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Abstract

The House Allocation problem, the Stable Marriage problem and the
Stable Roommates problem are three fundamental problems in the area of
matching under preferences. These problems have been studied for decades
under a range of optimality criteria, but despite much progress, some chal-
lenging questions remain open. The purpose of this article is to present a
range of key open questions for each of these problems, which will hope-
fully stimulate further research activity in this area.

1 Introduction
Matching markets involve allocating a set of agents to a set of resources (e.g.,
pupils to schools, students to projects), or allocating one set of agents to a di↵erent
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set of agents (e.g., school leavers to universities, junior doctors to hospitals), or
allocating a set of agents to one another (e.g., forming teams for groupwork).
Typically agents declare which other agents / resources they find acceptable, and
may rank their acceptable potential matches in order of preference.

Matching problems involving ordinal preferences over outcomes have received
a great deal of attention in the literature from computer scientists, mathematicians
and economists, as evidenced by a range of research monographs on the topic
spanning these disciplines [61, 45, 89, 68]. The study of these problems dates
back to the seminal paper of Gale and Shapley [39], whose e�cient algorithm
for the so-called Stable Marriage problem, known as the Gale–Shapley algorithm
(or the Deferred Acceptance mechanism), has been deployed in many real-world
matching markets [20].

One of the earliest practical applications of the Gale–Shapley algorithm was in
the allocation of graduating medical students to their first posts as junior doctors in
US hospitals [85]. This algorithm has been used as part of the National Resident
Matching Program (NRMP) since 1952, thus predating Gale and Shapley’s paper
by 10 years [89]. Nowadays, over 40,000 applicants to the NRMP are handled by
an extension of the Gale–Shapley algorithm [78].

Other practical settings where algorithms are deployed to clear matching mar-
kets include [20]:

• school placement in Boston [1, 3] and New York [2]

• higher education admission in China [103, 104], Germany [22] and Hun-
gary [21];

• university faculty recruitment in France [15, 16];

• placing military cadets in branches [96];

• assigning kidney patients to donors through kidney exchanges [86, 87, 88];

• allocating students to projects in a university department [7, 32].

Some of these markets are very large (for example, in China, over 10 million
students apply for admission to higher education annually through a centralised
process [103]) and thus it is of paramount importance that the clearing algorithms
are e�cient. Moreover, the outcomes for the agents involved may impact heav-
ily on their quality of life, which motivates the design of algorithms producing
matchings that are optimal in a precise sense according to the agents’ preferences.

The importance of this research area was recognised in 2012 through the award
of the Nobel Prize in Economic Sciences to Al Roth and Lloyd Shapley “for the
theory of stable allocations and the practice of market design” [79]. This has
sparked renewed interest in matching problems: subsequently several book chap-
ters on the topic have been published [60, 20, 33, 23], another edited volume is in



progress [37], and the second edition of the Encyclopedia of Algorithms [57] in-
cludes many entries that survey algorithms for matching problems. See also [24]
for a very recent survey. As far as meetings are concerned, the International Work-
shop on Matching Under Preferences (MATCH-UP) continues to flourish [70], es-
tablished conferences such as COMSOC, EC, ICALP, IJCAI, SAGT, SODA and
WINE have included many papers on matching problems in recent years, and in
July 2020 the first Dagstuhl seminar entirely devoted to matching under prefer-
ences will take place [93].

The time is right, therefore, for an updated list of some of the key open prob-
lems in matching under preferences. Twelve open problems in this area were pre-
sented by Gusfield and Irving [45], and updates on these were given by Manlove
[68], who in turn posed a number of additional open questions on related prob-
lems. The purpose of this article is to select some of the problems from [45] and
[68] that are still open, giving updates on progress to date, and to describe some
new open problems of the authors’ choosing.

We categorise matching problems involving preferences according to whether
the market is (i) bipartite or (ii) non-bipartite. Further, those problems in category
(i) can be further classified according to whether the market involves (a) a set of
agents and a set of resources (so agents have preferences over resources, but not
vice-versa) or (b) two disjoint sets of agents, where each agent from one set has
preferences over a subset of agents from the other set. The archetypal problem in
class (i)(a) is called the House Allocation problem [50, 105, 4] in view of its ap-
plication to campus housing allocation in universities [27, 81]. The fundamental
problem in class (i)(b) is the Stable Marriage problem [39, 45], which has applica-
tions to junior doctor allocation [85] and higher education admission [21]. Finally
the key problem in class (ii) is the Stable Roommates problem [51, 45] which has
applications to P2P networking [65], and team allocation, for example in chess
tournaments [62].

We present open questions relating to each of these fundamental problems.
The remainder of this article is structured as follows. In Section 2, we provide
formal definitions of the problems and solution concepts studied in this article.
Then in Section 3 we present open questions relating to the House Allocation
problem, the Stable Marriage problem and the Stable Roommates problem.

2 Problem definitions

2.1 House Allocation problem
An instance I of the House Allocation problem (ha), also known as the Assign-
ment problem, comprises a set A = {a1, a2, . . . , an1} of applicants and a set H =



{h1, h2, . . . , hn2} of houses. There is a set E ✓ A⇥H of acceptable applicant–house
pairs. Let m = |E|. Each applicant ai 2 A has an acceptable set of houses A(ai),
where A(ai) = {hj 2 H : (ai, hj) 2 E}. Similarly each house hj 2 H has an
acceptable set of applicants A(hj), where A(hj) = {ai 2 A : (ai, hj) 2 E}.

Each applicant ai 2 A has a preference list which is a strict linear order �ai

over A(ai).1 Given an applicant ai 2 A, and given two houses hj, hk 2 A(ai), ai is
said to prefer h j to hk if hj �ai hk. For a given acceptable applicant–house pair
(ai, hj), define rank(ai, hj) to be 1 plus the number of houses that ai prefers to hj.

An assignment M is a subset of E. If (ai, hj) 2 M, ai and hj are said to be
assigned to one another. For each pk 2 A [ H, the set of assignees of pk in
M is denoted by M(pk). If M(pk) = ;, pk is said to be unassigned, otherwise
pk is assigned. A matching M is an assignment such that |M(pk)|  1 for each
pk 2 A[H. For notational convenience, if pk is assigned in M then where there is
no ambiguity the notation M(pk) is also used to refer to the single member of the
set M(pk). LetM denote the set of matchings in I.

The preferences of an applicant extend toM as follows. Given two matchings
M,M0 2 M, we say that an applicant ai 2 A prefers M0 to M if either (i) ai is
assigned in M0 and unassigned in M, or (ii) ai is assigned in both M and M0, and
ai prefers M0(ai) to M(ai).

Given this definition, we may define a relation / onM as follows: if M,M0 2
M then M0 /M if no applicant prefers M to M0, and some applicant prefers M0 to
M. If M0 / M then M0 is called a Pareto improvement of M. It is straightforward
to establish that / is a partial order onM. A matching M 2 M is defined to be
Pareto optimal if M is /-minimal. Equivalently, M is Pareto optimal if and only if
there is no other matching M0 in I such that (i) some applicant prefers M0 to M,
and (ii) no applicant prefers M to M0.

Another optimality criterion for an ha instance I is popularity. Let M,M0 2
M, and let P(M,M0) denote the set of applicants who prefer M to M0. Define a
“more popular than” relation J onM as follows: if M,M0 2M, then M0 is more
popular than M, denoted M0 J M, if |P(M0,M)| > |P(M,M0)|. (Note that J is not
in general a transitive relation onM.) Define a matching M 2M to be popular if
M is J-minimal (i.e., there is no other matching M0 such that M0 J M). Thus, put
simply, M is popular if there is no other matching that is preferred by a majority
of the applicants who are not indi↵erent between the two matchings.

