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Abstract

Recently, ant colony optimization (ACO) algorithms have proven to be efficient in un-
certain environments, such as noisy or dynamically changing fitness functions. Most of
these analyses have focused on combinatorial problems such as path finding. We rig-
orously analyze an ACO algorithm optimizing linear pseudo-Boolean functions under
additive posterior noise. We study noise distributions whose tails decay exponentially
fast, including the classical case of additive Gaussian noise. Without noise, the classical
(1 + 1) EA outperforms any ACO algorithm, with smaller x being better; however, in
the case of large noise, the (i + 1) EA fails, even for high values of x (which are known
to help against small noise). In this article, we show that ACO is able to deal with
arbitrarily large noise in a graceful manner; that is, as long as the evaporation factor p
is small enough, dependent on the variance o of the noise and the dimension 7 of the
search space, optimization will be successful. We also briefly consider the case of prior
noise and prove that ACO can also efficiently optimize linear functions under this noise
model.
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1 Introduction

Ant colony optimization (ACO) is a metaheuristic for designing randomized general-
purpose optimization algorithms inspired by the foraging behavior of ant colonies.
ACO has been successfully applied as a heuristic technique for solving combinatorial
optimization problems.

In real-world optimization problems, sometimes a large degree of uncertainty is
present, due to the complexity of candidate solution generation, noisy measurement
processes, and rapidly changing problem environments. Empirically, ACO seems par-
ticularly well-suited to uncertain problems, due to its dynamic and distributed nature,
and in some cases it can outperform classical state-of-the-art approaches on dynamic
network routing problems (Di Caro et al., 2008). We will focus on a version of the
Max—-Min Ant System (MMAS; Sttitzle and Hoos, 2000) applied to pseudo-Boolean op-
timization (i.e., optimization where solutions are coded as bit strings).
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Jin and Branke (2005) surveyed a number of sources of uncertainty that randomized
search heuristics must often deal with in practice: (1) noisy objective functions, (2) dy-
namically changing problems, (3) approximation errors in the objective function, and
(4) a requirement that an optimal solution must be robust to changes in design variables
and environmental parameters that occur after optimization is complete. Arguably, the
two most important sources of uncertainty are (1) and (2) above, namely, stochastic
problems and dynamic problems (see also Bianchi et al., 2009, for a recent survey). In
stochastic problems, the objective function value of a search point follows a random
distribution, and that distribution does not change over time. In dynamic problems, the
evaluation of fitness is deterministic but changes over time.

In order to address these practical issues, the theoretical analysis of randomized
search heuristics under uncertainty has recently gained momentum. For example, a
number of recent studies have rigorously analyzed the performance of evolutionary
algorithms in stochastic environments (Dang and Lehre, 2014; GiefSen and Kotzing,
2014). For ant colony optimization, a series of articles have considered the performance
of ACO on single-destination shortest paths (SDSP) problems with stochastic weights.
This work was initiated by Sudholt and Thyssen (2012) and later followed up by Doerr
et al. (2012a), who showed that by augmenting the ant system with a reevaluation
strategy on the best-so-far solution, many of the difficulties with noise discovered by
Sudholt and Thyssen could be overcome. Feldmann and Kotzing (2013) showed that an
ant system that uses a fitness-proportional update rule (called MMAS-fp) can efficiently
optimize SDSP on graphs with stochastic weights. MMAS-fp is closer to systems that
are used by practitioners (Stiitzle and Hoos, 2000) and is the ant system variant that we
analyze in the present study.

For the optimization of functions over bit strings, analyses of ACO suggest that it
often performs worse than evolutionary algorithms (EAs) and simple hill-climbers in a
noise-free setting (Kotzing et al., 2011). On the other hand, ACO can outperform EAs
on dynamic problems (Kotzing and Molter, 2012; Lissovoi and Witt, in press). So far, the
question of how robust ACO is to noisy evaluation on pseudo-Boolean optimization
remains unanswered.

The goal of this study is to observe the robustness of ACO to noise on a class of
simple objective functions. In particular, we are interested in the scalability of the run
time of the algorithm as a function of noise intensity (measured by variance). We study
the algorithm on linear functions; a linear function maps a bit string x to ), _, x; w;, with
a predefined sequence of weights w;. If we set all weights to 1, we recover the definition
of the important OneMax test function. Note that we only allow positive weights, as
fitness-proportional pheromone updates rely on nonnegative fitness (and weights of 0
do not contribute to the fitness).

The main result of this article is given in Section 3, where we show that robustness
can be achieved for additive posterior noise from a Gaussian distribution; for all vari-
ances o, there is a parameter setting such that MMAS-fp on f + N(0, o) is successful
in time poly(n, 0?). Thus, we say that MM AS-fp handles Gaussian noise gracefully. Such
a graceful scaling cannot be achieved by the (u 4 1) EA, as was shown by Friedrich et al.
(2015a).

