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11.1 Introduction

Traditional problems in graph drawing involve the layout of a single graph, whereas in
simultaneous graph drawing we are concerned with the layout of multiple related graphs.
In particular, consider the problem of drawing a series of graphs that share all, or parts
of the same vertex set. The graphs may represent different relations between the same set
of objects, or alternatively, the graphs may be the result of a single relation that changes
through time.

In this chapter we survey efforts to address the following problem: Given a series of
graphs that share all, or parts of the same vertex set, what is a natural way to layout and
display them? The layout and display of the graphs are different aspects of the problem,
but also closely related, as a particular layout algorithm is likely to be matched best with
a specific visualization technique. As stated above, however, the problem is too general
and it is unlikely that one particular layout algorithm will be best for all possible scenarios.
Consider the case where we only have a pair of graphs in the series, and the case where we
have hundreds of related graphs. The “best” way to layout and display the two series is
likely going to be different. Similarly, if the graphs in the sequence are very closely related
or not related at all, different layout and display techniques may be more appropriate.
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350 Simultaneous Embedding of Planar Graphs

For the layout of the graphs, there are two important criteria to consider: the readability
of the individual layouts and the mental map preservation in the series of drawings. The
readability of individual drawings depends on aesthetic criteria such as display of symme-
tries, uniform edge lengths, and minimal number of crossings. Preservation of the mental
map can be achieved by ensuring that vertices that appear in consecutive graphs in the
series, remain in the same positions. These two criteria are often contradictory. If we indi-
vidually layout each graph, without regard to other graphs in the series, we may optimize
readability at the expense of mental map preservation. Conversely, if we fix the vertex
positions in all graphs, we are optimizing the mental map preservation but the individual
layouts may be far from readable. In simultaneous graph embedding, vertices are placed in
the exact same locations in all the graphs, while the layout of the edges may differ.

Visualization of related graphs, that is, graphs that are defined on the same set of ver-
tices, arise in many different settings. Software engineering, databases, and social network
analysis are all examples of areas where multiple relationships on the same set of objects are
often studied. In evolutionary biology, phylogenetic trees are used to visualize the ances-
tral relationship among groups of species. Depending on the assumptions made, different
algorithms produce different phylogenetic trees. Comparing the outputs and determining
the most likely evolutionary hypothesis can be difficult if the drawings of the trees are laid
out independently of each other.

While in some of the above examples the graphs are not necessarily planar, solving the
planar case can provide intuition and ideas for the more general case. With this in mind, here
we concentrate on the problem of simultaneous embedding of planar graphs. Simultaneous
embedding of planar graphs generalizes the notion of traditional graph planarity and is
motivated by its relationship with problems of graph thickness, geometric thickness, and
applications such as the visualization of graphs that evolve through time.

The thickness of a graph is the minimum number of planar subgraphs into which the
edges of the graph can be partitioned; see [MOS98] for a survey. Thickness is an important
concept in VLSI design, since a graph of thickness k can be embedded in k layers, with
any two edges drawn in the same layer intersecting only at a common vertex and vertices
placed in the same location in all layers. A related graph property is geometric thickness,
defined to be the minimum number of layers for which a drawing of G exists having all
edges drawn as straight-line segments [DEH00]. Finally, the book thickness of a graph G is
the minimum number of layers for which a drawing of G exists, in which edges are drawn as
straight-line segments and vertices are in convex position [BK79]. It has been shown that
the book thickness of planar graphs is no greater than four [Yan89].

11.1.1 Problem Definitions

This chapter is structured along three basic simultaneous embedding results for planar
graphs, Simultaneous Geometric Embedding (SGE), Simultaneous Embedding
with Fixed Edges (SEFE), and Simultaneous Embedding (SE), Figure 11.1 illustrates
the three cases. For all three problems the input always consists of two planar graphs G1 =
(V1, E1) and G2 = (V2, E2) sharing a common subgraph G = (V,E) = (V1 ∩ V2, E1 ∩ E2).

The most strict variant is Simultaneous Geometric Embedding (SGE), which asks
for planar straight-line drawings of G1 and G2 such that common vertices have the same
coordinates in both drawings. The requirements of SGE are very strict, and as we will
see in Section 11.2, there exist a lot of examples that do not admit such an embedding.
While the problem Simultaneous Embedding with Fixed Edges still requires common
vertices to have the same coordinates, it relaxes the straight-line requirement by allowing
arbitrary curves for representing edges. To maintain the mental map, common edges are
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Figure 11.1 Two graphs G1 and G2 together with an SGE, a SEFE and an SE. In the
SGE all edges are straight line segments while some edges in the SEFE are not. The SE
contains common edges ({3, 7} and {5, 6}) that are drawn differently with respect to G1

and G2.

still required to be represented by the same curves. Finally, Simultaneous Embedding
drops the constraints on the curves altogether and just requires common vertices to have
the same coordinates.

For all these problems it is common to also use the problem name to denote a correspond-
ing embedding, that is, we also say that G1 and G2 have an SGE, SEFE or SE if they
admit solutions to these problems. Moreover, all these problems readily generalize to k > 2
input graphs G1, . . . , Gk, by requiring that the conditions hold for each pair of graphs. In
this case a common restriction is to require that all input graphs share exactly the same
graph G, that is, G = Gi ∩Gj for i 6= j. We call this behavior sunflower intersection.

We note that simultaneous embedding problems are closely related to constrained em-
bedding problems. For example if the planar embedding of one of the two graphs of an
instance of SEFE is already fixed, the problem of finding a SEFE is equivalent to find-
ing an embedding of the second graph respecting a prescribed embedding for a subgraph,
namely the common graph. This constrained embedding problem is known as Partially
Embedded Planarity. Angelini et al. [ADF+10] show that this problem can be solved
in linear time and, in the spirit of Kuratowski’s theorem, Jeĺınek et al. [JKR11] character-
ize the yes-instances by forbidden substructures. A similar tie to constrained embedding
problems exists in the case of SE. After fixing the drawing of one of the two input graphs it
remains to draw a single graph without crossings at prescribed vertex positions. This prob-
lem is known as Point Set Embedding and Pach and Wenger show that this is always
possible [PW98]. There are other, less obvious relations between simultaneous embedding
and constrained embedding problems, which will be described later.

11.1.2 Overview and Outline

This chapter starts with the three simultaneous embedding problems SGE, SEFE, and SE,
and we discuss each of them in one of the following sections. There are three major classes
of results on simultaneous embedding problems. The first class contains algorithms that, for
given graphs with certain properties, always produce a simultaneous embedding, perhaps
with additional quality guarantees. These results show the existence of simultaneous em-
beddings for the corresponding graph classes. The second class contains counterexamples
that do not admit a simultaneous embedding. The third class contains algorithms and com-
plexity results for the problem of testing whether a given instance admits a simultaneous
embedding.

We present a survey of the results on SGE in Section 11.2. Due to the strong requirements
of SGE results of the first type, which identify classes of graphs that always admit a
simultaneous embedding, exist only for very few and strongly restricted graph classes. For
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example, even a path and a tree of depth 4 may not have an SGE [AGKN12]. Moreover,
it is NP-hard to decide SGE and there are no further results of the third type, that is,
algorithms testing whether an instance has an SGE or not, even for restricted instances.

Section 11.3 presents the SEFE problem, which turns out to be much less restrictive than
SGE. For example a tree and a path do always admit a SEFE although they do not have an
SGE [Fra07]. On the other hand, examples not having a SEFE are also counterexamples
for SGE. Moreover, it is still open whether SEFE can be tested in polynomial time for two
graphs, whereas it is NP-complete for three or more graphs [GJP+06]. However, for two
graphs, there exist several results of the third type, that is, testing algorithms, for restricted
inputs. For example, it is possible to decide in linear time whether a pair of graphs admits
a SEFE or not, if the common graph is biconnected [ABF+12, HJL10].

