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Abstract Resource based scheduling using permutation based representations is reviewed.
Permutation based representations are used in conjunction with genetic algo-
rithms and local search algorithms for solving three very different scheduling
problems. First, the Coors warehouse scheduling problem involves finding a per-
mutation of customer orders that minimizes the average time that customers’
orders spend at the loading docks while at the same time minimizing the running
average inventory. Second, scheduling the Air Force Satellite Control Network
(AFSCN) involves scheduling customer requests for contact time with a satellite
via a ground station, where slot times on a ground station is the limited resource.
The third application is scheduling the tracking of objects in space using ground
based radar systems. Both satellites and debris in space must be tracked on reg-
ular basis to maintain knowledge about the location and orbit of the object. The
ground based radar system is the limited resource, but unlike AFSCN scheduling,
this application involves significant uncertainty.

Keywords: resource scheduling, genetic algorithms, local search, permutations, represen-
tation

1. INTRODUCTION
The goal of resource scheduling is to allocate limited resources to requests

during some period of time. A schedule may attempt to maximize the total
number of requests that are filled, or the summed value of requests filled, or
to optimize some other metric of resource utilization. Each request needs to be
assigned a time window on some appropriate resource with suitable capabilities
and capacity. Given the often large numbers of possible combinations of time
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slots and resources, a simple strategy is a greedy scheduler: allocate resources
on a first-come-first-served basis by placing each request taken in some order
on its best available resource at its best available time.

The problem with the simple greedy strategy is that requests are not indepen-
dent – when one request is assigned a slot on a resource, that slot is not longer
available. Thus, placing a single request at its optimal position may preclude the
optimal placement of multiple other requests. A significant improvement then is
to explore the space of possible permutations of requests where the permutation
defines a priority ordering of the requests to be placed in the schedule.

Representing a schedule as a permutation offers several advantages over
simply using a greedy scheduler alone or searching the schedule space directly.
Permutations support a strong separation between the problem representation
and the actual details of the particular scheduling application. This allows the
use of relatively generic search operators that act on permutations and which are
independent of the application. A more direct representation of the scheduling
problem would require search operators that are customized to the application.
When using a permutation based representation, this customization is hidden
inside a greedy schedule builder.

Permutation representations do incur costs. First, the permutation is an in-
direct representation of the problem. Thus, a separate schedule builder must
be constructed to map the permutation into an actual schedule for evaluation.
How well the schedule builder exploits critical features of the problem may
play a key role in how well the overall scheduling system works. Second, the
permutation representation often introduces redundancies in the search space.
Two different permutations may map to the same schedule. Assume request B
is before request A in one permutation, but request A is before B in another per-
mutation; otherwise the permutations are similar. If A and B do not compete for
resources and otherwise do not interaction, the two permutations may map to
exactly the same schedule. This would also mean that the two permutations also
have the same evaluation. This redundancy can also contribute to the existence
of plateaus, or connected regions with flat evaluation.

Permutation based representations were popularized because they support
the application of genetic algorithms to resource scheduling problems. Whitley
et al. (Whitley et al., 1989) first used a strict permutation based representation in
conjunction with genetic algorithms for real world applications. However, Davis
(Davis, 1985b) had previously used “an intermediary, encoded representation of
schedules that is amenable to crossover operations, while employing a decoder
that always yields legal solutions to the problem.” This is also a strategy later
adopted by Syswerda (Syswerda, 1991; Syswerda and Palmucci, 1991), which
he enhanced by refining the set of available recombination operators.

The purpose of this chapter is to review how permutation representations
have been used on three applications. The first example involves warehouse
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scheduling. The other two examples are from the related domains of satellite
communication scheduling and radar tracking of objects (both satellites and
debris) in space. In these last two examples, we examine the question of how
well “heuristic search” works compared to optimal solutions obtained using
exact methods. The problem with exact methods is that they can be costly.
To make them work, one must sometimes decompose the problem. However,
as will be shown, “heuristic” methods can yield superior results compared to
“optimal exact methods.”

For the applications, we will examine several factors related to the permu-
tation representation. We will show how well the permutation representation
performs in the applications. We will indicate how the domain information has
been separated from the representation and embedded in the schedule builder.
In some cases, we will show evidence of effects of the representation on the
search space.

1.1 The Genitor Genetic Algorithm
The experiments discussed in this paper use the Genitor (Whitley, 1989)

“steady-state” genetic algorithm (Davis, 1991). In the Genitor algorithm, two
parents mate and produce a single child. The child then replaces the worst, or
least fit, member of the population. Using a population of size P, the best P-1
individuals found during the search are retained in the population.

In addition, Genitor allocates reproduction opportunities based on the rank
of the individuals in the population. A linear bias is used such that individuals
that are above the median fitness have a rank-fitness greater than one and those
below the median fitness have a rank-fitness of less than one. Assuming the
population is sorted from best to worst, we will say that an individual has rank
i if it is the ith individual in the sorted population. The selective pressure at i
will be denoted S(i) and corresponds to the number of times that the individual
at rank i will be sampled in expectation over P samples under sampling with
replacement. We will represent the overall selective pressure by S = S(1),
the selective pressure for the best individual in the population. For example,
standard tournament selection has a linear selective pressure of S = 2.0 which
implies the best individual in a population is sampled 2 times in expectation
over P samples, while the median individual in the population is sampled 1
time, and the worst individual is sampled 0 times. Linear selective pressure can
be implemented by a biased random number generator (see (Whitley, 1989))
or by using stochastic tournament selection. Stochastic tournament selection
is implemented by comparing two individuals, but selecting the best with a
probability greater than 0.5 but less than 1.0; if ps is the probability of keeping
the best individual, the selective pressure is then 2ps (Goldberg, 1991).



