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Abstract

Jim Propp’s rotor router model is a simple deterministic analogue of a random walk.
Instead of distributing chips randomly, it serves the neighbors in a fixed order. We
analyze the difference between Propp machine and random walk on the infinite two-
dimensional grid. We show that, independent of the starting configuration, at each
time, the number of chips on each vertex deviates from the expected number of
chips in the random walk model by at most a constant c, which is 7.83 for clockwise
rotor sequences and 7.28 otherwise. This is the first paper which demonstrates that
the order in which the neighbors are served makes a difference.
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1 Introduction

The rotor-router model is a simple deterministic process which has been sug-
gested by Jim Propp as an attempt to derandomize random walks on infinite
grids Z

d. There, each vertex x ∈ Z
d is associated with a “rotor” and a cyclic

permutation of the 2d cardinal directions of Z
d. While in a random walk a

chip leaves a vertex in a random direction, chips of the Propp machine always
go into the direction the current rotor is pointing. After a chip is sent, the
rotor is rotated according to the fixed cyclic permutation. This ensures the
chips are distributed highly evenly among the neighbors.
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This process has attracted considerable attention recently. It has been
shown that the Propp machine resembles very closely a random walk in sev-
eral respects. Cooper and Spencer [1] examined the single vertex discrepancy.
That is, we start with an arbitrary initial configuration (i.e., number of chips
on vertices and rotor directions), run both machines for some time and com-
pare the number of chips of the Propp machine with the expected number of
chips of the random walk. Apart from a technicality, which we defer to Sec-
tion 2, the answer is astonishing: For grids Z

d the discrepancy can be bounded
by a constant cd, which only depends on the dimension. In particular, cd is
independent of the initial configuration, the runtime, and the cyclic permuta-
tion of the cardinal directions. For the graph being the infinite path, Cooper
et al. [2] showed that this constant is c1 ≈ 2.29.

In this paper, we consider the two-dimensional grid Z
2. This is the high-

est dimension which can be analyzed rigorously. In comparison to the one-
dimensional grid new effects appear, in particular the rotor sequence comes
into play. In the one-dimensional case, the arrow must just switch back and
forth after each chip sent to minimize the discrepancy between the number of
chips sent left and right. This optimally equals out chips sent to the left and
to the right. In higher dimension this cannot be achieved for all directions at
the same time. This trade-off between balancing out all directions, gives rise
to analyze different rotor sequences. We show tight upper and lower bounds
for the single vertex discrepancy of Z

2. Strictly speaking, we show c2 ≈ 7.83
for clockwise rotor sequences and c2 ≈ 7.28 for all other rotor sequences.

2 Preliminaries

On the standard two-dimensional grid Z
2, where each vertex is connected with

its up/down/left/right-neighbor, both dimensions do not vary independently
in a random walk. Hence, to simplify the calculations, we rotate the grid by
45◦ and consider instead neighbors in directions dir := { ↗,↘,↙,↖ }. Note
that by this, we only allow chips on x with x1 ≡ x2(mod 2). Since both models
are isomorphic, our results can immediately be translated into the standard
two-dimensional grid model with neighbors {↑,→, ↓,←}.

As already pointed out in the introduction, there is one limitation, without
neither the results of [1,2] nor our results hold. For this, note that since Z

2 is
bipartite, chips that start on even positions never mix with those starting on
odd positions. It looks like we are playing two games at once. However, this
is not true, because chips of different parity may affect each other through the
rotors. The number of chips send in each direction at each position is then not
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balanced within both games. One can cleverly arrange piles of off-parity chips
to reorient rotors and steer them away from random walk simulation. We
therefore require the starting configuration to have chips only on one parity.
Without loss of generality, we consider only even starting configurations. Odd
starting configurations can be handled in an analogous manner.

3 The Basic Method

A random walk can be described nicely by its probability density. By H(x, t)
we denote the probability that a chip from the origin arrives at location x at
time t in a simple random walk. Therefore, H(x, t) = 4−t

(
t

(t+x1)/2

)(
t

(t+x2)/2

)
for x1 ≡ x2 ≡ t (mod 2) and ‖x‖∞ ≤ t, and H(x, t) = 0 otherwise.

For a fixed starting configuration, f(x, t) denotes the number of chips and
arr(x, t) denotes the direction of the arrow at position x after t steps of the
Propp machine. E(x, t) denotes the expected number of chips at location x
after a random walk of t steps.

Let si(y) denote the time that y is occupied by its i-th chip, i.e., si(y) :=
min {u ≥ 0 | i <

∑u
t=0 f(y, t)} for all i ∈ N0. With inf(y,A, t) := H(y +

A, t−1)−H(y, t) we denote the influence of position y with the arrow pointing
to A at time t to the discrepancy. This gives

inf(y,A, t) =
(
(A1y1 · A2y2)t

−2 − (A1y1 + A2y2)t
−1

)
H(y, t).

With this, one can show that the single vertex discrepancy between Propp
machine and random walk only depends on the influence of the “odd chips”.
Strictly speaking, we prove

f(0, t) − E(0, t) =
∑
y∈Z2

∑
i≥0

inf(y,arr(y, si(y)), t − si(y)).

Some further properties of inf(y,A, t) and sums of inf(y,A, t), help to show
the following theorem.

Theorem 3.1

f(0, t) − E(0, t) ≈
⎧⎨
⎩

7.83 for clockwise rotor sequences

7.28 for other rotor sequences.

This is an upper bound for the discrepancy for all initial configurations.
Given successive settings of the rotors, one can construct an initial configu-
ration, that is, number of chips on vertices and rotor directions, which yields
exactly these rotor settings. This can be used to construct a configuration
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whose discrepancy reaches above upper bound. Interestingly, there are worst-
case configurations which send only less than ten odd chips at at most three
different times per position.
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