In Section 11.4, we consider the least restrictive simultaneous embedding problem, SE,
which only requires common vertices to have the same coordinates in all drawings. As
every planar graph can be drawn without crossings even if the position of every vertex is
fixed [PW98], there are no counterexamples for SE and it is not necessary to have a testing
algorithm. The results on SE focus on creating simultaneous embeddings such that edges
have few bends and the resulting drawings use small area.

Sections 11.5–11.8 presents several variants of approaches to simultaneous embedding that
do not quite fall into the categories of the three main problems. The problem variants dis-
cussed in Section 11.5 relax the requirement of having a fixed mapping between the vertices
of G1 and G2. They rather ask whether a suitable mapping can be found such that a SEFE
exists [BCD+07]. Colored SGEs are somewhere between and allow the mapping to identify
only vertices having the same color [BEEB+11]. Section 11.6 deals with matched drawings
requiring straight-line drawings of the two input graph such that each common vertex has
only the same y-coordinate in both drawings. Other work, discussed in Section 11.7, deals
with the problem of simultaneously representing a planar graph and its dual [Tut63] and
considers different types of simultaneous representations, such as simultaneous intersection
representations, as introduced by Jampani and Lubiw [JL09]. Section 11.8 presents several
practical approaches to simultaneous embedding problems.

In Section 11.9 results on morphing between different planar drawings of the same graph
are presented. A morph aims to preserve the mental map between different drawings of
the same graph, which can be seen as the opposite to drawing different graphs such that
the common part is drawn the same. Finally, in Section 11.10, we present a list of open
questions. The list contains questions that have been open for several years, as well as
questions that are motivated by recent research results.

11.2 Simultaneous Geometric Embedding

In this section we consider the most desirable (and most restrictive) kind of simultaneous
drawings, the SGEs. Most results on that problem are summarized in Table 11.1. Fig-
ure 11.3 illustrates the relation between these results. Before we describe the results in
more detail we start with a small example. While it may be tempting to say that if the
union of two graphs contains a subdivision of K5 or K3,3 then the two graphs have no
simultaneous geometric embedding, this is not the case; see Figure 11.2. In fact, while pla-
narity testing for a single graph can be done in linear time [HT74], Estrella-Balderrama et
al. [EBGJ+08] show that the decision problem SGE is NP-hard. Other results concerning
the complexity of SGE (for example for restricted graph classes) are not known.

In the following we describe the results illustrated in Figure 11.3. We start with algorithms
always creating an SGE when the input is restricted to special graph classes. We then
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SGE Instance Existence Area Ref.

G1 & G2 paths 3 n× n [BCD+07]
G1 path & G2 extended star 3 O(n2) ×O(n) [BCD+07]
G1 caterpillar & G2 path 3 n× 2n [BCD+07]
G1 & G2 caterpillar 3 3n× 3n [BCD+07]
2 stars 3 3 × (n− 2) [BCD+07]
k stars 3 O(n) ×O(n) [BCD+07]
G1 & G2 cycles 3 4n× 4n [BCD+07]
G1 & G2 have maximum degree 2 3 — [DEK04]
G1 wheel & G2 cycle 3 — [CvKL+11]
G1 tree & G2 matching 3 — [CvKL+11]
G1 outerpath & G2 matching 3 — [CvKL+11]
G1 tree of depth 2 & G2 path 3 — [AGKN12]
G1 level-planar w.r.t. path G2 3 — [CEBFK09]

G1 & G2 planar 7 — [BCD+07]
G1 path & G2 planar 7 — [BCD+07, EK05a]
G1 path & G2 edge disjoint 7 — [FKK09]
three paths 7 — [BCD+07]
G1 matching & G2 planar 7 — [CvKL+11]
six matchings 7 — [CvKL+11]
G1 & G2 outerplanar 7 — [BCD+07]
G1 & G2 trees 7 — [GKV09]
G1 tree of depth 4 & G2 edge disjoint path 7 — [AGKN12]

Table 11.1 A list of classes of graphs that are either known to always have an SGE
or that contain counterexamples. For the positive cases, the area consumption is given,
provided that it is known.

continue with graph classes containing counterexamples. Finally, we consider the results
not fitting in one of these two cases.
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Figure 11.2 The union of the graph on the left and the graph on the right is a K5, but
the middle drawing shows a simultaneous geometric embedding of the two graphs.

11.2.1 Graph Classes with SGE

Brass et al. [BCD+07] give several algorithms for different restricted graph classes always
creating an SGE. In the simplest case G1 and G2 are both required to be paths. This result
is easy to prove and also provides good intuition for most of the positive results:
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Figure 11.3 Overview over the so far known results on SGE. Each box represents one
result and an arrow highlights that the source-result is extended by the target-result. The
arrowheads are empty for the cases in which this is only true if the grid size is neglected.
Note that transitive arrows are omitted.

Theorem 11.1 For two paths P1 and P2 on the same vertex set V of size n an SGE on
a grid of size n× n can be found in linear time.

Proof: For each vertex u ∈ V , we embed u at the integer grid point (p1, p2), where
pi ∈ {1, 2, . . . , n} is the vertex’s position in the path Pi, i ∈ {1, 2}. Then, P1 is embedded
as an x-monotone polygonal chain, and P2 is embedded as a y-monotone chain. Thus,
neither path is self-intersecting; see Figure 11.4 for an example. 2

Figure 11.3 Overview over the so far known results on SGE. Each box represents one
result and an arrow highlights that the source-result is extended by the target-result. The
arrowheads are empty for the cases in which this is only true if the grid size is neglected.
Note that transitive arrows are omitted.

Theorem 11.1 For two paths P1 and P2 on the same vertex set V of size n an SGE on
a grid of size n× n can be found in linear time.

Proof: For each vertex u ∈ V , we embed u at the integer grid point (p1, p2), where
pi ∈ {1, 2, . . . , n} is the vertex’s position in the path Pi, i ∈ {1, 2}. Then, P1 is embedded
as an x-monotone polygonal chain, and P2 is embedded as a y-monotone chain. Thus,
neither path is self-intersecting; see Figure 11.4 for an example. 2
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Figure 11.4 Two paths simultaneously embedded such that one path is x-monotone and
the other is y-monotone.

Brass et al. [BCD+07] also consider more general graph classes, such as caterpillars (trees
being paths after the removal of all leaves), stars (trees with at most one inner vertex called
center), and extended stars (collection of stars with an additional special root and paths
from the special root to the centers of all stars). They show that a caterpillar and a path
admit an SGE on a grid of size n× 2n, which can be extended to two caterpillars on a grid
of size 3n× 3n. Moreover, they can simultaneously embed two stars on a 3× (n− 2) grid
and extend it to the case of k stars on an O(n) × O(n)-grid. Finally, the pairs path plus
extended star and cycle plus cycle can be embedded on O(n2) × O(n) and 4n × 4n grids,
respectively. The latter two results both extend the case of two paths (when neglecting the
grid size).

The result for two cycles was further extended by Duncan et al. [DEK04] and Cabello
et al. [CvKL+11]. Duncan et al. [DEK04] show that a graph with maximum degree 4 has
geometric thickness 2. To this end, they show that two graphs with maximum degree 2
always admit a simultaneous geometric embedding. However, their algorithm computes
drawings with potentially large area.

Cabello et al. [CvKL+11] show the existence of an SGE for a wheel (union of a star and
a cycle on its leaves) and a cycle. They moreover give algorithms for the pairs tree plus
matching (graph with maximum degree 1) and outerpath (outerplanar graph whose weak
dual is a path) plus matching. The former algorithm uses only two slope for the matching
edges, for the latter one slope suffices.

Given a planar graph and a path on the same vertices, the order of the vertices in the path
induces a layering on the vertices. Cappos et al. [CEBFK09] give a linear-time algorithm
that computes an SGE of a planar graph and a path if the planar graph is level-planar with
respect to the layering induced by the path. Angelini et al. [AGKN12] show that every tree
of depth 2 has an SGE with every path.