Additionally, we show that a similar statement holds for an ACO algorithm that im-
poses max—-min bounds on the pheromone values. Rather than relying on the standard
technique of pheromone freezing, employed by many early works on the mathematical
analysis of ACO algorithms, we instead achieve this by showing that all pheromones
drift in the right direction (in particular, they will never be close to any pheromone
bound on the wrong side of the spectrum); see Corollary 7.
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Algorithm 1 MMAS-fp with parameter p for optimizing f: {0,1}" — R
1 forie {1,...,n} do

2 L T; < %;

s while optimum not found do

4 forie {1,...,n} do

5 | @; + 0 with probability 7;, z; 1 with probability 1 — 7;;

6 | forie{l,...,n}do

7 if ; = 0 then
8 t Tﬂ—min{n (1—p%)+p%,u};
9 else

10 L Ti<—max{n (l—pf&f)),f};

In Section 4 we extend our findings to other noise models and show that we can
also achieve the same robustness in the presence of other additive noise distributions
(which fulfill a certain restriction), as well as with the model of prior noise from Droste
(2004). We discuss our findings and conclude the report in Section 5.

This article extends an earlier conference version (Friedrich et al., 2015b) by gener-
alizing the results on OneMax to arbitrary linear functions.

2 Preliminaries

We consider the optimization of pseudo-Boolean functions—that is, functions f : {0, 1}"
— R=°, which we call fitness functions. In the following, n always denotes the dimension
of the solution space {0, 1}". For any bit string x € {0, 1}", the function value f(x) is
called the fitness of x, and we are interested in finding a solution x* such that f(x*) is
maximal.

The fitness functions we are going to investigate are linear, following the notation
of Droste et al. (2002)—that is, given a vector w of length n of positive weights, f(x) =
> wix;, where i = {1, ..., n}; thus, the all-ones string is the global optimum. In this
study, index variables i refer to the set {1, ..., n} if not stated otherwise.

For a given weight vector w, we let wmin denote the minimum weight, wmax the
maximum weight,and W = ), w; the sum of all weights. Welet || x||o denote the number
of zeros in x and ||w(x)|lo denote the sum of weights w; with x; = 0. Analogously, we
define ||x||; and |Jw(x)||;. Note that W = |Jw(x)]lo + ||w(x)]||1 for all x.

Throughout the article, we consider a noisy version of f. The noise added to the
actual fitness will be, at first, a normally distributed random variable D with mean 0
and variance o2. More formally, for a given deterministic fitness function f, f,2(x) :=
f(x) + D with D ~ N(0, ?).

We say that an event A occurs with high probability if A only occurs with a prob-
ability less than the inverse of any polynomial—that is, Pr(A) = o(1/poly(n)) for any
polynomial poly(n).

21 Algorithms

Our main algorithm of interest is MMAS-fp (Alg. 1), an ACO algorithm with a so-called
fitness-proportional update rule.
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Figure 1: Construction graph for pseudo-Boolean optimization with n = 5 bits.

To find an optimal solution, MMAS-fp maintains a vector t € [¢, u]", the compo-
nents of which are called pheromones, where 0 < ¢ < 1/2and 1 > u > 1/2 are the lower
and upper bounds for each pheromone, respectively; we will assume ¢ + u = 1. Further,
we let 1) with € IN denote the pheromone vector in the t-th iteration of the algorithm.

MMAS-fp starts off with every pheromone ti(o) =1/2 and iteratively generates
solutions x® € {0, 1}" until x) is optimal. These solutions x*) are sampled according to
7@ in the manner Vi : Pr(x" = 0) = £ A Pr(x) = 1) = 1 — ). Thus, our pheromone
vector corresponds to the probabilities of sampling Os, and we desire the pheromones
to go down. This is equivalent to a definition of using a simulated ant walk on the
construction graph shown in Figure 1, where choosing an edge ¢; 1 means that xi(l) =1

l.(’) = 0. Our pheromones ti(l)

and choosing an edge ¢; o means that x
pheromones on the edges ¢; o.
Afterward, the pheromone vector for the next iteration is updated according to the

fitness of the sampled solution:

® (®)
min{ri(t) (1—pm)+pf(x ),u} : xl.(t)=0,
‘[-(H_l) —

correspond to the

w w
O]
max {ri(t) (1 — p%)) ,g} . xi(’) =1.

(

. . t) - . t . .
Note that increasing ‘l,'i( ) is the same as decreasing 1 — 7; ), and vice versa for decreasing

ri(’). Hence, MMAS-fp does not prefer 1s over 0s, or the other way around: It is unbiased
in the sense of Lehre and Witt (2010).

The variable p € [0, 1] is the so-called evaporation factor; p is a parameter of the
algorithm. Intuitively, p regulates the impact of the fitness of a sampled solution on the
corresponding pheromone update. To maintain meaningful values of ‘L'i(t) and sensible
updates, it must hold that pf(x)/ W = o(1) for all x.

