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Abstract
Our input is a complete graph G = (V,E) on n vertices where each vertex has a strict ranking
of all other vertices in G. The goal is to construct a matching in G that is “globally stable”
or popular. A matching M is popular if M does not lose a head-to-head election against any
matching M ′: here each vertex casts a vote for the matching in {M,M ′} where it gets a better
assignment. Popular matchings need not exist in the given instance G and the popular matching
problem is to decide whether one exists or not. The popular matching problem in G is easy to
solve for odd n. Surprisingly, the problem becomes NP-hard for even n, as we show here.
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1 Introduction

Consider a complete graph G = (V,E) on n vertices where each vertex ranks all other vertices
in a strict order of preference. Such a graph is called a roommates instance with complete
preferences. The problem of computing a stable matching in G is a classical and well-studied
problem. Recall that a matching M is stable if there is no blocking pair with respect to M ,
i.e., a pair (u, v) where both u and v prefer each other to their respective assignments in M .

Stable matchings need not always exist in a roommates instance. For example, the
instance given in Fig. 1 on 4 vertices d0, d1, d2, d3 has no stable matching. (Here d0’s top
choice is d1, then d2, and finally d3, and so on.)

Irving [17] gave an efficient algorithm to decide if G admits a stable matching or not.
In this paper we consider a notion that is more relaxed than stability: this is the notion
of popularity. For any vertex u, a ranking over neighbors can be extended naturally to a
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17:2 Popular Matchings in Complete Graphs

d0 : d1 > d2 > d3
d1 : d2 > d3 > d0
d2 : d3 > d1 > d0
d3 : d1 > d2 > d0
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Figure 1 An instance that admits two popular matchings – marked by dotted blue and dashed
orange edges – but no stable matching. The preference list of each vertex is illustrated by the
numbers on its edges: a lower number indicates a more preferred neighbor.

ranking over matchings as follows: u prefers matching M to matching M ′ if (i) u is matched
in M and unmatched in M ′ or (ii) u is matched in both and u prefers M(u) to M ′(u). For
any two matchings M and M ′, let φ(M,M ′) be the number of vertices that prefer M to M ′.

I Definition 1. Let M be any matching in G. M is popular if φ(M,M ′) ≥ φ(M ′,M) for
every matching M ′ in G.

Suppose an election is held between M and M ′ where each vertex casts a vote for the
matching that it prefers. So φ(M,M ′) (similarly, φ(M ′,M)) is the number of votes for M
(resp., M ′). A popular matching M never loses an election to another matching M ′ since
φ(M,M ′) ≥ φ(M ′,M): thus it is a weak Condorcet winner [6, 1] in the corresponding voting
instance. So popularity can be regarded as a natural notion of “global stability”.

The notion of popularity was first introduced in bipartite graphs in 1975 by Gärdenfors
– popular matchings always exist in bipartite graphs since stable matchings always exist
here [11] and every stable matching is popular [12]. The proof that every stable matching
is popular holds in non-bipartite graphs as well [5]; in fact, it is easy to show that every
stable matching is a min-size popular matching [14]. Relaxing the constraint of stability to
popularity allows us to find globally stable matchings that may exist in instances that do not
admit stable matchings; moreover, even when stable matchings exist, there may be popular
matchings that achieve more “social good” (such as larger size) in many applications.

Observe that the instance in Fig. 1 has two popular matchings: M1 = {(d0, d1), (d2, d3)}
and M2 = {(d0, d2), (d1, d3)}. However as was the case with stable matchings, popular
matchings also need not always exist in the given instance G. The popular roommates
problem is to decide if G admits a popular matching or not. When the graph is not complete,
it is known that the popular roommates problem is NP-hard [10, 13]. Here we are interested
in the complexity of the popular matching problem when the input instance is complete.

Interestingly, several popular matching problems that are intractable in bipartite graphs
become tractable in complete bipartite graphs. The min-cost popular matching problem in
bipartite graphs is such a problem – this is NP-hard in a bipartite graph with incomplete
lists [10], however it can be solved in polynomial time in a bipartite graph with complete
lists [8]. The difference is due to the fact that while there is no efficient description of the
convex hull of all popular matchings in a general bipartite graph, this polytope has a compact
extended formulation in a complete bipartite graph.

It is a simple observation (see Section 2) that when n is odd, a matching in a complete
graph G on n vertices is popular only if it is stable. Since there is an efficient algorithm to
decide if G admits a stable matching or not, the popular roommates problem in a complete
graph G can be efficiently solved when n is odd. We show the following result here.
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I Theorem 2. Let G be a complete graph on n vertices, where n is even. The problem of
deciding whether G admits a popular matching or not is NP-hard.