11.2.2 Examples without SGE

In contrast to the positive results, Brass et al. [BCD+07] give several examples not admitting
an SGE. They show the existence of two planar graphs without a simultaneous embedding
and extended this result to two outerplanar graphs. Two results we present in more detail
are the counterexample for a planar graph and a path by Brass et al. [BCD+07] and Erten
and Kobourov [EK05a] and the counterexample of three paths by Brass et al. [BCD+07].

Theorem 11.2 There exists a planar graph G and a path P not admitting an SGE.

Proof Sketch: Consider the graph G and the path P as shown in Figure 11.5. Let G′

be the subgraph of G induced on the vertices {1, 2, 3, 4, 5}, and let G′′ be the subgraph of
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Figure 11.5 A planar graph G and a path P that do not allow an SGE.

G induced on the vertices {2, 6, 7, 8, 9}. Since G is triconnected fixing the outer face fixes
an embedding for G. With the given outer face of G, the path P contains two crossings:
one involving (2, 4), and the other one involving (6, 8).

Graph G′ has six faces and unless we change the outer face of G′ such that it contains the
edge (1, 3) or (3, 5), the edge (2, 4) is involved in a crossing in the path. Similarly for G′′,
unless we change its outer face such that it contains (2, 7) or (7, 9), the edge (6, 8) is involved
in a crossing in the path. However G′ and G′′ do not share any faces and removing both
crossings depends on taking two different outer faces, which is impossible. Thus, regardless
of the choice for the outer face of G, path P contains a crossing. 2

Theorem 11.3 There exist three paths P1, P2 and P3 not admitting an SGE.

Proof: A path of n vertices is simply an ordered sequence of n numbers. The three
paths we consider are: 714269358, 824357169 and 758261439. For example, the sequence
714269358 represents the path (v7, v1, v4, v2, v6, v9, v3, v5, v8). We will write ij for the edge
connecting vi to vj . The union of these paths contain the following twelve edges.

E = {14, 16, 17, 24, 26, 28, 34, 35, 39, 57, 58, 69}
It is easy to see that the graph G consisting of these edges is a subdivision of K3,3

and therefore non-planar: collapsing 1 and 7, 2 and 8, 3 and 9 yields the classes {1, 2, 3}
and {4, 5, 6}.

It follows that there are two nonadjacent edges of G that cross each other. It is easy
to check that every pair of nonadjacent edges from E appears in at least one of the paths
given above. Therefore, at least one path will cross itself which completes the proof. 2

Cabello et al. [CvKL+11] extend the counterexample for the case that G1 is a path to
the case where G1 is a matching. Moreover, they give an example of six matchings not
admitting an SGE. Note that this does not directly follow by dividing three paths without
an SGE into six matchings, as the resulting matchings allow crossings that were not allowed
before. Another extension of the case where G1 is a path was given by Frati et al. [FKK09]
who give a counterexample where G1 is a path and G is a set of isolated vertices, that is,
G1 and G2 are edge disjoint.

The question of whether two trees always admit an SGE was open for several years, before
it was answered in the negative by Geyer et al. [GKV09] with a construction involving two
very large trees. This of course extends the result of two outerplanar graphs not having an
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SGE by Brass et al. [BCD+07]. Angelini et al. [AGKN12] further extended it to the case
of a tree and a path without an SGE. More precisely, they give an example of a tree of
depth 4 and an edge disjoint path not having an SGE. Recall that a tree of depth 2 does
always admit a simultaneous embedding with a path, thus in this case the gap between
positive and negative results is quite small.

11.2.3 Related Work

Frati et al. [FKK09] consider the restricted case where each input graph has a prescribed
combinatorial embedding. They show that the pair path plus star admits an SGE even
if the embedding of the star is fixed. They can extend this result to a double-star (tree
with up to two inner vertices) if it is edge disjoint to the path. On the other hand they
show that fixing the embedding of two caterpillars may lead to an counterexample, whereas
they admit an SGE if the embedding is not fixed. Another counterexample is the pair
outerplanar graph with fixed embedding plus edge-disjoint path.

An interesting additional restriction to SGEs was considered by Argyriou et al. [ABKS12],
combining SGE with the RAC drawing convention (RAC – Right-Angular Crossing). They
try to find an SGE such that crossings between exclusive edges of different graphs are
restricted to right-angular crossings. Argyriou et al. consider only the case where the edge
sets of both graphs are disjoint. They present one negative and one positive result for this
problem. The negative result consists of a wheel and a cycle not admitting an SGE with
right-angular crossings. On the other hand they show the existence of such a drawing on a
small integer grid for the case that one of the graphs is a path or a cycle and the other is a
matching. Moreover, they give a linear-time algorithm to compute such a drawing.

11.3 Simultaneous Embedding with Fixed Edges

In this section we drop the requirement that edges have to be straight line segments and
consider the SEFE problem. Figure 11.6 shows a SEFE of the graph and the path from
Figure 11.5 not admitting an SGE. Figure 11.7 and Table 11.2 illustrate the results on the
problem SEFE classified in the three categories described before.
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Figure 11.6 A graph and a path not admitting an SGE but a SEFE.
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Figure 11.7 Overview over the so far known results on SEFE. Each box represents one
result and an arrow highlights that the source-result is extended by the target-result. The
arrowheads are empty for the cases in which this is only true, if the number of bends per
edge, the consumed grid size or the necessary running time is neglected. Note that transitive
arrows are omitted.
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SEFE Instance Exist. Area Bends Ref.

G1 tree & G2 path 3 O(n) ×O(n2) 1 & 0 [EK05a]
G1 outerplanar & G2 path 3 O(n) ×O(n2) 1 & 0 [DL07]
G1 outerplanar & G2 cycle 3 O(n2) ×O(n2) 1 [DL07]
G1, G2 outerplanar & G collection of paths 3 O(n2) ×O(n2) 1 [DL07]
G1 tree & G2 planar 3 — [Fra07]
G1 pseudoforest, G2 planar & G forest 3 — [Fra07]
G1 has disjoint cycles, G2 planar & G forest 3 — [FGJ+09]

characterization of G 3/ 7 — [JS09]
characterization of G1 3/ 7 — [FJKS11]
characterization of G1 (G1, G2 outerplanar) 3/ 7 — [FJKS11]

G1 outerplanar & G2 planar 7 — [BCD+07]
k outerplanar graphs 7 — [BCD+07]
three paths 7 — [BCD+07]
G1 & G2 outerplanar 7 — [Fra07]

SEFE Instance Complexity Ref.

three planar graphs NP-complete [GJP+06]

G1 pseudoforest & G2 planar O(n) [FGJ+09]

G1 has ≤ 2 cycles, G2 planar & G pseudoforest O(n) [FGJ+09]

G star O(n) [ABF+12]

G consists of disjoint cycles O(n) [BR13a]

G consists of components with fixed embeddings O(n2) [BR13a]

G has maximum degree 3 polynomial [Sch13]

G1 subdivision of triconnected components & G2 planar polynomial [Sch13]

G biconnected O(n) [HJL10]

G biconnected O(n) [ABF+12]

G consists of biconnected components polynomial [Sch13]

G1, G2 biconnected & G connected O(n2) [BR13b]

Table 11.2 A list of graph classes that are either known to always have a SEFE or
that contain counterexamples (table at the top). For the positive examples bounds on the
required area and number of bends per edge are given, provided that they are known. The
symbol 3/ 7 denotes that a complete characterization of positive and negative instances is
given. The table at the bottom shows results concerning the computational complexity of
SEFE.

11.3.1 Positive and Negative Examples

We start with instances that always admit a SEFE. Erten and Kobourov [EK05a] show
that a tree and a path can always be embedded simultaneously. They additionally give an
algorithm finding a simultaneous embedding in O(n) time on a grid of size O(n) × O(n2)
such that the edges of G1 and G2 have at most one and zero bends per edge, respectively.
Note that a grid of size O(n2)×O(n3) is necessary if the bends are required to be drawn on
grid points. Di Giacomo and Liotta [DL07] extend this result to the case of an outerplanar
graph and a path with the same grid and bend requirements. They extend it further to the
case where G1 and G2 are outerplanar and the common graph G is a collection of paths and
to the case where G1 is outerplanar and G2 is a cycle. However, in both cases a grid of size
O(n2)×O(n2) and up to one bend per edge are required. If the grid and bend requirements
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are completely neglected, the results considering the pairs tree plus path and outerplanar
graph plus path can be extended to the case where one of the two graphs is a tree.