222 EVOLUTIONARY COMPUTATION IN PRACTICE

1.1.1 Genetic Algorithm and Permutation Codings. Typically, simple
genetic algorithms encode solutions using bit-strings, which enable the use
of “standard” crossover operators such as one-point and two-point crossover
(Goldberg, 1989). Some genetic algorithms also use real-valued representations
(Davis, 1991).

When solutions for scheduling problems are encoded as permutations, a spe-
cial crossover operator is required to ensure that the recombination of two parent
permutations results in a child that (1) inherits good characteristics of both par-
ents and (2) is still a permutation of the N task requests. Numerous crossover
operators have been proposed for permutations representing scheduling prob-
lems.

Syswerda’s (Syswerda, 1991) order crossover and position crossover differ
from other permutation crossover operators such as Goldberg’s PMX operator
(Goldberg, 1985) or Davis’ order crossover (Davis, 1985a) in that no contiguous
block is directly passed to the offspring. Instead, several elements are randomly
selected by absolute position. These operators are largely used for scheduling
applications (e.g., (Syswerda, 1991; Watson et al., 1999; Syswerda and Pal-
mucci, 1991) for Syswerda’s operator) and are distinct from the permutation
recombination operators that have been developed for the Traveling Salesman
Problem (Nagata and Kobayashi, 1997; Whitley et al., 1989). Operators that
work well for scheduling applications do not work well for the Traveling Sales-
man Problem, and operators that work well for the Traveling Salesman Problem
do not work well for scheduling. Operators such as PMX and Cycle crossover
represent early attempts to construct a general purpose permutation crossover
operator; these have not been found to be well suited to scheduling applications.

Syswerda’s order crossover operator can be seen as a generalization of Davis’
order crossover (Davis, 1991) that also borrows from the concept of uniform
crossover for bit strings. Syswerda’s order crossover operator starts by selecting
K uniform-random positions in Parent 2. The corresponding elements from
Parent 2 are then located in Parent 1 and reordered so that they appear in the
same relative order as they appear in Parent 2. Elements in Parent 1 that do not
correspond to selected elements in Parent 2 are passed directly to the offspring.

Parent 1: "A B C D E F G"
Parent 2: "C F E B A D G"

Selected Elements: * * *

For example, the selected elements in Parent 2 are F B and A in that order. A
remapping operator reorders the relevant elements in Parent 1 in the same order
found in Parent 2.

"A B _ _ _ F _" remaps to "F B _ _ _ A _"

The other elements in Parent 1 are untouched, thus yielding



Scheduling with Permutation Based Representations 223

"F B C D E A G"

Syswerda also defined a “position crossover”. Whitley and Nam (Whitley
and Yoo, 1995) prove that Syswerda’s order crossover and position crossover
are identical in expectation when order crossover selects K positions and po-
sition crossover selects L-K positions over permutations of length L. In effect,
order crossover inherits by order first, then fills the remaining slots by position.
Position crossover inherits by position first, then fills the remaining slots by
their relative order.

Syswerda’s contribution (Syswerda, 1991) was to emphasize that permutation-
based recombination operators can preserve either the position, relative order
or adjacency of the elements in the parents when extracting information from
the parents to construct a child. But operators cannot do all three things well.
In various applications, we have found Syswerda’s order crossover operator to
be robust across a wide range of resource scheduling applications. This makes
intuitive sense, given that the relative order in which requests are filled affects
the availability of resources for later requests.

2. THE COORS WAREHOUSE SCHEDULING
PROBLEM

The Coors production facility (circa 1990) consists of 16 production lines, a
number of loading docks, and a warehouse for product inventory. At the time this
research was originally carried out (Starkweather et al., 1991), each production
line could manufacture approximately 500 distinct products; use of different
packaging constitutes a different product. The plant contained 39 truck and 19
rail-car docks for loading customer orders. Orders could be filled directly from
the production lines or from inventory.

A solution is a priority ordering of customer orders, given the mix of products
that make up that order. A weekly production line schedule already exists.

Orders are separated into truck and rail-car orders before scheduling begins.
A customer order remains at a dock until it is completely filled, at which point
the dock becomes empty and available for another order. Only orders using an
equivalent transport compete for dock space; however, all orders compete for
product from either the production line or inventory.

In the schedule builder, orders are taken from the permutation of customer
orders; in effect, the permutation queues up the customer orders which then
wait for a vacant loading dock. When a dock becomes free, an order is removed
from the queue and assigned to the dock. Orders remain at a dock until they
are completely filled with product either drawn from inventory or directly from
one of the production lines. Product comes from the production lines organized
into pallets. An order specifies a method of transport (a truck or rail-car) as well
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as a certain combination of product pallets. During a typical 24 hour period,
approximately 150 to 200 orders are filled.

Simulation is used to evaluate the quality of a particular schedule in this do-
main. We used both a fast internal simulator and a much slower high-resolution
external simulator. The internal simulator executes in less than 0.01 second and
provides evaluation information used by the objective function. The external
simulator requires several minutes to execute. Thus, the search is done using
the internal simulator.

The external simulator models warehouse events in much greater detail and
was used to validate and confirm the quality of the schedules found by the search
algorithms.

While the differences between the internal simulator and external simulator
are largely a matter of detail, the differences can be important. For example,
when product is moved from inventory to a loading dock in the internal sim-
ulator, the amount of time needed to move the product is a constant based on
the average time required to move product to a particular dock. However, in
the external simulator, individual fork lifts are modeled. The external simulator
determines when the fork lift becomes available, where it is located and the
route it needs to take to move the product. Over time, small differences in the
two simulations can accumulate. However, to the degree that good schedules
found using the internal simulator tend to be good schedules under the exter-
nal simulator, search using the internal simulator can be effective. (We have
also looked at other ways to combine and exploit both simulators during search
(Watson et al., 1999).)

