
Algorithmica
https://doi.org/10.1007/s00453-018-0451-4

Reoptimization Time Analysis of Evolutionary
Algorithms on Linear Functions Under Dynamic
Uniform Constraints

Feng Shi1 · Martin Schirneck2 ·
Tobias Friedrich2 · Timo Kötzing2 ·
Frank Neumann3

Received: 31 August 2017 / Accepted: 3 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Rigorous runtime analysis is a major approach towards understanding evo-
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1 Introduction

Evolutionary computation has been widely used in practice to solve problems that
arise in various domains in engineering and economics. To understand evolutionary
computing techniques also on a theoretical basis, rigorous runtime analysis has become
amajor approach over the last 20years [1,10,17]. In this area the class of linear pseudo-
Boolean functions plays a crucial role. The first such analysis aimed at the classical
(1+1) evolutionary algorithm, (1+1) EA, on the simplest linear function OneMax
(maximize the number of 1-bits in a bit string) [15]. Since then the runtime of the
(1+1) EA on the class of all linear functions has become a hot issue, and various
proof techniques have been developed. While inferring the asymptotic runtime, a
deep understanding of the internal mechanisms of the (1+1) EA has been gained.
This has led to the famous �(n log n) bound [6]. More detailed studies later pushed
the insights even further and revealed the leading constants [5,12,19].

We are now interested in the behaviors of nature-inspired algorithms on constrained
problems. That means, only search points satisfying a certain condition are considered
as solutions to the problem. Various constraint handling methods for such algorithms
are discussed in the literature (see the survey [14]). The analysis of the minimum
spanning tree problem and minimum vertex covers suggests that good runtime bounds
can be achieved by implementing the constraints as an additional objective in a then
multi-objective fitness function [7,13,16].

In this article, we follow a similar approach. We examine the runtimes of several
evolutionary algorithms on linear functions under constraints. It is known that the
most general setting of linear constraints is equivalent to the NP-hard Knapsack prob-
lem [11]. Even on instances of the Knapsack problem that can be optimized using
simple greedy heuristics, the runtime of the (1+1) EA was shown to be exponen-
tial [20]. Therefore, we restrict our attention to the subclass of uniform constraints,
which restrict the Hamming weight of a feasible solution. Recently Friedrich et al. [8]
investigated linear functions under uniform constraint in a static setting. There, a fixed
bound B on the number of 1-bits in a feasible string is given. They studied the opti-
mization behavior of the (1+1) EA starting from scratch. We extend these studies to
a dynamic setting, where the constraint bound changes from B to some new value
B∗. Our goal is to analyze the number of fitness evaluations that an evolutionary algo-
rithm needs to reoptimize a solution that is optimal with respect to the old bound,
into an optimal solution observing the new one. The main focus of this work is to give
guarantees on the maximum reoptimization runtimes. These guarantees depend on the
algorithm, the problem size, the constraint bounds as well as the extent of the change.
A summary of the main results can be found in Table 1.

After fixing some notations and definitions in the preliminary Sect. 2, we start the
analysis with the (1+1) EA in Sect. 3. The elitist selection mechanism and single-
objective fitness enables it to reoptimize OneMax quickly. Conversely, it is very hard
to make progress on general linear objective once the new cardinality bound B∗ has
been reached. Any improvement from there requires the (1+1) EA to “swap” certain
bits, resulting in a long waiting time. To put the upper bound into perspective, we
also prove that for certain settings the runtime’s quadratic dependence on the problem
size cannot be avoided. Aiming at the mentioned swap operation, we introduce the
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Multi-Objective Evolutionary Algorithm, MOEA, in Sect. 4. This population-based
EA stores individuals based on their distance to the new constraint. Namely, it main-
tains a solution for each Hamming weight between B and B∗. This way, the MOEA
can forgo the swaps. However, the size of the population slows down the reoptimiza-
tion process. To tackle this problem, an improved variant of the MOEAwith single bit
flip—the MOEA-S—is presented. It achieves a behavior similar to the MOEA with
a population of only two individuals. The interplay of the two solutions is able to
emulate the swaps, resulting in a quasi-linear waiting time for a fitness improvement.
Finally, in Sect. 5, we examine the performance of a multi-objective variant of the
(1+(λ, λ)) Genetic Algorithm, (1+(λ, λ)) GA, of Doerr et al. [4]. In contrast to many
other GAs, the (1+(λ, λ)) GA does not use the crossover of candidate individuals to
recombine good parts of solutions, but instead to repair malicious mutations. It has
been shown that the (1+(λ, λ)) GA can optimize OneMax in linear time, when using
an adaptive parameter setting [3]. We incorporate these ideas into our multi-objective
setting with the Multi-Objective (μ+(λ, λ)) Genetic Algorithm, MO (μ+(λ, λ)) GA.
Slightly at odds with the usual notation, the usage of μ in the name shall indicate that
its population size may be larger than 1; however, this size is not fixed to a predefined
value, instead it depends on the difference |B − B∗|.

This article’s results improve upon the conference version [18]. The bound
on the reoptimization time of the MOEA on general linear functions has been
reduced from O(nD2) to O(nD log D). For the MO (μ+(λ, λ)) GA on One-
Max, it is improved to O(min{√n

√
D3, D2√n/(n − B∗)}) if B ≤ B∗, and to

O(min{√n
√
D3, D2√n/B∗}) if B > B∗. We are also able to prove that the run-

time of the same algorithm on linear profit functions is of order O(nD), instead of
O(nD2).

2 Preliminaries

2.1 Setting

In the paper, the behaviors of several evolutionary computing techniques on linear
optimization problemswith dynamic constraints are considered. The collection {0, 1}n
of all bit strings with fixed length n serves as the search space. Given a sequence
{w1, w2, . . . , wn}of positive realweights, theprofit of a searchpoint x = x1x2 . . . xn ∈
{0, 1}n is defined as

P(x) =
n∑

i=1

wi xi .

As a technical detail, we assume all wi to be at least 1. Variable wmax = maxi wi

denotes the maximum weight. The simplest linear profit function is

OneMax(x) =
n∑

i=1

xi .
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We would like to point out that throughout this work we distinguish between the profit
and the fitness of an individual. The fitness function f is an implementation detail of
the algorithm in use (cf. Sect. 2.2) while all algorithms aim to maximize the profit P .

The constrained aspect of the optimization problem is modeled by declaring a
subset of the search space as the feasible region. Only feasible search points are
treated as solutions to the problem. That is, all search points in the infeasible region
are dismissed, even if their profit may be higher than that of any feasible solution.
An optimal solution is then a feasible search point of maximum profit. It has been
shown that the general class of “linear constraints” leads to exponential runtimes for
many evolutionary algorithms even on simple problem instances [8,20]. We therefore
content ourselves with uniform constraints, restricting the Hamming weight, i.e., the
number of 1-bits, in a feasible solution. Let |x |1 denote the Hamming weight of x , and
conversely |x |0 = n−|x |1 the number of 0-bits in x . Let 0 ≤ B ≤ n be a non-negative
integer—the cardinality bound. The general optimization problem of linear functions
under uniform constraint is then given as

max P(x)

s.t.|x |1 ≤ B.

However, solving this problem is not our primary goal. Instead, we fix a second
integer 0 ≤ B∗ ≤ n and investigate the number of fitness evaluations until an algorithm
samples an optimal solution to the problem with respect to the new cardinality bound
B∗ for the first time, starting from an optimal solution xorig with respect to the original
bound B. We refer to this setting as profit function P being under dynamic uniform
constraint. The number of fitness evaluations needed is the reoptimization time, usually
symbol T is used to denote this random variable. We call its expectation E[T ] the
expected reoptimization time.

For each algorithm, we distinguish four cases in the analysis. We give a bound on
the expected reoptimization time on general linear functions as well as on OneMax.
Independently, the new bound B∗ can be at least as large as B or strictly smaller. All
runtime bounds are given in terms of the problem size n, the two cardinality bounds
B, B∗, and their absolute difference D = |B∗−B|. Some asymptotic estimates display
quotients ofwhich the numerator or the denominator can becomezero in extreme cases.
If so, that quotient is to be understood as a constant strictly larger than 1.

2.2 Algorithms

Four nature-inspired algorithms are considered in the paper. Namely, the (1+1) Evo-
lutionary Algorithm, the Multi-Objective Evolutionary Algorithm, its single bit flip
variant, and the Multi-Objective (μ+(λ, λ)) Genetic Algorithm. These evolutionary
computing methods adopt different constraint handling strategies. They are reflected
in the respective fitness functions and, in the case of multi-objective fitness, the notion
of dominance.
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We let the (1+1) EA (Algorithm 1) use the following fitness function f(1+1) sug-
gested by Friedrich et al. in [8]. This single-objective function is defined as

f(1+1)(x) = P(x) − (nwmax + 1) · max{0, |x |1 − B∗}.