Frati [Fra07] shows how a tree G1 can be simultaneously embedded with an arbitrary
planar graph G2. This algorithm still works if G1 contains one additional edge that is not a
common edge, yielding the result that every graph with at most one cycle (a pseudoforest)
can be embedded simultaneously with every other planar graph if the common graph does
not contain this cycle. Fowler et al. [FGJ+09] extend this result further to the case where
G1 contains only disjoint cycles and the common graph G does not contain a cycle.

Aside from instances always having a SEFE, there are also examples that cannot be
simultaneously embedded. Brass et al. [BCD+07] give examples for k outerplanar graphs,
three paths and an outerplanar graph plus a planar graph not having a SEFE. The re-
sults concerning outerplanar graphs can be extended to the case where both graphs are
outerplanar [Fra07].

In between the positive and negative results there are some characterizations stating
which instances have a SEFE and which do possibly not. Fowler et al. [FJKS11] give a
characterization of the graphs G1 having a SEFE with every other planar graph. This
of course extends all results concerning only G1. In particular, the results that a tree
can be simultaneously embedded with every other graph, whereas an outerplanar graph
cannot, are extended. This characterization essentially requires that G1 must not contain
a subgraph homeomorphic to K3 (a triangle) and an edge not attached to this K3; see
Figure 11.8 for an example. The considerations made for this characterization additionally
yield a characterization for the biconnected outerplanar graphs G1 having a simultaneous
embedding with every other outerplanar graph G2. This of course extends the result that
two outerplanar graphs possibly do not have a SEFE.
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Figure 11.8 G1 (a) and G2 (b) do not admit a SEFE (c) as G2 forces the vertices 4 and
5 to different sides of the triangle ∆123.

A different characterization, in terms of the common graph, is given by Jünger and
Schulz [JS09]. They show that two graphs can be simultaneously embedded if the common
graph G has only two embeddings, whereas in all other cases graphs G1 and G2 with
the common graph G not having a SEFE can be constructed. They additionally show
that finding a SEFE is equivalent to finding combinatorial embeddings of G1 and G2

inducing the same combinatorial embedding, that is the same orders of edges around vertices
and the same relative positions of connected components to one another, on the common
graph G [JS09, Theorem 4]. Note that it is not obvious and not even true for more than
two graphs [ADF11]. As this result is heavily used in most algorithms solving the decision
problem SEFE, we state it as a theorem.

Theorem 11.4 Two graphs G1 and G2 with common subgraph G admit a SEFE if and
only if they admit combinatorial embeddings inducing the same embedding on G.
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11.3.2 Testing SEFE

Since SEFE has positive and negative instances, it would be nice to have an algorithm
deciding for given graphs, whether they can be embedded simultaneously. If more than
two graphs are allowed, this problem is known to be NP-complete [GJP+06], whereas the
complexity for two graphs is still open. However, there are several results solving SEFE
for special cases.

Fowler et al. [FGJ+09] show how to test SEFE, if G1 is a pseudoforest, that is, a graph
with at most one cycle. Note that, as mentioned above, such an instance always has a
SEFE if this single cycle is not contained in G. This result can be extended to the case
where G1 contains up to two cycles, if G does not contain the second cycle, that is, G is
a pseudoforest. To achieve this result the following auxiliary problem was solved. Given a
planar graph G with a designated cycle C and a partition P = {P1, . . . , Pk} of the vertices
not contained in C, does G admit a planar embedding, such that all vertices in Pi are on
the same side of the cycle for every set Pi? Note that this again is a constrained embedding
problem, showing that constrained and simultaneous embedding are closely related. Despite
early effort [FJKS11], testing SEFE for two outerplanar graphs remains open.

Haeupler et al. [HJL10] give a linear-time algorithm to solve SEFE for the case that
the common graph is biconnected. Their solution is an extension of the planarity testing
algorithm by Haeupler and Tarjan [HT08]. This planarity testing algorithm starts with a
completely unembedded graph and adds vertices iteratively, such that the unembedded part
is always connected, ensuring that it can be assumed to lie in the outer face of all embedded
components. While inserting vertices, they keep track of the possible embeddings of the
embedded parts by representing the possible orders of half-embedded edges around every
component with a PQ-tree having these edges as leaves. In a PQ-tree every inner node is
either a Q-node fixing the order of edges incident to it up to a flip or a P-node allowing
arbitrary orders. In this way a PQ-tree represents a set of possible orders of its leaves.

A completely different approach is used by Angelini et al. [ABF+12] to solve SEFE in
linear time if the common graph is biconnected. They choose an order for the common
graph bottom up in its SPQR-tree such that the private edges can be added.

Another approach by Bläsius and Rutter [BR13b] also uses PQ-trees. They use that
the possible orders of edges around every vertex of a biconnected planar graph can be
represented by a PQ-tree, yielding a set of PQ-trees, one for each vertex. To obtain a
planar embedding, the orders for the PQ-trees have to be chosen consistently. Bläsius and
Rutter define the problem Simultaneous PQ-Ordering asking for orders in PQ-trees
that are chosen consistently, which can, among other applications, be used to represent all
planar embeddings of a biconnected graph. This extends to the case of two biconnected
planar graphs enforcing shared edges to be ordered the same and thus yields a quadratic
time algorithm for SEFE if G1 and G2 are biconnected and G is connected. The latter
requirement comes from the fact that only orders of edges around vertices are taken into
account, relative positions of connected components to one another are neglected. Note
that this result extends the case where G is biconnected for the following reason. If G
is biconnected, then G is completely contained in a single block (maximal biconnected
component) of G1 and G2. Thus, even if G1 or G2 are not biconnected, they contain only
one block that is of interest, all other blocks can simply be attached to this block.

The result by Bläsius and Rutter can be slightly extended to the case where the graphs G1

and G2 contain cut-vertices incident to at most two non-trivial blocks (blocks not consisting
of a single edge), including the special case where both graphs have maximum degree 5. The
Simultaneous PQ-Ordering approach again shows the strong relation between simulta-
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neous and constrained embedding as in an instance of SEFE the two input graphs constrain
the possible orders of some of the edges around vertices of one another with PQ-trees.

Angelini et al. [ABF+12] show the equivalence between SEFE and a constrained version
of the Partitioned 2-Page Book Embedding problem. An instance of Partitioned
2-Page Book Embedding is a graph and a partition of its edges into two subsets. It asks
whether all vertices can be arranged on a straight line (the spine) such that each of the
edge partitions can be embedded without crossings in one of the two incident half-planes
(pages of the book). Partitioned T -Coherent 2-Page Book Embedding additionally
has a tree as input with the vertices of the graph as leaves. It is then required that the tree
admits an embedding such that the order of its leaves is equal to the order of vertices on
the spine. In other words, the allowed orders of vertices on the spine is constrained by a
PQ-tree containing no Q-nodes. Angelini et al. [ABF+12] prove the following theorem and
we sketch their proof here.

Theorem 11.5 The problems SEFE for two graphs with connected intersection and
Partitioned T -Coherent 2-Page Book Embedding have the same time complexity.

Proof Sketch: Angelini et al. [ABF+12] first show that an instance of SEFE where the
common graph is connected can be modified (yielding an equivalent instance) such that the
common graph is a tree. Moreover, each private edge is incident to leaves of this tree. They
then show the equivalence to an instance of Partitioned T -Coherent 2-Page Book
Embedding where the common graph is the constraining tree, the leaves of this tree are
the vertices that need to be placed on the spine and the private edges of each of the graphs
is one of the partitions.