So the popular roommates problem with complete preference lists is NP-hard for even n
while it is easy to solve for odd n. Note that the popular roommates problem is non-trivial
for every n ≥ 5, i.e., there are both “yes instances” and “no instances” of size n. It is rare
and unusual for a natural decision problem in combinatorial optimization to be efficiently
solvable when n has one parity and become NP-hard when n has the other parity. We are not
aware of any natural optimization problem on graphs that is non-trivially tractable when the
cardinality of the vertex set has one parity, which becomes intractable for the other parity.

1.1 Background and related work
The first polynomial time algorithm for the stable roommates problem was by Irving [17] in
1985. Roommates instances that admit stable matchings were characterized in [25]. New
polynomial time algorithms for the stable roommates problem were given in [24, 26].

Algorithmic questions for popular matchings in bipartite graphs have been well-studied
in the last decade [3, 8, 14, 16, 18, 19, 20]. Not much was known on popular matchings
in non-bipartite graphs. Biró et al. [3] proved that validating whether a given matching
is popular can be done in polynomial time, even when ties are present in the preference
lists. It was shown in [15] that every roommates instance G = (V,E) admits a matching
with unpopularity factor O(log |V |) and that it is NP-hard to compute a least unpopularity
factor matching. It was shown in [16] that computing a max-weight popular matching in
a roommates instance with edge weights is NP-hard, and more recently, that computing a
max-size popular matching in a roommates instance is NP-hard [21].

The complexity of the popular roommates problem was open for several years [3, 7, 15, 16,
22] and two independent NP-hardness proofs [10, 13] of this problem were announced very
recently. Interestingly, both these hardness proofs need “incomplete preference lists”, i.e.,
the underlying graph is not complete. The reduction in [13] is from a variant of the vertex
cover problem called the partitioned vertex cover problem and we discuss the reduction in
[10] in Section 1.2 below. So the complexity status of the popular roommates problem in a
complete graph was an open problem and we resolve it here.

Computational hardness for instances with complete lists has been investigated in various
matching problems under preferences. An example is the three-sided stable matching problem
with cyclic preferences: this involves three groups of participants, say, men, women, and
dogs, where dogs have weakly ordered preferences over men only, men have preferences over
women only, and finally, women only list the dogs. If these preferences are allowed to be
incomplete, the problem of finding a weakly stable matching is known to be NP-complete [4].
It is one of the most intriguing open questions in stable matchings [22, 27] as to whether the
same problem becomes tractable when lists are complete.

1.2 Techniques
The 1-in-3 SAT problem is a well-known NP-hard problem [23]: it consists of a 3-SAT formula
φ with no negated literals and the problem is to find a truth assignment to the variables in
φ such that every clause has exactly one variable set to true. We show a polynomial time
reduction from 1-in-3 SAT to the popular roommates problem with complete lists.

Our construction is based on the reduction in [10] that proved the NP-hardness of the
popular roommates problem. However there are several differences between our reduction
and the reduction in [10]. The reduction in [10] considered a popular matching problem in
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bipartite graphs called the “exclusive popular set” problem and showed it to be NP-hard –
when preference lists are complete, this problem can be easily solved. Thus the reduction in
[10] needs incomplete preference lists.

The exclusive popular set problem asks if there is a popular matching in the given
bipartite graph where the set of matched vertices is S, for a given even-sized subset S. A key
step in the reduction in [10] from this problem in bipartite graphs to the popular matching
problem in non-bipartite graphs merges all vertices outside S into a single node. Thus the
total number of vertices in the non-bipartite graph used in [10] is odd. Moreover, the fact
that popular matchings always exist in bipartite graphs is crucially used in this reduction.
However in our setting, the whole problem is to decide if any popular matching exists in the
given graph – thus there are no popular matchings that “always exist” here.

The reduction in [10] primarily uses the LP framework of popular matchings in bipartite
graphs from [18, 19, 21] to analyze the structure of popular matchings in their instance. The
LP framework characterizing popular matchings in non-bipartite graphs is more complex [21],
so we use the combinatorial characterization of popular matchings [14] in terms of forbidden
alternating paths/cycles to show that any popular matching in our instance will yield a 1-in-3
satisfying assignment for φ. To show the converse, we use a dual certificate similar to the
one used in [10] to prove the popularity of the matching that we construct using a 1-in-3
satisfying assignment for φ.

2 Preliminaries

Let M be any matching in G = (V,E). For any pair (u, v) /∈ M , define voteu(v,M) as
follows: (here M(u) is u’s partner in M and M(u) = null if u is unmatched in M)

voteu(v,M) =
{

+ if u prefers v to M(u);
− if u prefers M(u) to v.

Label every edge (u, v) that does not belong to M by the pair (voteu(v,M), votev(u,M)).
Thus every non-matching edge has a label in {(±,±)}. Note that an edge is labeled (+,+)
if and only if it is a blocking edge to M . Let GM be the subgraph of G obtained by deleting
edges labeled (−,−) from G. The following theorem characterizes popular matchings in G.

I Theorem 3 ([14]). M is popular in G if and only if GM does not contain any of the
following with respect to M :
(1) an alternating cycle with a (+,+) edge;
(2) an alternating path with two distinct (+,+) edges;
(3) an alternating path with a (+,+) edge and an unmatched vertex as an endpoint.