A further notion of optimality is based on the profile of a matching. Given a
matching M 2M, define the degree of M, denoted d(M), to be the maximum rank
of an applicant’s partner in M. Formally define

d(M) = max{rank(ai, hj) : (ai, hj) 2 M}.
1That is, �ai is an irreflexive, transitive and linear binary relation over A(ai).



The profile of M, denoted by p(M), is a vector hp1, . . . , pdi, where d = d(M) and
for each k (1  k  d), pk = |{(ai, hj) 2 M : rank(ai, hj) = k}|. Intuitively, pk is the
number of applicants who have their kth-choice house in M.

A matching M is rank-maximal if p(M) is lexicographically maximum, taken
over all matchings inM. Intuitively, in such a matching, the maximum number
of applicants are assigned to their first-choice house, and subject to this, the max-
imum number of applicants are assigned to their second-choice house, and so on.

A natural extension of ha arises when applicants are permitted to have ties in
their preference lists—in this case each applicant ai 2 A has a weak linear order
�ai over A(ai).2 This gives rise to the House Allocation problem with Ties (hat).
In this case each of the definitions of a Pareto optimal, popular and rank-maximal
matching, as defined above for the ha case, carry over to hat without alteration.

2.2 Stable Marriage problem
The Stable Marriage problem with Incomplete lists (smi) can be regarded as a
variant of ha in which houses have preferences over applicants. In the smi context,
applicants and houses are more commonly referred to as men and women respec-
tively. Formally, an instance I of smi comprises a set U = {m1,m2, . . . ,mn1} of
men and a set W = {w1,w2, . . . ,wn2} of women. The definitions of E, acceptable
man–woman pairs, m, A(mi) and A(wj) for each mi 2 U and wj 2 W are analogous
to the ha case.

For each mi 2 U, the definitions of preference list, prefer and rank are anal-
ogous to the ha case. Additionally, each woman wj 2 W has a preference list in
which she ranks A(wj) in strict order. The definitions of prefer and rank for wj are
analogous to the definitions for the men. Likewise, the definitions of assignment,
assigned to, M(pk) for any pk 2 U [ W, assigned, unassigned and matching are
analogous to the ha case.

A blocking pair of matching M in I is a man–woman pair (mi,wj) 2 E such
that mi is unmatched or prefers wj to M(mi), and wj is unmatched or prefers mi to
M(wj). Matching M is stable if it admits no blocking pair.

The Stable Marriage problem (sm) is the special case of smi in which n1 = n2

and E = U⇥W. We refer to n = n1 = n2 as the size of the given instance I, and it is
assumed that any matching M in I has size n. When preference lists may include
ties, each of sm and smi may be generalised to the Stable Marriage problem with
Ties (smt) and the Stable Marriage problem with Ties and Incomplete lists (smti)
respectively, without modification to the stability definition.

2That is, �ai is a reflexive, transitive and linear binary relation over A(ai). Given two houses
h j, hk 2 A(ai), ai is said to prefer h j to hk if h j �ai hk and hk �ai h j, whilst ai is said to be indi↵erent
between h j and hk if h j �ai hk and hk �ai h j; in the latter case, h j and hk are said to belong to a tie
in ai’s list.



2.3 Stable Roommates problem
The Stable Roommates problem with Incomplete lists (sri) is a non-bipartite gen-
eralisation of smi. An instance I of sri comprises a set A = {a1, a2, . . . , an} of
agents. We refer to n as the size of I. There is a set E ✓ {X ✓ A : |X| = 2} of
acceptable agent pairs. The definitions of m and A(ai) for each ai 2 A are anal-
ogous to the ha case. For each ai 2 A, the definitions of preference list, prefer
and rank are also analogous to the ha case. Likewise, the definitions of assign-
ment, assigned to, M(ai) for any ai 2 A, assigned, unassigned and matching are
analogous to the ha case.

A blocking pair of matching M in I is a pair of agents {ai, aj} 2 E such that ai

is unmatched or prefers aj to M(ai), and aj is unmatched or prefers ai to M(aj).
Matching M is stable if it admits no blocking pair.

The Stable Roommates problem (sr) is the special case of sri in which |E| =
n(n�1)/2. When preference lists may include ties, each of sr and srimay be gen-
eralised to the Stable Roommates problem with Ties (srt) and the Stable Room-
mates problem with Ties and Incomplete lists (srti) respectively, without modifi-
cation to the stability definition.

3 Open problems
We present open problems relating to ha, sm and sr in Sections 3.1, 3.2 and 3.3
respectively.

3.1 House Allocation problem
In this section we present open problems relating to the approximability of a
relaxed notion of popular matchings called “least unpopular matchings” in ha
(Section 3.1.1), popular and rank-maximal matchings under three models of un-
certainty in applicants’ preferences (Section 3.1.2), and finally ha organised via
house exchanges in a so-called social network (Section 3.1.3).

3.1.1 Approximability of least unpopular matchings

In ha, the existence of a popular matching is not guaranteed. Figure 1 depicts an
instance equivalent to the famous voting paradox of Condorcet [31], where none
of the matchings is popular. In this context, the following result answers the most
striking algorithmic question of the topic.

Theorem 1 ([6]). There is algorithm that outputs either a (largest cardinality)
popular matching or a proof for its nonexistence. For hat, the algorithm runs in
O(
p

nm) time, which is reduced to O(n + m) for ha.
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Figure 1: No popular matching exists in this instance. The lists on the left and the
numbers on the edges in the figure on the right are the preferences of each appli-
cant. All applicants prefer h1 to h2. The dotted gray matching {(a2, h1), (a3, h2)}
is more popular than the dashed gray matching {(a1, h1), (a2, h2)}, because both a2

and a3 prefer it. Similarly, the black matching {(a1, h2), (a3, h1)} defeats the dotted
gray, and the dashed gray defeats the black.

Having established in Theorem 1 that we can distinguish between instances
with and without popular matchings in polynomial time, the relaxation of popu-
larity is the next intuitive move.

First, the notion of least unpopular matchings was proposed to deal with in-
stances that have no popular matchings [71]. Assume that M1 and M2 are two
matchings in the same instance. We say that M2 dominates M1 by a factor of u

v ,
if |P(M2,M1)| = u and |P(M1,M2)| = v. To be precise, this factor is u

v if v , 0,
it is 1 if u = v = 0, and it is 1 if v = 0 and u > 0. For instance, match-
ing {(a2, h1), (a3, h2)} in Figure 1 dominates matching {(a1, h1), (a2, h2)} by a factor
of 2. The unpopularity factor of a matching M is the maximum factor by which
it is dominated by any other matching. According to this definition, a matching is
popular if and only if its unpopularity factor is exactly 1.

McCutchen [71] also defined an alternative concept to measure the degree of
popularity, called the unpopularity margin. Using the same u and v as above, M2

dominates M1 by a margin of u � v, instead of u
v . Returning to the same example

in Figure 1, we can state that {(a2, h1), (a3, h2)} dominates {(a1, h1), (a2, h2)} by a
margin of 1. The unpopularity margin of M is the maximum margin by which M
is dominated by any other matching. According to this definition, a matching is
popular if and only if its unpopularity margin is exactly 0.

Theorem 2 ([71], [68]). For hat, there is an O(m
p

n) time algorithm to find the
unpopularity factor of a matching and there is an O(m

p
n · log n) time algorithm

to find the unpopularity margin of a matching.