Figure 10-1 illustrates how a permutation is mapped to a schedule. Customer
orders are assigned a dock based on the order in which they appear in the
permutation; the permutation in effect acts as a customer priority queue. In the
right-hand side of the illustration note that initially customer orders A to I get
first access to the docks (in a left to right order). C finishes first, and the next
order, J, replaces C at the dock. Order A finishes next and is replaced by K. G
finishes next and is replaced by L.

If two customer orders need the same product, the customer order that has
been at dock the longest gets the product first. Product is drawn from inventory
or production on-demand, but with a bias toward product from the production
line if it is available within a time horizon that does not impact total time at
dock.

All results in this paper are based on an actual manufacturing plant configura-
tion provided to us by Coors. The production line schedule and initial inventory
were provided, as well as 525 actual customer orders filled over a three day
period.
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Figure 10-1. The warehouse model includes production lines, inventory, truck docks and rail
docks. The columns in the schedule represent different docks. Customer orders are assigned to
a dock left to right and product is drawn from inventory and the production lines.

2.1 The Coors Evaluation Function
For the Coors warehouse scheduling problem, we are interested in producing

schedules that simultaneously achieve two goals. One of these is to minimize
the mean time that customer orders remain at dock. Let N be the number of
customer orders. Let Mi be the time that the truck or rail car holding customer
order i spends at dock. Mean time at dock, M, is then given by

M =
1
N

N∑

i=0

Mi.
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The other goal is to minimize the running average inventory. Let F be the
makespan of the schedule. Let Jt be inventory at time t. The running average
inventory, I , is given by

I =
1
F

F∑

t=0

Jt.

Attempting to minimize either the mean time at dock or average inventory
metrics independently can have a detrimental effect on the other metric. In
this case, this multi-objective problem was transformed into a single-objective
problem using a linear combination of the individual objectives proposed by
Bresina (Bresina et al., 1995):

obj =
(M− µM)

σM
+

(I − µI)
σI

(1)

where I represents running average inventory, M represents order mean time
at dock, while µ and σ represent the respective means and standard deviations
over a set of solutions.

2.2 Comparing Algorithm Performance
We have compared various algorithms to the results produced by the genetic

algorithm for this problem (Watson et al., 1999). Here, we only report results for
a stochastic hill-climber. The best results were given by an “exchange operator”
(also referred to as a “swap operator”). This operator selects two random cus-
tomers and then swaps their position in the permutation. We also report results
using random sampling in conjunction with the greedy schedule builder. All of
the algorithms reported here used 100,000 function evaluations. The Genitor
algorithm used a population size of 500 and a selective pressure of 1.1.

For our test data, we have an actual customer order sequence developed and
used by Coors personnel to fill customer orders. This solution produced an
average inventory of 549817.25 product units and an order mean time at dock
of 437.55 minutes. We consider a schedule competitive if these measures are
less than or equal to those of the Coors solution. The first column of Table
10-1 illustrates that (mean) solutions obtained by random sampling are not
competitive with the Coors solution. Random sampling in this situation does
not imply random solutions; instead it involves the iterative application of the
greedy schedule builder using 100,000 randomly generated permutations.

Results are presented in Table 10-1; we report mean performance and stan-
dard deviations over 30 runs. Statistical comparison of the competitive search
algorithms indicates that both algorithms perform better than random sampling
for both reducing inventory and time at dock, as verified by a series of two-tailed
t-tests (p < 0.0001).
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Random Sampling Genetic Algorithm Exchange Hill Climber Coors
Internal External Internal External Internal External Solution

Mean Time-At-Dock
µ 456.88 447.11 392.49 397.48 400.14 439.43 437.55
σ 3.2149 8.0304 0.2746 7.3680 4.7493 4.0479 n.a.

Average Inventory
µ 597123 621148 364080 389605 370458 433241 549817
σ 10041 28217 1715 9137 20674 20201 n.a.

Table 10-1. Performance Results on the Internal and External Simulator. The Coors Solution
indicates a human generated solution used by Coors.

The final solution found using the internal simulator on each of 30 runs is
also evaluated using the external simulator. Of course, the external simulator is
expected to be a better predictor of actual performance. Comparing the actual
events that occurred at Coors against the detailed external simulator, we find
that Genitor was able to improve the mean time at dock by approximately 9
percent. It was the only scheduler that produced an improvement over what the
human schedulers at Coors had done as measured by the external simulator.
The big change however is in average inventory. Both Genitor and the local
search methods show a marked reduction in average inventory. In the end,
all of the schedules shipped exactly the same product; if two schedules finish
shipping at the same time then the same amount of product must be left over.
However, average inventory levels can be lower due to the combined effects of
pulling strategic product from inventory early on and filling directly off of the
production line. When time at dock is lower however, there is also an impact
on inventory, since a longer overall schedule translates into a longer production
period with the additional product going into inventory.

Overall, it is notable that the genetic algorithm produced results using the in-
ternal simulator that hold up rather well under the external simulator. The ex-
change hill climber did not fare as well under the external simulator. The genetic
algorithm is the only scheduler with solutions for mean time at dock on the ex-
ternal simulator that improved on the human generated solution used by Coors.

One interesting question that could not be explored in this work was related
to the long terms effects of less time at dock and lower average inventory. Are
these gains sustainable over weeks and months as opposed to just 1 or 2 or 3
days? Could the warehouse be operated long-term with less overall inventory?
These kinds of questions are not well addressed in the scheduling literature,
and arise again in a later application in this paper.