This choice has two immediate consequences. First, the large penalty term (nwmax +
1) ·max{0, |x |1 − B∗} scales with the extent of the constraint violation. It thus guides
the search of the algorithm towards the feasible region (given by the new constraint
bound B∗). Second, once the algorithm samples the first feasible solution, its elitist
selection bars it from ever again adopting an infeasible search point.

Algorithm 1: (1+1) EA

1 x ← xorig;

2 while stopping criterion not met do

3 y ← flip each bit of x independently with probability

1/n;

4 if f(1+1)(y) ≥ f(1+1)(x) then

5 x ← y;

The Multi-Objective Evolutionary Algorithm (MOEA; see Algorithm 2) and
its variant MOEA-S (Algorithm 3) use the same vector-valued fitness function
fMOEA(x) = (|x |1, P(x)), but different dominance relations between solutions
y, z ∈ {0, 1}n . In the context of the MOEA, y dominates z whenever y provides
at least the same profit as z with the same number of 1-bits,

y �MOEA z ⇔ |y|1 = |z|1 ∧ P(y) ≥ P(z).

This defines a preorder on the search space in which two strings are comparable if
and only if they have the same Hamming weight. We say y strongly dominates z if y
dominates z and has a strictly larger profit, written y 
MOEA z. Note that two strings
having the same weight and profit are indistinguishable with respect to �MOEA.

Algorithm 2:MOEA; Assuming B ≤ B∗.
1 S ← {xorig};
2 while stopping criterion not met do

3 Choose x ∈ S uniformly at random;

4 y ← flip each bit in x independently with probability

1/n;

5 if (B∗≥|y|1≥B) ∧ (�w ∈ S : w 
MOEA y) then

6 S ← (S ∪ {y}) \ {z ∈ S | y �MOEA z};
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The population set S of the MOEA is initialized with some fixed optimal solution
xorig which has exactly B bits set to 1. An offspring, denoted by y, is obtained via
standard bit mutation of a string drawn from S uniformly at random. The algorithm
checks whether y has Hamming weight between B and B∗, and is not already strongly
dominated by another individual in S. If so, y is included in S and all solutions that
are dominated by the new offspring are discarded (excluding y itself, of course). All
individuals in S are thus pairwise incomparable. Note that the population can increase
up to size |B∗ − B| + 1 = D + 1.

TheMOEA-S variant exhibits two major changes compared to the original MOEA.
The first distinction is that the MOEA-S uses the single-bit flip operator, which is
usually employed in randomized local search. The other one is the notion of dominance
between solutions, written �MOEA-S. As mentioned before, �MOEA-S uses the same
fitness function fMOEA, but the resulting orderings on the search space differ. Assume
B ≤ B∗ for the moment. Strings y and z such that at most one of the values |y|1 and
|z|1 equal B∗ or B∗ − 1 are ordered lexicographically,

y �MOEA-S z ⇔ (|y|1 > |z|1) ∨ (|y|1 = |z|1 ∧ P(y) ≥ P(z)). (1)

If both |y|1 and |z|1 are close to the new boundary B∗, i.e., if |y|1, |z|1 ∈ {B∗, B∗ −1},
we set

y �MOEA-S z ⇔ |y|1 = |z|1 ∧ P(y) ≥ P(z). (2)

As a result, two bit strings y and z are incomparable if and only if |y|1 = B∗ and
|z|1 = B∗−1 or vice versa, written y ‖MOEA-S z. Similar to theMOEA, the population
S of the MOEA-S collects incomparable solutions during the reoptimization process,
but now can have at most 2 elements at any given time. In case of B > B∗, we invert
the dependency on the number of 1-bits in part (1) of the dominance definition to
|y|1 < |z|1 sincewe nowprefer solutionswith smaller Hammingweight. Additionally,
part (2) of the definition applies if |y|1, |z|1 ∈ {B∗, B∗ + 1} since we only care for
solutions between the two bounds.

Algorithm 3: MOEA-S; assuming B ≤ B∗.
1 S ← {xorig};
2 while stopping criterion not met do

3 Choose x ∈ S uniformly at random;

4 y ← flip bit xi with i ∈ {0, . . . , n} chosen uniformly at

random;

5 if ∀z ∈ S : y ‖MOEA−S z then

6 S ← S ∪ {y};
7 if (B∗ ≥ |y|1 ≥ B) ∧ (∃z ∈ S : y �MOEA-S z) then

8 z ← y;
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The MO (μ+(λ, λ))GA (Algorithm 4) combines features of the (1+(λ, λ))GA [4]
and the MOEA. Every iteration of the while-loop of the algorithm has three phases:
mutation, crossover, and selection. During the mutation phase the algorithm first sam-
ples a search point x ∈ S from the population uniformly and a number 0 ≤ � ≤ n
(called step size in [4]) according to the binomial distribution Bin(n, p) with parame-
ters n and p, the mutation probability. Then, λ mutants are generated by the operator
mutate�(x) which flips exactly � bits in x chosen uniformly at random. This results
in λ �-Hamming neighbors of x chosen uniformly. Note that a mutation probability
p greater than 1/n puts larger emphasis on the exploration aspect of the search, as
compared to standard bit mutation.

First consider the case B ≤ B∗. Among the �-neighbors, those with Hamming
weight strictly larger than |x |1 would be preferred for crossover, if there are any.
The flipping bits are chosen uniformly, hence we are not guaranteed such a neighbor.
Notwithstanding, any flipping 0-bit potentially provides valuable information about a
possible fitness improvement. Thus, we lower the requirement of an offspring to enter
the crossover phase, only demanding that any 0-bit has been flipped in its creation. If
B > B∗, the same idea applies to the 1-bits. This gives rise to the following definition.
We call a mutant z ∈ {0, 1}n of x valid if |x |1 ≤ B∗ and some 0-bit was flipped by the
mutation operator during its creation, or |x |1 ≥ B∗ and at least one 1-bit flipped. At
the end of the mutation phase, some valid mutant x ′ is chosen at random for further
processing; if there are none, we set x ′ = x .

The crossover operator crossc(x, x ′) recombines the parent string x with the
designated mutant x ′, aiming to repair potentially malicious mutations. Given some
fixed crossover probability c,crossc(x, x ′) creates a bit string by choosing, in every
position 1 ≤ i ≤ n, bit x ′

i with probability c, and xi otherwise. The operator is applied
λ times to the same pair x, x ′. If B ≤ B∗, we are only interested in the offspring whose
Hamming weights are exactly one larger than that of the parent string. The intuition
is to only cautiously grow the population to avoid the connected slowdown in the
early phases of the optimization. Consequently, the algorithm collects in set M those
offspring whose Hamming weight equal |x |1 + 1, provided that B ≤ B∗ (|x |1 − 1, if
B > B∗). To rank the offspring in M , we use the same notion of dominance as that
for the MOEA, i.e., y �MOEA z ⇔ |y|1 = |z|1 ∧ P(y) ≥ P(z). At the end of the
crossover phase, the algorithm draws some �MOEA-maximal element y′ ∈ M to enter
the selection phase. If M = ∅, it continues with y′ = x . Observe that if the mutation
phase fails to produce a valid mutant, all offspring are identical copies of x and the
MO (μ+(λ, λ)) GA does not find any improvement in this round.

The selection phase finally checks whether the solution y′ obtained in the earlier
phases meets the cardinality constraint and is not strongly dominated by a solution
previously in S with respect to 
MOEA. If so, the population is updated in the usual
way.
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Algorithm 4:MO (μ+(λ, λ))GA; assuming B ≤ B∗. Con-
cept from [4].

1 S ← {xorig};
2 while stopping criterion not met do

/* Mutation phase. */

3 Choose x ∈ S uniformly at random;

4 Choose � according to Bin(n, p);

5 for i = 1 to λ do

6 x (i) ← mutate�(x);

7 V = {x (i) | x (i) is valid};
8 if V �= ∅ then

9 Choose x ′ ∈ V uniformly at random;

10 else x ′ ← x;

/* Crossover phase. */

11 for i = 1 to λ do

12 y(i) ← crossc(x, x ′);

13 M = {y(i) | |y(i)|1 = |x |1 + 1} ;
14 if M �= ∅ then

15 Choose a �MOEA-maximal y′ ∈ M uniformly at

random;

16 else y′ ← x;

/* Selection phase. */

17 if (B∗ ≥ |y′|1 ≥ B) ∧ (�w ∈ S : w 
MOEA y′) then
18 S ← (S ∪ {y′}) \ {z ∈ S | y′ �MOEA z};

2.3 Tools

Drift analysis is our main tool to analyze the expected reoptimization times, cp. [5,9].
The inner state of the algorithm in question is mapped to a real number via a potential
function. The change of the potential during the optimization process is interpreted as
a random process (of the random decisions of the algorithm). The idea is to prove the
existence of a drift, expected movement, towards a potential value corresponding to an
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optimal solution. The time needed to reach that value then equals the reoptimization
time.