Theorem 3 ([71]). Each of the problems of finding a least unpopularity factor
matching and a least unpopularity margin matching is NP-hard in ha. Also, there
is no approximation algorithm for the problem of finding a least unpopularity



factor matching in a given ha instance with performance guarantee 3
2 � ", for any

" > 0, unless P=NP.

Huang et al. [48] presented a polynomial-time iterative algorithm for finding
a matching with low unpopularity factor or margin in random instances. It con-
structs a sequence of k graphs such that the original instance admits a popular
matching with unpopularity factor at most k � 1 and unpopularity margin at most
n1

⇣
1 � 2

k

⌘
if the k-th graph in the sequence admits a perfect matching. However,

future work could explore least unpopular matchings further by finding a better
approximation algorithm or proving a tighter inapproximability bound.

3.1.2 Popular and rank-maximal matchings under uncertain preferences

Applicants’ preferences may not be completely known because of a lack of infor-
mation or communication. The reason for an applicant in an hat instance placing
two houses in the same tie might be that she has not gained su�ciently detailed in-
formation about these two options to di↵erentiate between them. Also, she might
not be able to receive all the information she requires about each available house,
because it would take too many rounds of communication. However, later the
applicant might refine her preferences, if she gains extra information.

Aziz et al. examined Pareto optimal matchings in variants of ha [14, 11], and
also stable matchings in sm [13] under uncertain preferences. They set up three
di↵erent models to capture the uncertainty of agents. In the lottery model, a prob-
ability distribution over strict preference lists is given for each agent. In the com-
pact indi↵erence model, each agent reports a single, weakly ordered preference
list (i.e., a preference list with ties as in smti). Each complete linear order ex-
tension of this weak order is assumed to be equally likely. Finally, in the joint
probability model, a probability distribution over the possible sets of preference
lists is specified.

Besides other, more restricted problems, the following key computational prob-
lems are formulated.

1. PO / SM Probability: What is the probability that a given matching is Pareto
optimal / stable?

2. PO / SM HighestProbability: Compute a matching with the highest proba-
bility of being Pareto optimal / stable.

We summarise the most important findings from [13, 14, 11] in Table 1.
In another paper [12], similar complexity problems are studied, but instead of

the three uncertainty models, the input has uncertain pairwise preferences. This
means that each agent only expresses a probability of preferring one agent over



lottery compact indi↵erence joint probability
PO Probability #P-complete #P-complete polynomial
PO HighestProbability NP-hard NP-hard NP-hard
SM Probability #P-complete ? polynomial
SM HighestProbability ? NP-hard NP-hard

Table 1: The complexity table of the two most central questions (rows) in the three
di↵erent uncertainty models (columns) from [13, 14, 11]. Question marks denote
the open cases.

another for all possible pairs. If this probability is 0 or 1, then the agent has
expressed certain preferences. In this framework, the complexity of each problem
mainly depends on the transitivity of certain preferences.

One obvious direction forward is to fill the gaps in Table 1. After Pareto
optimal and stable matchings, one might consider to investigate other fairness
notions under uncertain preferences, such as popular or rank-maximal matchings.

3.1.3 House allocation via exchanges in a social network

In a well-studied and realistic variant of ha, each applicant ai initially owns a
house M(ai), and the goal of the applicants is to exchange these houses among
themselves [95]. These exchanges can happen either in a centralised [95, 5, 84,
96, 10] or a decentralised manner [92, 29, 34, 43].

The latter case was first studied in a social network by Gourvés et al. [43].
Two applicants in a social network either know each other, and they are capable
of exchanging their houses, or they do not know each other, in which case no
exchange can happen. More formally, each applicant ai has an acceptable set
A(ai) of houses, as in the other variants of ha discussed above, but in addition
ai has an acceptable set Aa(ai) of applicants. These Aa(ai) sets trivially define a
social network N, which is a graph N = (A, E⇤), where {ai, aj} 2 E⇤ if and only if
aj 2 Aa(ai) and ai 2 Aa(aj). As in the case of ha, applicant ai ranks A(ai), including
her initial endowment, in strict order, and she is only inclined to participate in an
exchange if the house she receives is better than the one she currently owns.

In a social network it can happen that an exchange between applicants ai and
aj that was infeasible earlier becomes feasible later. If aj 2 Aa(ai), and ai finds
M(aj) worse than her own house M(ai), then ai will not accept M(aj) in any fea-
sible exchange. However, if aj participates in an exchange following which she
receives a house M0(aj) that ai ranks higher than her current house, then ai sud-
denly becomes interested in accepting aj’s new house M0(aj).

Gourvés et al. [43], Sa�dine and Wilczynski [91], and Bentert et al. [18]
restricted their attention to swaps in social networks. Swaps are exchanges of



length 2, involving two applicants only, who swap their houses with each other,
changing

n
(ai,M(ai)), (aj,M(aj))

o
to
n
(ai,M(aj)), (aj,M(ai))

o
in the new matching.

If a matching M0 is reachable from the initial matching M by a sequence of such
swaps, then we call it a reachable matching. Similarly, houses that an applicant
ai can receive via swaps belong to the set of reachable houses. Pareto optimal
matchings are also defined based on swaps. A matching M0 is considered to be
Pareto optimal if it is reachable from M and there is no other reachable matching
M00 that Pareto-dominates M0. We summarise the main results from [43, 18] in
the following three theorems.

Theorem 4 ([43, 18]). The problem of deciding whether house h j is reachable for
applicant ai is NP-complete even if the network N is a tree, a clique, a generalised
caterpillar3, or if each agent finds at most 4 houses acceptable. The problem
becomes polynomially solvable if N is a path, a star, or if each agent finds at most
3 houses acceptable.

Theorem 5 ([43]). The problem of deciding whether matching M0 is reachable
from matching M is NP-complete, but it becomes polynomially solvable if N is a
tree.

Theorem 6 ([43]). The problem of finding a Pareto optimal matching is NP-hard
even if the network N is a tree, but it becomes polynomially solvable if N is a star.

Table 2 contains a structured interpretation of the above results for the most
relevant graph classes. On the reachability of a house (Theorem 4), further re-
sults were derived in a parameterised complexity setting, focusing on budget con-
straints such as the number of exchanges an agent may be involved in or the total
duration of the process [91].

path star tree general
h reachable polynomial polynomial NP-complete NP-complete
M reachable polynomial polynomial polynomial NP-complete
Find PO matching polynomial polynomial NP-complete NP-complete

Table 2: The complexity table summarising the three problems first posed in [43],
corresponding to the three rows, and also to Theorems 4, 5, and 6, in this order.
The columns are the type of graph for which the complexity results hold.

The most striking open question regarding exchanges in social networks in-
volves longer cycles instead of swaps only. Strategyproofness is another topic
worthy of investigation. Also, the hard cases in Theorems 5 and 6 could be tack-
led from a parameterised complexity viewpoint.

3A generalised caterpillar is a tree in which all vertices of degree more than two are on a path.



3.2 Stable Marriage problem
In this section we present open problems relating to finding the maximum number
of stable matchings admitted by an sm instance of a given size (Section 3.2.1), de-
termining whether there is a path from an arbitrary matching to a stable matching
in the so-called “divorce digraph” (Section 3.2.2), finding a maximum cardinal-
ity stable matching in an instance of smti (Section 3.2.3) and finally determining
whether there is an e�cient algorithm to list all stable matchings in a given in-
stance of smt (Section 3.2.4).