Watson et al. (Watson et al., 1999) provide a more detailed discussion of the
Coor’s warehouse scheduling problem.
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3. SCHEDULING THE AIR FORCE SATELLITE
CONTROL NETWORK

Scheduling the Air Force Satellite Control Network (AFSCN) involves co-
ordinating communications via ground stations to more than 100 satellites.
Space-ground communications are performed using 16 antennas located at nine
ground stations around the globe. Customers submit requests to reserve an an-
tenna at a ground station for a specified time period based on the visibility of the
target satellites. We will separate the satellites into two types. The low altitude
satellites have short (15 minutes) visibility windows that basically only allow
one communication per pass over a ground station. High altitude satellites have
longer windows of visibility that may allow for multiple tasks to be scheduled
during a single pass over the ground station.

A problem instance consists of n task requests. A task request Ti, 1 ≤ i ≤ n,
specifies both a required processing duration T Dur

i and a time window T Win
i

within which the duration must be allocated; we denote the lower and upper
bounds of the time window by T Win

i (LB) and T Win
i (UB), respectively. Tasks cannot

be preempted once processing is initiated. Each task request Ti specifies a
resource (antenna) Ri ∈ [1..m], where m is the total number of resources
available. The tasks do not include priorities.

Ti may optionally specify j ≥ 0 additional (Ri, T
Win
i ) pairs, each identifying

a particular alternative resource (antenna) and time window for the task. While
requests are made for a specific antenna, often a different antenna at the same
ground station may serve as an alternate because it has the same capabilities.

There are (at least) two approaches to defining evaluation functions for opti-
mizing the utilization of the ground stations. One approach is to minimize the
number of request conflicts for AFSCN scheduling; in other words we maxi-
mize the number of requests that can be scheduled without conflict. Requests
that cannot be scheduled without conflict are bumped out of the schedule. This
is historically the objective function that has been used for this problem.

However, this is not what happens when humans carry out AFSCN schedul-
ing. Satellites are valuable resources, and the AFSCN operators work to fit in
every request. So an alternative is to schedule every request, but minimize the
amount of overlap in the schedule. Under this approach, all of the requests are
scheduled, but some requests get less than the requested amount of time. In this
approach, the amount by which requests must be trimmed to fit in every request
(i.e., the overlap) is minimized.

To assess the relative merits of different heuristic search techniques on permu-
tation representations of AFSCN, we compare performance of three algorithms:
Genitor, local search and random sampling.
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A genetic algorithm for minimizing conflicts searches permutations of con-
tact requests. Genitor’s schedule builder considers requests in the order that they
appear in the permutations. Each task request is assigned to the first available
resource (from its list of alternatives) and at the earliest possible starting time. If
the request cannot be scheduled on any of the alternative resources, it is dropped
from the schedule (i.e., bumped). The evaluation of a schedule is then defined as
the total number of requests that are scheduled (for maximization) or inversely,
the number of requests bumped from the schedule (for minimization).

Local search for minimizing conflicts uses the shift operator because we
found it to work well compared to several relatively standard alternatives. From
a current solution π, a neighborhood is defined by considering all (N−1)2 pairs
(x, y) of task request ID positions in π, subject to the restriction that y = x−1.
The neighbor π

′
corresponding to the position pair (x, y) is produced by shifting

the job at position x into the position y, while leaving the relative order of other
jobs unchanged.

Given the large neighborhood size, we use the shift operator in conjunction
with next-descent hill-climbing: the neighbors of the current solution are ex-
amined in a random order, and the first neighbor with either a lower or equal
number of bumped tasks is accepted. Search is initiated from a random permu-
tation and terminates when a pre-specified number of solution evaluations is
exceeded.

Random sampling for minimizing conflicts produces schedules by gener-
ating a random permutation of the task request IDs and evaluating the resulting
permutation using the schedule builder. Randomly sampling a large number
of permutations provides information about the distribution of solutions in the
search space, as well as a baseline measure of problem difficulty for heuristic
algorithms.

3.1 Results for Minimizing Conflicts
Parish (Parish, 1994) first applied the Genitor algorithm to AFSCN schedul-

ing using Syswerda’s order crossover with positive results. Parish used data
from 1992 when about 300 requests were being scheduled each day. In the fol-
lowing experiments we used five days of actual data1 for the dates: 3/7/2002,
3/20/2002, 3/26/2003, 4/2/2003 and 5/2/2003. The number of requests received
during a typical day is approximately 450 each day. Our experiments show
the increased demand from 300 to 450 or more request each day results in

1We thank William Szary and Brian Bayless at Schriever Air Force Base for providing us with data.
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Genitor Local Search Random Sampling
Day Size Min Mean S.D. Min Mean S.D. Min Mean S.D.

03/07/02 483 42 43.7 0.98 68 75.3 4.9 73 78.16 1.53
03/20/02 457 29 29.3 0.46 49 56.06 3.83 52 57.6 1.67
03/26/03 426 17 17.63 0.49 34 38.63 3.74 38 41.1 1.15
04/02/03 431 28 28.03 0.18 41 48.5 3.59 48 50.8 0.96
05/02/03 419 12 12.03 0.18 15 17.56 1.3 25 27.63 0.96

Table 10-2. Performance of Genitor, local search and random sampling in terms of the best
and mean number of bumped requests (with standard deviation as S.D.). All statistics are taken
over 30 independent runs, with 8000 evaluations per run.

significantly more difficult problems because the available time on the ground
stations is increasingly oversubscribed.

In Table 10-2, we present the results obtained for these problems. Statistics
were obtained over 30 runs, with 8000 evaluations per run. We have run the
algorithms for 100,000 evaluations, but the results change very little, and 8000
evaluations would allow human operators to run the schedulers interactively
(the schedulers take less than 10 seconds to execute.)