In the following we sketch this construction using the example in Figure 11.9. The
instance in (a) having a tree T as common graph such that each private edge is incident to
a leaf admits a SEFE. All private edges are embedded outside the dashed cycle around T
in (b) containing all its leaves. Choosing another face as outer face and cutting the cycle
at an arbitrary position yields a SEFE where all leaves of T are embedded on a straight
line (c) with all private edges on the same side. This directly yields the Partitioned
T -Coherent 2-Page Book Embedding in (d) of the private edges respecting the tree
T . This shows the equivalence of SEFE and Partitioned T -Coherent 2-Page Book
Embedding as the constructions works the same in the opposite direction. 2
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Figure 11.9 Equivalence of an instance of SEFE and the corresponding instance of Par-
titioned T -Coherent 2-Page Book Embedding.

For the restricted case that T is a star, Partitioned T -Coherent 2-Page Book
Embedding reduces to the problem Partitioned 2-Page Book Embedding that can
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be solved in linear time [HN09]. Thus the above result directly implies that SEFE can be
solved in linear time if the common graph is a star.

All results mentioned thus far require G to be connected and most results also require
G1 and G2 to be connected. Bläsius and Rutter [BR13a] consider the case where this does
not hold. They show that it can be assumed without loss of generality that both graphs G1

and G2 are connected.
In the case that G is connected, one only has to deal with orders of edges around vertices

and can neglect relative positions of connected components to one another. Bläsius and
Rutter approach SEFE from the opposite direction, caring only about the relative positions,
neglecting the orders of edges around vertices. More precisely, they give a linear-time
algorithm solving SEFE if the common graph is a set of disjoint cycles. They can extend
this result to a quadratic-time algorithm for the case where G consists of arbitrary connected
components, each with a fixed planar embedding. Both results extend to an arbitrary
number of graphs with sunflower intersection. Recall that sunflower intersection means
that all graphs intersect in the same common subgraph. Moreover, they give a succinct
representation of all simultaneous embeddings.

A completely different, algebraic approach is presented by Schaefer [Sch13]. It is based
on the Hanani-Tutte theorem [Cho34, Tut70] stating that a graph is planar if and only
if its independent odd crossing number is 0. The independent odd crossing number of a
drawing is the number of pairs of non-adjacent edges whose number of crossings is odd.
The independent odd crossing number of a graph is its minimum over all drawings. Thus,
by the Hanani-Tutte theorem, testing planarity is equivalent to testing whether this crossing
number is 0. The latter condition can be formulated as a system of linear equations over
the field of two elements, leading to a simple polynomial-time planarity algorithm. Schaefer
extends this result to other notions of planarity. In particular, it is shown that SEFE can
be solved in polynomial time for three interesting cases, namely (1) if the common graph G
consists of disjoint biconnected components and isolated vertices, (2) if the common graph
has maximum degree 3, and (3) if G1 is the disjoint union of subdivisions of triconnected
graphs. When neglecting the slower running time, this extends several of the results known
before; see Figure 11.7.

11.3.3 Related Work

A result not really fitting in one of the three above classes by Duncan et al. [DEK04]
considers the restricted case of SEFE where each edge has to be a sequence of horizontal
and vertical segments with at most one bend per edge. They show that two graphs with
maximum degree 2 always admit such a SEFE on a grid of size O(n)× O(n) by adapting
their linear-time algorithm computing an SGE for these types of graphs (on a larger grid).

Angelini et al. [ADF11] consider the case where the embedding of each of the input graphs
is already fixed. With this restriction SEFE becomes trivial for two graphs since it remains
to test whether the two graphs induce the same embedding on the common graph. They
show that it can also be decided efficiently for three graphs. However, it becomes NP-hard
for at least fourteen graphs. They also consider the problem SGE for the case that the
embedding of each graph is fixed and show that it is NP-hard for at least thirteen graphs.

Schaefer [Sch13] shows that several other notions of planarity are related to SEFE. In
particular, the well-studied cluster planarity problem reduces to SEFE, providing further
incentive to study its complexity.
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11.4 Simultaneous Embedding

In the most restricted version of the problem, SGE, we insist that vertices are placed in
the same position, and edges must be straight-line segments. The SEFE setting relaxes the
straight-line condition but maintains that edges common to multiple graphs are realized
the same way in each. In the least restrictive setting, SE, we allow the same edge to be
realized differently in different graphs.

It has already been mentioned that simultaneous embedding of multiple graphs can be
thought of as a generalization of the notion of planarity. A classical result about planar
graphs connects the notion of a planar graph with that of a straight-line, crossing-free
drawing thereof. Specifically, Wagner in 1936 [Wag36], Fáry in 1948 [Fár48], and Stein
in 1951 [Ste51] independently show that if a graph has a drawing without crossings, using
arbitrary curves as edges, then there exists a drawing of the graph also without crossings,
but with edges drawn as straight-line segments. For multiple graphs, however, this result
does not hold. That is, given several graphs on the same n vertices, we can surely realize
each graph without crossings, using arbitrary curves as edges and the same vertex positions
for each graph. But (except in very special circumstances such as the positive examples
in the Section 11.2) we cannot guarantee that there exist vertex positions that allow the
realization of each graph with straight-line segments and without crossings. If this were
true, then the vertex positions would be a universal pointset for graphs on n vertices, and
it is known that universal pointsets of linear size do not exist [dFPP90].

Pach and Wenger [PW98] show that every planar graph can be drawn without crossings
with a prespecified position for every vertex. Thus, for every pair of planar graphs an SE
can be created by drawing the first graph arbitrarily and the second graph to the vertex
positions specified by the first drawing. Thus, there are neither negative examples nor is it
necessary to have testing algorithms. However, the drawing of the second graph may have
linearly many bends per edge, thus it is of interest to find an SE with fewer bends.

Erten and Kobourov [EK05a] show that every two graphs can be drawn simultaneously
in O(n) time with at most three bends per edge on an O(n2)×O(n2) grid (O(n3)×O(n3) if
bends need to be placed on grid points), where n is the number of vertices. To achieve this
result, they combine the construction of Brass et al. [BCD+07] to create an SGE of two
paths (see Theorem 11.1 in Section 11.2) with a technique by Kaufmann and Wiese [KW02],
who show that every planar graph can be drawn with at most two bends per edge if the
allowed vertex positions are restricted to a set of points. We include the main result from
this paper along with a proof sketch.
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Figure 11.10 (a) The cycle H2 (gray) with the path P2 (not dashed) and the graph
G1 containing the Hamiltonian cycle H1 (bold) and the Hamiltonian path P1 (bold, not
dashed). (b) The drawing of G1 and P2 according to the construction of Theorem 11.6.
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Theorem 11.6 For two planar graphs G1 and G2 an SE with at most three bends per
edge on an O(n2)×O(n2) grid can be found in linear time.

Proof Sketch: Initially, assume that G1 and G2 are 4-connected. This assumption is
removed later using the technique of Kaufmann and Wiese.

We can compute Hamiltonian cycles H1 and H2 of G1 and G2, respectively, using the
algorithm of Chiba and Nishizeki [CN89]. Let P1 and P2 be Hamiltonian paths contained
in H1 and H2, respectively; see Figure 11.10(a) for an example. As in the proof of The-
orem 11.1, we can construct an SGE of P1 and P2 such that P1 is y-monotone, while P2

is x-monotone. We show how to add the remaining edges of G1 and the construction is
similar for G2.

We consider the absolute values of the slopes the edges in P1 have and define δ to be
their minimum. Let further δ′ be slightly smaller. We first close the cycle H1 by adding the
missing edge using two straight-line segments with slopes δ′ and −δ′; see Figure 11.10(b).
Similarly, all remaining edges of G1 are drawn with two straight-line segments with slopes
appropriately chosen between δ′ and δ and between −δ and −δ′. Dealing similarly with
the remaining edges of G2 yields an SE with at most one bend per edge on a grid of size
O(n2)×O(n2).