3.2.1 Maximum number of stable matchings

This open problem, first posed by Gusfield and Irving [45], concerns finding the
maximum number xn of stable matchings admitted by any sm instance of size n.
Formally, for a given sm instance I, let SI denote the set of stable matchings in I,
and define

xn = max{|SIn | : In is an sm instance of size n}.
This problem is still open. However some progress has been made, which we now
summarise.

Knuth [61, p.56] and Eilers [38] showed that x4 = 10. More generally, if n is a
power of 2, Irving and Leather [52] and Knuth (personal communication, reported
in [45]) proved that xn > 2.28n/(1 +

p
3) [52, 45]. Thurber [100] showed that xn

is a strictly increasing function of n, and also that xn > 2.28n/(1 +
p

3)(log n+1) for
each n � 1.

As far as upper bounds are concerned, Stathopoulos [97] showed that, for each
n � 4, xn  n!/2n�3. A major advance was obtained recently by Karlin et al. [58],
who showed that, for each n � 1, xn  cn for some constant c (the authors report
that, at the time of writing, c  217). Nevertheless, clearly there remains a large
gap between the best known lower and upper bounds for xn.

3.2.2 Divorce digraph

Let I be an sm instance and let MI be the set of matchings in I. The divorce
digraph of I is a digraph DI = (V, A), where DI contains a vertex for each matching
inMI (so |V | = n!, where n is the size of I), and the edges in DI are defined as
follows. Given two matchings M,M0 inMI , we say that M0 can be obtained from
M by a divorce operation (referred to as a b-interchange in [98]) if

M0 = (M\{(m,M(m)), (M(w),w)}) [ {(m,w), (M(w),M(m))}

for some blocking pair (m,w) of M. (Thus in M0, the man and woman involved
in the blocking pair are matched together, and the “divorcees” are also matched



together.) Given two vertices vM, vM0 in V , corresponding to matchings M and M0

inMI respectively, (vM, vM0) 2 A if and only if M0 can be obtained from M by a
divorce operation. It follows that vM 2 V is a sink vertex of DI if and only if the
corresponding matching M 2 MI is stable. Knuth [61, pp.2–3] showed that DI

could contain cycles. Gusfield and Irving [45] posed the question as to whether,
given an arbitrary matching M0 2 MI , we can always find a path in DI from vM0

to a sink vertex.
Tamura [98] solved this problem by constructing an sm instance I4 and identi-

fying a setM0 ✓MI4 such that (i) I4 has size 4, (ii) five of the 4! = 24 matchings
inMI4 are stable, (iii) |M0| = 16, and (iv) given any matching M0 2M0, there is
no path in DI4 from vM0 to a sink vertex. Tan and Su [99] independently solved this
problem by constructing an sm instance I04 of size 4 and a set of stable matchings
M00 in I04 with similar properties (we remark that I04 , I4).

Tamura [98] also gave an algorithm to produce a stable matching from an
initial matching M0 using a combination of divorce operations and an additional
type of step. More formally, he gave an algorithm that traverses a path from vM0

in DI until either the path reaches a sink vertex or it cycles; in the latter case a
matching M00 is constructed such that the set of blocking pairs of M00 is a strict
subset of those of M0. The process repeats from vM00 and eventually we must reach
a stable matching.

Tamura was not able to determine whether this algorithm terminates in poly-
nomial time. Moreover his algorithm might not exclusively use divorce operations
even when there is a path from vM0 to a sink vertex in DI , due to a cycle being tra-
versed in DI instead. This leads to a natural open question, namely to resolve
the complexity of the following decision problem: given an sm instance I and a
matching M0, is there a path in DI from vM0 to a sink vertex? Very recently, Chen
[25] showed that this problem is NP-complete if I is an instance of smti.

Note that, if we drop the insistence, as in this subsection, that the “divorcees”
marry one another as part of the divorce operation, then the landscape changes
dramatically — see [90], [68, Section 2.6], and [28] for more details.

3.2.3 Approximability of max smti

Given an instance I of smti, the stable matchings in I can have di↵erent sizes [69],
and max smti, the problem of finding a maximum size stable matching in I, is NP-
hard [55, 69]. This result holds even if, simultaneously, each man’s list is strictly
ordered, each women’s list is either strictly ordered or is a tie of length 2 [69], and
each person’s list is of length at most 3 [53, 74].

The NP-hardness of max smti also holds in the presence of master lists. A
master list L of women (respectively men) is a uniform ranking of all women
(men), possibly involving ties, such that the preference list of each individual man



(woman) is derived from L by deleting his/her unacceptable partners (thus main-
taining the ordering from L over his/her acceptable partners). When the preference
lists on both sides are derived from a master list LU of men and a master list LW

of women, it remains NP-hard to find a maximum size stable matching, and this
remains true even if LU is strictly ordered, whilst either (i) LW contains a single
tie or (ii) each tie in LW is of length 2 [54].

Approximability results for max smti up to 2016 were surveyed in [73, 102].
At the time of writing those surveys, the best upper bound for the approximability
of unrestricted max smti was 3/2 [72, 59, 80], whilst the best lower bound was
33/29, even if each tie is of length 2 [101]. This lower bound was improved to
4/3 � ", for any " > 0 (for the same restriction), assuming the Unique Games
Conjecture (UGC) [101]. These upper and lower bounds for general max smti
remain the best known to date, and it is an open problem to close the gap between
them.

The 3/2 barrier has been broken for special cases of max smti. For 1s-max smti,
the restriction of max smti in which ties occur in the preference lists on one side
only, the best upper bound up to 2016 reported in [73, 102] was 19/13 [35, 56],
whilst the best lower bound was 21/19�", for any " > 0, which holds even if each
woman’s list is strictly ordered or is a tie of length 2 [101]. This lower bound was
improved to 5/4�", for any " > 0 (for the same restriction), assuming UGC [101].

Bauckholt et al. [17] tightened the analysis of an earlier approximation algo-
rithm for 1s-max smti [47] to improve the upper bound derived in [47] from 22/15
to 13/9. Very recently, Lam and Plaxton gave new approximation algorithms that
improved the latter bound to ln 4 ⇡ 1.3863 [63] and then to (1 + 1/e) ⇡ 1.3679
[64]. It is thus an open problem as to whether this latter upper bound can be
reduced to 5/4 in the case of 1s-max smti.

For the special case of 1s-max smti in which each tie occurs at the tail of some
woman’s list, Huang et al. [46] gave an approximation algorithm with perfor-
mance guarantee 5/4, thus matching the known lower bound (assuming UGC).
For the restriction of max smti in which ties can occur on both sides, but each
tie is of length 2, Huang and Kavitha [47] gave an approximation algorithm with
performance guarantee 10/7. A tighter analysis of this approximation algorithm
was given by Chiang and Pashkovich [30], resulting in an improved upper bound
of 4/3. Again, this matches the known lower bound (assuming UGC).

A summary of the lower and upper bounds for the approximability of max
smti and its various restrictions is given in Figure 2. The obvious open problems
correspond to closing the gaps between the lower and upper bounds. Furthermore,
it would appear that no existing work on approximation algorithms for max smti
has attempted to utilise the structure that master lists give rise to, and hence it is
an open question as to whether improved upper bounds exist in the presence of
master lists on one or both sides.
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Figure 2: The figure depicts the gap between the most recent lower and upper
bounds on the approximability in four cases of max smti (assuming UGC). The
unrestricted case is denoted by the dashed blue segment, while the dotted green
segment represents 1s-max smti. A tight approximation algorithm is known for
1s-max smti, if each tie occurs at the end of a list, which is denoted by the black
square. The black triangle denotes the tight approximation for the case with ties
of length at most 2.