We assume that MMAS-fp knows W in its update rule for theoretical purposes. In
reality, one either has to have an upper bound on W or choose p accordingly. We further
assume that Wis a polynomial in 7 and that wmin = (1), so that a polynomial run time is
possible with high probability. The proofs given could be extended to arbitrary values
of W, but this would need case distinctions with respect to the growth of the weights
and would make the proofs overly technical.

Note that MMAS-fp does not keep a best-so-far solution but, instead, always up-
dates its pheromone vector regardless of the quality of the solution sampled. The update
is proportional to the fitness of the sampled solution, hence the suffix fp. If an updated
pheromone is not capped due to the pheromone bounds ¢ or u, we speak of a normal
update.
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In the following, we will denote a pheromone vector t) simply as 7 if we are
not interested in t. Likewise, x denotes the solution sampled by 7, and 7’ denotes the
pheromone vector after the update according to x.

The other algorithm we consider is ACO-fp. It is a special case of MMAS-fp where
£ = 0and u = 1; that is, only trivial pheromone bounds are enforced.

2.2 Tools Used

The proofs in this article rely heavily on drift theory, a tool that bounds the hitting times
of stochastic processes with a bias (called drift).

We first state one drift theorem, as well as two concentration bounds regarding
drift, that we will use in our proofs.

THEOREM 1 (MULTIPLICATIVE DRIFT) (Doerr et al., 2012b): Let (X,);en be nonnegative random
variables over R, each with finite expectation, and let T = min{r | X, < 1}.
Suppose there exists an ¢ > 0 such that, for all t,

E(X; — Xip1 | Xit < T) > eX,.
Then

1+nX
E(T | Xp) < w.
e

THEOREM 2 (TAIL BOUNDS FOR MULTIPLICATIVE DRIFT) (Doerr and Goldberg, 2013; Lehre
and Witt, 2014): Let (X,);en be nonnegative random variables over R, each with finite expec-
tation, and let T = min{t | X, < 1}.

Suppose there exists an ¢ > 0 such that, for all t,

E(X, — Xip1 | Xt < T)> eX;.

Then, for all k > 0,
k + In X()

Pr<T>
)

|Xo> <et

THEOREM 3 (NEGATIVE DRIFT) (Kotzing, 2014): Let (X;);en be random variables over R, each
with finite expectation, let d > 0, and let T = min{t : X, > d | X9 < 0}. Suppose there are
5,0 <s <d,and ¢ < 0such that, for all t,

1. E(X;y1— X, | X;,t <T) <g,and
2. 01X, — X419 < s.
Then, forallt € IN,

Pr(T <t) <texp (—M>
S

The following proposition gives tail bounds for our noise D ~ N(0, o) by using
standard estimates of the Q-function (Madhow, 2008).

PROPOSITION 4: Let D be a zero-mean Gaussian random variable with variance 2. Forallt > 0,
we have

Pr(D t)<lex —
=TU=529P\ %02 )
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3 Gaussian Noise

In this section we are going to bound the run time of MMAS-fp for optimizing f,2,
which will be denoted as f, for convenience, in the proofs but not in the statements of
the lemmas and so forth.

First off, we bound the noise and thus the difference of two consecutive pheromones
with high probability. Since the noise is unbounded, an update can exceed the
pheromone bounds by a large amount. By bounding the noise with high probabil-
ity, we make sure that such updates happen only very rarely. We then set p such that it
can compensate for likely noise levels.

LeEmMMA 5: Consider MMAS-fp optimizing f,2. Then, for any m = w(o logn), we can bound
|t; — ©/| for any pheromone t; with high probability as follows:

n— 1| < %(W +m).

PROOF: We make a case distinction for 7/ and assume ¢ = 0 and u = 1, since capping a
pheromone would only make the difference smaller.

lL.i=r1 (1 — p%):

<1
— (1 _pM>' = ST FO)] = L

|t — Ti/| =
w w

2.1/=1 (1 — p%) + p%:

>-1
T — (r,- (1 — p%) + p%)‘ = %I(n - 1fx)l = %If(X)I-

It — 7:,'/| =

We bound | f(x)| < |W + D|. By Proposition 4 we get

1 t?
Pr(D >t)=Pr(D < —t) < Eexp <_F>'
For t = w(o logn) = m, this probability is superpolynomially small. So we can bound
[f(x) < W +mand get |t; — 7| < &H(W +m). O

In the following we always assume, for any m = w(o logn), that we choose p =
o(W/(W + m)) such that pf(x)/W = o(1) holds for all x with high probability, and we
let s = p(W +m)/W. Note that s is the greatest difference between two consecutive
pheromones, as stated by Lemma 5.

For pheromones in [¢ + s, u — 5], every update is normal with high probability.
However, since the update is done relative to 7; and s is an upper bound, € + s can
be quite pessimistic as a bound, because 1; will be small when it is close to ¢. Thus,
we shortly want to discuss when a decreasing update is normal—that is, when ¢/ =
7;(1 — pf(x)/ W) > £. Because of our previous assumption regarding p, we have 7/ =
7;(1 —o(1)) = 7;/2. So if 7; = w(¢), then 7/ = w(¢). Hence, we only have to consider a
nonnormal decreasing update if 7; = O(¢).