For the case that G1 and G2 are not 4-connected, Kaufmann and Wiese [KW02] showed
how they can be augmented to 4-connected planar graphs by adding new edges and sub-
dividing every edge at most once. Drawing these augmented graphs as described above,
removing the additional edges and replacing each subdivision vertex with a bend yields an
SE of G1 and G2 with at most three bends per edge on an O(n2)×O(n2) grid. 2

The result of Erten and Kobourov was improved by Di Giacomo and Liotta [DL05, DL07]
to at most two bends per edge in general and one bend per edge, if G1 and G2 are both sub-
Hamiltonian. That is, they can be augmented to become Hamiltonian maintaining planarity,
and an augmentation together with a Hamiltonian cycle is given with the input. Similar
results were obtained by Kammer [Kam06]. As series-parallel graphs [DDLW06], trees
and outerplanar graphs [CLR87, BK79] are always sub-Hamiltonian and an augmentation
together with a Hamiltonian cycle can be computed in linear-time this result yields a linear
time algorithm to compute an SE of G1 and G2 with one bend per edge on a grid of size
O(n2)×O(n2) if each of the graphs G1 and G2 is series-parallel, a tree or outerplanar.

Cappos et al. [CEBFK09] show that a path and an outerplanar graph can be simulta-
neously embedded in linear time such that edges in the outerplanar graph are straight-line
segments and each edge in the path consists of a single circular arc. Alternatively, the path
edges may be piecewise linear with at most two bends per edge.

11.5 Colored Simultaneous Embedding

Since SGE can be too restrictive, various relaxations have been considered. The two relaxed
versions already mentioned, SEFE and SE relax the requirement of straight-line edges,
and even the requirement that common edges are drawn the same way in both drawings.
Another way to relax the constraints of the original SGE problem is to allow changes in
vertex positions in different graphs.

Until this point we had assumed that multiple input graphs have labeled vertices and
thus the mapping between the vertices of the graphs is part of the input. In simultaneous
embedding without mapping we are interested in computing plane drawings for each of the
given graphs on the same set of points, where any vertex can be placed at any of the points
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Figure 11.11 Two 2-colored graphs with two CSEs corresponding to different mappings.

in the point set. This setting of the problem was investigated in the very first paper on
SGE [BCD+07] and is the source of one of the longest-standing open problems in the area.

A common generalization of the problems above is Colored Simultaneous Embed-
dings (CSE), which was introduced by Brandes et al. [BEEB+11], and contains both, the
version with and without mapping. Formally, the problem of CSE is defined as follows.
The input is a set of planar graphs G1 = (V,E1), G2 = (V,E2), . . . , Gk = (V,Ek) on the
same vertex set V and a partition of V into c classes, which we refer to as colors. The
goal is to find plane straight-line drawings Di of Gi using the same |V | points in the plane
for all i = 1, . . . , k, where vertices mapped to the same point are required to be of the
same color. We call such graphs c-colored graphs; see Figure 11.11 for an example. Given
the above definition, simultaneous embeddings with and without mapping correspond to
colored simultaneous embeddings with c = |V | and c = 1, respectively. Thus, when a set
of input graphs allows for a simultaneous embedding without mapping but does not allow
for a simultaneous embedding with mapping, there must be a threshold for the number of
colors beyond which the graphs can no longer be embedded simultaneously.

Colored simultaneous embeddings provide a way to obtain near-simultaneous embeddings,
where we place corresponding vertices nearly, but not necessarily exactly, at the same
locations. Relaxing the constraint on the size of the pointset allows for a way to more easily
obtain near-simultaneous embeddings, where we attempt to place corresponding vertices
relatively close to one another in each drawing. For example, if each cluster of points in
the plane has a distinct color, then even if a red vertex v placed at a red point p ∈ G1 has
moved to another red point q ∈ G2, the movement is limited to the area covered by the red
points.

Brandes et al. [BEEB+11] show several positive and negative results about CSE. In par-
ticular they show that there exist universal pointsets of size n for 2-colored paths and spiders
as well as 3-colored paths and caterpillars. It is also shown that a 2-colored tree (or even
a 2-colored outerplanar graph) and any number of 2-colored paths can be simultaneously
embedded. In the negative direction, there exist a 2-colored planar graph and pseudo-forest,
three 3-colored outerplanar graphs, four 4-colored pseudo-forests, three 5-colored pseudo-
forests, five 5-colored paths, two 6-colored biconnected outerplanar graphs, three 6-colored
cycles, four 6-colored paths, and three 9-colored paths that cannot be simultaneously em-
bedded.

Frati et al. [FKK09] continue the investigation of near-SGE’s, that is, they try to find
straight-line drawings of the input graphs with a small distance between every pair of
common vertices in different drawings. As a negative result, they present a pair of graphs
such that in every pair of drawings there exists a common vertex with distance linear in
the size of the input. On the other hand, they present positive results for a sequence of
paths and a sequence of trees for the case that every two consecutive graphs in the sequence
are similar with respect to a parameter measuring their similarity. It can then be shown
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Figure 11.12 A matched drawing: corresponding vertices have the same y-coordinate.

that the distance of a common vertex in two consecutive drawings depends linearly on this
parameter.

11.6 Matched Drawings

Another approach to relax requirements of SGE are the so-called matched drawings in-
troduced by Di Giacomo et al. [DDvK+09]. A matched drawing of a pair of graphs is a
planar straight-line drawing of each of the graphs such that each common vertex has the
same y-coordinate in both drawings (instead of the same y- and x-coordinate as required
for SGE); see Figure 11.12 for an example.

Di Giacomo et al. [DDvK+09] give a small counterexample consisting of two small tri-
connected planar graphs not admitting a matched drawing. Moreover, they give a larger
example (620 vertices) of a biconnected graph and a tree not having a matched drawing.

Apart from that they also have some results on the positive side. They show that two trees
are always matched drawable. Moreover, they observe that any planar graph has a matched
drawing with a so-called unlabeled level planar (ULP) graph, that is, a graph that admits a
planar straight-line drawing even if the y-coordinate of each vertex is prespecified such that
no two vertices have the same y-coordinate. A characterization of ULP graphs is given by
Fowler and Kobourov [FK08]. Di Giacomo et al. [DDvK+09] moreover show for a graph
class containing non-ULP graphs (the carousel graphs) that they admit matched drawings
with arbitrary planar graphs. A special case of a carousel graph is a graph consisting of a
single vertex v0 and a set of disjoint subgraphs S1, . . . , Sk, each Si connected to v0 over a
single edge {v0, vi} such that Si is either a caterpillar with vi on its spine, a radius-2 star
with vi as center or a cycle.

Grilli et al. [GHL+09] present further positive results on matched drawings. They show
how to draw the pairs outerplane plus wheel, wheel plus wheel, outerplane plus maximal
outerpillar (outerplane graph with triangulated inner faces and caterpillar as weak dual),
and outerplane plus generalized outerpath (outerpath where some edges on the outer face
may be replaced by some small subgraphs). Moreover, they consider matched drawings
for graph triples and give algorithms creating matched drawings of three cycles, and a
caterpillar and two ULP graphs.

11.7 Other Simultaneous Representations

Apart from simultaneously drawing two graphs sharing some common parts there are other
ways to represent graphs simultaneously. In this section we describe how a plane graph
and its dual can be represented simultaneously, and what is known about simultaneous
intersection representations of (not necessarily planar) graphs.
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11.7.1 A Plane Graph and Its Dual

In a simultaneous drawing of a planar graph and its dual each vertex in the dual graph
is required to be placed inside the corresponding face of the primal graph. Moreover, no
crossings are allowed except for crossings between a dual and its corresponding primal edge.
Tutte [Tut63] first considered this problem and showed that every triconnected planar graph
admits a simultaneous straight-line drawing with its dual. However, the resulting drawings
may have exponentially large area. Erten and Kobourov [EK05b] provide a linear-time
algorithm simultaneously embedding a triconnected planar graph and its dual on a grid of
size (2n− 2)× (2n− 2) such that all edges are drawn as straight-line segments. Zhang and
He [ZH06] improved this result to a grid of size (n− 1)× n.