We primarily employ the Multiplicative Drift Theorem as introduced by Doerr et
al. [5].

Theorem 1 (Multiplicative Drift Theorem [5]) Let S ⊆ R+ be a finite set of positive
numbers with minimum smin. (X (t))t∈N shall denote a sequence of random variables
over S ∪ {0}. Let T be the random variable that denotes the first point in time t ∈ N
for which X (t) = 0. Suppose that there exists a real number δ > 0 such that

E[X (t) − X (t+1) | X (t) = s] ≥ δs

holds for all s ∈ S with Pr[X (t) = s] > 0. Then, for all s0 ∈ S with Pr[X (t) = s0] > 0,
we have

E[T | X (0) = s0] ≤ 1 + ln(s0/smin)

δ
.

As a technical detail, the target potential in our analysis may not exactly be 0, just any
value smaller than a given smin > 0. It is obvious that Multiplicative Drift Theorem is
still applicable in this case.

Additionally we use the Additive Drift Theorem by He and Yao [9], in particular its
statement regarding lower bounds. The difference being whether the drift is a multiple
of the current potential or constant. Again we choose a more flexible formulation,
shooting for a target value smin which might be different from 0.

Theorem 2 (Additive Drift Theorem [9]) Let S ⊆ R+, smin, and (X (t))t∈N be as
above. Let T denote the first point in time for which X (t) = smin. Suppose that there
exists a real number δ > 0 such that

E[X (t) − X (t+1) | X (t) = s] ≥ δ

holds for all s ∈ S with Pr[X (t) = s] > 0. Then, for all s0 ∈ S with Pr[X (t) = s0] > 0,
we have

E[T | X (0) = s0] ≤ s0 − smin

δ
.

Conversely, if E[X (t) − X (t+1) | X (t) = s] ≤ δ for all such s, then E[T | X (0) =
s0] ≥ (s0 − smin)/δ.

3 Analysis of the (1+1) EA

The runtime of the classical (1+1)EA on linear functions has been extensively studied
in the literature, see e.g. [6,10,17]. In particular, a detailed discussion of its perfor-
mance on constrained problems can be found in [8] and [20]. The ideas presented
in this section are very similar to those used by Friedrich et al. [8] analyzing the
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(1+1) EA under static constraints. We show that the same techniques are applicable
in the dynamic setting. Recall that the fitness function f(1+1) guides the search of the
algorithm towards the feasible region and only afterwards maximizes the profit.

Theorem 3 The reoptimization time of the (1+1) EA on OneMax under dynamic
uniform constraint is

E[T ] =
⎧⎨
⎩
O

(
n log

(
n−B
n−B∗

))
, if B ≤ B∗;

O
(
n log

( B
B∗

))
, if B > B∗.

Proof It is convenient for the analysis to use different potential functions depending
onwhether the bit string currentlymaintained by the (1+1)EA is feasible or not. In the
former case we use |x |0, and |x |1 in the latter. We always aim to reduce the potential.
Note that the target potential of an optimal string is not zero but |x∗|0 = n − B∗ if
B ≤ B∗ or |x∗|1 = B∗ if B > B∗. If the current solution is feasible but non-optimal,
flipping a single 0-bit (and nothing else) improves on the profit P and is thus accepted
as a fitness-improving move. Conversely, the same holds for flipping a single 1-bit of
an infeasible string, as this eases the constraint violation. A standard argument now
shows that there is an expected drift in the potential of at least |x |0/en or |x |1/en,
respectively.

If B ≤ B∗, the initial solution xorig is feasible and every infeasible solution
would be discarded due to a negative fitness value. The Multiplicative Drift The-
orem (Theorem 1) now gives an expected number of O(n log(|xorig|0/|x∗|0)) =
O(n log((n − B)/(n − B∗))) generations to reach any optimal solution to the new
problem with bound B∗. As the (1+1) EA uses a constant number of fitness evalua-
tions per iteration, this is also an upper bound on the reoptimization time.

If B > B∗, the reasoning is similar but with the reoptimization starting in the
infeasible region. The time needed to sample the first feasible solution, say z, is of
order O(n log(|xorig|1/B∗)) = O(n log(B/B∗)). However, z itself does not need to be
optimal. In the remainder of this proof, we show that the additional time needed to
find the optimum does not worsen the asymptotic runtime. Namely, we claim that the
(1+1) EA starting from z reaches an optimal solution x∗ within O(n) iterations.

Let U = B∗ − |z|1 denote the random number of 1-bits by which we missed the
optimality bound B∗. When z is sampled for the first time, it must originate from an
infeasible solution. This can only happen if at leastU + 1 bits flipped simultaneously.
The probability of such a mutation is at most

( n
U+1

) 1
nU+1 . As mentioned above, once

we are in the feasible region there is an expected drift of |x |0/en. This implies, again
via Theorem 1, that the expected time to reach optimality conditional onU is bounded
by

en ln

( |z|0
|x∗|0

)
= en ln

(
n − B∗ +U

n − B∗
)

= en ln

(
1 + U

n − B∗
)

≤ en
U

n − B∗ ≤ enU.

Here we use the estimate ln(1 + x) ≤ x , which can easily be seen from the Taylor
expansion. By the law of total expectation, the expected number of generations to
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reach any optimal solution x∗ from z is thus at most

B∗∑
u=0

(
n

u + 1

)
enu

nu+1 ≤
B∗∑
u=0

(
en

u + 1

)u+1 en(u + 1)

nu+1

= e2n
B∗∑
u=0

(
e

u + 1

)u

≤ e2n
∞∑
u=0

(
e

u + 1

)u

≤ 4e2n.

��
We have seen in the proof of Theorem 3 that the drift of the two potential functions

for OneMax are at least of order �(|x |0/n) and �(|x |1/n), in the respective regions.
The following lemma by Witt [19] states that they are also at most of this order. We
use this to give tight bounds on the expected reoptimization time for some values of
B and B∗. Recall that D = |B∗ − B| denotes the absolute distance between the two
cardinality bounds.

Lemma 4 (Lemma 6.7 in [19]) Consider the (1+1) EA (with standard bit mutation)
on OneMax as a maximization problem. Let x ′ denote the offspring of some parent
string x ∈ {0, 1}n after selection. Then,

E[|x |0 − |x ′|0] ≤ |x |0
n

(
1 − 1

n
+ |x |0

n2

(
1 − 1

n

)n−|x |0)
≤ |x |0

n
.

Similarly, when considering the minimization variant, we have E[|x |1 − |x ′|1]
≤ |x |1/n.
Theorem 5 Suppose either B ≤ B∗ = εn or B > B∗ = εn holds, where 0 < ε < 1
is an arbitrary constant. Then, the expected reoptimization time of the (1+1) EA on
OneMax under dynamic uniform constraint is �(D)

Proof The condition in the theorem states that during the whole reoptimization there
is always a linear number of 0-bits present (if B ≤ B∗; otherwise, a linear number of 1-
bits). By the discussion above as well as Lemma 4, there is a constant drift towards the
new optimum, regardless of whether the current string is feasible or not. The Additive
Drift Theorem (Theorem 2) now implies the claim. ��

The famous tight bound �(n log n) on the runtime of the classical (1+1) EA on
OneMax indicates that the tight bound on the (1+1) EA (Algorithm 1) on OneMax
under dynamic uniform constraint with B = 0 and B∗ = n, is also �(D log D).
Combing the above theorem, it is not hard to see that the tight or lower bound on the
runtime of the (1+1) EA on OneMax under dynamic uniform constraint is closely
dependent on the relationship between B, B∗, and n. Thus we only discuss the tight
or lower bound in some specific cases in the paper.

We now discuss the general case of reoptimizing a linear profit function. As com-
pared to OneMax, it is possible to reduce the Hamming weight |x |1 of a solution
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while at the same time improving on the profit P(x). The constraint still only restricts
the former. Symbol wmax stands for the maximum weight of the function P .

The proof of this theorem follows closely the one of Theorem 6 in [8].

Theorem 6 The expected reoptimization time of the (1+1) EA on a linear profit
function P under dynamic uniform constraint is

E[T ] = O(n2 log(B∗wmax)).

Proof ByTheorem3, the claimed running timedominates the time to reach the feasible
region. Consequently, we start the analysis with a feasible bit string. W.l.o.g. the
weights of the profit function P are in descending order, i.e. wmax = w1 ≥ w2 ≥
· · · ≥ wn . Note that there might be multiple optimal solutions if the weights are not
all distinct. To give an upper bound on the reoptimization time, we measure the time
the (1+1) EA needs to sample x∗ = 1B

∗
0n−B∗

. To that end, let loss and surplus be
two auxiliary functions defined as follows:

loss(x) =
B∗∑
i=1

wi xi ; surplus(x) =
n∑

i=B∗+1

wi xi ,

where xi denotes the negation of bit xi . Intuitively, loss(x) counts the bits in which x
and the target x∗ differ up to position B∗ and weighted by thewi . Similarly, surplus(x)
counts the weighted dissimilarities starting from index B∗ + 1. Let the potential of
the solution x be g(x) = loss(x) − surplus(x). Observe that for any feasible solution
the potential is non-negative, it cannot increase during the optimization and is zero
precisely for solution x∗.