From now on, we always implicitly condition on the event that the noise does
not exceed the bounds mentioned in the proof of Lemma 5, which holds with high
probability in any polynomial number of steps of MMAS-fp for any of the n pheromone
values via a simple union bound. Other runs are referred to as fails.
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We now show that, in expectation, the result of a normal update of any pheromone
7; < u — s will be farther away from the upper bound u than before, thus meaning that
the pheromone drifts away from u.

LeEmMA 6: Consider MMAS-fp optimizing f,» and let a pheromone vector t in some iteration
of the algorithm be given. Let i < n be given, and suppose b := v; < u — s and b = w(£). Then
the drift of t; toward 1 is at most —b(1 — b)wminp/W.

PRrROOF: From the conditions of the lemma we see that the pheromone 7; is updated
normally.

Let A denote the event that x; was sampled as 1, and consider the expected value
of /. Note that we can express a (normal) pheromone update as in terms of an uncon-

ditional decrease and an increase in the case of A.
=t;=b

e = £(n (1-0282) ) 5 (o452 ) e

b+ b%(E(f(x) | A) - E(f(x))).
We get the negative drift:

E( — ) = b+ b (E(f() | A) — E(f(x))) — b

- b%(E(W — lw(@)llo + D | A) — E(W — [[w(x)llo + D))

) e )

0
=bb—-1Nwi—
(b= Dwi £

< —b(1 = B -

We proceed by showing that each pheromone considered in Lemma 6 cannot reach

a constant value greater than 1/2 within polynomial time during a nonfailing run of

MMAS-fp with high probability; that is, they go in the wrong direction for this to occur.

This is due to the negative drift we just proved—that is, the considered pheromones
move, in expectation, down, and are thus unlikely to cover large distances going up.

COROLLARY 7: Consider MMAS-fp optimizing f,> and let d > 1/2 be a constant. If p =
o(Wwpin/ (W +m)?log n)), foranym = w(o log n), then each pheromone, during a nonfailing
run of MMAS-fp, reaches values of at least d in polynomial time with only superpolynomially
low probability.

Proor: Consider b € [c, d], with 1/2 — s > ¢ > £ being a constant. We apply Theorem 3
by using the bound given in Lemma 5 and the negative drift theorem of Lemma 6. Note
that we have to translate our values by —1/2 to make use of Lemma 6. This does not

affect the drift.

>0
—_——

1
(a3 )b —buwmnt o [ QWi
g W tme )T\ e m2 |

Pr(T §t)§texp(—
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This means that the probability for a single pheromone starting from 1/2 to reach d
in any polynomial number of steps is superpolynomially small for p = o(Wwmin/(W +
m)*logn)), as given, if that pheromone only takes values in [c, d].
Now consider a pheromone to be in [£, ¢). Even the best update could not get that
pheromone above 1/2. So we can apply the above argument.
Note that s = 0o(1) < d — 1/2 = Q(1), as this is what we need to apply Theorem 3.
O

Using a union bound, we can now say that none of the n pheromones reaches d as
in Corollary 7 in polynomially many steps with high probability. So we now always
assume pheromones to be in [£, d) if not stated otherwise.

We now consider the sum of all pheromone values and prove that it drifts toward
0; that is, all pheromone values together decrease in expectation. This does, however,
not hold when all pheromones are very close to £ because, in this case, an increase of
any pheromone would have a far higher impact than a decrease. The following lemma
thus only holds if there is at least one pheromone with a sufficiently large value (1/n).

LEMMA 8: Consider MMAS-fp optimizing f,2 with p = o(Wwyin/ (W + m)? logn)), for any
m = w(o logn), and £ = o(wyin/(Wmaxn®)). Consider further that k € [0, n] N IN pheromones
dropped below 1/n. If at least one pheromone is at least 1/n, then the drift of the sum of all
pheromones Tiotq toward 0 is Q(Tuota1 p Winin/ W).

PROOF: In this proof, for the drift calculations, we pessimistically assume pheromones
below 1/n as having reached €. The drift per pheromone is relative to the pheromones
value, according to Lemma 6, but it also is positive (i.e., toward 0) as long as the
pheromone is updated normally. So there can only be a negative drift (i.e., drift away
from 0) for pheromone values in O(¢).

In this proof, we write ¢ and ignore constant factors, because we make sure that
the overall drift will be positive toward 0 in asymptotics. Note that there cannot be any
positive drift toward 0 if k = n since none of the pheromones could drop any lower.

We split up the overall drift of the sum of all pheromones into the (positive) drift
(toward 0) of the n — k pheromones that are at least 1/n and into the (negative) drift of
the k pheromones that are below 1/n.