Using the above characterization, it can be easily checked whether a given matching
is popular or not [14]. Thus our NP-hardness result implies that the popular roommates
problem is NP-complete.

When n is odd. Recall the claim made in Section 1 that when n is odd, every popular
matching in G has to be stable. A simple proof of this statement is included below.

I Observation 4 ([2]). Let G be a complete graph on n vertices, where n is odd. Any popular
matching in G has to be stable.
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xi : yi > y′i > D > . . .

x′i : yi > y′i > D > . . .

yi : xi > x′i > D > . . .

y′i : xi > x′i > D > . . .

xi yi

y′ix′i

1 1

2 2
1

22

1

Figure 2 The variable gadget in level 1.

Proof. Suppose not. Let M be a popular matching in G that is not stable. So there is a
blocking edge (u, v) to M . Because n is odd, we know that there is an unmatched vertex. If
one of u, v is unmatched, then the edge (u, v) is a forbidden alternating path for popularity
(by Theorem 3, part (3)). So let the unmatched vertex be x /∈ {u, v}.

Then the path x - (M(u), u) - (v,M(v)) with respect toM is again a forbidden alternating
path for popularity (by Theorem 3, part (3)). Thus M is not a popular matching. J

3 The graph G

Recall that φ is the input formula to 1-in-3 SAT. The graph G that we construct here
consists of gadgets in 4 levels along with 2 special gadgets that we will call the D-gadget
and Z-gadget. Gadgets in level 1 correspond to variables in the formula φ while gadgets in
levels 0, 2, and 3 correspond to clauses in φ. Variants of the gadgets in levels 0-3 and the
D-gadget were used in [10] while the Z-gadget is new.

We will now describe these gadgets: along with a figure, we provide the preference lists
of vertices in this gadget. The tail of each list consists of all vertices not listed yet, in an
arbitrary order. Even though the preference lists are complete, the structure of the gadgets
and the preference lists will ensure that inter-gadget edges will not belong to any popular
matching, as we will show in Section 4.

The D-gadget. The D-gadget is on 4 vertices d0, d1, d2, d3 and the preference lists of these
vertices are as given in Fig. 1 with all vertices outside the D-gadget at the tail of each list
(in an arbitrary order). Recall that this gadget admits no stable matching.

We describe gadgets from level 1 first, then levels 0, 2, 3, and finally, the Z-gadget.
The stable matchings within the gadgets are highlighted by colors in the figures. The gray
elements in the preference lists denote vertices that are outside this gadget. We will assume
that D in a preference list stands for d0 > d1 > d2 > d3.

Level 1. For each variable Xi in the formula φ, we construct a gadget on four vertices as
shown in Fig. 2. The bottom vertices x′i and y′i will be preferred by some vertices in level 0
to vertices in their own gadget, while the top vertices xi and yi will be preferred by some
vertices in level 2 to vertices in their own gadget. All four vertices in a level 1 gadget prefer
to be matched among themselves, along the four edges drawn than be matched to any other
vertex in the graph. This gadget has a unique stable matching {(xi, yi), (x′i, y′i)}.

Level 0. To each clause c = Xi ∨Xj ∨Xk in the formula φ, we create 6 gadgets in level 0.
One of these can be seen in Fig. 3. The top two vertices, i.e. ac1 and bc1, rank y′j and x′k in
level 1, as their respective second choices. Recall that indices j and k are well-defined in the
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a1 : b1 > y′j > b2 > D > . . .

a2 : b2 > b1 > D > . . .

b1 : a2 > x′k > a1 > D > . . .

b2 : a1 > a2 > D > . . .

ac1 bc1

bc2ac2

1 3

1 2
2

13

1

Figure 3 A clause gadget in level 0.

p0 : q0 > q2 > D > . . .

p1 : q1 > q2 > D > . . .

p2 : q0 > yj > q1 > q2 > D > . . .

q0 : p0 > p2 > D > . . .

q1 : p1 > p2 > D > . . .

q2 : p1 > xk > p0 > p2 > D > . . .

pc0 qc0

pc1 qc1

pc2 qc2

1 1

1 1

4 4

2

31

2

2

13

3

Figure 4 A clause gadget in level 2.

clause c = Xi ∨Xj ∨Xk. Within this level 0 gadget on ac1, bc1, ac2, bc2, both {(ac1, bc1), (ac2, bc2)}
and {(ac1, bc2), (ac2, bc1)} are stable matchings. In the preference lists below (and also for gadgets
in levels 2 and 3), we have omitted the superscript c in their lists for the sake of readability.

The gadget on vertices {ac3, ac4, bc3, bc4} is built analogously: the vertex ac3 ranks y′k as its
second choice, while bc3 ranks x′i second. In the third gadget, the vertex ac5 ranks y′i second,
while bc5 ranks x′j second. Observe the shift in i, j, k indices as second choices for vertices
ac1, a

c
3, a

c
5 (and similarly, for bc1, bc3, bc5).