The expected drift of g is minimal if solution x has Hamming weight B∗. Then, no
single-bit flip can improve on the potential as it would be rejected by the (1+1) EA.
Flipping a 0-bit violates the constraint and flipping a 1 would decrease the profit. If
|x |1 = B∗, the number of missing 1-bits up to position B∗ equals the number of total
1s between index B∗ + 1 and n. Let k denote this number. Consider the event E of
flipping exactly one 0-bit in substring x1x2 . . . xB∗ , one 1 in xB∗+1 . . . xn and nothing
else. Conditional on E , each of the k2 mutations are equally likely and the average
decrease in potential is loss(x)/k for the flipping 0 and −surplus(x)/k for the 1. The
total expected drift of g can thus be bounded by

E[g(x) − g(x ′)] ≥ E[g(x) − g(x ′) | E , |x |1 = B∗]Pr[E ]
= loss(x) − surplus(x)

k

k2

n2

(
1 − 1

n

)n−2

≥ g(x)

en2

The observation that the potential of any feasible solution is at most
∑B∗

i=1 wi ≤
B∗wmax and that the expected time to reduce this to zero is bounded by en2 ln(B∗wmax)

(by Theorem 1) completes the proof. ��
If B ≤ B∗, we can derive a slightly better bound since we know the initial potential.
W.l.o.g. we start with the initial solution xorig = 1B0n−B . Its potential is g(xorig) =
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P(x∗) − P(xorig) = ∑B∗
i=B+1 wi ≤ Dwmax. This results in a runtime bound of

O(n2 log(Dwmax)).
The reoptimization time of the (1+1) EA on general linear functions seems to be

unreasonably large when compared to the O(n log n) bound [6] for the unconstrained
setting. The reason is a different behavior at the cardinality bound B∗. In order to make
progress there, it is necessary to swap the bits in the right place immediately instead
of interleaving profit-increasing moves with those losing expendable 1-bits. To back
up this assessment, the next result shows that there are instances on which a quadratic
runtime cannot be avoided.

Theorem 7 There is a linear profit function P and bounds B, B∗ such that the reop-
timization time of the (1+1) EA on P under dynamic uniform constraint is �(n2),
not only in expectation but even with high probability.1

Proof Let 0 < ε < 1 be a constant. We set B = εn and B∗ = B+1 as the constraints
and choose the profit function

P(x) =
εn∑
i=1

3xi + 3

2
xεn+1 +

n∑
i=εn+2

xi .

The (unique) optimal solution with respect to the old bound B is thus xorig =
1εn 0(1−ε)n .

Starting from this solution, a mutation is accepted if and only if exactly one 0-bit is
flipped or no bits at all. To see this, let c1 denote the number of flipping 1-bits and c0
that of the 0-bits. If c0 > c1 + 1, the offspring is discarded for violating the constraint
B∗ = B + 1. If c0 ≤ c1 + 1 and not both values are 0, the best available mutation
involves the bit at position εn+ 1 turning into a 1. The change in profit is then at most

P(x ′) − P(x) ≤ −3c1 + 3

2
+ (c0 − 1) ≤ 3

2
− 2c1.

The right-most member of the inequality is non-negative iff c1 = 0.
The only optimal mutation is flipping xεn+1 and nothing else. Hitting this particular

bit has probability
1

e(1 − ε)n
≤ 1

e
√
n

.

Hence, with high probability, the MOEA finds a non-optimal string of Hamming
weight B∗ first. The only improving move is then to flip the additional 1-bit and the 0
at position εn+1 simultaneously. This swap has quadratic waiting time, which implies
the claim. ��

1 We use the term with high probability if there exists a constant c > 0 such that the probability is at least
1 − 1/nc .
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4 Analysis of the MOEA Variants

In this section, we analyze the reoptimization times of the Multi-Objective Evolu-
tionary Algorithm (MOEA) and its single-bit flip variant MOEA-S. As shown in
Theorem 7, the (1+1) EA on general linear functions has to “swap” two specific
bits for an improvement, once a non-optimal string with Hamming weight B∗ has
been found. To overcome this limitation and soften the effect of the new cardinality
bound, the MOEA maintains a pool S of candidate solutions. The idea is to utilize
multiple solutions in order to return to the incremental improvements typical for the
unconstrained setting. On the other hand, a large populationmay slow down the reopti-
mization process. Recall that S contains a solution for each Hamming weight between
B and B∗ that occurred during the reoptimization process, which can be up to D + 1.
We first prove the adverse influence of the population size when working on very
simple functions such as OneMax.

Theorem 8 The expected reoptimization time of the MOEA on OneMax under
dynamic uniform constraint is

E[T ] =
⎧⎨
⎩
O

(
nD log

(
n−B
n−B∗

))
, if B ≤ B∗;

O
(
nD log

( B
B∗

))
, if B > B∗.

Proof First, note that the selection step in the MOEA (Algorithm 2) can be computed
with a constant number of fitness evaluations per iteration when storing the vector
fMOEA(x) for each individual x ∈ S. It is thus enough to bound the expected number
of generations needed for the reoptimization process.

We start with the discussion of case B ≤ B∗. In order to employ drift analysis,
we define the potential of the MOEA as M = minx∈S |x |0. By choosing the (unique)
member of S with theminimum number of 0-bits,M , and flipping exactly one of them,
the potential is decreased by 1. Note that the value of M can never increase during the
reoptimization process. Let M ′ denote the potential after one iteration starting from
M . With the above argument we get a lower bound on the expected drift of

E[M − M ′] ≥ 1

|S| · M
n

·
(
1 − 1

n

)n−1

≥ M

en(D + 1)
.

The potential of the MOEA has an initial value n− B for the initial population {xorig},
and is reduced down to n− B∗ once a solution x∗ with |x∗|0 = n− B∗ is included into
the population. For thewhole reoptimization process, theMultiplicativeDrift Theorem
implies that the MOEA needs an expected number of O(nD log( n−B

n−B∗ )) generations.
In the case of B > B∗, the potential of the MOEA is defined as M = minx∈S |x |1.

The reasoning is the same as that for the case B ≤ B∗ with the roles of 1-bits and
0-bits inverted. Note that we cannot undershoot the bound B∗ as such solution would
be outright rejected by the algorithm. ��

The expected reoptimization time of the MOEA on OneMax under dynamic uni-
form constraint suffers from the potentially large population and the resulting longer
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waiting times. However, the next theorem shows that the population can speed up
the reoptimization when running on general linear profit functions. In particular, this
holds true when the difference D = |B∗ − B| is small.

Theorem 9 The reoptimization time of theMOEA on linear functions under dynamic
uniform constraint is

E[T ] = O(nD log D).

Proof Again, we present our method in the case of B ≤ B∗, the other one follows
almost identically. To bound the reoptimization time we track so-called “candidates”
x in the population. Given a feasible solution x , we say it is a candidate if there
exists an optimal solution x∗ such that x∗

i = 1 whenever xi = 1. That is, we can
create an optimal solution from a candidate by flipping only 0-bits. Observe that xorig
is a candidate of Hamming weight B, and any candidate of weight B∗ is necessarily
optimal. By the definition of the partial ordering�MOEA, a candidate in the population
S can only be replaced by another candidate with the same weight but higher profit.
Let h be the maximum Hamming weight among all candidates in S and let x (h) ∈ S
denote its representative. We define G = B∗ − h to be the potential of the MOEA.
The reasoning is as follows. Among the n − h 0-bits in x (h) there are at least B∗ − h
(of highest weight) such that flipping them creates a candidate of higher Hamming
weight.

We can now use a similar argument as in the proof of Theorem 8. Choosing x (h)

for mutation and flipping exactly one of those designated 0s decreases the potential
by one. This results in an expected drift of at least

1

|S| · B
∗ − h

en
≥ G

en(D + 1)
.

The claim now follows from Theorem 1 and the observation that the inital potential is
exactly D = B∗ − |xorig|1.

For the other case in which B > B∗, the notion of a candidate is reversed. Solution
x is a candidate if there is an optimum x∗ such that xi = 0 implies x∗

i = 0. Using the
above reasoning on the potentialG = h− B∗ yields the same expected reoptimization
time. ��

The MOEA-S variant uses the single-bit flip operator instead of the standard bit
mutation. Also, in order to reduce the population size and avoid longwaiting times, the
dominance relation �MOEA-S of the MOEA-S is different from �MOEA. Two strings
are now incomparable only if they haveHammingweights B∗ and B∗ − 1, respectively
(assuming B ≤ B∗; otherwise the weights are B∗ and B∗ + 1). In the following lemma
we investigate the update mechanism of the MOEA-S for solutions in S.