3.2 A Hybrid Method with Optimal Low Altitude
Scheduling

In our investigations we were able to prove that it is possible to schedule
contacts with low altitude satellites optimally (Barbulescu et al., 2004). This
is because the window of visibility for low altitude satellites typically allows
only one contact per pass. This restricts the number of ways that a schedule
can be constructed. Under these conditions we constructed a proof showing
that a variant of activity selection scheduling (Corman et al., 1990) on multiple
resources is optimal.

Thus, an alternative approach to this problem is to schedule the low altitude
requests first using an exact method, and then schedule the remaining high
altitude requests using a genetic algorithm or local search. We refer to this
approach as the the split heuristic. In effect, we break the problem into two
parts, and we know that one of the parts is solved optimally.

As shown in Table 10-3 the split heuristic fails to find the best known sched-
ules for two problems, using Genitor with 8000 evaluations. The results remain
the same even when dramatically more evaluations are used per run. By exam-
ining the data, we identified situations in which the low altitude requests were
blocking insertion of longer high altitude requests.

Figure 10-2 illustrates a situation for which scheduling low-altitude requests
first results in suboptimal solutions. Assume there are two ground stations and
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Best Genitor-Split
Day Known Min Mean Stdev

03/07/02 42 42 42 0
03/20/02 29 30 30 0
03/26/03 17 18 18 0
04/02/03 28 28 28 0
05/02/03 12 12 12 0

Table 10-3. Results of running Genitor with the split heuristic over 30 experiments, with 8000
evaluations per experiment.

120 4 8 120 4 8
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Figure 10-2. Example of a problem for which the split heuristic can not result in an optimal
solution. Each ground station has two antennas; the only high-altitude requests are R3 and R4.

two resources (two antennas) at each ground station. Assume two high-altitude
requests, R3 and R4, have durations three and seven, respectively. R3 can be
scheduled between start time 4 and end time 13; R4 can be scheduled between
0 and 9. Both R3 and R4 can be scheduled at either of the two ground stations.
The rest of the requests are low-altitude requests. R1 and R2 request the first
ground station, while R5, R6, R7, and R8 request the second ground station.

If low-altitude requests are scheduled first, then R1 and R2 are scheduled on
Ground Station 1 on the two resources, and the two high-altitude requests are
bumped. Likewise, on Ground Station 2, the low-altitude requests are scheduled
on the two resources, and the high-altitude requests are bumped. By scheduling
low-altitude requests first, the two high-altitude requests are bumped. However,
it is possible to schedule both of the high-altitude requests such that only one
request (R1, R2 or R8) gets bumped. Therefore, an optimal solution is not
possible when all of the low-altitude requests are scheduled before the high-
altitude requests.
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3.3 Minimizing Overlap
So far we have looked at the traditional objective of minimizing dropped

requests (i.e., conflicts or bumps). Our second, more realistic objective is to
minimize overlaps. The new objective function provides a richer evaluation
function for the algorithm.

When minimizing the number of bumped tasks, if 500 jobs are being sched-
uled and at least 10 must be bumped, then the number bumped is always an
integer between 10 and 500. If most of the time, the number of conflicts is
between 10 and 100, then most of the time the evaluation function is an integer
between 10 and 100. This means that the fitness landscape is made up of very
large flat plateaus. Empirically we have verified that plateaus exist and have
found that the plateaus are far too large to exhaustively enumerate. Thus the
precise size of the plateaus is unknown. At an abstract level, this is very sim-
ilar to the landscape induced by the classic MAXSAT optimization problems.
Changing the location of two requests in the permutation sometimes (or even
often) does not change the output of the evaluation function. Thus, the evalua-
tion function is a coarse metric. And the key to finding better schedules involves
finding “exits” off of the plateaus leading to a better solution.

When using overlaps as an evaluation, the evaluation function is not just
related to the number of tasks that must be scheduled, but also to their durations.
If the number of conflicts is between 1 and 100, but the overlaps range from
1 to 50 time units, then the evaluation function can range over 1 to 5000.
The landscape is still dominated by plateaus; however, the evaluation functions
provides more differentiation between alternative solutions. This translates into
fewer and small plateaus in the search space.

Discussions with humans who schedule AFSCN by hand suggests that min-
imizing conflicts in not the correct goal. The goal is to fit in all of the requests,
even if that means modifying some requests.

An example of how the sum of overlaps is computed is presented in Figure 10-
3. Note that this is a solution for the example problem in Figure 10-2. R8 could
either be scheduled on antenna A1 or antenna A2 at Ground Station 2. In order
to minimize the overlaps, we schedule R8 on A1 (the sum of overlaps with R6
and R7 is smaller than the sum of overlaps with R3 and R4). While this is a
trivial example, it illustrates the fact that instead of just reporting R8 as bumped,
the new objective function results in a schedule which provides guidance about
the fewest modifications needed to accommodate R8. Perhaps R6 and R7 and
R8 can be trimmed slightly, or perhaps R6 and R7 can be shifted slightly outside
of their request windows; this may be better than getting bumped entirely.

We designed a schedule builder for Genitor to schedule all tasks and compute
the sum of the overlaps. If a request cannot be scheduled without conflict on
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Figure 10-3. Optimizing the sum of overlaps.

any of the alternative resources, it overlaps; we assign such a request to the
alternative resource on which the overlap with requests scheduled so far is
minimized.

In Table 10-4, we present the results of running Genitor minimizing conflicts
and Genitor minimizing overlaps for 30 runs, with 8000 evaluations per run.
For “Genitor minimizing conflicts” we compute both the number of conflicts
as well as the corresponding sum of overlaps (even though the schedule was
not optimized to reduce overlaps) for the best schedule obtained in each run.
Likewise, for “Genitor minimizing overlaps” we not only computed overlaps,
we also computed the number of bumps needed to de-conflict the schedule.