Let Y denote the index set of those former n — k pheromones, Z the index set of the
latter k, and let K be the event that exactly k pheromones are below 1/n. The string x¥
denotes the bit string consisting only of those elements of x whose index is in Y, and
x* is defined analogously with respect to Z. The sum of pheromones with index in Y'is
denoted by rty and the sum of those with index in Z by t . Further, let Tita denote

otal’ ) total”
E(lw(x)llo | K, 7..,,; = b); let T yand T, be defined analogously.

tota

First, we have alook at the n — k pheromones. Note that, for each pheromone 7; with
index in Y, both the increase and decrease during an update scale 7; with 1 — pf(x)/ W,
regardless of the corresponding sampled bit x;. However, if a bit x; was sampled as 0,

the corresponding pheromone t; additionally gets an increase of pf(x)/W.

=B
' / Jx) )
E(Tt{)tal - TEZtall | K’ tt)otal = b) z E <T£:)ta1 - (tégtal (1 -p w ) + ||)C) ”010 1% B
p :
= 7 (G f ) = 127 o f () | B)

LGE(F(x) | B) = E(Ix"l0f (x) | B)).
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We give bounds for the expected values needed.
E(f(x)| B) = E(W — [[w(x)llo + D | B) = W — Tiotal,
and
E(llx"lof(x) | B) = E(llx" lo(W — lw(x)llo + D) | B)
= WE(llx"llo | B) — E(llx"llo - lw(x)llo | B)
= Wb —E(Ix"llo - lw(x)llo | B).

Let a be a variable ranging over Y; j ranges over all pheromone indices. Let [-] denote
the Iverson bracket (indicator function). We make use of Corollary 7.

)

=D wiE(lxa =01 B)E (lx; = 0]| B) + ) | wiE ([xa = 0][x, = 0] | B)

j
Jj#a

E(Ix"llo - lw(@)llo | B) = E (Z > [xa = OJw;[x; = 0]
a j

=Y w;E([x, = 0][x; = 0]| B)
a

=E E wjtarj+g Wy T,
a J a

J#a

DI BIITED SRS S
a J a a
=<d
A~
= Ztaijrj —i—Zwara(l -"1,)
a j a

> bTiotal + (1 - d)th)tal‘
Now we can calculate the desired drift.

/ P )
(et~ Tt | 5) = 2 (6 W — Tua) — (Wb — BTt — (1~ d)T})
P
= W(l - d)Ttital’

For the negative drift, we have to look at 7J ., and 7 ,". All of the k pheromones where
the corresponding bit position was sampled as 1 cannot drop any lower due to our

assumption. The remainder of the k pheromones get a normal update in the best case:
: f(x) fx)
Tiotal = IX°111€ 4 1x%[lo (5 (1 Py ) TP %
—_— 8 8
Jlx flx
— 2. ¢ U0l —||x% |0 e z
1€ + llx*llo€ = llx=lloto = 7= + llx*llop =7
o
=kl + —(1—0)|x* .
+ 1 Olxlof(x)
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Thus, we get:

z z 7 P
E(th)tal - T{Otal | B) z E (kz —kt — W(l - E)HXZHOf(x)

?)

The remaining estimations follow analogously to the ones beforehand:
E(lx*llo.f (x) | B) = E(llx*lo(W — lw(x)llo + D) | B)
= WE(lIx*llo | B) — E(llx*llo - llw(x)llo | B)
= Wkt —E(x*llo - [w(x)llo | B).

_ _%(1 — OE(|x%llo f (x) | B).

Note that a now refers to indices in Z.

E(Ixllo - lw@llo 1 B) = Yt ) wt; + ) wata(l = 7)
a j a

> klTiotal + (1 - d) th

otal”

So we get the negative drift:

P
E (Tl — Troal | B) = _W(l =€) (Wkt — ktTio1 — (1 = d)T1)

P

> ——(1 - Wke.
w
Now we can look at the general drift:
, o , p
E(Ttotal - Ttotal | B) > W(l - d)Tt':)tal - W(l - Z)Wk(

P ,
= L= DT - (1 - oWh),
which we want to be positive.
Recall that we only consider k € [0, n — 1] N IN. For the drift to be positive, it suffices
to show that 7}, = w(Wk¢). Again, a ranges over indices in Y, and j ranges over all
indices.

1
> Wi L
Z Wmin 3, <n-1 <HWmax

—— ~ ——
Zwata = a)(ﬂk\ﬁzwj),
a j

so we just check that the following holds:

Ymin _ oM lwmy) & 1=0w (n3m€>.
n

Wmin

This holds, because we assume £ = 0(Wmin/(Wmax)). SO we can write the drift as
Q(Tti})tallo/ W) :

Since we want the drift to be expressed in terms of tita1, we need Téml p/ W > eTiotal
to hold for an ¢ > 0. We bound Tt(y)tal > Wminb and total = b+ k€ < b +k/n, and get

Wminbp/ W > e(b + k/n). This leaves us with

e < wminbp _ Wmin O o (wminp)
TWe+EH o wa+ k) w /)
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Overall, we finally get a drift of Q(Tiota12Wmin/ W). O

We are now ready to give the main theorem, which shows efficient optimization
given additive posterior noise. It follows from an application of the Multiplicative Drift
Theorem (Theorem 1) with its respective concentration bound (Theorem 2).