Brightwell and Scheinerman [BS93] show the existence of a simultaneous straight-line
drawing of a triconnected planar graph and its weak dual such that the crossings between
dual and the corresponding primal edges are right-angular crossings. A circle packing
of a planar graph represents the vertices as non-crossing circles such that two vertices are
adjacent if and only if their corresponding circles touch. Given a circle packing of a planar
graph, one obtains a planar straight-line drawing by placing each vertex at the center of
its corresponding circle. Mohar [Moh97] shows that every triconnected planar graph has
a simultaneous circle packing with its dual such that in the corresponding straight-line
drawings primal and dual edges have right-angular crossings. Argyriou et al. [ABKS12]
give a simple example of a graph that is not triconnected not admitting such a drawing.
On the positive side they give an algorithm that creates such drawings for the case that the
primal graph is outerplanar.

Another way of simultaneously representing a planar graph and its dual is the tessellation
representation introduced by Tamassia and Tollis [TT89]. In a tessellation representation,
every edge, every vertex and every face is represented by a (possibly degenerated) rectangle,
a so-called tile, such that the interiors of these tiles are pairwise disjoint, that their union
forms a rectangle, and that the incidences in the graph are represented by side contacts of
the tiles in the following way: (i) Two tiles share a horizontal line segment if and only if
they represent an edge and an incident face; and (ii) two tiles share a vertical line segment
if and only if they represent an edge and an incident vertex. Tamassia and Tollis [TT89], in
particular, showed that every biconnected planar graph admits a tessellation representation
where the tiles representing vertices and faces are vertical and horizontal line segments,
respectively.

The textbook by Di Battista et al. [DETT99, Sections 4.3 and 4.4] contains a short
description of the algorithm computing tessellation representations and of the relation to
visibility representations. Moreover, tessellation representations were also considered on
other surfaces such as the torus [MR98].

11.7.2 Intersection Representations

Jampani and Lubiw [JL09] introduce the concept of simultaneous graph representations
for other representations than drawings. An intersection representation of a graph assigns
a geometric object to each vertex such that two vertices are adjacent if and only if their
corresponding geometric objects intersect. Two graphs sharing a common subgraph are
simultaneous intersection graphs if each of them has an intersection representation such that
the common vertices are represented by the same objects. Note that every planar drawing
of a graph can be interpreted as intersection representation, each vertex is represented by
the union of its edges. This shows that deciding SEFE as a special case of recognizing
simultaneous intersection graphs.
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Other popular intersection representations are the following. In an interval representation
of a graph each vertex is represented by an interval on the real line. A graph is chordal if
each induced cycle has length three. Gavril [Gav74] shows that chordal graphs are exactly
the intersection graphs of subtrees in a tree. This shows that the class of interval graphs
is contained in the class of chordal graphs. Permutation graphs are the intersection graphs
that can be represented by a set of line segments connecting two parallel lines. Jampani
and Lubiw [JL09] give O(n3)-time algorithms recognizing simultaneous permutation graphs
and simultaneous chordal graphs. The algorithm for simultaneous permutation graphs can
be extended to more than two graphs with sunflower intersection. On the other hand, it is
NP-hard to recognize simultaneous chordal graphs of this kind (for a constant number k of
graphs, the complexity is still open).

In a follow-up paper Jampani and Lubiw [JL10] give an algorithm recognizing simulta-
neous interval graphs in O(n2 log n) time. As interval graphs can be characterized in terms
of PQ-trees, recognizing simultaneous interval graphs leads to a problem of finding orders
in several PQ-trees simultaneously. Bläsius and Rutter [BR13b] consider this kind of prob-
lem in a more general leading to a O(n)-time algorithm recognizing simultaneous interval
graphs.

Related to simultaneous intersection graphs are simultaneous comparability graphs also
introduced by Jampani and Lubiw [JL09]. A comparability graph is a graph that can be
oriented transitively where transitively means that a directed path implies the existence of
a directed edge. Two graphs are simultaneous comparability graphs if each of them can be
oriented transitively such that common edges are oriented the same in both. Jampani and
Lubiw give an O(nm)-time algorithm recognizing simultaneous comparability graphs. It can
also be used to recognize an arbitrary number of comparability graphs with sunflower in-
tersection. Comparability graphs are related to intersection graphs as comparability graphs
are exactly the graphs whose complement is a function graph, that is the intersection graph
with respect to continuous functions on an interval [GRU83].

As for the problem SEFE, finding simultaneous representations is related to extending
a representation of a subgraph to one of the whole graph. For interval graphs Klav́ık et
al. [KKV11] give a O(nm)-time algorithm testing whether a partial interval representation
can be extended. Bläsius and Rutter [BR13b] were able to improve the running time to
O(m) by constructing a second graph such that both graphs are simultaneous interval
graphs if and only if the partial interval representation can be extended.

11.8 Practical Approaches to Dynamic Graph Drawing

The majority of the results reviewed above focused on the theoretical aspects of dynamic
graph drawing. In this section we review practical approaches to this problem. As we have
seen in the previous sections, numerous negative results show that in many of the interesting
settings we cannot guarantee simultaneous embeddings. On the other hand, several efficient
algorithms for different variants of the problem do exist, but they usually place additional
restrictions on the number of input graphs, or limit the graphs to special sub-classes of
planar graphs.

As discussed in the introduction, the problem is well motivated in practice. Of particular
interest are applications to visualization of dynamic graphs and the related issues of mental
map preservation and good graph readability. With this in mind we mention several more
practical results here. First we focus on drawing algorithms that aim to produce simultane-
ous embeddings or layouts that are in some sense close to being a simultaneous embedding.
Afterwards, we briefly discuss other approaches to dynamic graph drawing.
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Erten et al. [EKLN05] adapt force-directed algorithms to create drawings of a series
of graphs sharing subgraphs finding a tradeoff between nice drawings and similarities of
common parts. Kobourov and Pitta [KP05] describe an interactive system that allows
multiple users to interactively modify a pair of graphs simultaneously using a multi-user,
touch-sensitive input device. While those two approaches focus on straight-line drawings
(corresponding to SGE), the GraphSET system by Estrella-Balderrama et al. [EBFK10]
also allows edges to have bends. GraphSET is a tool helping the user to investigate the
theoretical problems SGE and SEFE and it contains implementations of several testing
and drawing algorithms. Chimani et al. [CJS08] create simultaneous drawings of graphs by
drawing the union of the graphs. Their objective is to minimize the number of crossings
in the drawing, where crossings between edges of different graphs do not count, yielding a
simultaneous embedding if and only if the number of crossings is zero.

Misue et al. [MELS95] initiated the study of drawing dynamically changing graphs and
first proposed several models to capture the notion of preserving the user’s mental map. In
particular they suggested preservation of orthogonal orderings, proximity relations, or the
topology as a formalization. Bridgeman and Tamassia [BT98] describe and evaluate differ-
ence metrics that are specialized to orthogonal graph drawings. Purchase et al. [PHG07]
provide empirical evidence that preserving the user’s mental map indeed assists in compre-
hending the evolving graph. Purchase and Samra [PS08] argue that for minimizing the node
movement, finding a trade-off is worse than either keeping the exact node positions or just
layouting the next graph from scratch for memorizing tasks. In a recent study, Archambault
and Purchase [AP13] observed positive effects of mental map preservation for localization
tasks, both in terms of speed and accuracy. Sallaberry et al. [SMM13] consider mental map
preservation for large graphs and argue that restricting node movements to small distances
is not sufficient for this case. They propose to cluster nodes into groups that perform the
same movement in order to increase the stability of the drawing.

Bridgeman et al. [BFG+97] present InteractiveGiotto, a bend-minimization algorithm for
orthogonal drawings that is designed for dynamic and interactive scenarios. Their algorithm
supports arbitrary graph changes and preserves the embedding, all edge crossings, and the
bends of edges.