The fourth, fifth and sixth gadgets are analogous to the first, second, and third gadgets,
respectively, but there is a slight twist. More precisely, the preferences of a′c1 , a′c2 , b′c1 , b′c2 in
the fourth gadget are analogous to the preferences in Fig. 3, except that a′c1 ranks y′k second,
while b′c1 ranks x′j second. Similarly, the second choice of a′c3 is y′i, the second choice of b′c3
is x′k, and finally, a′c5 ranks y′j second, while b′c5 ranks x′i second. Observe the change in
orientation of the indices i, j, k as second choice neighbors when comparing the first three
level 0 gadgets of c with its last three level 0 gadgets. This will be important to us later.

Level 2. To each clause c = Xi ∨Xj ∨Xk in the formula φ, we create 6 gadgets in level 2.
The first gadget in level 2 is on vertices pc0, pc1, pc2, qc0, qc1, qc2 and their preference lists are
described in Fig. 4. Note that pc2 ranks yj from level 1 as its second choice, while qc2 ranks
xk from level 1 second.

The second gadget in level 2 is on vertices pc3, pc4, pc5, qc3, qc4, qc5 and it is built analogously.
That is, pc3 and qc3 are each other’s top choices and similarly, pc4 and qc4 are each other’s
top choices, and so on. The preference list of pc5 is qc3 > yk > qc4 > qc5 > D > . . . and the
preference list of qc5 is pc4 > xi > pc3 > pc5 > D > . . .

The third gadget in level 2 is on vertices pc6, pc7, pc8, qc6, qc7, qc8 and it is built analogously.
In particular, the preference list of pc8 is qc6 > yi > qc7 > qc8 > D > . . . and the preference list
of qc8 is pc7 > xj > pc6 > pc8 > D > . . .

The fourth gadget in level 2 is on vertices p′c0 , p′c1 , p′c2 , q′c0 , q′c1 , q′c2 and it is totally analogous
to the first gadget in level 2. That is, p′c0 and q′c0 are each other’s top choices and similarly,
p′c1 and q′c1 are each other’s top choices, and so on. In particular, the preference list of p′c2 is
q′c0 > yj > q′c1 > q′c2 > D > . . . and the preference list of q′c2 is p′c1 > xk > p′c0 > p′c2 > D > . . .
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s0 : t1 > q0 > t2 > q3 > t3 > D > t0 > . . .

t0 : s3 > p7 > s2 > p4 > s1 > D > s0 > . . .

s1 : t1 > t0 > D > . . .

t1 : s1 > s0 > D > . . .

s2 : t2 > t0 > D > . . .

t2 : s2 > s0 > D > . . .

s3 : t3 > t0 > D > . . .

t3 : s3 > s0 > D > . . .

sc0 tc0

sc1 tc1

sc2 tc2

sc3 tc3

1

2

3

2

5

2

5

2

3

2

1

2

11

11

11

Figure 5 A clause gadget in level 3.

z0 : z4 > z5 > ∪i {xi, yi} > ∪c,i
{
pc3i+1, q

c
3i, p

′c
3i+1, q

′c
3i
}
>

∪c,i {aci , bci , a′ci , b′ci } > z1 > z2 > z3 > D > . . .

z1 : z5 > z4 > ∪i {xi, yi} > ∪c,i
{
pc3i+1, q

c
3i, p

′c
3i+1, q

′c
3i
}
>

∪c,i {aci , bci , a′ci , b′ci } > z0 > z3 > z2 > D > . . .

z2 : z0 > z1 > z3 > z4 > z5 > D > . . .

z3 : z1 > z0 > z2 > z5 > z4 > D > . . .

z4 : z2 > z3 > z5 > z0 > z1 > D > . . .

z5 : z3 > z2 > z4 > z1 > z0 > D > . . .

z0 z1

z2 z3

z4 z5

3 3

3 3

3 3

2

5

2

5

2

5

2

5

2

5

2

5

1

4

1

4

1

4

1

4

1

4

1

4

Figure 6 The Z-gadget.

Similarly, the fifth gadget in level 2 is on vertices p′c3 , p′c4 , p′c5 , q′c3 , q′c4 , q′c5 and it is totally
analogous to the second gadget in level 2. Also, the sixth gadget in level 2 is on vertices
p′c6 , p

′c
7 , p
′c
8 , q
′c
6 , q

′c
7 , q

′c
8 and it is totally analogous to the third gadget in level 2.

Level 3. To each clause c = Xi ∨Xj ∨Xk in the formula φ, we create 2 gadgets in level 3.
The first gadget is on vertices sc0, sc1, sc2, sc3, tc0, tc1, tc2, tc3 and the preference lists of these vertices
are described in Fig. 5.