THEOREM 9: Consider MMAS-fp with parameters p = o(Wwpin/ (W +m)? logn)), for any
m = w(o logn), and £ = o(wyin/(Wyaxn®)) optimizing f,2. Then, for any k = w(log(n)), the
algorithm finds the optimum after O(Wk /(pwuin)) steps with high probability.

PROOF: Let T = min{r e IN | Vi : ri(l) < 1/n} be the time until all pheromones are below

1/n. That means that 7, has dropped below n.

According to Lemma 8, there is a positive drift of the pheromone sum toward 0 of
at least Tiota1 0 Wmin/ W.

With this multiplicative drift, we get an upper bound on the expectation of T using
Theorem 1. Note that we have to scale all values by # to do so. This, however, does not

affect the drift.
E(T Vi:r‘o)zl) =O<%> :O(M>_
' 2 pw% PWmin

Now assume that all pheromones have dropped below 1/7. The probability to sam-
ple the optimum now is (1 — 1/n)" > (1 — 1/n)/e. Thus, the optimum will be sampled
in expectation in en/(n — 1) = O(1) many tries.

The overall expected run time is bounded above by the following worst case sce-
nario: The algorithm needs O(W log(n)/(pwmin)) steps until all pheromones drop below
1/n. Then the algorithm does not sample the optimum, and all pheromones are set
back to 1/2 (that does not actually happen, but we are looking at a worst case). As
we mentioned before, in this scenario, the algorithm would need O(1) tries to sample
the optimum, once the pheromones are low enough. Hence, the algorithm has to be
restarted O(1) times. This results in an expected run time in O(W log(n)/ (o Wmin))

To lower-bound the probability of success, we upper-bound the probability of
failure (conditioned on a nonfailing run) by using Theorem 2. We choose k = w(logn)
to get a superpolynomially small failing probability.

0 _1
Vit = 2)

Pr(T > k;:zz Vi :rl.(o)z 1) =Pr(T > w
W 2 P Wmin

Since we now have an w(logn) in the numerator, we have to make a slight change to

our run time; it is now O(Ww(logn)/(pWmin))-

We can easily make a union bound over the run failing via too large noise (as
bounded in the proof of Lemma 5) and the run failing because of the drift concentrations
(per pheromone or for the sum). Since all of these probabilities are superpolynomially
small, the overall failing probability of the algorithm is superpolynomially small—that
is, the algorithm succeeds with high probability. O

< efw(log n) .

As a direct corollary, we get that we can disregard pheromone bounds (i.e., setting
these bounds to 0 and 1) and still get the same result. Intuitively, this holds because we
have drift in the right direction in each pheromone at any time (while still not close to
the target). Recall that ACO-fp is a special case of MMAS-fp (Algorithm 1) with trivial
pheromone bounds.
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COROLLARY 10: Consider ACO-fp optimizing f,2. If p = o(Wwpin/ (W +m)?*logn)), for
any m = w(o logn), then, for any k = w(log(n)), the algorithm finds the optimum after
O(Wk/(pwmin)) steps with high probability.

PrOOF: Recall that all previous proofs are actually proofs for ACO-fp as well. We can
thus argue analogously as in the proof of Theorem 9. The upper bound 4 is at most 1
because d < u < 1. The lower bound of ¢ = 0 for ACO-fp satisfies £ = o(Wmin/(Wmaxn>))
as well. O

4  Other Noise Models

In this section we consider the optimization of linear functions perturbed by other noise
than additive posterior Gaussian noise.

4.1 DPosterior Noise

We start with a generalization of Corollary 10 by taking non-Gaussian noise into account;
that is, we optimize fp, with fp(x) := f(x) + D and D being a random variable (possibly
not Gaussian).

The idea behind why the following noise models still do not harm optimization is
that we can, again, bound the noise with high probability as we already did in the proof
of Lemma 5.

COROLLARY 11: Consider MMAS-fp optimizing fp with £ = o(wyyin/( Wyaxn®)), Where D is a
random variable such that, for some t*(n) > 0 and all polynomials p, the following holds:

. 1
If p = o(Wwpin/ (W + 1%(n))? logn)), then, for any k = w(log(n)), the algorithm finds the
optimum after O(Wk/(pwyin)) steps with high probability.

PrROOF: The drifts of Lemmas 6 and 8 hold here as well, since the noise is additive and
posterior, and thus cancels out in expectation.

To be able to use Corollary 7, we need to bound |f(x)| with high probability.
Because of Equation (1) we can do so, and it follows that any pheromone t; reaches
values of at least a constant d > 1/2 with superpolynomially low probability for p =
o(Wwmin/ (W + 1%(n))* log n)).

We can now use an argumentation analogous to that in Theorem 9, proving the
corollary. O

A similar corollary holds for ACO-fp.

COROLLARY 12: Consider ACO-fp optimizing fp, where D is a random variable such that, for
some t*(n) > 0 and all polynomials p, the following holds:

Pr(ID| > t*(n)) <1 —o(ﬁ).