The results show clearly that optimizing the number of conflicts results on
average in a larger corresponding sum of overlaps than when the overlaps are
optimized, and the increase can be quite significant. On the other hand, opti-
mizing the sum of overlaps results in a number of bumps which is usually larger
than when the conflicts are optimized; the increase is significant. These results
also suggest that when minimizing the number of conflicts, longer tasks are
bumped, thus resulting in a large sum of overlaps.

The significance of these results mainly relates to the correct choice of eval-
uation function. Using the wrong evaluation function can result in a scheduler
that completely fails to solve the scheduling problem in a useful and appropriate
manner. When conflicts are minimized, there is a strong bias toward removing
large, difficult to schedule tasks. But if one must ultimately somehow put these
back into the schedule it may require taking the whole schedule apart and start-
ing over. Minimizing overlaps results in schedules that deal with all of the tasks
that must be scheduled.

Barbulescu et al. (Barbulescu et al., 2004) provide a more detailed discus-
sion of this problem. A more recent paper (Barbulescu et al., 2006) studies



234 EVOLUTIONARY COMPUTATION IN PRACTICE

Genitor minimizing conflicts
Conflicts Overlaps

Day Min Mean S.D. Min Mean S.D.
03/07/02 42 43.7 0.9 1441 1650.8 76.6
03/20/02 29 29.3 0.5 803 956.23 53.9
03/26/03 17 17.6 0.5 790 849.9 35.9
04/02/03 28 28.03 0.18 1069 1182.3 75.3
05/02/03 12 12.03 0.18 199 226.97 20.33

Genitor minimizing overlaps
Conflicts Overlaps

Day Min Mean S.D. Min Mean S.D.
03/07/02 55 61.4 2.9 913 987.8 40.8
03/20/02 33 39.2 1.9 519 540.7 13.3
03/26/03 24 27.4 10.8 275 292.3 10.9
04/02/03 35 38.07 1.98 738 755.43 10.26
05/02/03 12 12.1 0.4 146 146.53 1.94

Table 10-4. The results obtained for Genitor minimizing conflicts and Genitor minimizing
overlaps by running 30 experiments with 8000 evaluations per experiment. The resulting sched-
ules were then analyzed for both the number of bumps needed to de-conflict the schedule and the
number of overlaps leaving everything in the schedule. This was done by using the permutation
form of the solution in conjunction with the two different schedule builders.

several alternative methods for scheduling the AFSCN problem and explores
why particular methods work well.

4. SCHEDULING WHEN TO TRACK OBJECTS
IN SPACE

The Space Surveillance Network (SSN) is a collection of optical and radar
sensor sites situated around the globe. The mission of the SSN is to maintain
a catalog of thousands of objects in orbit around the earth. This catalog serves
to facilitate object avoidance or contact, to prevent potential collisions during
space flight, and to predict when specific orbits will decay.

The space catalog comprises both operational artificial satellites and debris
from past space missions; each object is represented by information about its or-
bital trajectory. Many tracking sites in the SSN are phased array radars: devices
that contain a two dimensional array of radio antennas that utilize constructive
and destructive interference to focus a radiation pattern in a particular direction.
Several objects can be tracked at once by interleaving track pulses subject to
energy constraints. The duty cycle of the radar is a limit on the amount of energy
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available for simultaneously interleaved tracking tasks at a given instant. This
defines the maximum resource capacity of the system. Due to surveillance and
calibration tasks, the available resource capacity may fluctuate over time.

The SpaceTrack problem is an instance of SSN mission scheduling for an
AN-FPS/85 phased array radar at Eglin Air Force Base in Florida, USA. Each
day, radar operators at Eglin receive a consolidated list of requests (orbital
objects with tracking frequency and durations) for performing observations
on objects, along with their tracking priority. A high priority request must be
filled during the day, while lower priority tasks are of less importance, and can
be bumped in favor of critical requests. For each tracking request we identify a
priority weight denoted by the scalar w(r). The objective is to find an allocation
that maximizes the priority-weighted sum of successful tracking tasks (WSS)
subject to resource and temporal constraints.

It is important to note that this application involves uncertainty. Not every
“track” that is scheduled will actually be successful. The exact size and shape of
some objects may not be known. Irregularly shaped objects can display different
radar cross sections from different perspectives. Thus, there are two estimations
that create uncertainty: how much energy is needed to track the object, and the
exact location of the object since its size and shape impacts it orbit. It is not
uncommon for less than half of the scheduled tracks to be successful. When a
track fails, it must be rescheduled.

With past information about an object’s orbital trajectory and average radar
cross section, we can use Keplerian laws to compute its expected range and
position at a given time i. These expected quantities allow us to compute the
following:

1 Visibility windows. The object’s position at a given time defines whether
it is visible to the array. Tracking cannot begin before the object rises over
the local horizon (its earliest start time est(i))and must complete before
the object leaves the radar’s field of view (its latest finish time lft(i)).

2 Energy requirement cj(i). The amount of energy necessary to illuminate
an object is a function of the object’s size and shape and its range with
respect to the array. Distant objects require more energy than objects
in low earth orbit. The sum of the energy requirements for all objects
scheduled at i must not exceed a maximum available resource constraint
(duty cycle limitation for the device).

3 Expected value vj(i). The probability of successfully tracking an object
depends on how it is situated in the array’s frame of reference. We derive
the probability of detection by calculating an object’s signal-to-noise ratio
(SNR) profile over time. The SNR profile of an object is a function of
its range and angle off the boresight direction (the normal vector to the
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Figure 10-4. SNR profile of object with NORAD ID 27869 during a visibility window. The
probability of detection (and expected weighted sum successful) is a monotonically increasing
function of this quantity.

array’s face plane). As the object moves through the array’s field of view,
this typically follows a smooth curve (see Figure 10-4). Multiplying this
probability by the corresponding priority weight gives a tracking task’s
expected contribution to the weighted sum successful (E[WSS]).