The second gadget in level 3 is on s′c0 , s′c1 , s′c2 , s′c3 , t′c0 , t′c1 , t′c2 , t′c3 and their preference lists
are absolutely analogous to the preference lists of the first gadget in level 3.

The Z-gadget. The Z-gadget is on 6 vertices z0, z1, z2, z3, z4, z5 and the preference lists
of these vertices are given in Fig. 6. The vertices in a set stand for all these vertices in an
arbitrary order. For example, ∪i{xi, yi} denotes all the “top” vertices belonging to variable
gadgets in an arbitrary order.

Note that G is a complete graph on an even number of vertices and so every popular
matching in G has to be a perfect matching.

4 Popular edges in G

Call an edge e in G popular if there is a popular matching M in G such that e ∈ M . In
this section we identify edges that are not popular and show that every popular edge is an
intra-gadget edge, connecting two vertices of the same gadget. All missing proofs are in the
full version of our paper on the arxiv [9].

I Lemma 5. For any clause c, no popular matching in G can match sc0 (similarly, tc0) to a
neighbor worse than tc0 (resp., sc0). An analogous statement holds for s′c0 and t′c0 .

FSTTCS 2018



17:8 Popular Matchings in Complete Graphs

I Lemma 6. Every popular matching matches the vertices in the D-gadget among themselves.

The gadget D admits 2 popular matchings: {(d0, d1), (d2, d3)} and {(d0, d2), (d1, d3)}. So
if M is a popular matching then either {(d0, d1), (d2, d3)} ⊂M or {(d0, d2), (d1, d3)} ⊂M .

I Lemma 7. Let (u, v) be an edge in G where both u and v prefer d0 to each other. Then
(u, v) cannot be a popular edge.

I Corollary 8. The edges (sc0, tc0) and (s′c0 , t′c0 ) are not popular edges for any clause c.

Corollary 8 follows from Lemma 7 by setting u and v to sc0 and tc0 (similarly, s′c0 and t′c0 ),
respectively. Let us call u a level i vertex if u belongs to a level i gadget.

I Lemma 9. No edge between a level i vertex and a level i+1 vertex is popular, for 0 ≤ i ≤ 2.

I Lemma 10. All popular matchings match the 6 vertices of the Z-gadget among themselves.

Proof. Let M be any popular matching in G. It follows from Lemma 7 that M has to pair
each of z2, z3, z4, and z5 to a vertex in the Z-gadget. Let us now show that z0 also has to be
matched within the Z-gadget. Then it immediately follows that z1 also has to be matched
within the Z-gadget. We have the following 3 cases:
(1) Suppose z0 is matched in M to a level 0 neighbor, say bc1. Then (ac1, bc1) is a blocking

edge to M . Lemmas 6, 7, and 9 ensure that ac1 is either matched to z1 or to bc2. We
investigate these two cases below.

(ac1, z1) ∈ M : Here both z0 and z1 are matched to vertices they prefer to all their
neighbors inside the Z-gadget, except for z4 and z5. We know that z4 and z5 must
be matched inside the Z-gadget. There are 3 subcases and in each case there is
an alternating cycle in GM with a blocking edge (ac1, bc1): a contradiction to M ’s
popularity (by Theorem 3).

(z4, z2) ∈M : the alternating cycle is (bc1, z0)
(+,−)
− (z4, z2)

(+,−)
− (z1, a

c
1)

(+,+)
− (bc1, z0).

(z4, z3) ∈M : the alternating cycle is (bc1, z0)
(+,−)
− (z4, z3)

(+,−)
− (z1, a

c
1)

(+,+)
− (bc1, z0).

(z4, z5) ∈M : the alternating cycle is (bc1, z0)
(+,−)
− (z4, z5)

(−,+)
− (z1, a

c
1)

(+,+)
− (bc1, z0).

(ac1, bc2) ∈M : Lemmas 6, 7, and 9 ensure that ac2 is matched to z1 (recall that M is
perfect). This leads to the same 3 subcases as above, except that instead of the edge
(z1, a

c
1), there is the path (z1, a

c
2)− (bc2, ac1) in GM : here (ac2, bc2) is labeled (+,−).

(2) Suppose z0 is matched in M to a level 1 neighbor, say yi.
This case is similar to the previous case. Here the edge (xi, yi) becomes the blocking
edge to M . It follows from Lemmas 6, 7, and 9 that xi is either matched to z1 or to y′i.
The latter case leaves x′i unmatched and the subcases that arise in the former case are
analogous to the ones in case (1).

(3) Suppose z0 is matched in M to a level 2 neighbor, say qc0.
It follows from Lemmas 6, 7, and 9 that (pc0, qc2), (pc2, qc1), and (pc1, z1) are in M . Consider
the alternating path (z0, q

c
0)− (pc2, qc1)− (pc1, z1): it has two blocking edges (pc2, qc0) and

(pc1, qc1). This is again a contradiction to M ’s popularity.