Lemma 10 As long as no solution of Hamming weight B∗ has been sampled by the
MOEA-S, the population size is 1. If S has two members, their Hamming distance is 1.

Proof For the first part, recall that the population is initialized with a single bit string
xorig.While theHammingweight of the currently best solution is between B and B∗−1
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y 1 1 1 0 0 1 1 0 1 1 0 0

yi y j dH(y,z) = 1
z1 1 1 0 0 1 1 1 1 1 0 0

zi z j

dH(y,y ) = 1

y 1 1 1 0 0 1 1 0 1 1 0 1

y jyi

dH(z,z ) = 1

z1 1 1 0 0 1 1 1 1 0 0 0

z jzi

Fig. 1 An illustration of the proof of Lemma 10. Symbol dH denotes the Hamming distance. If population
{y, z} is updated, then the new set is either {y, y′} or {z, z′}, in which the two solutions maintain distance
1. The updates effectively swap the bits zi , z j or yi , y j ′ , respectively

(B and B∗ + 1 if B > B∗), a mutation is accepted iff it flips a single 0-bit (1-bit).
By the definition of �MOEA-S, the offspring then replaces its parent. The condition in
line 5 of Algorithm 3 is not met prior to S holding a weight-B∗ solution and another
0-bit flips (a 1-bit flips).

For the second part, consider the iteration in which said condition is fulfilled for
the first time. Due to the single-bit flip the initial two incomparable solutions have
Hamming distance 1. Suppose the difference is at position i . Let z denote the solution
with the larger number of 1-bits and y the one with fewer 1s. Necessarily, zi = 1
and yi = 0. Flipping a 0 in z or a 1 in y is always discarded. Either it violates the
upper bound of B∗ in line 7 of the algorithm (lower bound if B > B∗) or it creates an
offspring that is already dominated. A flip at position i transforms the two solutions
into each other. There are only two ways for the population to reach a new state, see
also Fig. 1. The first is to flip a 0-bit in y at index j �= i . The resulting offspring y′
now has Hamming weight one larger than y and is designated to replace z (if it yields
at least the same profit). String y′ is almost identical to z, the only difference is that
zi = 1 and z j = 0 are now swapped. The other possible update is to replace y by
flipping a 1-bit at position j ′ in z and thus swapping yi = 0 and y j ′ = 1. Both updates
preserve the distance. ��
Theorem 11 The reoptimization time of the MOEA-S on OneMax under dynamic
uniform constraint is

E[T ] =
{
O

(
n log

(
n−B
n−B∗

))
, if B ≤ B∗;

O
(
n log

( B
B∗

))
, if B > B∗.

Proof Lemma 10 shows that the MOEA-S on OneMax behaves like random local
search. It is now easy to see that the expected optimization times differ from those in
Theorem 3 only by a constant factor. ��
Theorem 12 The reoptimization time of the MOEA-S on linear functions under
dynamic uniform constraint is

E[T ] = O(n log D).
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Proof For this proof we introduce some notation to address consecutive ranges of bits
in solutions x ∈ {0, 1}n . Let i and j, i ≤ j , be two indices, x[i, j] = xi xi+1 . . . x j
stands for the substring of x from position i to j . The special cases of x[1,n] = x and
x[i,i] = xi are included. We call x[1,B∗] the first block of x and x[B∗+1,n] the second
block.

W.l.o.g., the weights of the profit function P are ordered non-increasingly and
we have xorig = 1B0n−B as the initial solution. We pessimistically assume that the
optimum x∗ = 1B

∗
0n−B∗

is unique, i.e., wB∗ > wB∗+1. We start the analysis at the
first point in time at which population S contains two search points. We claim that
Algorithm 3 then needs O(n log D) generations in expectation to optimize the solution
with Hamming weight B∗. Observe that this is indeed enough to establish the results
as the starting point can be reached within another phase of O(n log D) iterations
(Theorem 11).

It remains to prove the claim. First, assume B ≤ B∗. Let y denote the member of
S with Hamming weight B∗ − 1 and z the one with Hamming weight B∗. We define
the potential of the MOEA-S to be

G = 2B∗ − 1 − | y[1,B∗] |1 − |z[1,B∗] |1.

Intuitively, it measures the number of missing 1-bits in the first block of the target
solution z, but also considers the state of y. It is straightforward to check that the
potential is non-negative and that G = 0 implies |z[1,B∗] |1 = B∗, that is, optimality.
Conversely, when the MOEA-S samples an optimal solution for the first time, the
potential drops to 0. To see this, recall from Lemma 10 that z can only be updated
by flipping a 0-bit in y. Afterwards, the two solutions differ exactly in the previously
flipping position i . If i > B∗, there is a bit set to 1 in the second block z[B∗+1,n], a
contradiction to the optimality of z. Hence, i ≤ B∗, which gives | y[1,B∗] |1 = B∗ − 1
and |z[1,B∗] |1 = B∗.

We now examine the update behavior of the solutions in S with respect to the
potential. To this end, we only need to consider the cases in which the position i of
the defect (i.e., yi = 0 and zi = 1) and the new flipping position j are in different
blocks. Suppose i ≤ B∗ < j , thus wi > w j . Flipping a 0-bit in z would be discarded;
however, flipping z j = 1 is the same as trying to swap a 1-bit into the first block of
y. This is accepted since the weight difference ensures a profit gain P(z′) > P(y).
The swap decreases the potential by 1. If string y were to be mutated, a 0-bit needs to
be flipped. But this swap of a 0 into the first block of z is discarded for reducing the
profit. The case j ≤ B∗ < i is symmetric, using w j > wi .

Following the above analysis, the potential G never increases during the reopti-
mization. In the worst case all the 1-bits that were collected while S only had a single
element, fell in the second block. Then, the number of 1-bits in the first block did not
change from the initial point xorig and we get G ≤ 2B∗ − 1 − 2B = 2D − 1.
We now compute the expected drift in the potential. Let p denote the probabil-
ity that in the current round the position i in which y and z differ is in the first
block, i ≤ B∗. If so, the potential is decreased by 1 if z is selected for mutation
and a 1-bit in its second block is flipped. There are |z[B∗+1,n]|1 = B∗ − |z[1,B∗]|1
many of them. If instead i > B∗ holds, the potential is decreased whenever one
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of the B∗ − |y[1,B∗]|1 0-bits in the first block of y flips. Putting it all together, we
have

E[G − G ′] = p
B∗ − |z[1,B∗]|1

2n
+ (1 − p)

B∗ − |y[1,B∗]|1
2n

≥ G

4n
.

An application of the Multiplicative Drift Theorem proves the claimed bound of
O(n log D) for this case.

For B > B∗, the reasoning is almost the same. Only that now the number of
1-bits does indeed decrease during the reoptimization. In the worst case all deleted
1s are in the first block of length B∗. To reach solution z with Hamming weight
B∗ + 1, D − 1 successful flips are necessary; for y with |y|1 = B∗, D flips are
necessary. Thus, the initial potential is G ≤ 2B∗ − 1− (B∗ − D) − (B∗ − D − 1) =
2D. Once the algorithm reaches the state of two solutions, the behavior is identical.

��

5 Analysis of the MO (μ+(λ, λ)) GA

Doerr, Doerr and Ebel introduced the (1+(λ, λ)) Genetic Algorithm [4]. It employs
a special mutation operator and a non-uniform crossover in strong interconnection.
As opposed to many other GAs, the crossover is not intended to combine favorable
parts of the parent solutions, but to repair malicious mutations. The (1+(λ, λ)) GA
can optimize OneMax in linear time, when using an adaptive parameter setting.
In every round, λ—the number of mutants—is set to �√n/(n − |x |1) �, where x
is the currently best solution. This way, an improving move can be found within
O(1) iterations (i.e., O(λ) fitness evaluations), which is significantly faster than the
(1+1) EA. For comparison, the single-bit flip operator (random local search) needs
time in O(λ2). Thus this interplay can be seen as an upgraded RLS.

We combine features of the MOEA and the (1+(λ, λ)) GA to the Multi-Objective
(μ+(λ, λ))Genetic Algorithm (Algorithm 4). The use of variableμ shall indicate that
the size of the population maintained by the algorithm may be larger than 1. However,
we would like to point out that μ is not a parameter as the size is not fixed to any
pre-defined value. The MO (μ+(λ, λ)) GA implements the same mutation/crossover-
scheme as the (1+(λ, λ)) GA in the shape of operators mutate� and crossc.
Additionally, it is adapted to the multi-objective setting in that the algorithmmaintains
a population of incomparable solutions. We use the same notion of dominance as for
the MOEA. Similar to the approach of the MOEA, we only consider new solutions
for selection if they have Hamming weight exactly one larger than that of their parent
(exactly one less, for B > B∗).