3.2.4 Generating stable matchings in smt

Given an instance I of smt, let SI denote the set of stable matchings in I. If I is an
instance of sm of size n, it is known that all stable matchings in I can be listed in
O(n2 + n|SI |) time and O(n2) space [44]. That is, the first stable matching can be
output in O(n2) time, and each subsequent stable matching can be output in O(n)
time. On the other hand, it is an open problem as to whether there is an e�cient
algorithm for listing all stable matchings, given an instance I of smt of size n. By
e�cient, we mean that the algorithm should have complexity O(p(n) + |SI |q(n)),
where p and q are polynomial functions.

A partial result along these lines was, however, provided by Scott [94]. He
showed that, given an smti instance I and a stable matching M in I, we can, in
O(L) time, find a stable matching M0 , M if one exists, or else report that M
is unique, where L is the total length of the men’s preference lists in I. On the
other hand, if I is an instance of smt in which the preference lists on both sides
are derived from two master lists of men and women, all the stable matchings in
I can be generated in O(n + s + |SI | log n) time, where s is the number of stable
pairs (i.e., man–woman pairs who belong to some stable matching) in I [54].

3.3 Stable Roommates problem

In this section we present open questions for sr, relating to the probability that a
given instance admits a stable matching (Section 3.3.1), the recently-introduced
notions of robustness (Section 3.3.2), and the complexity of finding the weighted
straight skeleton of a polygon (Section 3.3.3).



3.3.1 Solvability probability of random sr instances

A long-standing open problem, formulated as Problem 8 in Gusfield and Irving
[45], is the computation of pn, the probability that a random instance, chosen
uniformly from all possible sr instances of size n, admits a stable matching. Of
particular interest is the asymptotic behaviour of pn, as n grows large.

The best-known lower and upper bounds are due to Pittel [82], and Pittel and
Irving [83], respectively, and are as follows:

2e3/2

p
⇡n
 pn 

p
e

2

Mertens [76] derived an explicit formula for pn. This formula is a sum over
cycle types of permutations of size n, and each term in the sum is an integral with
an exponential number of terms. Notice that, although the underlying ideas had
already been discussed by Pittel [82], the formula itself had not been published
before. Mertens [76] used code written in Mathematica to perform exact compu-
tations of pn up to n  12.

In addition to extensive simulations in [75] with the maximum value of n equal
20 000, ten years later Mertens [77] analysed the behaviour of Irving’s algorithm
for sr [51]. He showed that in random instances, Irving’s algorithm only looks at
O(
p

n) entries in each preference list, and so he was able to provide a modification
that has average time and space complexity O(n2/3). This enabled him to compute
pn for instances of size n = n02k for k = 0, . . . , kmax, and n0 2 {8, 10, 12, 14}, where
kmax is limited by the available memory. This helped computations for instances
more than 500 times larger than previously studied ones. The obtained results
support Mertens’ conjecture [77] that pn = ⇥

⇣
n�1/4
⌘
.

Still, these results do not shed enough light on the ultimate behavior of pn as n
becomes large. It seems that exact evaluation of pn for larger values of n is likely
to be infeasible without some unexpected new approach.

3.3.2 Robust matchings

Robust matchings have been studied recently in the literature; intuitively they are
stronger than stable matchings. Several di↵erent robustness notions have been in-
troduced: they either require that a matching remains stable even if agents change
their preferences slightly (perhaps because their original preferences were uncer-
tain) or that the stability of a matching can be repaired at a small bounded cost in
case some pairs in a stable matching break up.

Genc et al. [40] define an (a, b)-supermatch in an smi or sri instance I as a sta-
ble matching such that if any a non-fixed stable pairs4 break up their assignments,

4A stable pair is fixed if it belongs to every stable matching in I.



it is possible to find another stable matching in I by changing the partners of the
agents involved in those a pairs and by also changing at most b other pairs.

Genc et al. [42] showed that the problem of deciding if there exists a (1, b)-
supermatch is NP-complete in smi for any b � 1, which also implies that this
problem is NP-hard in sri. However, for the more general case of (a, b)-super-
matches, it is not even known whether the problem belongs to NP. By contrast,
given a stable matching M in an sri instance, Genc et al. [41] gave a polynomial-
time algorithm to verify whether M is a (1, b)-supermatch. The algorithm uses a
deep knowledge of the structure of the set of all stable matchings, described by
the complete closed subsets of the reduced rotation poset of the given sri instance.

Genc et al. [41] also provided two metaheuristics for finding a (1, b)-super-
match for a given sri instance that minimises the value of b, however, the approx-
imability of this problem has not been studied theoretically.

Mai and Vazirani [66, 67] define robustness in a di↵erent way. Given an sm
instance I, letJ(I,D) be the set of instances that result after introducing one error
from a domain D. The domains of errors may be, for example:

(i) For any agent a, swap the positions of two adjacent agents in the preference
list of a.

(ii) For any agent a, shift a position of an agent in the preference list of a up-
wards (downwards).

(iii) For any agent a, arbitrarily permute the preference list of a.

Given a probability distribution for D, a robust stable matching is a matching that
is stable in I and has the highest probability of being stable after introducing one
error from D. A fully robust stable matching is a matching that is stable in I and
in each of the instances in J(I,D).

For a given instance of sm, Mai and Vazirani proposed polynomial-time algo-
rithms for finding a robust stable matching (for the domains defined by (ii) above)
[66] and for checking if there is a fully robust stable matching (for the domains
defined by (iii) above) [67]. Further, they proved that the set of all such matchings
forms a sublattice of the lattice of all stable matchings. They used this structure to
find a fully robust stable matching that maximises (or minimises) a given weight
function.

Chen et al. [26] define a matching M in an instance of smi to be d-robust if M
is stable and remains stable after performing an arbitrary sequence of d errors of
type (i), i.e., swaps. They provide an O(n4) algorithm that, given an smi instance I
and an integer d � 0, finds a matching that is d-robust if it exists. The result is also
based on exploiting the structural properties of the rotations structure of I. Chen et
al. [26] also provide a polynomial-time algorithm that finds a d-robust matching



with minimum egalitarian cost if one exists. However, when ties are present, they
show that finding a robust matching is NP-hard.

As far as we are aware, robust stable matchings in sr have not been studied
previously (either in the senses of Mai and Vazirani [66, 67] or Chen et al. [26]).

3.3.3 The complexity of finding the weighted straight skeleton of a polygon

We complete our list of open problems with a seemingly unrelated problem from
geometry. Aichholzer et al. [8, 9] defined the straight skeleton of a polygon. It is
derived from shrinking the polygon by translating each of its edges at a fixed rate,
as the edges of the polygon are moved inwards parallel to themselves at a constant
speed, as illustrated in Figure 3. The vertices of the shrunk polygon trace angular
bisectors, called wavefront edges, which build the straight skeleton of the polygon.
In a generalized setting, the speed of moving the edges can di↵er for each edge—
in this case we talk about a weighted straight skeleton. The (weighted) straight
of skeleton of a polygon can be used to construct a polygonal roof over a set of
walls [9], and even to solve certain origami design problems [36].

Figure 3: Constructing the straight skeleton of a polygon [49]. The first figure
indicates the shrinking of the polygon. The blue edges in the second figure are
the wavefront edges. The third figure illustrates how a polygonal roof can be
constructed based on the straight skeleton.