Recall that Lemma 6 showed that all vertices of D must be matched within the gadget.
Thus z0 cannot be matched to a vertex in the D-gadget. The case where z0 is matched
in M to a level 3 neighbor does not arise as such an edge would violate Lemma 7. This
finishes our proof that any popular matching M matches the 6 vertices of the Z-gadget
among themselves. J
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It follows from Lemmas 6, 7, 9, and 10 that every popular edge is an intra-gadget edge.
Lemma 11 (proof in [9]) shows that there is only one possibility for a popular matching
within the Z-gadget. Thus every popular matching in G contains (z0, z1), (z2, z3), (z4, z5).

I Lemma 11. The only popular matching inside the Z-gadget is {(z0, z1), (z2, z3), (z4, z5)}.

5 Stable states versus unstable states

In this section we will show how to obtain a 1-in-3 satisfying assignment for the input φ from
any popular matching in G. The following definition will be useful to us.

I Definition 12. A gadget A in G = (V,E) is said to be in unstable state with respect to
matching M if there is a blocking edge (u, v) ∈ V (A)× V (A) with respect to M . If there is
no such blocking edge to M then we say A is in stable state with respect to M .

In Figures 2-6 depicting our gadgets, corresponding to matchings that consist of colored
edges within the gadget, the relevant gadget is in stable state. A level 1 gadget in unstable
state will encode the corresponding variable being set to true while a level 1 gadget in stable
state will encode the corresponding variable being set to false. We will now analyze what
gadgets are in stable/unstable state with respect to any popular matching M in G. This will
lead to the proof that for any clause c, exactly one of the level 1 gadgets corresponding to
the 3 variables in c is in unstable state.

I Lemma 13. For any clause c, the following statements hold:
all its 6 level 0 gadgets are in stable state with respect to M ;
both its level 3 gadgets in G are in unstable state with respect to M .

Proof. Consider a level 0 gadget corresponding to clause c, say the one on vertices ac1, bc1, ac2, bc2.
Lemmas 6, 7, 9, and 10 imply that either {(ac1, bc1), (ac2, bc2)} ⊂M or {(ac1, bc2), (ac2, bc1)} ⊂M .
Thus there is no blocking edge within this gadget. As this holds for every level 0 gadget
corresponding to c and for every clause c, the first part of the lemma follows.

We will now prove the second part of the lemma. Since M is a perfect matching, the
vertices sc0, tc0 (also s′c0 , t

′c
0 ) have to be matched in M , for all clauses c. It follows from

Lemmas 6 and 7 that both sc0 and tc0 (similarly, s′c0 and t′c0 ) have to be matched to neighbors
that are better than d0. Lemma 9 showed that there is no popular edge between a level 3
vertex and a level 2 vertex. Thus sc0 is matched to tci for some i ∈ {1, 2, 3}.

If sc0 is matched to tci then sci has to be matched to tc0 – otherwise Lemma 7 would
be violated by sci and its partner. So (sci , tci ) blocks M and this holds for every clause c.
Similarly, there is a blocking edge (s′ci , t′ci ) for some i ∈ {1, 2, 3} for every clause c. J

I Lemma 14. For any clause c, at least one of the following two conditions has to hold:
two or more of its first three level 2 gadgets are in unstable state with respect to M ;
two or more of its last three level 2 gadgets are in unstable state with respect to M .

The proof of Lemma 14 is given in [9]. Recall that there are three level 1 gadgets
associated with any clause c: these gadgets correspond to the three variables in c.

I Lemma 15. Let c = Xi ∨Xj ∨Xk. At least one of the level 1 gadgets corresponding to
Xi, Xj , Xk is in unstable state with respect to M .

Proof. Suppose not. That is, assume that for some clause c, all three of its level 1 gadgets are
in stable state. Let c = Xi ∨Xj ∨Xk. So (xr, yr) and (x′r, y′r) are in M for all r ∈ {i, j, k}.
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We know from Lemma 14 that either two or more of the first three level 2 gadgets
corresponding to c are in unstable state with respect to M or two or more of the last three
level 2 gadgets corresponding to c are in unstable state with respect to M . Assume without
loss of generality that the first and second gadgets, i.e., those on pci , qci , for 0 ≤ i ≤ 5, are in
unstable state with respect to M .

We know from our lemmas in Section 4 that there is no popular edge across gadgets. Thus
M matches the 6 vertices of a level 2 gadget with each other. In particular, it follows from
Lemma 7 that for the level 2 gadget on pci , qci for i = 0, 1, 2, we have (i) (pc0, qc0), (pc1, qc1), (pc2, qc2)
in M or (ii) (pc0, qc2), (pc1, qc1), (pc2, qc0) in M or (iii) (pc0, qc0), (pc1, qc2), (pc2, qc1) in M .