Suppose system energy is infinitely available and the system has infinite ca-
pacity. In this case, the optimal solution can be calculated in polynomial time by
assigning each task the tracking time that admits maximum SNR profile within
a pass. However, when we constrain the available energy to realistic limits,
the system becomes oversubscribed, and we can no longer feasibly schedule
the entire set of tasks. Instead, we must construct a feasible subset of tasks to
execute that maximizes the expected weighted sum successful.

On-peak scheduling. One approach to constructing this subset would be
to pick a collection of tasks and assign them their “peak” SNR profile time. In
other words, the start times for each task are fixed at the value that gives peak
SNR (we call this value x∗(i)) and thus the highest probability of detection. We
will call this approach on-peak scheduling.

The on-peak approach can be characterized as an integer programming prob-
lem. Let n be the number of tasks that must be scheduled and τ denote the
number of time units available.

maximize vTy (2)
subject to Ay ≤ c

y ∈ {0, 1}n

where y is a vector of n integer decision variables such that yi = 1 if the ith

on-peak task is to be included, and yi = 0 otherwise. Similarly, v is a vector of
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n real values such that vi = vx∗(i)(i), and c is a resource constraint vector of
τ elements such that cj = Cj . Finally, A is the τ × n constraint matrix defined
as follows.

Aj,i = cj(i) if x∗(i) ≤ j < x∗(i) + d(i) − 1
0 otherwise (3)

This is exactly an instance of the NP-hard {0, 1} multidimensional knap-
sack problem (Garey and Johnson, 1979). It contains the traditional (single-
dimensional) {0, 1} knapsack problem as a special case when the constraint
matrix is a 1 × n row vector.

Relaxed scheduling. The on-peak approach is guaranteed to give a solution
in which each task is scheduled to execute during the time that maximizes the
expected value. However, a solution with maximal cumulative expected value
is not necessarily an on-peak solution. By shifting tasks off their peak (e.g.,
two tasks away from each other), other tasks may be squeezed in between. This
means an individual task will be allocated a suboptimal expected value as a
result of being placed away from its peak SNR profile; but more total tasks can
be scheduled. We will call this approach relaxed scheduling.

4.1 Algorithms for Spacetrack Scheduling
Scheduling SpaceTrack is a difficult problem. Finding an optimal on-peak

schedule is NP-hard, and finding an optimal relaxed schedule is APX-hard
(Sutton, 2006). This makes heuristic search an attractive option for finding
approximate solutions.

The current method being used to perform Spacetrack Scheduling is a simple
greedy scheduler. We will look at three other ways to solve the problem that are
10 to 20 percent better than greedy.

An exact solution. Though SpaceTrack is NP-hard, we can still generate the
optimal on-peak solution on small tractable instances using a branch-and-bound
technique to solve the integer programming problem defined in Equation (2).
This gives us a baseline with which to compare methods that use the relaxed
method.

On-peak local search. Suppose S is the set of all tasks under consideration.
A solution to on-peak scheduling is a subset S ⊆ S of tasks that are all sched-
uled feasibly on their peak times to maximize E[WSS]. The schedule builder
places each task in order of the permutation as close to its peak as possible.

Starting from an initial ordering, the on-peak local search (OP-LS) pro-
duces neighboring candidate solutions using the exchange operator which ran-
domly swaps the position of tasks in the permutation. Since we are maximizing,
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next-ascent local search is used: a reordering that results in equal or higher
E[WSS] (as produced by the schedule builder) is accepted as the new permu-
tation. Since the normal exchange neighborhood is O(N2) we select candidates
for the exchange operator randomly, which makes this approach a form of sto-
chastic hill-climbing.

Evolving relaxed schedules. We also employed the genetic algorithm Gen-
itor (Whitley, 1989) to search the relaxed schedule space. In this case, an indi-
vidual is represented by a permutation, but some other mechanism is needed to
place a tracking task at a particular location in the schedule. We used a variant of
greedy search to place a task at its on-peak location, or if that is not possible, at
the best off-peak location possible. Fitness values are then computed by finding
the E[WSS] of the schedule produced by the schedule builder.

4.2 The SpaceTrack Results
Since SpaceTrack belongs to the class of NP-hard problems, we generate

a set of 25 small tractable instances on which the optimal on-peak solution
can be found with branch-and-bound. Each small instance is comprised of 50
tasks and 50 time units. The visibility windows were created by drawing from
random distributions. The calculation of signal-to-noise ratio profiles requires
expensive computation, and the distribution of the resulting values is difficult
to control. Therefore, on the small set, the expected value curves are generated
synthetically using a Gaussian curve.

To compare the algorithms on a large realistic problem, we create an instance
using real data from NORAD’s space database. This instance contains 5,000
tasks that must be assigned times from a set of 86400 time units (seconds during
one day). The expected value curves and visibility times are created using actual
position and velocity data computed using the standard SGP (Simplified General
Perturbations) model (Hoots and Roehrich, 1980). These data are partitioned
into 24 one-hour scheduling periods that are solved separately. The schedule
found by each algorithm in a scheduling period is executed on a simulator that
assigns success based on the probability function derived from SNR profile at
the assigned tracking time.

The results from the set of small problems are reported in Table 10-5. The
relaxed algorithm consistently finds higher mean values than the optimal on-
peak solution found by branch-and-bound. We note that the On-peak Local
Search algorithms (OP-LS) also found the same optimal solution as the branch-
and-bound method in every case reported here.