Detecting combinatorial changes in the input polygon as it shrinks is essential
when computing the straight skeleton of a polygon. Biedl et al. [19] computed the
weighted straight skeleton by utilising stable matchings in sr. At each wavefront
edge, two edges of the polygon meet, but when a wavefront collapses or splits, the
new wavefront edge will correspond to a di↵erent pair of polygon edges. Biedl
et al. [19] translated the problem of finding which polygon edge pairs will form a
wavefront edge into a planar matching problem, which is then further translated
into an instance of sr. Calculating a weighted straight skeleton can thus be re-
duced to computing a stable matching in the constructed sr instance, which is
guaranteed to admit one.



Biedl et al. [19] gave an upper bound on the complexity of finding the weighted
straight skeleton of a polygon in time O(N5), where N denotes the number of
vertices of the polygon. They conjectured that this running time can be improved.
A deeper insight into the structure of the underlying sr instance might lead to such
an improvement in the e�ciency of the algorithm.
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[4] A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica, 66(3):689–701,
1998.

[5] A. Abdulkadiroǧlu and T. Sönmez. House allocation with existing tenants. Journal
of Economic Theory, 88:233–260, 1999.

[6] D. Abraham, R. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM
Journal on Computing, 37:1030–1045, 2007.

[7] D. Abraham, R. Irving, and D. Manlove. Two algorithms for the Student-Project
allocation problem. Journal of Discrete Algorithms, 5(1):79–91, 2007.

[8] O. Aichholzer and F. Aurenhammer. Straight skeletons for general polygonal fig-
ures in the plane. In Proceedings of COCOON ’96: the 2nd Annual International
Computing and Combinatorics Conference, volume 1090 of Lecture Notes in Com-
puter Science, pages 117–126. Springer, 1996.

[9] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gärtner. A novel type of skele-
ton for polygons. J. UCS – Journal of Universal Computer Science, 1(12):752–761,
1995.

http://www.nber.org/papers/w11965
http://www.nber.org/papers/w11965


[10] H. Aziz. Algorithms for Pareto optimal exchange with bounded exchange cy-
cles. Working paper, available from http://www.cse.unsw.edu.au/~haziz/
lexchange.pdf (accessed 28 May 2019), 2018.

[11] H. Aziz, P. Biró, R. de Haan, and B. Rastegari. Pareto optimal allocation under
compact uncertain preferences. In Proceedings of AAAI ’19: the 33rd AAAI Con-
ference on Artificial Intelligence. AAAI Press, 2019.

[12] H. Aziz, P. Biró, T. Fleiner, S. Gaspers, R. de Haan, N. Mattei, and B. Rastegari.
Stable matching with uncertain pairwise preferences. In Proceedings of AAMAS
’17: the 16th International Conference on Autonomous Agents and Multiagent
Systems, pages 344–352. International Foundation for Autonomous Agents and
Multiagent Systems, 2017.

[13] H. Aziz, P. Biró, S. Gaspers, R. De Haan, N. Mattei, and B. Rastegari. Stable
matching with uncertain linear preferences. In Proceedings of SAGT ’16: the 9th
International Symposium on Algorithmic Game Theory, volume 9928 of Lecture
Notes in Computer Science, pages 195–206. Springer, 2016.

[14] H. Aziz, R. de Haan, and B. Rastegari. Pareto optimal allocation under uncertain
preferences. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, pages 77–83, 2017.

[15] M. Baïou and M. Balinski. Admissions and recruitment. American Mathematical
Monthly, 110(5):386–399, 2003.

[16] M. Baïou and M. Balinski. Student admissions and faculty recruitment. Theoretical
Computer Science, 322(2):245–265, 2004.

[17] F. Bauckholt, K. Pashkovich, and L. Sanità. On the approximability of the stable
marriage problem with one-sided ties. Technical Report 1805.05391, Computing
Research Repository, Cornell University Library, 2018. Available from http:
//arxiv.org/abs/1805.05391 (accessed 27 May 2019).

[18] M. Bentert, J. Chen, V. Froese, and G. J. Woeginger. Good things come to those
who swap objects on paths. Technical Report 1905.04219, Computing Research
Repository, Cornell University Library, 2019. Available from http://arxiv.
org/abs/1905.04219 (accessed 3 July 2019).

[19] T. Biedl, S. Huber, and P. Palfrader. Planar matchings for weighted straight
skeletons. International Journal of Computational Geometry & Applications,
26(03n04):211–229, 2016.

[20] P. Biró. Applications of matching models under preferences. In U. Endriss, editor,
Trends in Computational Social Choice, chapter 18. AI Access, 2017. Supported
by COST Action IC1205 on Computational Social Choice.

[21] P. Biró and S. Kiselgof. College admissions with stable score-limits. Central
European Journal of Operations Research, 23(4):727–741, 2015.

http://www.cse.unsw.edu.au/~haziz/lexchange.pdf
http://www.cse.unsw.edu.au/~haziz/lexchange.pdf
http://arxiv.org/abs/1805.05391
http://arxiv.org/abs/1805.05391
http://arxiv.org/abs/1905.04219
http://arxiv.org/abs/1905.04219


[22] S. Braun, N. Dwenger, and D. Kübler. Telling the truth may not pay o↵: An
empirical study of centralized university admissions in Germany. The B.E. Journal
of Economic Analysis and Policy, 10(1), 2010. Article 22.

[23] K. Cechlárová. School placement of trainee teachers: Theory and practice. In
U. Endriss, editor, Trends in Computational Social Choice, chapter 19. AI Access,
2017. Supported by COST Action IC1205 on Computational Social Choice.

[24] J. Chen. Computational complexity of stable marriage and stable roommates
and their variants. Technical Report 1904.08196, Computing Research Reposi-
tory, Cornell University Library, 2019. Available from http://arxiv.org/abs/
1904.08196 (accessed 29 May 2019).

[25] J. Chen. Stable matchings in divorce graphs. Technical Report 1906.12274, Com-
puting Research Repository, Cornell University Library, 2019. Available from
https://arxiv.org/pdf/1906.12274.pdf (accessed 2 July 2019).

[26] J. Chen, P. Skowron, and M. Sorge. Matchings under preferences: Strength of
stability and trade-o↵s. In Proceedings of the EC ’19: the 14th ACM Conference
on Electronic Commerce, pages 153–162. ACM, 2019.

[27] Y. Chen and T. Sönmez. Improving e�ciency of on-campus housing: An experi-
mental study. American Economic Review, 92(5):1669–1686, 2002.

[28] C. Cheng. On the stable matchings that can be reached when the agents go march-
ing in one by one. SIAM Journal on Discrete Mathematics, 30(4):2047–2063,
2016.

[29] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemaitre, N. Maudet, J. Padget,
S. Phelps, J. A. Rodriguez-Aguilar, and P. Sousa. Issues in multiagent resource
allocation. Informatica, 30(1):3–31, 2006.

[30] R. Chiang and K. Pashkovich. On the approximability of the stable match-
ing problem with ties of size two. Technical Report 1808.04510, Computing
Research Repository, Cornell University Library, 2018. Available from http:
//arxiv.org/abs/1808.04510, (accessed 27 May 2019).

[31] M. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions
rendues à la pluralité des voix. L’Imprimerie Royale, 1785.

[32] F. Cooper and D. Manlove. A 3/2-approximation algorithm for the student-project
allocation problem. In Proceedings of SEA 2018: the 17th International Sympo-
sium on Experimental Algorithms, volume 103 of Leibniz International Proceed-
ings in Informatics (LIPIcs), article 8, pages 1–13. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2018.