Brandes and Wagner [BW97] suggest a Bayesian framework for dynamic graph drawing
that can in principle be applied to all layout styles and allows to choose a trade-off between
quality and stability. Diel and Görg [DG02] introduce foresighted layouts, where the basic
idea is to layout the union of the graph over all time steps and to combine vertices and edges
whose life times are disjoint, in order to reduce the size of the drawing. This automatically
guarantees a high stability of the layout, but possibly incurs a negative impact on the
quality of individual drawings. Görg et al. [GBPD04] enhance this method by an additional
step that improves the quality of the individual layouts while keeping them close to the
foresighted layout.

North and Woodhull [NW02] propose a heuristic for online hierarchical graph drawing by
dynamizing the classical Sugiyama algorithm [STT81]. Collberg et al. [CKN+03] describe
a system for visualizing the evolution of software based on force-directed methods applied
to so-called time-sliced graphs. A time-sliced graph consists of disjoint copies of the graph
at each point in time together with time-slice edges, which connect corresponding vertices
from different points in time. The algorithm attempts to place vertices that are connected
by a time-slice edge in roughly the same position. Frishman and Tal [FT08] describe an
algorithm for online dynamic graph drawing that can be implemented to run on a GPU.
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11.9 Morphing Planar Drawings

The main motivation for simultaneously embedding different (but related) graphs is to
preserve the mental map between the unchanged parts by drawing them the same. As
opposed to this, morphing tries to match different drawings of the same graph. More
precisely, let Γ1 and Γ2 be two drawings of the same graph G, a morph between them is a
motion of the vertices along trajectories starting at the vertex positions in Γ1 and ending
at their positions in Γ2.

The simplest possible morph between two drawings Γ1 and Γ2 is the linear morph where
each vertex moves at constant speed along a line segment from its origin in Γ1 to its
destination in Γ2. However, the intermediate drawings of linear morphs may be pretty bad,
in fact, it may even happen that the whole graph collapses to a single point. To resolve
this problem Cairns [Cai44] introduced the notion of morphing planar graphs, requiring
that every intermediate drawing is also planar. He showed that two planar drawings of a
triangulated plane graph with an equally drawn outer face can be morphed into each other
in a planar way using a sequence of linear morphs. However, this sequence of linear morphs
has exponential size.

Thomassen [Tho83] extends this to drawings of general (not necessarily triangulated) pla-
nar graphs with an equally drawn outer face and convex faces by augmenting the drawings
to compatible triangulations, that is, one must be able to add all new vertices and edges to
both given drawings without violating the planarity or straight-line requirement. Compat-
ible triangulations were further investigated by Aronov et al. [ASS93] who show that two
drawings admit compatible triangulations with only O(n2) new vertices. They moreover
show that Θ(n2) new vertices are sometimes necessary. This result has the following general
implication. If there exist planar morphs between drawings of triangulated graphs using
O(f(n)) linear morphing steps, then there are morphs between drawings of arbitrary plane
graphs using O(f(n2)) steps.

To be able to morph with a polynomial number (O(n6)) of linear steps Lubiw and Pet-
rick [LP08] relaxed the straight-line requirement and showed how to morph between two
planar drawings when edges are allowed to be bent during the morph. However, this result
can also be achieved without this relaxation. Alamdari et al. [AAC+13] show that for every
pair of planar straight-line drawings of a triangulated graph with an equally drawn outer
face there exists a planar morph consisting of a sequence of O(n2) linear morphs. This is
the first result showing that a polynomial number of morphing steps is sufficient. Using
the results on compatible triangulations mentioned above [ASS93] this yields a morph with
O(n4) linear steps for general plane graphs.

Floater and Gotsman [FG99] introduced a completely different approach to planar mor-
phing of triangulations. They make use of the fact that in a planar drawing the position of
each vertex is a convex combination of the neighboring vertices and that conversely fixing
the coefficients of the convex combinations and fixing the outer face yields a planar drawing.
This was shown by Floater [Flo97] extending the results by Tutte [Tut60, Tut63]. Floater
and Gotsman [FG99] create a morph between two planar drawings by transforming the co-
efficients of the corresponding convex combinations into one another, yielding a sequence of
coefficients and thus a sequence of planar drawings. Surazhsky and Gotsman [SG01, SG03]
improve this approach further to obtain aesthetically more appealing morphs.

The approach based on convex combinations has the disadvantage that the trajectories
are not explicitly computed and that it is not clear how many linear morphing steps are
necessary to obtain a planar and smooth morph. Despite its theoretical shortcomings, in
practice this algorithm leads to nice morphs, as shown by Erten et al. [EKP04b, EKP04a],
who combine this approach with rigid motion (translation, rotation, scaling and shearing)
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and the triangulation algorithm by Aronov et al. [ASS93]. Moreover, they are able to morph
edges with bends to straight-line edges and vice versa.

Biedl et al. [BLS06] consider a related problem of morphing so-called parallel straight-line
drawings, that is, straight-line drawings such that for every edge e, the slope of e is the same
in both drawings. Moreover, the edge slopes have to be preserved throughout the whole
morph. They show that for orthogonal drawings (without bends) such a morph always
exists. On the other hand, testing for the existence of such a morph becomes NP-hard if
the edges are allowed to have three or more slopes. Lubiw et al. [LPS06] investigate morphs
between general orthogonal drawings of planar graphs where edges may have bends. They
show that for every pair of drawings there is a morph preserving planarity and orthogonality
consisting of polynomial many steps, where each step is either a movement of vertices or a
“twist” around a vertex that introduces new bends at the edges incident to this vertex.

Of course, problems similar to planar morphing can be considered for non-planar graphs.
Examples are the results by Friedrich and Eades [FE02] and Friedrich and Houle [FH02].

11.10 Open Problems

There are many interesting problems, some of which have been open for a decade and have
resisted efforts to address them. Here we list several of the current open problems.

1. Given two arbitrary planar graphs G1 = (V1, E1) and G2 = (V2, E2) with the
same number of vertices, |V1| = |V2|, does there always exist a mapping from the
vertex set of the first graph onto the vertex set of the second graph V1 → V2 such
that the two graphs have a SGE? That is, do pairs of planar graphs always have
an SGE without mapping?

2. Given two graphs of max-degree 2, G1 = (V1, E1) and G2 = (V2, E2) with the
same number of vertices, an SGE with mapping does always exist. Unlike most
other results where the pair of graphs has an SGE the area of the necessary
grid is not bounded. Is it possible to guarantee polynomial integer grid for the
simultaneous embedding?

3. What is the complexity of SGE for two graphs with fixed planar embeddings?

4. Is it possible to decide SGE for restricted cases, for example if the common graph
is highly connected?

5. What is the complexity of the decision problem SEFE for two graphs?

6. Are there interesting parameters for which SEFE or SGE are FPT? For example,
tree-distance of G? What about maximum degree ∆?

7. What is the complexity of SEFE for more than two graphs with sunflower inter-
section?

8. What is the complexity of SEFE for four graphs, each with a fixed planar em-
bedding?

9. What is the complexity of the optimization version of SEFE where one asks for
drawings such that as many common edges as possible are drawn the same?

10. Let G1 and G2 be two planar graphs with given combinatorial embeddings in-
ducing the same embedding on their intersection G, that is, a SEFE is given
with the input. What is the complexity of minimizing the number of crossings
in a corresponding drawing?

11. Let G1 and G2 be two planar graphs with given combinatorial embeddings in-
ducing the same embedding on their intersection G, that is, a SEFE is given
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with the input. Do G1 and G2 admit drawings with few bends on a small grid
respecting the given SEFE?

12. There are many open problems in the CSE setting. A particularly interesting
one concerns pairs of trees. It is known that two n-vertex trees without mapping
(1-colored) have a simultaneous geometric embedding (any set of n points in
convex position suffices). It is also known that at the other extreme when the
mapping is given (n-colored) such geometric embedding may not exist. However,
the problem is open for any number of colors c ∈ {2, . . . , n− 1}.

13. Similarly to the previous problem, the status of the tree-path CSE problem is
open for any number of colors c ∈ {3, . . . , n− 1}.
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