The real-world problem is too large to be solved to optimality using branch-
and-bound. Instead, we compare the relaxed algorithm with OP-LS as a
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On-peak Relaxed
instance OPT OP-LS GENITOR

µ σ µ σ
small 1 20.696170 20.696170 0.000000 21.474456 0.016000
small 2 21.453930 21.453930 0.000000 21.796775 0.004230
small 3 21.095790 21.095790 0.000000 21.452337 0.049200
small 4 18.106710 18.106710 0.000000 18.299666 0.069200
small 5 15.539030 15.539030 0.000000 16.024361 0.044300
small 6 15.622720 15.622720 0.000000 15.803709 0.018800
small 7 17.672190 17.672190 0.000000 17.892604 0.015300
small 8 16.115000 16.115000 0.000000 16.673159 0.084400
small 9 24.944260 24.944260 0.000000 25.269401 0.070200
small 10 18.481870 18.481870 0.000000 18.858413 0.034700
small 11 15.453560 15.453560 0.000000 16.217739 0.074900
small 12 16.274500 16.274500 0.000000 17.751006 0.178000

Table 10-5. A sample of results for all algorithms on the small set. The goal is to maximize
the expected yield. Column two (OPT) indicates the optimal on-peak solution found by mixed-
integer programming solver.

surrogate for the optimal on-peak solution. The results from each algorithm
in each scheduling period on the real-world problem appear in Table 10-6. In
this table, each expected weighted sum successful value found in a scheduling
period is normalized by the sum of priority weights of all requests that need
to be tracked in that period. Due to the stochastic nature of the simulation, the
set of requests that require tracking in any given period may vary. We therefore
report the normalized value in order to provide a fairer comparison between the
algorithms.

On-peak Relaxed
period OP-LS GENITOR

1 0.4174375 0.4755850
2 0.2740852 0.3270757
3 0.1819694 0.2287325
4 0.4684505 0.5591947
5 0.3588590 0.4447416
6 0.2001081 0.2739436
7 0.3268069 0.4129994
8 0.4448630 0.5243267
9 0.4251086 0.4824034
10 0.3749262 0.4375215
11 0.4592485 0.5370493
12 0.4739717 0.5497464

Table 10-6. Expected weighted sum successful (normalized) found by each algorithm in each
scheduling period using real-world data.
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Again, the algorithms that employ the relaxed approach obtain a higher ex-
pected value than that obtained using the on-peak local search (OP-LS). Higher
expected values correspond to a higher yield of successful tasks. For the real-
world problem we can also model the potential gain in actual tasks successfully
tracked. The number of tracking tasks determined to be successful by the sim-
ulator represents the “yield” of the schedules. We report these data for each
algorithm found after simulation of the entire schedule day in Table 10-7.

On-peak Relaxed
priority OP-LS GENITOR

1 922 (52.15%) 1078 (60.97%)
2 1073 (48.57%) 1209 (54.73%)
3 1018 (40.32%) 1257 (49.78%)
4 817 (27.92%) 1032 (35.27%)
5 606 (15.53%) 699 (17.91%)

TOTAL 4436 (33.28%) 5275 (39.57%)

Table 10-7. Yield of successfully tracked passes by priority after the completion of all schedules
for an entire day. The number in parentheses represents the percentage of successfully tracked
passes out of those requested.

The results reported here are much better than the greedy methods currently
in use. We are continuing to explore different approaches for solving the Space-
Track Scheduling problem. Sutton et al. (Sutton et al., 2007) is the most recent
paper; this paper explores the use of dynamic local search. It also explores trade-
offs in terms of scheduling as many tracks as possible versus minimizing the
mean time between tracks. Because unsuccessful tracks must be rescheduled,
this problem also poses interesting issues related to the sustained long term
performance of a scheduling system.

5. CONCLUSIONS
Our results on three applications demonstrate the viability of using heuristic

search (local search and genetic algorithms) in combination with permutation
based representations. In each case, the heuristic search methods outperformed
existing approaches to the applications.

Our results also show that heuristic methods can improve on “optimal” search
methods if the optimal method must be applied to a smaller decomposed prob-
lem (and hence the solutions are not optimal for the full problem) or if a restricted
version of the problem must be solved in order to guarantee optimality.

Exploring the permutation space rather than directly manipulating sched-
ules appears to be an effective search strategy. Directly manipulating schedules
means that operators must be much more customized to act on a particular type
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of schedules. When using a permutation representation, the specifics and con-
straints for a specific type of schedule are hidden in the schedule builder. When
changing from one application to another only the schedule builder needs to
change. And our experience suggests it is much easier and intuitive to build
a feasible schedule using the permutation as a priority queue than to modify a
schedule so as to define a neighborhood of transformations that systemically
converts one schedule into another schedule. Thus, the use of a permutation
representation allows a great deal of code reuse from one application to the
next.

One concern with both the Coors Scheduler and the SpaceTrack scheduler
is that looking at one day’s worth of data (or a few days of data) does not
adequately evaluate the true value of using an improved scheduling system.
In the case of the Coors problem, the improved schedules may not be totally
sustainable in the long run; part of the reduction in time at dock may be due to
better scheduling that exploits surplus inventory. However, with more product
going directly from production line to dock there must be some reduction in
inventory (and some older product in inventory will have to be discarded). When
this happens some of the apparent reduction in the time at dock may be lost.
However, this only happens because the overall scheduling is better; the overall
operation should still be more efficient with less product going to inventory.

On the SpaceTrack problem we expect just the opposite effect: we expect
additional long term gains. This is because when an object is not tracked the
importance of tracking that object increases. A lower priority object that is not
tracked can become a higher priority object. The relaxed approach to scheduling
SpaceTrack could result in fewer high priority objects over time.

Exploring the sustained long term impact of a scheduling method is an in-
teresting area of research that is not particularly well addressed in the literature
on scheduling, and which deserves more attention.
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