi2 , xi3 ∈ A, and finally, each of
xi1 , xi2 , xi3 is adjacent to its respective copy in Yi = {yi1 , yi2 , yi3}, where Yi ⊆ B.

A vertex in Yi represents an appearance of a variable. For instance, y31 is the
first literal of the third clause. Each of the vertices in Yi is connected to a vertex
in the variable gadget via an interconnecting edge. Vertex yik is connected to the
gadget standing for variable j if the kth literal of the ith clause is either vj or ¬vj .
If it is vj , then the interconnecting edge ends at aj1 , else at aj2 . The preferences of
this instance can be seen in Figure 9. The constructed graph trivially satisfies both
conditions claimed in section 1, i.e., every vertex in A has a strict preference list of
length 2 or 4 and every vertex in B has either a strict preference list of length 2 or a
single tie of length 2 or 3 as a preference list.

Constructing a truth assignment in I, given a popular matching M in G. The
graph G is as described above. Claim 8 states that any popular matching M in G has
a certain structure.

Claim 8. Any popular matching M in G has to obey the following properties.
– M avoids all interconnecting edges.
– M is one of the two perfect matchings on any variable gadget; i.e., for each
j, the edges of M , restricted to the gadget corresponding to variable vj, are
either (i) (aj1 , bj1) and (aj2 , bj2), or (ii) (aj1 , bj2) and (aj2 , bj1).

– M leaves exactly one vertex per clause i unmatched and this unmatched vertex
yik is adjacent to an ajt that is matched to bj1 .

Proof. Label each edge (a, b) in G \M by the pair (α, β), where α ∈ {±1} is
a’s vote for b versus M(a) and β ∈ {±1, 0} is b’s vote for a versus M(b). Our first
observation is that every ci, for 1 ≤ i ≤ m, and every bj1 , for 1 ≤ j ≤ n, must be
matched in M . That is because these vertices are the top choices for each of their
neighbors, hence if one of them is left unmatched, then there would be an edge labeled
(+1,+1) incident to an unmatched vertex. This contradicts the popularity of M .

Having established that ci is matched for all 1 ≤ i ≤ m, we can assume without
loss of generality that (ci, xi3) ∈ M for a chosen clause gadget i. Also, the edges
(xi1 , yi1) and (xi2 , yi2) must be in M , because they are the top ranked edges of yi1
and yi2 , respectively. Let us now investigate an arbitrary variable gadget j for some
1 ≤ j ≤ n. Again, without loss of generality we can assume that (aj1 , bj1) ∈ M . We
now claim that (aj2 , bj2) ∈M as well.
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ci1

xi1

xi2

xi3

yi1

yi2

yi3

1

1

1 1
1

1

2 1

2 1

2 1

2

2

2

aj1 bj1

aj2 bj2

1 1

4

11

1

4 1

2

3

2

3

(-1,0)

(+1,0)

(+1,0)

(+1,0)

(-1,+1) (+1,-1)

(+1,0)

(+1,0)

(-1,+1)

(-1,+1)

Fig. 9. A clause gadget, a variable gadget, and the structure of the entire construction with
a variable that appears at the second place in the first clause in unnegated form and at the third
place in the second clause in negated form. The thick red matching corresponds to a true variable.
(Figure appears in color online.)

Suppose (aj2 , bj2) /∈ M . Since M is a maximal matching, (aj2 , yik) ∈ M for
some ik. Based on the above described structure of the clause gadgets, the edges
(xik , ci), (xik+1 , yik+1), and (xik+2 , yik+2) are in M , where the subscripts are taken
modulo 3. Consider the following augmenting path p with respect to M :

ρ = bj2 − aj1 − bj1 − aj2 − yik − xik − ci − xik+1 − yik+1 .

We have M ⊕ p �M , which contradicts the popularity of M . Thus (aj2 , bj2) ∈M .
An analogous argument proves that if (aj2 , bj1) ∈ M for some j, then (aj1 , bj2)

has to be in M . The last observation we make is that if yik is unmatched in M , then
its interconnecting edge leads to an ajt that is matched to bj1 . Otherwise, (yik , ajt)
would be labeled (+1,+1) with one vertex unmatched, a contradiction again to the
popularity of M . This finishes the proof of Claim 8.
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We assign true to all variables vj such that M ⊇ {(aj1 , bj1), (aj2 , bj2)} and false
to all variables vj such that M ⊇ {(aj1 , bj2), (aj2 , bj1)}.

So the truth value of every variable is uniquely defined and all we need to show
is that every clause has a true literal. Assume that in clause Ci, all three literals are
false. The clause gadget has an unmatched vertex yik that is adjacent to an ajt . If the
literal is false, then ajt prefers yik to M(ajt) = bj2 and this becomes an edge labeled
(+1,+1) with an unmatched end vertex—this contradicts the popularity of M . Hence,
in every clause there is at least one true literal, and so this is a satisfying assignment.