5.1 OneMax with Dynamic Uniform Constraint

We start the analysis of MO (μ+(λ, λ)) GA on the simplest objective function One-
Max. We show that the probability of an iteration of the while-loop to achieve an
improvement can be lower bounded by a constant, given that the mutation probability
p, crossover probability c, and number of mutants λ are set correctly. The following
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two lemmata are an adaption of the related results in [4] to the MO (μ+(λ, λ)) GA.
The proofs are included for completeness.

Lemma 13 Starting with a solution x of OneMax under dynamic uniform constraint
with |x |1 = A (B ≤ A < B∗), the probability of an iteration of the while-loop in the
MO (μ+(λ, λ)) GA to get a solution y∗ with |y∗|1 = A + 1 is greater than C, where
C > 0 is a constant, if p = λ/n, c = 1/λ, and λ = �√n/(n − |x |1) �.
Proof We start by analyzing the probability without considering the adaptive setting
way of parameters p, c, and λ. In order to get a solution y∗, whose Hamming weight is
exactly one larger than that of x , the MOEA has to consider the probability�(|x |0/n)

of the standard bit mutation operator that flips exactly one 0-bit in x . However, for
the MO (μ+(λ, λ)) GA, the requirement of its mutation phase can be lowered, only
demanding that there is a flip from 0 to 1 in the creation of the solution x ′ (x ′ is
obtained by the mutation phase, to attend the crossover phase). That is because the
crossover operator used in the crossover phase is able to find the resulting bit of the
flip from 0 to 1, and ignore the resulting bits of all the other flips in x ′. Summarizing in
a sentence, to get such a solution y∗, it is a necessary condition that there is an index
j (1 ≤ j ≤ n) such that x ′

j = 1 and x j = 0 (since B ≤ B∗), i.e., the solution x ′
obtained by the mutation phase is a valid offspring of x .

Observe that the solution x ′ is not a valid offspring of x if and only if none of the
λ mutants that are generated by the operator mutate�(x) on x is a valid offspring of
x . An offspring x (i) = mutate�(x) of x is not a valid offspring of x if and only if all
the � bits flipping in its creation are 1-bits. Thus, the probability for mutate�(x) to
get an invalid offspring of x is

�−1∏
t=0

|x |1 − t

n
.

It is an easy conclusion that the probability that none of the λ offspring is a valid
offspring of x is

(
�−1∏
t=0

|x |1 − t

n

)λ

≤
( |x |1

n

)�λ

,

and the probability that x ′ is a valid offspring of x , is at least

1 −
( |x |1

n

)�λ

.

The following discussion is based on the assumption that the solution x ′ obtained by
the mutation phase is a valid solution of x . Since the mutation operator mutate�(x)
flips exactly � bits in x , we only need to consider the � positions where x and x ′ are
different when considering the crossover operator (position j is one of the � positions,
where x ′

j = 1 and x j = 0). For y(i) = crossc(x, x ′), the probability that y(i) chooses
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the x ′
j as its j-th bit and the other �−1 bits in x as its bits in the corresponding positions

is c(1− c)�−1, indicating that y(i) has Hamming weight |x |1 + 1 with probability not
less than c(1−c)�−1. Observe that the solution y′ is not with Hammingweight |x |1+1
if and only if none of the λ offspring that are generated by the operator crossc(x, x ′)
is with Hamming weight |x |1 + 1. Thus the probability |y′|1 = |x |1 + 1 is at least

1 −
(
1 − c (1 − c)�−1

)λ

.

Combining the probability that the mutation phase gets a valid offspring x ′ of x ,
the probability to get a solution y∗ with Hamming weight A + 1 within an iteration
of the while-loop is at least

(
1 −

( |x |1
n

)�λ
)(

1 −
(
1 − c(1 − c)�−1

)λ
)

.

Now we incorporate the adaptive parameter setting, dependent on the current solu-
tion x .We get a lower bound on the probability to reach a solution y∗ havingHamming
weight A + 1 within one iteration of the while-loop. First of all, we consider the case
λ = �√n/(n − |x |1) � = 1, i.e., 0 ≤ |x |1 < 3n

4 . The parameter � is set as 1 by the
binomial distribution Bin(n, p), where p = λ/n = 1/n, with probability �(1/e).
And the probability for the mutation operator mutate�(x) to flip a 0-bit in x is �(1).
Using the fact that the parameter c is set to 1/λ = 1 in this case, the claim now follows.

Thus we only consider the case λ ≥ 2 in the following discussion. Denote by L the
random variable sampled by the binomial distribution Bin(n, p), and K the success
to get a solution y∗ with Hamming weight A+1 within an iteration of the while-loop.
We have

Pr[K ] ≥
7λ/4∑

�=�λ/4�
Pr[K |L = �] · Pr[L = �],

where Pr[K |L = �] ≥ (1 − (
|x |1
n )�λ)(1 − (1 − c(1 − c)�−1)λ).

Since c = 1/λ, and that only the values � ∈ [λ/4, 7λ/4] are considered, we can
get

(
1 − c (1 − c)�−1

)λ ≤
(
1 − 1

λ

(
1 − 1

λ

) 7λ
4
)λ

≤
(
1 − 1

8
√
2λ

)λ

≤ e
− 1

8
√
2 .

The second inequality above always holds because of the fact that (1 − 1/a)a ≥ 1/4
for any a ≥ 2. For the term 1 − (

|x |1
n )�λ, we have
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1 −
( |x |1

n

)�λ

≥ 1 −
( |x |1

n

) λ2
4 ≥ 1 −

(
1 − n − |x |1

n

)√
n/(n−|x |1)2

4

≥ 1 −
(
1 − n − |x |1

n

) n
n−|x |1 · 14 ≥ 1 − e− 1

4 .

Thus Pr[K |L = �] is greater than a positive constant α = (1− e
− 1

8
√
2 )(1− e− 1

4 ), and

Pr[K ] ≥
7λ/4∑

�=�λ/4�
Pr[K |L = �] · Pr[L = �] ≥ α ·

∑7λ/4

�=�λ/4�Pr[L = �].

When n is sufficiently large, the Chebyshev’s inequality [2] can be used to estimate
the fraction of values that are more than a certain distance from the mean np = λ of
the binomial distribution Bin(n, p). Specifically, no more than 1/k2 of the binomial
distribution’s values can be more than k standard deviations away from the mean (the
standard deviation of the binomial distribution Bin(n, p) is

√
np(1 − p)). Consider

the case k = 1.05, thus more than 9% of values drawn from Bin(n, p) are within 1.05
standard deviations (1.05

√
np(1 − p)) from the mean np = λ, and

7λ/4∑
�=�λ/4�

Pr[L = �] ≥
λ+1.05

√
np(1−p)∑

�=�λ−1.05
√
np(1−p)�

Pr[L = �] ≥ 0.09 .

The first inequality holds because 1.05
√
np(1 − p) = 1.05

√
λ(1 − λ

n ) ≤ 1.05
√

λ ≤
3λ
4 for any λ ≥ 2. ��

Lemma 14 Starting with a solution x of OneMax under dynamic uniform constraint
with |x |1 = A (B ≥ A > B∗), the probability of an iteration of the while-loop in the
MO (μ+(λ, λ)) GA to get a solution y∗ with |y∗|1 = A − 1 is greater than C, where
C > 0 is a constant, if p = λ/n, c = 1/λ, and λ = �√n/|x |1 �.

Proof The reasoning runs in a similar way to that for Lemma 13. Since the case
B > B∗ is considered in the lemma, the roles of 1-bits and 0-bits in the necessary
condition to get a solution y∗ with Hamming weight A− 1 are reversed. Specifically,
to get a solution y∗ whose Hamming weight is exactly one less than that of x , it is a
necessary condition that there is a position j (1 ≤ j ≤ n) in the solution x ′ obtained
by the mutation phase such that x ′

j = 0 and x j = 1, i.e., x ′ is a valid offspring of x .
The probability to get a valid offspring of x at the end of the mutation phase is at

least

1 −
(

�−1∏
t=0

n − |x |1 − t

n

)λ

≥ 1 −
(
n − |x |1

n

)�λ

.
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Based on the supposition that the solution x ′ obtained by the mutation phase is a valid
offspring of x , the solution y′ obtained by the crossover phase has Hamming weight
A − 1 with probability not less than

1 −
(
1 − c (1 − c)�−1

)λ

.

As a result, an iteration of the while-loop can get a solution y∗ where |y∗|1 = A − 1,
with probability not less than

(
1 −

(
n − |x |1

n

)�λ
) (

1 −
(
1 − c (1 − c)�−1

)λ
)

. (3)

The remaining analysis of the probability (3) incorporating the adaptive parameter
setting is almost the same as that given in Lemma 13. Summarizing the above analysis,
the probability to get a solution y∗ having Hamming weight A− 1 within an iteration
of the while-loop in the MO (μ+(λ, λ)) GA, can be lower bounded by a positive
constant as well. ��

The above two lemmata show that an iteration of the while-loop in the
MO (μ+(λ, λ))GA can get an improvement—an increment or decrement of the Ham-
mingweight, respectively—of the considered solution x with a probability greater than
a positive constant C . This requires to set the parameters of the MO (μ+(λ, λ)) GA
adaptively in every round. In particular, the parameterλ is set depending on the selected
solution x ∈ S.