There are two unstable states for each level 2 gadget, i.e., either (ii) or (iii) above for
the gadget on pci , qci for i = 0, 1, 2. A level 2 gadget can be in either of these two unstable
states in M – without loss of generality assume that M contains (pc0, qc0), (pc1, qc2), (pc2, qc1) and
(pc3, qc5), (pc4, qc4), (pc5, qc3). Observe that pc2 likes yj more than qc1 and similarly, qc5 likes xi more
than pc3. Consider the following alternating path ρ with respect to M :

(qc2, pc1)
(+,+)
− (qc1, pc2)

(+,−)
− (yj , xj)

(−,+)
− (z0, z1)

(+,−)
− (yi, xi)

(−,+)
− (qc5, pc3)

(+,+)
− (qc3, pc5).

Note that M has to contain (z0, z1) (by Lemma 11). Observe that ρ is an alternating
path in GM with two blocking edges (pc1, qc1) and (pc3, qc3). This is a contradiction to M ’s
popularity (by Theorem 3) and the lemma follows. J

We can also show that (see [9]) at most one of the level 1 gadgets corresponding to
Xi, Xj , Xk is in unstable state with respect to M . So exactly one of the level 1 gadgets
corresponding to Xi, Xj , Xk is in unstable state with respect to M . This allows us to set a
1-in-3 satisfying assignment to instance φ. For each variable Xi in φ do:

– if the gadget corresponding to Xi is in unstable state then set Xi = true else set
Xi = false.

It follows from our above discussion that this is a 1-in-3 satisfying assignment for φ. We
have thus shown the following result.

I Theorem 16. If G admits a popular matching then φ has a 1-in-3 satisfying assignment.

6 The converse

We will now show the converse of Theorem 16, i.e., if φ has a 1-in-3 satisfying assignment S
then G admits a popular matching. We will use S to construct a popular matching M in G
as follows. To begin with, M = ∅.

Level 1. For each variable Xi do:
if Xi is set to true in S then add (xi, y′i) and (x′i, yi) to M ;
else add (xi, yi) and (x′i, y′i) to M .

For each clause c = Xi ∨Xj ∨Xk, we know that exactly one of Xi, Xj , Xk is set to true in
S. Assume without loss of generality that Xk = true in S. For the level 0, 2, and 3 gadgets
corresponding to c, we do as follows:

Level 0. Recall that there are six level 0 gadgets that correspond to c. For the first 3
gadgets (these are on vertices aci , bci for i = 1, . . . , 6) do:

include (ac1, bc2), (ac2, bc1) from the first gadget;
include (ac3, bc3), (ac4, bc4) from the second gadget;
choose either (ac5, bc5), (ac6, bc6) or (ac5, bc6), (ac6, bc5) from the third gadget.
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Observe that since the third variable Xk of c was set to be true, cross edges are fixed in
the first gadget (see Fig. 3), while the other stable matching (horizontal edges) is chosen in
the second gadget.

For the fourth and fifth gadgets, we will do exactly the opposite. Also, it will not matter
which stable pair of edges is chosen from the third and sixth gadgets. So for the last 3 level 0
gadgets corresponding to c (these are on vertices a′ci , b′ci for i = 1, . . . , 6) do:

include (a′c1 , b′c1 ), (a′c2 , b′c2 ) from the fourth gadget;
include (a′c3 , b′c4 ), (a′c4 , b′c3 ) from the fifth gadget.
choose either (a′c5 , b′c5 ), (a′c6 , b′c6 ) or (a′c5 , b′c6 ), (a′c6 , b′c5 ) from the sixth gadget.

Level 2. Recall that there are six level 2 gadgets that correspond to c. For the first 3
gadgets (these are on vertices pci , qci for i = 0, . . . , 8) do:

include (pc0, qc2), (pc1, qc1), (pc2, qc0) from the first gadget
include (pc3, qc3), (pc4, qc5), (pc5, qc4) from the second gadget
include (pc6, qc6), (pc7, qc7), (pc8, qc8) from the third gadget

In the first three gadgets, because Xk = true, the third one is set to parallel edges, reaching
the stable state, while the first one is blocked by the top horizontal edge and the second one
is blocked by the middle horizontal edge. Include isomorphic edges (to the above ones) from
the last three level 2 gadgets corresponding to c, i.e., include (p′c0 , q′c2 ), (p′c1 , q′c1 ), (p′c2 , q′c0 ) from
the fourth gadget, and so on. On this level, the last three gadgets mimic the matching edges
from the first three gadgets, unlike in level 0.

Level 3. For the first level 3 gadget corresponding to c do:
include (sc0, tc3), (sc1, tc1), (sc2, tc2), (sc3, tc0) in M .

Since the third variable in c was set to be true, the vertices sc0 and tc0 are matched to tc3
and sc3, respectively – thus the bottom horizontal edge (sc3, tc3) blocks M . Include isomorphic
edges (to the above ones) for the second level 3 gadget corresponding to c, i.e., include
(s′c0 , t′c3 ), (s′c1 , t′c1 ), (s′c2 , t′c2 ), (s′c3 , t′c0 ) in M . Once again, the second gadget mimics the matching
edges on the first gadget.