[33] A. Cseh. Popular matchings. In U. Endriss, editor, Trends in Computational So-
cial Choice, chapter 6. AI Access, 2017. Supported by COST Action IC1205 on
Computational Social Choice.

http://arxiv.org/abs/1904.08196
http://arxiv.org/abs/1904.08196
https://arxiv.org/pdf/1906.12274.pdf
http://arxiv.org/abs/1808.04510
http://arxiv.org/abs/1808.04510


[34] A. Damamme, A. Beynier, Y. Chevaleyre, and N. Maudet. The power of swap deals
in distributed resource allocation. In Proceedings of AAMAS ’15: the 14th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pages 625–633.
International Foundation for Autonomous Agents and Multiagent Systems, 2015.

[35] B. Dean and R. Jalasutram. Factor revealing LPs and stable matching with ties
and incomplete lists. In Proceedings of MATCH-UP ’15: the 3rd International
Workshop on Matching Under Preferences, pages 42–53, 2015.

[36] E. D. Demaine, M. L. Demaine, and A. Lubiw. Folding and cutting paper. In
Proceedings of JCDCG ’98: the Japan Conference on Discrete and Computational
Geometry, volume 1763 of Lecture Notes in Computer Science, pages 104–118.
Springer, 2000.

[37] F. Echenique, N. Immorlica, and V. Vazirani, editors. Online and Matching-Based
Market Design. Cambridge University Press, forthcoming, 2020.

[38] D. Eilers. Technical Report ICC TR1999-2, Irvine Compiler Corporation, 1999.
[39] D. Gale and L. Shapley. College admissions and the stability of marriage. American

Mathematical Monthly, 69:9–15, 1962.
[40] B. Genc, M. Siala, G. Simonic, and B.O’Sullivan. Finding robust solutions to stable

marriage. In Proceedings of IJCAI ’17: the 26th International Joint Conference on
Artificial Intelligence, pages 631–637. AAAI Press, 2017.

[41] B. Genc, M. Siala, G. Simonic, and B.O’Sullivan. An approach to robustness in
the stable roommates problem and its comparison with the stable marriage prob-
lem. In Proceedings of CPAIOR ’19: the 16th International Conference on Integra-
tion of Constraint Programming, Artificial Intelligence and Operations Research
Techniques in for Combinatorial Optimization, volume 11494 of Lecture Notes in
Computer Science, pages 320–336. Springer, 2019.

[42] B. Genc, M. Siala, G. Simonic, and B.O’Sullivan. Complexity study for the robust
stable marriage problem. Theoretical Computer Science, 775:76–92, 2019.

[43] L. Gourvès, J. Lesca, and A. Wilczynski. Object allocation via swaps along a social
network. In Proceedings of IJCAI ’17: the 26th International Joint Conference on
Artificial Intelligence, pages 213–219. AAAI Press, 2017.

[44] D. Gusfield. Three fast algorithms for four problems in stable marriage. SIAM
Journal on Computing, 16(1):111–128, 1987.

[45] D. Gusfield and R. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

[46] C.-C. Huang, K. Iwama, S. Miyazaki, and H. Yanagisawa. A tight approxima-
tion bound for the stable marriage problem with restricted ties. In Proceedings of
APPROX/RANDOM ’15: the 18th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems, and the 19th International Work-
shop on Randomization and Computation, Leibniz International Proceedings in
Informatics, pages 361–380. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2015.



[47] C.-C. Huang and T. Kavitha. Improved approximation algorithms for two vari-
ants of the stable marriage problem with ties. Mathematical Programming, 154(1-
2):353–380, 2015.

[48] C.-C. Huang, T. Kavitha, D. Michail, and M. Nasre. Bounded unpopularity match-
ings. Algorithmica, 61(3):738–757, 2011.

[49] S. Huber. The shrinking process, the straight skeleton (blue) and the roof model.
Image available at https://commons.wikimedia.org/w/index.php?curid=
21424949 (accessed 31 May 2019).

[50] A. Hylland and R. Zeckhauser. The e�cient allocation of individuals to positions.
Journal of Political Economy, 87(2):293–314, 1979.

[51] R. Irving. An e�cient algorithm for the “stable roommates” problem. Journal of
Algorithms, 6:577–595, 1985.

[52] R. Irving and P. Leather. The complexity of counting stable marriages. SIAM
Journal on Computing, 15(3):655–667, 1986.

[53] R. Irving, D. Manlove, and G. O’Malley. Stable marriage with ties and bounded
length preference lists. Journal of Discrete Algorithms, 7(2):213–219, 2009.

[54] R. Irving, D. Manlove, and S. Scott. The stable marriage problem with master
preference lists. Discrete Applied Mathematics, 156(15):2959–2977, 2008.

[55] K. Iwama, D. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with incom-
plete lists and ties. In Proceedings of ICALP ’99: the 26th International Collo-
quium on Automata, Languages, and Programming, volume 1644 of Lecture Notes
in Computer Science, pages 443–452. Springer, 1999.

[56] K. Iwama, S. Miyazaki, and H. Yanagisawa. A 25/17-approximation algorithm for
the stable marriage problem with one-sided ties. Algorithmica, 68:758–775, 2014.

[57] M.-Y. Kao, editor. Encyclopedia of Algorithms. Springer, 2016.

[58] A. Karlin, S. O. Gharan, and R. Weber. A simply exponential upper bound on
the maximum number of stable matchings. In Proceedings of STOC ’89: the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pages 920–925. ACM,
2018.

[59] Z. Király. Linear time local approximation algorithm for maximum stable mar-
riage. Algorithms, 6(3):471–484, 2013.

[60] B. Klaus, D. Manlove, and F. Rossi. Matching Under Preferences. In F. Brandt,
V. Conitzer, U. Endriss, J. Lang, and A. Procaccia, editors, Handbook of Compu-
tational Social Choice, chapter 14. Cambridge University Press, 2015.

[61] D. Knuth. Mariages Stables et leurs relations avec d’autres problèmes combina-
toires. Les Presses de L’Université de Montréal, 1976. English translation in Stable
Marriage and its Relation to Other Combinatorial Problems, volume 10 of CRM
Proceedings and Lecture Notes, American Mathematical Society, 1997.

https://commons.wikimedia.org/w/index.php?curid=21424949
https://commons.wikimedia.org/w/index.php?curid=21424949


[62] E. Kujansuu, T. Lindberg, and E. Mäkinen. The stable roommates problem and
chess tournament pairings. Divulgaciones Matemáticas, 7(1):19–28, 1999.

[63] C.-K. Lam and C. G. Plaxton. A (ln 4)-approximation algorithm for maximum
stable matching with one-sided ties and incomplete lists. Technical Report TR-18-
01, Department of Computer Science, University of Texas at Austin, 2018.

[64] C.-K. Lam and C. G. Plaxton. A (1 + 1/e)-approximation algorithm for maximum
stable matching with one-sided ties and incomplete lists. In Proceedings of SODA
’19: the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2823–
2840. ACM-SIAM, 2019.

[65] D. Lebedev, F. Mathieu, L. Viennot, A.-T. Gai, J. Reynier, and F. de Montgolfier.
On using matching theory to understand P2P network design. In Proceedings of
INOC ’07: International Network Optimization Conference, 2007.