If p = o(Wwyin/ (W + t*(n))? logn)), then, for any k = w(log(n)), the algorithm finds the
optimum after O(Wk/(pwuin)) steps with high probability.

PROOF: We can use the same proof as for Corollary 11 and argue as in the proof of
Corollary 10 that we do not need the special pheromone bounds. O
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4.2 Prior Noise

In this section, we have a look at the noise model from Droste (2004), where f,(x) :=
f(X), whereas X = x with probability (1 — p), and X = x" with dy(x, x") = 1 for each such
x’ with probability p/n. That means that, with probability p, a single bit in x gets flipped
chosen uniformly at random.

Note that we can bound |7; — 7/| < p in the same way as we did in the proof of
Lemma 5, since | f(x)| < W. Since the noise is not additive, we do not have to bound p
with respect to the noise.

Because we assume again that p = o(1), we have normal updates for pheromones
at least in w(£) and at most u — p, this time with probability 1.

The following proofs are all similar to the ones from Section 3, and the order of
argumentation is the same. We first prove that individual pheromones, when updated
normally, drift away from u. This results in an upper bound on each pheromone that
holds with high probability. We then, again, look at the sum of all pheromones and
prove that it drifts (under sufficient conditions) toward 0. Applying Theorem 1 finally
yields the desired run time.

LEMMA 13: Consider MMAS-fp optimizing f, and let a pheromone vector T in some iteration of
the algorithm be given. Let i < n be given and suppose b := t; < u — p and b = w(¢). Then the
drift of v; toward 1 is at most —b(1 — b)wyinp/W.

PROOEF: As the noise does not have any influence on the update of the pheromones and
we have a normal update, we get the same basic equation for the desired drift as in
Lemma 6. Let A denote the event that x; was sampled as 1. Note that z; is updated
normally.

E(r/ - ) = b (E(F(x) | A) — E(f ().

Let P denote the event that ¥ = x’ during the evaluation of f—that is, a bit flipped—
and let j and k range from 1 to n.
For E (f(x) | A) we have

E(f(x) | A) =E(f(x) | A, P) (1= p)+E(f(x) | A, P)p

= (W — (wi +ijl'j>>(1 —p)

+<W—Z%<wi+wk(1—tk)+2wjrj) —%ijtj)p.

k J
ki j#k J#
J#

And for E(f(x)) we get
E(f(x)) =E(f(x)| P)(L = p) +E(f(x) | P)p

= <W — (wib—f—ijrj))(l —p)
s

+ (W — Z%(wib-ka(l — fk)+ijTj) — %(wi(l —b)+ ijtj>>p.

j j
ki J#k J#
J#
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Thus we get

n—1
n

B (/09 13) = B =~ = @ = p)+ (=220 = by + 0= by )

=—(1-bwd-p)—1- b)winn;zp

=—(1-bw <1 - %,;)

Finally, we have a negative drift as desired:

2 \p P

E(t) — ;) < —b(1 — min 1-- — < —b(1 - min T

(7 — ) < —b(1 -Dbw ( np) W= b( b)w W o

COROLLARY 14: Consider MMAS-fp optimizing f,, and let d > 1/2 be a constant. If p =

0(wpin/(W log n)), then each pheromone, during a nonfailing run of MMAS-fp, reaches values
of at least d in polynomial time with only superpolynomially low probability.

ProOF: The proof is basically the same as the one of Corollary 7. Again using Theorem 3,
for all r > 0, the following proposition holds for T as the hitting time of one pheromone
reaching a value of at least d:

—1 — o
Pr(T <t) <texp (— (@-5)ba b)wmmw)

1602

—¢ exp <_ Q(1)wmin>
= —pW .

The probability for a single pheromone starting from 1/2 to reach d in any polyno-
mial number of steps is superpolynomially small for p = o(wmin/(W logn)). O

Again, a union bound argument gives us the guarantees of Corollary 14 for all
pheromones.

LEMMA 15: Consider MMAS-fp optimizing f, with p = 0(wyin/(W logn)) and £ = o(wyin/
(Wyayn?)). Consider further that k € [0,n] N IN pheromones dropped below 1/n. If at least
one pheromone is at least 1/n, then the drift of the sum of all pheromones Tiotq toward 0 is
Q(Trotal P Winin/ W).

PrOOF: We are going to use the same notation as in the proof of Lemma 8. P shall, again,
denote the event that the bit flip occurred.

As we mentioned before, the kind of noise has no impact on the general form of the
drifts. So we are going to use the general forms as in the proof of Lemma 8, and for the
n — k pheromones we have

y ,0 )
E(Tt)(:ta] - Tt}gtal | B) = W(bE(f(x) | B) - E(”)C‘ ||()f()€) | B))
We can now calculate the required expected values.