Constructing a popular matching in G, given a truth assignment in I. Here we
first construct a matching M in the graph G as described below and then show that
it is popular. Initially M = ∅. For each j, where 1 ≤ j ≤ n, if vj = true in the
assignment, then add (aj1 , bj1) and (aj2 , bj2) to M , else add (aj1 , bj2) and (aj2 , bj1)
to M . For each i, where 1 ≤ i ≤ m, in the gadget corresponding to clause Ci, any
true literal is chosen (say, the kth literal) and yik , representing its appearance, is left
unmatched. Moreover, (xik , ci), (xik+1 , yik+1), and (xik+2 , yik+2) (where the subscripts
are taken modulo 3) are added to M . No interconnecting edge appears in M . This
finishes the description of M .

Lemma 17. The matching M is popular in G.

Proof. Suppose M is not popular. Then there is another matching M ′ that is
more popular than M . This can only happen if M ⊕M ′ contains a component ρ such
that the number of vertices in ρ that prefer M ′ to M is more than those that prefer
M to M ′. To achieve this, the matching M ′ should contain at least one edge labeled
either (+1,+1) or (+1, 0), where we use edge labels (α, β) as described in the proof
of Claim 8. We now analyze the cases based on the occurrences of such “positive”
edges.

Since we started with a truth assignment, no interconnecting edge can be labeled
(+1,+1). In fact, it is straightforward to check that no edge here can be labeled
(+1,+1). We now check for the occurrences of edges labeled (+1, 0). These can occur
at two places: the edge (ajt , bj1) for any 1 ≤ j ≤ n and the edge (xik , ci) for any
1 ≤ i ≤ m.

Case 1. Suppose (aj2 , bj1) is labeled (+1, 0). This happens if vj is true in the
truth assignment. We start the augmenting path ρ at (aj2 , bj1). Augmenting along
the 4-cycle is not sufficient to break popularity; therefore, aj1 must be matched along
one of its interconnecting edges, say (aj1 , yik).

– If yik is unmatched, consider the path ρ = bj2-aj2 -bj1-aj1-yik . There are two
vertices (aj1 and bj2) that prefer M to M ⊕ ρ and two vertices (aj2 and yik)
that prefer M ⊕ ρ to M .

– If yik is matched, then extend the path ρ until the unmatched vertex of the
ith variable gadget (call this yit). The path ρ is described below:

ρ = bj2 − aj2 − bj1 − aj1 − yik − xik − ci − xit − yit .

So 4 vertices, i.e. bj2 , aj1 , yik , and xit , prefer M to M⊕ρ while three vertices,
i.e., aj2 , xik , and yit , prefer M ⊕ ρ to M .

Case 2. Now suppose (xik , ci) is labeled (+1, 0). Let us assume that this edge
is (xi3 , ci) and suppose (xi1 , ci) ∈ M . Consider the alternating path ρ = yi1-xi1-ci-
xi3-yi3 . In the matching M ⊕ ρ, the vertices xi3 and yi1 are better-off while xi1 and
yi3 are worse-off, i.e., they prefer M to M ⊕ ρ. In order to collect one more vertex
that prefers M ⊕ ρ, let us extend this alternating path ρ to include (ajk , yi3), the
interconnecting edge of yi3 . The vertex yi3 still prefers M to M ⊕ ρ since yi3 was
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paired in M to its top ranked neighbor.
Without loss of generality, let us assume that this interconnecting edge is (aj2 , yi3).

We have two cases here: either {(aj1 , bj1), (aj2 , bj2)} ⊆ M or {(aj1 , bj2), (aj2 , bj1)} ⊆
M .

– In the first case, the path ρ gets extended to · · · -aj2-bj2 . So aj2 prefers M ⊕ρ
to M . However, bj2 is left unmatched in M ⊕ ρ, so bj2 prefers M to M ⊕ ρ.

– In the second case, the path ρ gets extended to · · · -aj2-bj1-aj1-bj2 . So aj1
prefers M ⊕ ρ to M . However, both aj2 and bj2 prefer M to M ⊕ ρ.

We have analyzed all the cases where edges can be labeled (+1, 0) and we showed
that there is no alternating cycle or path ρ containing an edge labeled (+1, 0) such
that M ⊕ ρ �M . Thus M is popular.

This finishes the proof of Theorem 3 stated in section 1.

Conclusions and open problems. We gave an O(n2) algorithm for the popular
matching problem in G = (A ∪ B,E) where vertices in A have strict preference lists
while each vertex in B puts all its neighbors into a single tie and n = |A ∪ B|. Our
algorithm needs the preference lists of vertices in A to be strict and the complexity of
the popular matching problem when ties are allowed in the preference lists of vertices
in A is currently unknown.

When each b ∈ B either has a single tie of length at most 3 or a strict preference
list (and each a ∈ A has a strict preference list), we showed that the popular matching
problem becomes NP-hard. The complexity of the same problem with ties of length
at most 2 instead of 3 is open.
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