[66] T. Mai and V. V. Vazirani. Finding stable matchings that are robust to errors in the
input. In Proceedings of ESA ’18: the 26th Annual European Symposium on Algo-
rithms, volume 112 of Leibniz International Proceedings in Informatics (LIPIcs),
article 60, pages 1–11. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

[67] T. Mai and V. V. Vazirani. Stable matchings, robust solutions and distributive
lattices. Technical Report 1804.05537, Computing Research Repository, Cornell
University Library, 2019. Available from http://arxiv.org/abs/1804.05537
(accessed 29 May 2019).

[68] D. Manlove. Algorithmics of Matching Under Preferences. World Scientific, 2013.

[69] D. Manlove, R. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of
stable marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.

[70] MATCH-UP steering committee. MATCH-UP: International Workshop on
Matching Under Preferences. Web document available at http://www.
optimalmatching.com/MATCHUP (accessed 8 May 2019).

[71] R. McCutchen. The least-unpopularity-factor and least-unpopularity-margin crite-
ria for matching problems with one-sided preferences. In Proceedings of LATIN
’08: the 8th Latin-American Theoretical INformatics symposium, volume 4957 of
Lecture Notes in Computer Science, pages 593–604. Springer, 2008.

[72] E. McDermid. A 3/2 approximation algorithm for general stable marriage. In
Proceedings of ICALP ’09: the 36th International Colloquium on Automata, Lan-
guages and Programming, volume 5555 of Lecture Notes in Computer Science,
pages 689–700. Springer, 2009.

[73] E. McDermid. Maximum cardinality stable matchings. In M.-Y. Kao, editor, En-
cyclopedia of Algorithms, pages 1227–1230. Springer, 2016.

[74] E. McDermid and D. Manlove. Keeping partners together: Algorithmic results for
the hospitals / residents problem with couples. Journal of Combinatorial Optimiza-
tion, 19(3):279–303, 2010.

http://arxiv.org/abs/1804.05537
http://www.optimalmatching.com/MATCHUP
http://www.optimalmatching.com/MATCHUP


[75] S. Mertens. Random stable matchings. Journal of Statistical Mechanics: Theory
and Experiment, 2005(10):P10008, 2005.

[76] S. Mertens. Small random instances of the stable roommates problem. Journal of
Statistical Mechanics: Theory and Experiment, 2015(6):P06034, 2015.

[77] S. Mertens. Stable roommates problem with random preferences. Journal of Sta-
tistical Mechanics: Theory and Experiment, 2015(1):P01020, 2015.

[78] National Resident Matching Program. Main residency match data and reports. Web
document available at http://www.nrmp.org/main-residency-match-data
(accessed 8 May 2019).

[79] NobelPrize.org. Nobel Media AB 2019. The prize in economic sciences
2012. Web document available at https://www.nobelprize.org/prizes/
economic-sciences/2012/summary (accessed 8 May 2019).

[80] K. Paluch. Faster and simpler approximation of stable matchings. Algorithms,
7(2):189–202, 2014.

[81] N. Perach, J. Polak, and U. Rothblum. A stable matching model with an entrance
criterion applied to the assignment of students to dormitories at the Technion. In-
ternational Journal of Game Theory, 36(3-4):519–535, 2008.

[82] B. Pittel. The “Stable Roommates” problem with random preferences. Annals of
Probability, 21(3):1441–1477, 1993.

[83] B. G. Pittel and R. W. Irving. An upper bound for the solvability probability of
a random stable roommates instance. Random Structures and Algorithms, 5:465–
486, 1994.

[84] C. G. Plaxton. A simple family of top trading cycles mechanisms for housing
markets with indi↵erences. In Proceedings of the 24th International Conference on
Game Theory, Stony Brook, pages 1–23. https://www.cs.utexas.edu/users/
plaxton/pubs/2013/icgt.pdf (accessed 27 May 2019), 2013.

[85] A. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

[86] A. Roth, T. Sönmez, and M. Ünver. Kidney exchange. Quarterly Journal of Eco-
nomics, 119(2):457–488, 2004.

[87] A. Roth, T. Sönmez, and M. Ünver. Pairwise kidney exchange. Journal of Eco-
nomic Theory, 125:151–188, 2005.

[88] A. Roth, T. Sönmez, and M. Ünver. E�cient kidney exchange: Coincidence of
wants in a market with compatibility-based preferences. American Economic Re-
view, 97(3):828–851, 2007.

[89] A. Roth and M. Sotomayor. Two-Sided Matching: a Study in Game-Theoretic Mod-
eling and Analysis, volume 18 of Econometric Society Monographs. Cambridge
University Press, 1990.

http://www.nrmp.org/main-residency-match-data
https://www.nobelprize.org/prizes/economic-sciences/2012/summary
https://www.nobelprize.org/prizes/economic-sciences/2012/summary
https://www.cs.utexas.edu/users/plaxton/pubs/2013/icgt.pdf
https://www.cs.utexas.edu/users/plaxton/pubs/2013/icgt.pdf


[90] A. Roth and J. V. Vate. Random paths to stability in two-sided matching. Econo-
metrica, 58(6):1475–1480, 1990.

[91] A. Sa�dine and A. Wilczynski. Constrained swap dynamics over a social network
in distributed resource reallocation. In Proceedings of SAGT ’18: the 11th Interna-
tional Symposium on Algorithmic Game Theory, volume 11059 of Lecture Notes
in Computer Science, pages 213–225. Springer, 2018.

[92] T. Sandholm. Contract types for satisficing task allocation: I theoretical results.
In Proceedings of the AAAI Spring Symposium: Satisficing Models, pages 68–75.
AAAI Press, 1998.

[93] Schloss Dagstuhl – Leibniz-Zentrum für Informatik. Matching Under Preferences:
Theory and Practice. Web document available at https://www.dagstuhl.de/
20301 (accessed 8 May 2019).

[94] S. Scott. A study of stable marriage problems with ties. PhD thesis, University of
Glasgow, Department of Computing Science, 2005.

[95] L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathematical
Economics, 1:23–37, 1974.

[96] T. Sönmez and T. Switzer. Matching with (branch-of-choice) contracts at United
States Military Academy. Econometrica, 81(2):451–488, 2013.

[97] G. Stathopoulos. Variants of stable marriage algorithms, complexity and structural
properties. Master’s thesis, University of Athens, Department of Mathematics–
MPLA, 2011.

[98] A. Tamura. Transformation from arbitrary matchings to stable matchings. Journal
of Combinatorial Theory, Series A, 62:310–323, 1993.

[99] J. Tan and W. Su. On the divorce digraph of the stable marriage problem. Proceed-
ings of the National Science Council, Republic of China - Part A, 19(2):342–354,
1995.

[100] E. Thurber. Concerning the maximum number of stable matchings in the stable
marriage problem. Discrete Applied Mathematics, 248:195–219, 2002.

[101] H. Yanagisawa. Approximation Algorithms for Stable Marriage Problems. PhD
thesis, Kyoto University, School of Informatics, 2007.

[102] H. Yanagisawa. Stable marriage with one-sided ties. In M.-Y. Kao, editor, Ency-
clopedia of Algorithms, pages 2068–2071. Springer, 2016.

[103] H. Zhang. An analysis of the Chinese college admission system. PhD thesis, Uni-
versity of Edinburgh, School of Economics, 2009.

[104] Y. Zhang. The determinants of national college entrance exam performance in
China with an analysis of private tutoring. PhD thesis, Columbia University, 2011.

[105] L. Zhou. On a conjecture by Gale about one-sided matching problems. Journal of
Economic Theory, 52(1):123–135, 1990.

https://www.dagstuhl.de/20301
https://www.dagstuhl.de/20301