E(f(x)| B) = E(f(x) | B, P)(1 — p) + E(f(x) | B, P)p
= (W = Tioa))(1 — p) + (W = E(lw(x)llo | B. P))p.
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Furthermore, we get

E(lw(x)llo | B, P)

i

1
Nwa-z -
£ 3 (- S
I
1
= D (i1 = 1) + Tiotal — w;Ty)

= % Z(wi + Tiotal) — % Z WiT;

w 2
= + Ttotal - _Ttotal-
n n

This results in
2 w
E(f(x) | B) =W- Ttotal + )4 <;Ttotal - 7)
For E(l|x" o f (x) | B) we get

E(llx"llof(x) | B) = Wb — E(llx"[lo - lw(X)llo | B),
and by using Corollary 14,

E(lx"llo - lw®)lo | B) = ZZwE(xa—onB)E([x,—onB)

/#a

+ 3 weE (L = O1IF, =011 B)

1
- Zijra (rj(l - p)—i—rjpnT +(1- Tj)%)

a J
Jj#a

S
= XX v <f,.”

J#a

L) Cun (1-2)
= l’l_nzp E E wjfafj‘i‘g E E wjfa+ E WuT, (1_5)
a J a -
j#a

J
j#a

== _,,zp ZZwﬂm -t —an Zwafaz
a J a

Ty + — ZTu Zw] Wq

wsd n — 2p n— 21? p
bTiotal + Z Wy Ta( d) + ; Wb thtal)
n—2p n(d—d)—pl—-2d) p
= n bTiotal + Tti)tal n ;(Wb Total)
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Thus we get

. n(l—d)y—p(1—-2d) p N
bTiotal — Tti)tal n - ;(bW - Ttbtal>'

E(Ix" o f(x) | B) < Wb — — =L

Now we can calculate the desired drift as follows.

E(Ty 1 | B)

total tota

P 2 w n—
= W (b (W Tiotal + P ( Tiotal — 7)) - Wb+ P

2
thotal
n(l—d)— p(l— Zd)

+ Ttﬁtal n n (bW th)tal))

1
= %(Wb — bTiotat — Wb + bTiotal + ;( - Wbp

+ Tti;tal(n(l - d) p(1 — Zd)) =+ Wbp otalp))

y

_ %(n(l —d) — p(2 - 2d))

o
= WTti)tal(l

a2

= W T . (1 —d)(1 —o(1)).
Regarding the negative drift, we have
E(tim = Tl | B) = = (1= DE(Ix"ll0/ ()| B).
We also get

E(llx*llof(x) | B)

Wke — E(llx*[lo - lw(X)llo | B)
kETtotal Te

n—2p n—p n—2p
n total T_ n d

(Wke

IA

Wkt —

total)
< Wkﬁ.

Now we have the negative drift as
/ P
E(Tiotal = Tiora | B) = _W(l —OWke.
Taking all the parts together, we get the total drift

0
E(Tiotal — Tioar | B) = th)tal(l d)(1-o(1)) - W(l — Wkt

w
W(th,talu —d)(1—o0(1)) — (1 — O)Wke),

which we want to be positive.

This is basically the same expression as in the proof of Lemma 8, and the drift is
again Q(T,) _,p/W). So we can conclude analogously. O
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We can now state that MMAS-fp and ACO-fp are able to optimize efficiently, given
prior noise.

THEOREM 16: Consider MMAS-fp or ACO-fp with parameters p = 0(wyin/(W logn)) and
£ = o(Wyin/ (Waxn?)) optimizing fp- Then, for any k = w(log(n)), both algorithms find the
optimum after O(Wk/(pwuin)) steps with high probability.

PrOOF: The argumentation is exactly as in the proof of Theorem 9, but now we use
Lemmas 13 and 15, and Corollary 14. The value of p has to be changed accordingly
using Corollary 14. O

5 Discussion and Summary

In this work we saw that two simple ACO algorithms on linear pseudo-Boolean func-
tions scale gracefully with noise for Gaussian distributions—that is, the run time de-
pends only linearly on the variance of the noise. We get similar results for many other
noise models and for different ACO algorithms, suggesting that ACO algorithms are
generally good for dealing with noise (at least in settings where the underlying fitness
function is simple enough, as in the case of linear functions). Many of these settings are
not solvable by simple hill climbers (Droste, 2004).

The analysis of metaheuristics such as ACO on noisy fitness functions is of particular
interest because this is a specific area where only very few tailored approaches exist
for designing efficient algorithms. Our proofs give insight into why ACO is robust to
various noise models: By choosing the evaporation factor p to be small enough, the
noise cannot harm an update with high probability. In the end, better solutions turn out
to be better in expectation, and thus, optimization succeeds.

One drawback of the ACO algorithms analyzed in this report is that the variance
of the noise must be known in order to correctly set the evaporation factor p. This
problem can be bypassed as follows: Guess a variance of 1 and run the algorithm until
it has a constant success probability if the guess was correct. If the optimum was not
found so far, double the guess and repeat. This standard doubling scheme leads to a
noise-oblivious ACO algorithm with an expected run time of at most a constant factor
away from the ACO that knows the noise in advance.
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