Theorem 15 The expected reoptimization time of theMO (μ+(λ, λ))GAonOneMax
under dynamic uniform constraint is

E[T ] =
⎧
⎨
⎩
O

(
min{√nD3, D2√n/(n − B∗)}

)
, if B ≤ B∗;

O
(
min{√nD3, D2√n/B∗}

)
, if B > B∗.

Hereby, the parameters adapt to the solution x chosen for mutation:

λ =
{

�√n/(n − |x |1) �, if B ≤ B∗;
�√n/|x |1 �, if B > B∗,

the mutation probability is p = λ/n and the crossover probability is c = 1/λ.

Proof Note that when B ≤ B∗, it is unnecessary to consider the case that the denom-
inator n − |x |1 of the fraction in λ equals 0 since the considered solution x would be
an optimal solution, and the algorithm would stop. Similar analysis applies to the case
B > B∗.

First, assume B ≤ B∗. Let x (A) be the solution in S with the maximum Hamming
weight, where |x (A)|1 = A = maxx∈S |x |1 < B∗, and let λA be the corresponding
value of λ with respect to x (A). For any solution in S with Hamming weight less than
A, its corresponding value of λ is not greater than λA according to the setting way
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of λ. Thus if an iteration of the while-loop chooses a solution in S with Hamming
weight less than A, then the number of the fitness evaluations wasted in the iteration
(specifically, in the crossover phase of the iteration) is not greater than λA. An iteration
of the while-loop chooses the solution x (A) with probability �(1/(D + 1)) since the
size of S can be bounded by D + 1. By Lemma 13, the expected number of fitness
evaluations that the MO (μ+(λ, λ)) GA takes to get a solution with Hamming weight
A + 1, can be bounded by O(DλA) = O(D

√
n/(n − A)), which obviously can be

accepted by the algorithm.
To get the expected runtime that theMO (μ+(λ, λ))GA takes to reach a population

in which one of the solutions has Hamming weight B∗, starting with the initial popula-
tion {xorig}, it is necessary to consider all possible values of A (B ≤ A < B∗) and sum
over all the waiting times from A to A+1. Therefore, the expected reoptimization time
of theMO (μ+(λ, λ))GAcanbeboundedbyO(D·∑B∗−1

A=B

√
n/(n − A)) = O(

√
nD3),

because

B∗−1∑
i=B

√
1

n − i
≤

∫ B∗

B

√
1

n − i
di = 2

√
n − B − 2

√
n − B∗ ≤ 2

√
D.

Observe that the upper bound for the size of the population S in above analysis
is not tight, which actually can be bounded by A − B + 1 ≤ D + 1. Thus another
analysis about the expected reoptimization time for B ≤ B∗ is given as follows. The
above analysis gives that the MO (μ+(λ, λ)) GA takes expected runtime O(|S|λA) =
O((A − B + 1)

√
n/(n − A)) to sample a solution with Hamming weight A + 1, and

expected runtime

O

⎛
⎝

B∗−1∑
A=B

(
(A − B + 1)

√
n/(n − A)

)⎞
⎠

to find a solution with Hamming weight B∗ starting with the initial population {xorig}.
Because the values of function f (x) and its second derivative f ′′(x),

f (x) = (x − B + 1)

√
n

n − x
, f ′′(x) =

√
n

(n − x)3
+ 3

4
(x − B + 1)

√
n

(n − x)5
,

are always positive when B ≤ x ≤ B∗, so

B∗−1∑
A=B

(
(A − B + 1)

√
n

n − A

)
≤ f (B) + f (B∗)

2
· (B∗ − B)

= D

2
·
(√

n

n − B
+ (D + 1) ·

√
n

n − B∗

)

≤ D(D + 2)

2
·
√

n

n − B∗ .
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Therefore, the claimed bound of O(min{√nD3, D2√n/(n − B∗)}) for B ≤ B∗
is proved, if the parameters of the MO (μ+(λ, λ)) GA are set dependently with the
chosen solution x in each iteration of the while-loop, as p = λ/n, c = 1/λ, and
λ = �√n/(n − |x |1) � (runtime O(D2√n/(n − B∗)) is to be read as O(

√
nD2) if

n = B∗).
For B > B∗, let x (A) be the solution in S with the minimum Hamming weight,

where |x (A)|1 = A = minx∈S |x |1 > B∗, and let λA be the corresponding value of λ

with respect to x (A). Similar to the analysis for B ≤ B∗, if an iteration of the while-
loop chooses a solution in S with Hamming weight greater than A, then the number
of the fitness evaluations wasted in the iteration is not greater than λA. Combining
Lemma 14 and the upper bound D+1 for the population size, the MO (μ+(λ, λ))GA
takes expected runtime O(D

√
n/A) to sample a solution with Hamming weight A−1,

and expected runtime O(D
∑B

A=B∗+1
√
n/A) = O(

√
nD3) to find a solution with

Hamming weight B∗ starting with the initial population {xorig}, because

B∑
i=B∗+1

√
1

i
≤

∫ B+1

B∗+1

√
1

i
di = 2

√
B + 1 − 2

√
B∗ + 1 ≤ 2

√
D.

For B > B∗, similar to the analysis for B ≤ B∗, the upper bound D + 1 for
the population size |S| used in above analysis can be replaced by B − A + 1 ≤
D + 1. Thus the MO (μ+(λ, λ)) GA takes expected runtime O(|S|λA) = O((B −
A + 1)

√
n/A) to sample a solution with Hamming weight A − 1, and takes expected

runtime O(
∑B

A=B∗+1((B − A + 1)
√
n/A)) to find a solution with Hamming weight

B∗. For the upper bound of
∑B

A=B∗+1((B − A + 1)
√
n/A), because the values of

function f (x) and its second derivative f ′′(x),

f (x) = (B − x + 1)

√
n

x
, f ′′(x) =

√
n

x3
+ 3(B − x − 1)

4

√
n

x5
,

are always positive when B∗ ≤ x ≤ B, so

B∑
A=B∗+1

(
(B − A + 1)

√
n

A

)
≤ f (B) + f (B∗)

2
· (B − B∗)

= D

2
·
(√

n

B
+ (D + 1)

√
n

B∗

)
≤ D(D + 2)

2
·
√

n

B∗ .

Therefore, the claimed bound ofO(min{√nD3, D2√n/B∗}) for B > B∗ is proved,
if the parameters of the MO (μ+(λ, λ)) GA are set dependently with the chosen solu-
tion x in each iteration of the while-loop, as p = λ/n, c = 1/λ, and λ = �√n/|x |1 �.

��
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5.2 Linear Function with Dynamic Uniform Constraint

We now turn to linear functions under dynamic uniform constraints and start by lower
bounding the probability of an improvement if the parameters are set in the right way.

As for OneMax, every bit in the considered bit string has the same weight (i.e.,
every bit string with Hamming weight A + 1 is an optimal solution with Hamming
weight A + 1), Lemmata 13 and 14 thus study the probability of an iteration of the
while-loop in the MO (μ+(λ, λ)) GA to find an arbitrary solution with Hamming
weight A + 1 if B ≤ B∗ (A − 1 if B > B∗), starting with a solution with Hamming
weight A. Similarly, for the linear profit function, we can study the probability of an
iteration of the while-loop to find an optimal solution with Hamming weight A + 1 if
B ≤ B∗ (A − 1 if B > B∗), starting with an optimal solution with Hamming weight
A. However, as mentioned in the proof of Theorem 9, it is unnecessary to find the
optimal solution for each Hamming weight between B and B∗. Thus, using the notion
“candidate” given in the proof of Theorem 9, we analyze the probability of an iteration
of the while-loop to find a candidate with Hamming weight A+1 if B ≤ B∗ (A−1 if
B > B∗), starting with a candidate with Hamming weight A. Recall the definition of
“candidate”. For the case B ≤ B∗, a feasible solution x ′ is a candidate if there exists
an optimal solution x∗ such that x∗

i = 1 whenever xi = 1.

Lemma 16 Starting with a candidate x of a linear profit function under dynamic
uniform constraint with |x |1 = A (B ≤ A < B∗), the probability of an iteration of
the while-loop in the MO (μ+(λ, λ)) GA to get a candidate y∗ with |y∗|1 = A + 1
is greater than C/λ, where C > 0 is a constant, if p = λ/n, c = 1/λ, and λ =
�√n/(B∗ − |x |1) �.

Proof The reasoning runs in a similar way to that of Lemma 13. Let I be the set
containing the positions of all 0-bits in x such that a candidate with Hamming weight
|x |1 + 1 can be found by flipping any one of these 0-bits. Note that I has at least
B∗ − |x |1 elements. As the analysis given in Lemma 13, to get a candidate y∗ with
Hamming weight |x |1 + 1, it is a necessary condition that the solution x ′ obtained by
the mutation phase has a 1-bit x ′

j with j ∈ I .