Z-gadget and D-gadget. Finally include the edges (z0, z1), (z2, z3), (z4, z5) from the Z-
gadget in M . By Lemma 11, every popular matching in G has to include these edges. Also
include (d0, d1), (d2, d3) from the D-gadget in M .

6.1 The popularity of M

We will now prove the popularity of the above matching M via the LP framework of popular
matchings initiated in [18] for bipartite graphs. This framework generalizes to provide a
sufficient condition for popularity in non-bipartite graphs [10]. This involves showing a
witness ~α ∈ {0,±1}|V | such that ~α is a certificate of M ’s popularity. In order to define the
constraints that ~α has to satisfy so as to certify M ’s popularity, let us define an edge weight
function wM as follows.

For any edge (u, v) in G do:
if (u, v) is labeled (−,−) then set wM (u, v) = −2;
if (u, v) is labeled (+,+) then set wM (u, v) = 2;
else set wM (u, v) = 0. (So wM (e) = 0 for all e ∈M .)
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Let N be any perfect matching in G. It is easy to see from the definition of the edge
weight function wM that wM (N) = φ(N,M)− φ(M,N).

Let the max-weight perfect fractional matching LP in the graph G with edge weight
function wM be our primal LP. This is LP1 defined below.

maximize
∑
e∈E

wM (e)xe (LP1)

subject to∑
e∈δ(u) xe = 1 ∀u ∈ V and xe ≥ 0 ∀ e ∈ E.

If the primal optimal value is at most 0 then wM (N) ≤ 0 for all perfect matchings N in
G, i.e., φ(N,M) ≤ φ(M,N). This means φ(M ′,M) ≤ φ(M,M ′) for all matchings M ′ in G,
since G is a complete graph on an even number of vertices (so M ′ ⊆ some perfect matching).
That is, M is a popular matching in G.

Consider the LP that is dual to LP1. This is LP2 given below in variables αu, where
u ∈ V .

minimize
∑
u∈V

αu (LP2)

subject to

αu + αv ≥ wM (u, v) ∀ (u, v) ∈ E.

If we show a dual feasible solution ~α such that
∑
u∈V αu = 0 then the primal optimal

value is at most 0, i.e., M is a popular matching.
In order to prove the popularity of M , we define ~α as follows. For each variable Xr do:
if Xr was set to true then set αxr

= αyr
= 1 and αx′

r
= αy′

r
= −1;

else set αxr = αyr = αx′
r

= αy′
r

= 0.

Let clause c = Xi∨Xj ∨Xk. Recall that we assumed that Xi = Xj = false and Xk = true.
For the vertices in clauses corresponding to c, we will set α-values as follows.

For every level 0 vertex v do: set αv = 0.
For the first three level 2 gadgets corresponding to c do:

set αpc
0

= αqc
0

= 1, αpc
1

= 1, αqc
1

= −1, and αpc
2

= αqc
2

= −1;
set αpc

3
= −1, αqc

3
= 1, αpc

4
= αqc

4
= 1, and αpc

5
= αqc

5
= −1;

set αpc
6

= αqc
6

= αpc
7

= αqc
7

= αpc
8

= αqc
8

= 0.

The setting of α-values is analogous for vertices in the last three level 2 gadgets corres-
ponding to c. For the first level 3 gadget corresponding to c do:

set αsc
0

= αtc0 = −1, αsc
1

= −1, αtc1 = 1, αsc
2

= −1, αtc2 = 1, and αsc
3

= αtc3 = 1.

The setting of α-values is analogous for vertices in the other level 3 gadget corresponding
to c. For the z-vertices do: set αu = 0 for all u ∈ {z0, . . . , z5}. For the d-vertices do:

set αd0 = αd2 = −1 and αd1 = αd3 = 1.

Properties of ~α. For every (u, v) ∈ M , either αu = αv = 0 or {αu, αv} = {−1, 1}; so
αu +αv = 0. Since M is a perfect matching, we have

∑
u∈V αu = 0. The claims stated below

(proofs are in [9]) show that ~α is a feasible solution to LP2. This will prove the popularity of
M .

We need to show that every edge (u, v) is covered, i.e., αu + αv ≥ wM (u, v). We have
already observed that for any (u, v) ∈M , αu + αv = 0 = wM (u, v).
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I Claim 17. Let (u, v) be a blocking edge to M . Then αu + αv = 2 = wM (u, v).

I Claim 18. Let (u, v) be an intra-gadget edge that is non-blocking. Then αu+αv ≥ wM (u, v).

I Claim 19. Let (u, v) be any inter-gadget edge. Then αu + αv ≥ wM (u, v).

Thus we have shown the following theorem.

I Theorem 20. If φ has a 1-in-3 satisfying assignment then G admits a popular matching.

Theorem 2 stated in Section 1 follows from Theorems 16 and 20. Thus the popular
matching problem in a roommates instance on n vertices with complete preference lists is
NP-hard for even n.
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