For any mutant x (i) = mutate�(x) that is obtained by the operator mutate�(x)
on x , the probability that x (i)

j = 0 for all j ∈ I is not greater than

�−1∏
t=0

n − (B∗ − |x |1) − t

n
.

Thus the probability that x (i)
j = 0 for all 1 ≤ i ≤ λ and all j ∈ I is

(
�−1∏
t=0

n − (B∗ − |x |1) − t

n

)λ

≤
(
n − (B∗ − |x |1)

n

)�λ

,
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and the probability that there exists a mutant among {x (1), . . . , x (λ)} such that it has a
1-bit with position in I is not less than

1 −
(
n − (B∗ − |x |1)

n

)�λ

.

Assume that an offspring whose j-th bit is 1 has been obtained by the operator
mutate�(x) during the mutation phase, where j ∈ I . Note that the solution is a valid
offspring of x , but it may not be the unique valid offspring of x in {x (1), . . . , x (λ)}.
Consequently, the solution is chosen as x ′ with probability �(1/λ). And at the end of
the mutation phase, the event x ′

j = 1 happens with probability

1

λ

(
1 −

(
n − (B∗ − |x |1)

n

)�λ
)

.

Now we consider the event that the solution y′ obtained by the crossover phase
is a candidate with Hamming weight |x |1 + 1, based on x and x ′, where bit x ′

j is
assumed to be 1 ( j ∈ I ). Note that the mutation operator mutate�(x) flips exactly �

bits in x , thus only the � positions where x and x ′ are different need to be considered.
For y(i) = crossc(x, x ′), the probability that y(i) chooses x ′

j as its j-th bit and the

other � − 1 bits in x as its bits in the corresponding positions is at least c(1 − c)�−1.
Therefore, the crossover phase gets a candidate y∗ having Hamming weight |x |1 + 1
with probability not less than 1 − (1 − c(1 − c)�−1)λ.

The probability to get a candidate y∗ having Hamming weight |x |1 + 1 within an
iteration of the while-loop, is at least

1

λ

(
1 −

(
n − (B∗ − |x |1)

n

)�λ
) (

1 −
(
1 − c (1 − c)�−1

)λ
)

.

We combine the above conclusion with Lemma 13 to get a bound of C/λ,C a
constant, on the probability to sample a candidate y∗ with |y∗| = |x |1 + 1. ��

Now we consider the other case B > B∗. Recall that an unfeasible solution x ′ of
a linear profit function with Hamming weight between B and B∗, is a candidate if
there is an optimum x∗ such that xi = 0 implies x∗

i = 0. Using similar ideas as in the
previous proof, we have the lemma below.

Lemma 17 Starting with a candidate x of a linear profit function under dynamic
uniform constraint with |x |1 = A (B ≥ A > B∗), the probability of an iteration of
the while-loop in the MO (μ+(λ, λ)) GA to get a candidate y∗ with |y∗|1 = A − 1
is greater than C/λ, where C > 0 is a constant, if p = λ/n, c = 1/λ, and λ =
�√n/(|x |1 − B∗) �.

Finally, we show the upper bound of the expected reoptimization time for the
MO (μ+(λ, λ)) GA on linear functions with dynamic uniform constraints.
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Theorem 18 The expected reoptimization time of the MO (μ+(λ, λ)) GA on a linear
profit function under dynamic uniform constraint is of order O(nD). Hereby, the
parameters adapt to the solution x chosen for mutation:

λ =
⎧⎨
⎩

�√n/max{B∗ − |x |1, 1} �, if B ≤ B∗;
�√n/max{|x |1 − B∗, 1} �, if B > B∗,

the mutation probability is p = λ/n and the crossover probability is c = 1/λ.

Proof The setting of parameter λ given above slightly differs from that given in Lem-
mata 16 and 17, because the two lemmata do not consider the case that an iteration of
the while-loop chooses a solution with Hamming weight B∗, for which the denomina-
tor B∗ − |x |1 of the fraction in λ equals 0 (the solution may not be an optimal solution
withHammingweight B∗ for the linear function, and the algorithm cannot stop). How-
ever, the claims of Lemmata 16 and 17 also hold under the parameter setting given
above. Observe that if an iteration of the while-loop chooses a solution with Hamming
weight B∗, then the offspring obtained by the crossover phase has Hamming weight
B∗ + 1 if B ≤ B∗ (or B∗ − 1 if B > B∗), which would be rejected by the algorithm.

Denote by λ j be the corresponding value of λ with respect to a solution with
Hamming weight j . The following proof for the expected reoptimization time runs
in a similar way to that of Theorem 15. For B ≤ B∗, let x (A) be the candidate in
S with the maximum Hamming weight, where A = |x (A)|1 < B∗. Note that since
x (A) may not be the solution in S with the maximum Hamming weight, the size of
the population S cannot be bounded by A − B + 1, as that given in Theorem 15.
By the same argument, the number N f e of fitness evaluations taken in an iteration of
the while-loop cannot be upper bounded by λA as Theorem 15. Fortunately, we have
the observation that the maximum Hamming weight that the solutions in S have is
K (B ≤ K ≤ B∗) if and only if there is a solution in S for each value between B
and K (since the crossover phase only considers the solutions with Hamming weight
exactly one larger than that of the solution chosen by the iteration of the while-loop),
which implies that |S| = K − B + 1. Moreover, the term �√n/max{B∗ − |x |1, 1} �
is monotonically non-decreasing in |x |1, B ≤ |x |1 ≤ B∗. Using these properties, the
expected value E(N f e) of N f e can be upper bounded by

E(N f e) = 1

|S| ·
K∑
j=B

λ j = 1

K − B + 1
·

K∑
j=B

λ j ≤ 1

B∗ − B + 1
·

B∗∑
j=B

λ j

≤ 1

D + 1
·
⎛
⎝√

n +
B∗−1∑

|x |1=B

√
n

B∗ − |x |1

⎞
⎠

≤
√
n

D + 1
·
(
1 +

D∑
i=1

√
1

i

)

≤
√
n

D + 1
·
(
1 +

∫ D

0
i−

1
2 di

)
=

√
n(2

√
D + 1)

D + 1
.
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By Lemma 16, the MO (μ+(λ, λ)) GA takes an expected number of O(DλA)

iterations of thewhile-loop to find a candidatewithHammingweight A+1.Combining
the expected number E(N f e) of fitness evaluations taken in an iteration of the while-
loop, theMO (μ+(λ, λ))GA takes expected runtimeO(DλA ·E(N f e)) = O(

√
nDλA)

to sample a candidate with Hamming weight A + 1, which can be accepted by the
algorithm.

By considering all possible values of A (B ≤ A ≤ B∗ − 1) and summing over the
waiting times from A to A + 1, the MO (μ+(λ, λ)) GA takes expected runtime

O

⎛
⎝√

nD ·
B∗−1∑
A=B

λA

⎞
⎠ = O

⎛
⎝√

nD ·
B∗−1∑
A=B

√
n

B∗ − A

⎞
⎠

= O

(
n
√
D ·

D∑
i=1

√
1

i

)

= O

(
n
√
D ·

(∫ D

0
i−

1
2 di

))
= O (nD)

to find a candidate withHammingweight B∗ startingwith the initial population {xorig},
which is also an optimal solution with Hamming weight B∗.

For the case B > B∗, using the similar reasoning to that given above and Lemma 17
yields the same expected reoptimization runtime O(nD). ��

6 Conclusion

In this article, we presented a dynamic model for optimizing linear functions under a
uniform constraint. Our results show that different types of evolutionary algorithms
are capable of efficiently recomputing an optimum after a constraint change, starting
from an optimal solution to the old setting. Evolutionary computing techniques seem
to be particularly well-equipped for this task. Our bounds on the reoptimization time
improve significantly upon the known optimization times from scratch in many cases.

However, the constrained nature of the problem gives rise to several obstacles.
Most notably, the usual selection mechanisms bar the algorithms from taking possible
short-cuts via infeasible solutions. This, in turn, can lead to artificially high waiting
times for further improvements once the optimization is close to the boundary of the
feasible region. We showed how a multi-objective approach as well as the use of a
population of individuals can abate this negative influence. Hereby, one must carefully
balance the speedup of multiple individuals with the slowdown of large populations.
The additional objective stemming from the constraint handling naturally lends itself
as a criteria when to include new solutions. Finally, our multi-objective adaption of the
(1+(λ, λ))GA, achieves an even better performance employing an adaptive parameter
scheme.

This work is meant as a first step towards the theoretical understanding of nature-
inspired optimization under dynamic constraints. We examined several promising
constraint handling techniques on the most basic objective functions. We will leave it

123



Algorithmica

for future research to extend these insights to more classes of algorithms and possibly
some real-world optimization problems.
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